TD 10: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

- 1. How can you correct this Petri net to avert unwanted behaviours (like $r \to ry \to rr$) in a 1-safe manner?
- 2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:

producers who can make the actions produce(p) or deliver(d), and **consumers** with the actions receive(r) and consume(c).

All the producers and consumers communicate through a single unordered channel.

- 1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?
- 2. An *inhibitor arc* between a place p and a transition t makes t firable only if the current marking at p is zero. In the following example, there is such an inhibitor arc between p_1 and t. A marking (0,2,1) allows to fire t to reach (0,1,2), but (1,1,1) does not allow to fire t.

Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is not currently used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider as usual propositional LTL, with a set of atomic propositions AP equal to P the set of places of the Petri net. We define proposition p to hold in a marking m in \mathbb{N}^P if m(p) > 0.

The models of our LTL formulæ are computations $m_0 m_1 \cdots$ in $(\mathbb{N}^P)^{\omega}$ such that, for all $i \in \mathbb{N}$, $m_i \to_{\mathcal{N}} m_{i+1}$ is a transition step of the Petri net \mathcal{N} .

- 1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1-safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton $\mathcal{B}_{\mathcal{N}}$ from a 1-safe Petri net that recognizes all the infinite computations of \mathcal{N} starting in m_0 .
- 2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.
- 3. We consider now a different set of atomic propositions, such that $\Sigma = 2^{\text{AP}}$, and a labeled Petri net, with a labeling homomorphism $\lambda : T \to \Sigma$. The models of our LTL formulæ are infinite words $a_0 a_1 \cdots$ in Σ^{ω} such that $m_0 \xrightarrow{t_0}_{\mathcal{N}} m_1 \xrightarrow{t_1}_{\mathcal{N}} m_2 \cdots$ is an execution of \mathcal{N} and $\lambda(t_i) = a_i$ for all i.

Prove that *action-based* LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

Exercise 4 (VASS). An *n*-dimensional vector addition system with states (VASS) is a tuple $\mathcal{V} = \langle Q, \delta, q_0 \rangle$ where Q is a finite set of states, $q_0 \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^n \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^n$. An execution of \mathcal{V} is a sequence of configurations $(q_0, v_0)(q_1, v_1) \cdots (q_m, v_m)$ such that $v_0 = \bar{0}$, and for $0 < i \le m$, $(q_{i-1}, v_i - v_{i-1}, q_i)$ is in δ .

1. Show that any VASS can be simulated by a Petri net.

2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (VAS). An *n*-dimensional vector addition system (VAS) is a pair $\langle v_0, W \rangle$ where $v_0 \in \mathbb{N}^n$ is the initial vector and $W \subseteq \mathbb{Z}^n$ is the set of transition vectors. An execution of (v_0, W) is a sequence $v_0v_1 \cdots v_m$ where $v_i \in \mathbb{N}$ for all $0 \le i \le m$ and $v_i - v_{i-1} \in W$ for all $0 < i \le m$.

We want to show that any n-dimensional VASS $\mathcal{V} = \langle Q, \delta, q_0 \rangle$ can be simulated by an (n+3)-dimensional VAS $\langle v_0, W \rangle$. Let k = |Q|, and q_0, \ldots, q_{k-1} the states of \mathcal{V} . We define two functions a(i) = i+1 and b(i) = (k+1)(k-i). We encode a configuration (q_i, v) of \mathcal{V} as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state q_i , $0 \le i < k$, we add two transition vectors to W:

$$t_i = (0, \dots, 0, -a(i), a(k-1-i) - b(i), b(k-1-i))$$

$$t'_i = (0, \dots, 0, b(i), -a(k-1-i), a(i) - b(k-1-i))$$

For every transition $d = (q_i, w, q_i)$ of \mathcal{V} , we add one transition vector to W:

$$t_d = (w(1), \dots, w(n), a(j) - b(i), b(j), -a(i))$$

- 1. Show that any execution of \mathcal{V} can be simulated by (v_0, W) for a suitable v_0 .
- 2. Conversely, show that this VAS (v_0, W) simulates \mathcal{V} faithfully.