## TD 8: Partial-Order Reduction

## Reminder:

- (C0)  $red(s) = \emptyset$  iff  $en(s) = \emptyset$ .
- (C1) For every path  $s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} s_n \xrightarrow{a} t$  in  $\mathcal{K}$  (for any  $n \geq 0$ ), if  $a \notin red(s)$  and a depends on some action in red(s) (i.e. there exists  $b \in red(s)$  such that  $(a, b) \notin I$ ), then there exists  $1 \leq i \leq n$  such that  $a_i \in red(s)$ .
- (C2) If  $red(s) \neq en(s)$ , then all actions in red(s) are invisible.
- (C3) For all cycles in the reduced system  $\mathcal{K}'$ , the following holds: if  $a \in en(s)$  for some state s in the cycle, then  $a \in red(s')$  for some (possibly other) state s' in the cycle.

**Exercise 1.** Consider the following transition system with state set  $S = \{s_0, \ldots, s_7\}$  and transition alphabet  $\Delta = \{a, b, c, d\}$ :

- 1. Compute the independance set I and the set of invisible actions U.
- 2. Propose an assignment  $red: S \to 2^{\Delta}$  of ample sets satisfying conditions  $C_0$ – $C_3$  of the lecture notes.



**Exercise 2.** Consider the condition  $(C'_1)$ : for any s with  $red(s) \neq en(s)$ , any a in red(s) is independent from every b in  $en(s) \setminus red(s)$ .

- 1. Show that  $(C_1)$  implies  $(C'_1)$ .
- 2. Show that  $(C_0), (C'_1), (C_2), (C_3)$  are not sufficient to ensure stuttering equivalence, i.e., that there exists a Kripke structure  $\mathcal{K}$  and an assignment red satisfying conditions  $(C_0), (C'_1), (C_2), (C_3)$  but such that the reduced system  $\mathcal{K}'$  induced by red is not stuttering equivalent to  $\mathcal{K}$ .

**Exercise 3.** Consider the following system with  $A = \{a, b, c, d\}$ :



- 1. Let  $red(s_0) = \{b, c\}$  and red(s) = en(s) for  $s \neq s_0$ ; show that this ample set assignment is compatible with  $C_0$ – $C_3$ .
- 2. Exhibit a CTL(U) formula that distinguishes between the original system and its reduction.
- 3. Can you propose an assignment that also complies with  $C_4$ : if  $red(s) \neq en(s)$ , then |red(s)| = 1?

**Exercise 4.** Show that  $(C_0)$ – $(C_2)$  is not sufficient to ensure stuttering equivalence.

**Exercise 5.** Let  $\varphi$  be an LTL formula. We define the X-depth  $d_X(\varphi)$  and the U-depth  $d_U(\varphi)$  of  $\varphi$  as the maximal nesting of X- or U-operators in  $\varphi$ :

We denote by LTL( $U^m, X^n$ ) the set of LTL formulas  $\varphi$  with  $d_X(\varphi) \leq n$  and  $d_U(\varphi) \leq m$ , where  $n = \infty$  or  $m = \infty$  indicates no restriction of the operator in question.

- 1. We say that two words  $w, w' \in \Sigma^{\omega}$  are n-stutter-equivalent if there exists letters  $a_0, a_1, \ldots \in \Sigma$  and  $f, g : \mathbb{N} \to \mathbb{N}^*$  such that  $w = a_0^{f(0)} a_1^{f(1)} \ldots, w' = a_0^{g(0)} a_1^{g(1)} \ldots$ , and for all  $i \geq 0$ ,  $a_i = a_{i+1}$  implies  $a_i = a_j$  for all j > i, and f(i) < n+1 or g(i) < n+1 implies f(i) = g(i).
  - Show that for all  $n \geq 0$  and  $\varphi \in LTL(U^{\infty}, X^n)$ ,  $L(\varphi)$  is closed under n-stutter-equivalence.
- 2. A similar principle can be formulated when the U-depth is restricted, by considering stuttering of factors instead of letters. Show that for all  $m \geq 1$  and  $\varphi \in \mathrm{LTL}(\mathsf{U}^m,\mathsf{X}^0)$ , for all  $u,v \in \Sigma^*$  and  $w \in \Sigma^\omega$ , we have  $uv^mw \in L(\varphi)$  iff  $uv^{m+1}w \in L(\varphi)$ .