TD 8: Partial-Order Reduction

Reminder:

$(\mathrm{C} 0) \operatorname{red}(s)=\emptyset$ iff $e n(s)=\emptyset$.
(C1) For every path $s \xrightarrow{a_{1}} s_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} s_{n} \xrightarrow{a} t$ in \mathcal{K} (for any $n \geq 0$), if $a \notin \operatorname{red}(s)$ and a depends on some action in $\operatorname{red}(s)$ (i.e. there exists $b \in \operatorname{red}(s)$ such that $(a, b) \notin I)$, then there exists $1 \leq i \leq n$ such that $a_{i} \in \operatorname{red}(s)$.
$(\mathrm{C} 2)$ If $\operatorname{red}(s) \neq e n(s)$, then all actions in $\operatorname{red}(s)$ are invisible.
(C3) For all cycles in the reduced system \mathcal{K}^{\prime}, the following holds: if $a \in e n(s)$ for some state s in the cycle, then $a \in \operatorname{red}\left(s^{\prime}\right)$ for some (possibly other) state s^{\prime} in the cycle.

Exercise 1. Consider the following transition system with state set $S=\left\{s_{0}, \ldots, s_{7}\right\}$ and transition alphabet $\Delta=\{a, b, c, d\}$:

1. Compute the independance set I and the set of invisible actions U.
2. Propose an assignment red :S $\rightarrow 2^{\Delta}$ of ample sets satisfying conditions $C_{0}-C_{3}$ of the lecture notes.

Exercise 2. Consider the condition $\left(C_{1}^{\prime}\right)$: for any s with $\operatorname{red}(s) \neq e n(s)$, any a in $\operatorname{red}(s)$ is independent from every b in $e n(s) \backslash \operatorname{red}(s)$.

1. Show that $\left(C_{1}\right)$ implies $\left(C_{1}^{\prime}\right)$.
2. Show that $\left(C_{0}\right),\left(C_{1}^{\prime}\right),\left(C_{2}\right),\left(C_{3}\right)$ are not sufficient to ensure stuttering equivalence, i.e., that there exists a Kripke structure \mathcal{K} and an assignment red satisfying conditions $\left(C_{0}\right),\left(C_{1}^{\prime}\right),\left(C_{2}\right),\left(C_{3}\right)$ but such that the reduced system \mathcal{K}^{\prime} induced by red is not stuttering equivalent to \mathcal{K}.

Exercise 3. Consider the following system with $A=\{a, b, c, d\}$:

1. Let $\operatorname{red}\left(s_{0}\right)=\{b, c\}$ and $\operatorname{red}(s)=e n(s)$ for $s \neq s_{0}$; show that this ample set assignment is compatible with $C_{0}-C_{3}$.
2. Exhibit a $\mathrm{CTL}(\mathrm{U})$ formula that distinguishes between the original system and its reduction.
3. Can you propose an assignment that also complies with C_{4} : if $\operatorname{red}(s) \neq e n(s)$, then $|\operatorname{red}(s)|=1 ?$

Exercise 4. Show that $\left(C_{0}\right)-\left(C_{2}\right)$ is not sufficient to ensure stuttering equivalence.

Exercise 5. Let φ be an LTL formula. We define the X -depth $d_{\mathrm{X}}(\varphi)$ and the U -depth $d_{\mathrm{U}}(\varphi)$ of φ as the maximal nesting of X - or U -operators in φ :

$$
\begin{aligned}
d_{\mathrm{X}}(p) & =0 \\
d_{\mathrm{X}}(\neg \varphi) & =d_{\mathrm{X}}(\varphi) \\
d_{\mathrm{X}}(\varphi \wedge \psi) & =\max \left(d_{\mathrm{X}}(\varphi), d_{\mathrm{X}}(\psi)\right) \\
d_{\mathrm{X}}(\mathrm{X} \varphi) & =1+d_{\mathrm{X}}(\varphi) \\
d_{\mathrm{X}}(\varphi \cup \psi) & =\max \left(d_{\mathrm{X}}(\varphi), d_{\mathrm{X}}(\psi)\right)
\end{aligned}
$$

$$
\begin{aligned}
d_{\mathrm{U}}(p) & =0 \\
d_{\mathrm{U}}(\neg \varphi) & =d_{\mathrm{U}}(\varphi) \\
d_{\mathrm{U}}(\varphi \wedge \psi) & =\max \left(d_{\mathrm{U}}(\varphi), d_{\mathrm{U}}(\psi)\right) \\
d_{\mathrm{U}}(\mathrm{X} \varphi) & =d_{\mathrm{U}}(\varphi) \\
d_{\mathrm{U}}(\varphi \mathrm{U} \psi) & =1+\max \left(d_{\mathrm{U}}(\varphi), d_{\mathrm{U}}(\psi)\right)
\end{aligned}
$$

We denote by $\operatorname{LTL}\left(\mathrm{U}^{m}, \mathrm{X}^{n}\right)$ the set of LTL formulas φ with $d_{\mathrm{X}}(\varphi) \leq n$ and $d_{\mathrm{U}}(\varphi) \leq m$, where $n=\infty$ or $m=\infty$ indicates no restriction of the operator in question.

1. We say that two words $w, w^{\prime} \in \Sigma^{\omega}$ are n-stutter-equivalent if there exists letters $a_{0}, a_{1}, \ldots \in \Sigma$ and $f, g: \mathbb{N} \rightarrow \mathbb{N}^{*}$ such that $w=a_{0}^{f(0)} a_{1}^{f(1)} \ldots, w^{\prime}=a_{0}^{g(0)} a_{1}^{g(1)} \ldots$, and for all $i \geq 0, a_{i}=a_{i+1}$ implies $a_{i}=a_{j}$ for all $j>i$, and $f(i)<n+1$ or $g(i)<n+1$ implies $f(i)=g(i)$.
Show that for all $n \geq 0$ and $\varphi \in \operatorname{LTL}\left(\mathrm{U}^{\infty}, \mathrm{X}^{n}\right), L(\varphi)$ is closed under n-stutterequivalence.
2. A similar principle can be formulated when the U -depth is restricted, by considering stuttering of factors instead of letters. Show that for all $m \geq 1$ and $\varphi \in \operatorname{LTL}\left(\mathrm{U}^{m}, \mathrm{X}^{0}\right)$, for all $u, v \in \Sigma^{*}$ and $w \in \Sigma^{\omega}$, we have $u v^{m} w \in L(\varphi)$ iff $u v^{m+1} w \in L(\varphi)$.
