
Contents

1 Database theory: Query languages 1
Nicole Schweikardt1, Thomas Schwentick2, Luc Segoufin3 1Goethe-Universität

Frankfurt am Main; 2Technische Universität Dortmund; 3ENS de Cachan

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The relational model . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Query languages . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Expressive power . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Evaluation and its complexity . . . . . . . . . . . . . . . 7
1.2.6 Static analysis and its complexity . . . . . . . . . . . . . 9
1.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The simplest language: conjunctive queries . . . . . . . . . . . 10
1.3.1 Conjunctive queries: definition . . . . . . . . . . . . . . 10
1.3.2 Limitations of the expressive power of CQ . . . . . . . 11
1.3.3 Complexity of CQ . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Acyclic conjunctive queries . . . . . . . . . . . . . . . . 13
1.3.5 Relational view . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 The gold standard: Codd-complete languages . . . . . . . . . 18
1.4.1 Codd-equivalent query languages: definition . . . . . . 18
1.4.2 Limitations of the expressive power . . . . . . . . . . . 20
1.4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Towards lower complexity: restricted query languages . . . . 24
1.5.1 Extensions of conjunctive queries . . . . . . . . . . . . . 24
1.5.2 Bounding the number of variables . . . . . . . . . . . . 25
1.5.3 The semijoin algebra . . . . . . . . . . . . . . . . . . . . 26

1.6 Towards more expressiveness: recursion and counting . . . . 28
1.6.1 Rule-based queries with recursion . . . . . . . . . . . . 28
1.6.2 Relational calculus with fixpoints . . . . . . . . . . . . . 31
1.6.3 Relational calculus with counting . . . . . . . . . . . . 33
1.6.4 The quest for PTime . . . . . . . . . . . . . . . . . . . . 34
1.6.5 Beyond PTime . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 Towardsmore flexibility: query languages for other datamod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1





1

Database theory: Query languages

Nicole Schweikardt1, Thomas Schwentick2, Luc Segoufin3

1Goethe-Universitat Frankfurt am Main; 2Technische Universitat Dortmund;
3ENS de Cachan

CONTENTS

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The simplest language: conjunctive queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The gold standard: Codd-complete languages . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Towards lower complexity: restricted query languages . . . . . . . . . . . . . . . 24
1.6 Towards more expressiveness: recursion and counting . . . . . . . . . . . . . . . 28
1.7 Towards more flexibility: query languages for other data models . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Version of: April 6, 2011
Abstract This chapter gives an introduction to the theoretical foundations
of query languages for relational databases. It thus addresses a significant
part of database theory. Special emphasis is put on the expressive power
of query languages and the computational complexity of their associated
evaluation and static analysis problems.

1.1 Introduction

Most personal or industrial data is simply stored in files and accessed via
simple programs. This approach works well for small applications but is
not generic and does not scale. New applications require new software, and
classical software can hardly cope with huge data sets.

Databasemanagement systems (DBMS)havebeenbuilt toprovide ageneric
solution to this issue. Usually, a DBMS enforces a clear distinction between
how the data is stored on disk and how it is accessed via queries. When
querying a database, one should not be concerned about how and where the
data is physically stored, but only with the logical structure of the data. This
concept is called the data independence principle.
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Moreover a DBMS comes with an optimization engine containing evalua-
tion heuristics, index structures, and data statistics that greatly improve the
performance of the system and induce high scalability. Typical DBMS now
handle gigabytes of data easily.

The roots of database theory lie in the work of Codd on the relational
model, identifying the relational calculus and the relational algebra. Several
other models were later proposed, e.g., the object oriented model and, more
recently, the semi-structured model of XML. The relational model is now the
most widely used by DBMS. For this reason, and for lack of space, we mainly
consider the relational model in this chapter. Only in the last section we shall
briefly discuss other major data models.

Theoretical database research has covered areas such as the design of query
languages, schema design, query evaluation (clustering, indexing, optimiza-
tion heuristics, etc.), storage and transaction management, and concurrency
control to name just a few. In this chapterwe only address the theory of query
languages, which forms the core of database theory. For gaining an in-depth
knowledge of database theorywe refer the reader to the textbooks [3, 83, 2], to
the survey articles that regularly appear in the Database Principles Column of
SIGMOD Record, and to the Proceedings of the ACM Symposium on Principles
of Database Systems (PODS) and the International Conference on Database Theory
(ICDT). For theoretical results on schema design and integrity constraints we
further refer to Kanellakis’ handbook chapter [69].

The intention of this article is not to give a complete historical account.
Sometimes we favor more recent presentations over the original papers. Full
references can usually be found in the cited work.

The present chapter is organized as follows: In Section 1.2we introduce the
relationalmodel and its basicdefinitions. In the samesection,wealsodescribe
the aspects of query languageswe aremostly interested in: expressive power,
evaluation complexity, and complexity of static analysis. In Section 1.3 we
discuss the most basic relational query language, conjunctive queries. In
Section 1.4 we describe the relational algebra and the relational calculus
whose expressive power is usually considered a yardstick for relational query
languages. We study restricted query languages that can be evaluated more
efficiently and allow for automatic static analysis in Section 1.5. In contrast,
in Section 1.6 we cover more expressive query languages which support
recursion and counting. In Section 1.7 we conclude with a brief survey on
query languages for some other data models.

Acknowledgements. Wewould like to thank Victor Vianu, Leonid Libkin,
Martin Grohe, Moshe Vardi and an anonymous referee for helpful remarks
on an earlier version of this article.



Database theory: Query languages 3

1.2 General notions

In this section we define the general concepts used in database theory. We
present the relational model and the notions of query and query language.
We also introduce the key properties of query languages relevant for this
article: their expressive power, how they are evaluated, their complexity, and
optimization and static analysis that can be performed on them.

1.2.1 The relational model

In the early years of databases, when it became clear that file systems are
not an adequate solution for storing and processing large amounts of interre-
lateddata, several databasemodelswere proposed, including the hierarchical
model and the network model (see, e.g., [102]).

One central idea at the time was that querying a database should not
depend on how and where data is actually stored. This is known as the data
independence principle.

One of the biggest breakthroughs in computer science came when Codd
introduced the relational model in 1970 [25]. In this chapterwewill focus on the
relationalmodel, as it is still dominating thedatabases industry. Furthermore,
most classical results in database theory have been obtained for the relational
model.

In a nutshell, the basic idea of relational databases is to store data in tables
or, seen from a more mathematical point of view, in relations. Figure 1.1
displays our simple running example of a relational database with three
relations containing information on operas. Each table header gives some
structural information on the relation, called the relation schema. Formally,
a relation schema R consists of the relation name (O in the first table),
the number of columns, its arity arity(R), and names for each column, the
attributes. The actual content of a relation is given by the set of rows of the
table, the tuples of the relation. Each tuple has one entry for each attribute of
the relation. We assume that each entry comes from a fixed, infinite domain
of potential database elements. Elements in this domain are often called
constants or data values.

A database schema σ is simply a finite set of relation schemas where no two
relations have the same name. For the purpose of this article, we ignore the
fact that a database schema usually also includes a set of integrity constraints
like key or foreign key constraints. We refer to [69, 3] for a discussion of the
theoretical issues raised by integrity constraints.

Finally, a database instance (or, for short, database)D over a database schema
σ has one (finite) relation RD of arity arity(R) for each relation schema R of σ.
If the database instance is clear from the context we often write R instead of
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O Composer Piece
Puccini Turandot
Wagner Tristan
Britten Peter Grimes
Puccini Tosca

Monteverdi Orfeo
Bizet Carmen

P Artist Type Birthday
Puccini Composer 12/22
Nilsson Soprano 05/17
Pavarotti Tenor 10/12
Bizet Composer 10/25
Callas Soprano 12/2

C Theatre Piece Artist
Scala Turandot Pavarotti

Bayreuth Tristan Nilsson
Covent Garden Peter Grimes Vickers

Met Tosca Callas
Scala Turandot Raisa

FIGURE 1.1

An example database with three relations.

RD. Each element in RD is called a tuple of R inD. The set of values occurring
in a database instance D, its active domain, is denoted by adom(D).

1.2.2 Queries

Of course, the main purpose of storing data in a database is to be able to
query it. As an example, someone might be interested in knowing all the
operas written by Puccini. The result of this query on our example database
in Figure 1.1 consists ofTurandot andTosca. More precisely, in the terminology
of relational databases, it consists of the relation with the two unary tuples
having Turandot and Tosca in their Piece-column, respectively.

In general, a query q is just a mapping which takes a database instance D
and maps it to a relation q(D) of fixed arity. As we aim at evaluating queries
by computers, we further require that this mapping be computable.

Some subtleties are associated with the term computable query, which we
discuss next. First of all, the notion of computability is usually defined for
functions mapping strings to strings. Thus, to fit this definition, we have
to represent each database instance and each query result as a string. A
complication arises from the fact that the tuples of a relation are unordered.
—This is actually where the correspondence between tables and relations



Database theory: Query languages 5

fails: when we represent a relation by a table, we have to put the rows into
some order. But this order is not considered as fixed for a particular relation.
Thus, all row permutations of a table represent the same relation.— Coming
back to the computability issue: there are at least asmany strings representing
a relation as there are permutations of its tuples. However, the result of the
query should not depend on the particular order chosen in the encoding of
a relation. More precisely, if one encoding is a permutation of the other,
then the output for the one should be a corresponding permutation of the
output for the other. Similarly, if the data values of a database are changed
consistently, the values in the result should change accordingly. A query
fulfilling all these requirements is called generic, and by computable query we
actually mean computable generic query ∗.

The following list of queries on our database example from Figure 1.1 will
be used for illustrating the concepts introduced later.

(1) List the artists performing in an opera written by Puccini.

(2) List the theaters playing Puccini or Bizet.

(3) Is there an artist performing in at least two theaters?

(4) is any theater showing a piece whose composer’s birthday is 12/22?

(5) Is any artist performing in an opera whose composer’s birthday is the
same as the artist’s birthday?

(6) List all artists who never performed in an opera written by Bizet.

(7) List all artists who have performed in Bayreuth but neither at the Scala
nor at the Met

(8) Is the total number of operas in the database even?

Apart from differences in the complexities of the queries, one can already
observe a difference between queries with a yes/no answer, like queries (3)
and (4) above, and queries that produce a set of tuples like queries (1) and
(2). We refer to the former kind as Boolean queries†.

1.2.3 Query languages

So far we have stated our example queries in natural language. This is (to
date) not suitable for processing queries with a computer. Thus, there is a

∗The first formal definition of a database query was given in [18]. A detailed treatment of the
genericity issue and the question how constants can be handled is found in [3, 63].
†Technically, Boolean queries can be seen as 0-ary queries, where the answer “no” corresponds
to the empty result set and the answer “yes” corresponds to the result set containing the empty
tuple.
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need for query languages that allow users to pose queries in a semantically
unambiguous way. It is important to remark that one wants to avoid the
use of general programming languages for querying databases for various
reasons: they usually require more effort, they are error-prone, and they are
not conducive to query optimization.

Ideally, a query language allows users to formulate their queries in a simple
and intuitiveway, without having any special proficiency in the technicalities
of the database besides knowledge of the (relevant part of the) database
schema. In particular, the user should not need to specify how the query is
processed but onlywhich properties the result should have. Query languages
of this kind are called declarative.

The evaluation of a query is usually done in several stages:

(1) A compilation transforms it into an algebra expression (see 1.3.5),

(2) using heuristic rules, this expression is rewritten into one that promises
a more efficient evaluation,

(3) from the latter expression, different query evaluation plans are con-
structed (e.g., taking into account different access paths for the data),
and one of them is chosen based on statistical information on the actual
content of the current database,

(4) this evaluation plan is executed using efficient algorithms for each single
operation.

Several important issues arise:

Expressive power: What can and what cannot be expressed in the query
language at hand?

Complexity of evaluation: Howcomplex is it to actually evaluate thequeries
expressible in the query language?

Complexity of static analysis: How difficult is it to analyze and optimize
queries to ensure a good evaluation performance?

Of course, SQL is the lingua franca for relational databases. Nevertheless,
in this articlewewill concentrate on languages (e.g., the relational algebra and
the relational calculus)which are better suited for theoretical investigations of
the above-mentioned questions. Actually, these languages were developed
first and SQL can be conceived as a practical syntax for the relational calculus.
The compilation of SQL into the algebra is based on the fundamental result
that the calculus can be translated into the algebra.
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1.2.4 Expressive power

The expressive power of a query language is the set of queries it can express.
This is an important measure for comparing different query languages. For
instance, it can tell whether some features are redundant or not. Understand-
ing the expressive power of a query language is a challenging task. Showing
that a query is not expressible amounts to proving a lower bound, and lower
bounds are often difficult to get.

Nevertheless, the close relationship of relational query languages with
mathematical logic allows to apply methods from that field to gain insight in
the expressive abilities and limitations of query languages. Indeed, there has
been a strong mutual interaction with Finite Model Theory [81].

1.2.5 Evaluation and its complexity

It is not surprising that there is a trade-off between the expressive power
of a query language and the computational resources needed to evaluate a
query stated in this language. This evaluation complexity can be studied from
different angles, depending on the scenario at hand. Wewill quickly describe
some of these different aspects next.

The first distinction is between Boolean (yes/no) queries and queries with
a relation as output. In the latter case one might ask any of the following two
questions:

(a) What effort is needed to compute the full query result?

(b) Given a tuple, what effort is needed to determine whether it is contained
in the query result?

Many of the complexity investigations concentrate on decision problems,
thus theymostlydealwithBooleanqueries orwithquestion (b) above. Never-
theless,many results can be easily transferred fromBoolean queries to general
queries. In fact, most query languages Q have the property that an algorithm
for efficiently evaluating Boolean Q-queries can be used to construct an al-
gorithm that efficiently evaluates arbitrary (non-Boolean) Q-queries: Given
a database D and a query q whose result is a relation of arity r, a naive ap-
proach is to successively consider each possible result tuple t̄, evaluate the
Boolean query “Does t̄ belong to q(D)?”, and output t̄ if the answer is “yes”.
Then, however, the delay between outputting two consecutive tuples in q(D)
might be rather long, as a large number of candidate tuples (and according
Boolean queries) might have to be processed prior to finding the next tuple
that belongs to the query result. This delay can be avoided if, prior to check-
ing whether tuple t̄ = (t1, . . . , tr) belongs to q(D), the algorithm first checks
whether q(D) contains any tuple whose first component is t1 — and if the
answer is “no”, tuples with first component t1 will not be further consid-
ered. This way of exploring the space of potential result tuples leads to an
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algorithm for computing q(D) such that the delay between outputting any
two consecutive tuples in q(D) requires to process only a number of Boolean
queries that is polynomial in the size of the database and the query q.‡ In
this way, an efficient algorithm for evaluating Boolean Q-queries leads to an
efficient algorithm for evaluating arbitrary Q-queries (provided that Q satis-
fies some mild closure properties ensuring, e.g., that if q ∈ Q and t1 is a data
value, then the query “Does q(D) contain a tuple whose first component is
t1?” is also expressible in Q). Bearing this in mind, Boolean queries will be in
the focus of our exposition.

We refer to the algorithmic problem of evaluating a Boolean query in a
query language Q by Eval(Q).

The seconddistinctionhas todowith thedurability of queries anddatabases.
Sometimes the same query is posed millions of times against an ever chang-
ing database. It may therefore be “compiled” once and forever, and it is
reasonable to spend quite some effort on optimizing the query evaluation
plan. In this scenario, it makes sense to consider the query as a fixed entity
and to express the complexity in terms of the size of the database only. This
is called the data complexity of a query. A further interest in data complexity
stems from the observation that very often the database is by magnitudes
larger than the query.

In other scenarios, the database never changes, but lots of different queries
are posed against it. Then, one is interested in measuring the cost in terms of
the size of the query, this is called query complexity. In the most general sce-
nario of combined complexity, the database changes andmany different queries
are asked, and therefore the complexity is measured in the size of both, the
query and the database. For most query languages, the data complexity is
considerably lower than the combined complexity, whereas the query com-
plexity usually is the same as the combined complexity. We therefore will
restrict attention to data complexity and combined complexity.

Weexpress complexities in termsof standard complexity classes likePTime,
NP, ExpTime, LogSpace, and PSpace. We will also mention some parallel
complexity classes like AC0 (the class of all problems solvable by uniform
constant depth, polynomial size circuits with not, and, and or gates of un-
bounded fan-in), the class TC0 (the analogue of AC0 where also threshold
gates are available), and LogCFL (the class of all problems that are logspace-
reducible to a context-free language); for precise definitions we refer the
reader to [109]. Recall that

AC0 ⊂ TC0 ⊆ LogSpace ⊆ LogCFL ⊆ PTime ⊆ NP ⊆ PSpace ⊆ ExpTime.

As mentioned before, it is usually a fair assumption that databases are
big while the queries are small. Thus, algorithms which are bad in terms of

‡A systematic study of so-called polynomial (or even constant) delay algorithms has been initiated
recently, see [51, 37, 9, 8, 29].
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the size of the query but perform well in terms of the database size are often
considered as feasible. A systematic way of studying phenomena of this kind
is provided by the framework of parameterized complexity. We will present
some results in this vein and refer to the (somewhat feasible) class FPT of
fixed parameter tractableproblemsand the (presumably infeasible) classesW[1],
W[P], andAW[∗], forwhich the following inclusions hold: FPT⊆W[1]⊆W[P]
and W[1] ⊆AW[∗]. For the precise parametric notions we refer to the survey
[52] and the book [40].

1.2.6 Static analysis and its complexity

In the context of data complexity we already mentioned queries that are
evaluated many times and therefore deserve to be optimized towards fast
evaluation. Even queries that are evaluated once on very large data deserve
optimizations. Query optimizers use cost models to decide what optimiza-
tions are worth doing. There are usually several ways of compiling a query
into an evaluation plan and, even more, there are already several ways of
expressing a query in the query language at hand. This often corresponds
to several equivalent characterizations of the same query and sometimes in-
duces radically different evaluation procedures after compilation. But which
one should the system use? This task is attacked during query optimization.

Many optimization tasks rely on three simple questions: (1) Does query
q ever produce a non-empty result? (2) Does query q1 always produce the
same result as query q2? (3) Does query q1 always produce a subset of the
results of query q2? We refer to the first question as the satisfiability problem
(or, non-emptiness problem) to the second as the equivalence problem, and to
the third as the containment problem. By Sat(Q) we denote the algorithmic
problem of deciding for a given query in language Qwhether there is at least
one database on which the query has a non-empty result. We write Equiv(Q)
and Cont(Q) for the problems of deciding whether for given queries q1,q2
from Q and every database D, q1(D) = q2(D), respectively, q1(D) ⊆ q2(D). We
abbreviate the former by q1 ≡ q2 and the latter by q1 ⊆ q2.

Of course q1 ≡ q2 iff q1 ⊆ q2 and q2 ⊆ q1. Furthermore, q1 is satisfiable iff it
is not equivalent to the query that always produces the empty result set. On
the other hand, the equivalence problem reduces to the containment problem
and, if the query language is closed under complementation and conjunction,
the containment problem reduces to the emptiness problem.

The whole area of reasoning about semantic properties of queries is called
static analysis. In terms of automatic static analysis, one is interested in finding
out whether static analysis for a given query language is decidable at all and,
if so, what its exact complexity is.
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1.2.7 Conclusion

The expressive power, the complexity of evaluation, and static analysis are
correlated properties of a query language. More expressive power usually
increases the complexity of query evaluation and static analysis. But even
if two query languages have the same expressive power, they may vastly
differ in terms of the complexity of static analysis and query evaluation. The
reason for this is that even if every query of one language can be translated
into an equivalent query of the other language, the translation may turn a
short query into a huge one. Thus, apart from expressive power and com-
plexity, also the succinctness of queries is a natural measure for comparing
query languages. Although well-investigated for languages used in speci-
fication and automated verification, a systematic study of the succinctness
of database query languages has started only recently (see, e.g., [57, 33]).
Somewhat related is Papadimitriou’s work on the complexity of knowledge
representation, where he compares the succinctness of various representation
formalisms (see e.g. [87, 45]).

There is a trade-off between the expressive power of a query language and
the complexity of query evaluation. As an example, if the data complexity
of a query language is in PTime then this query language cannot express any
NP-complete property unless PTime =NP. Succinctness considerations can
help to investigate the relationship between different languages with respect
to combined complexity.

In the end, designers usually try to get the best expressive power with the
least complexity for the application area at hand.

1.3 The simplest language: conjunctive queries

We start with a simple query language, the conjunctive queries, whose ex-
pressive power is subsumed bymost of the query languages wewill consider
and which is already able to express many common “every day queries”. In
particular, it corresponds to the very basic features of SQL.

After introducing the rule-based conjunctive queries, we study their ex-
pressive power and complexity. We then turn to a restriction, the acyclic
conjunctive queries, for which query evaluation and static analysis have con-
siderably lower complexity. Finally, we present a different mechanism, the
SPJR algebra, for defining conjunctive queries.

1.3.1 Conjunctive queries: definition

We recall query (1) from Section 1.2.2, asking for all artists performing in an
opera written by Puccini. In SQL this can be simply expressed by



Database theory: Query languages 11

SELECT Artist
FROM C, O
WHEREC.Piece=O.PieceANDComposer=Puccini

This query can be expressed more concisely in the following rule-based way:

PA(x) : − C(z, y,x), O(Puccini, y) (1.1)

This expression can be interpreted as a “tuple producing facility” in the
following way: for each assignment of values to the variables x, y,z, for
which (z, y,x) is a tuple in the C relation and (Puccini, y) is a tuple in the
O relation, (x) is a tuple in the result relation PA.

As an example, the assignment x 7→ Pavarotti, y 7→ Turandot, z 7→ Scala
fulfills all requirements and produces the tuple (Pavarotti).

In general, a conjunctive query consists of a single rule of the form

Q(x̄) : − R1(t̄1), · · · ,Rℓ(t̄ℓ)

where Q is the name of the relation that is defined by the query. Its arity
is the arity of the tuple x̄ (the PA query, for example, has arity one).
The atom to the left of the symbol : − is called the head of the query, whereas
the expression to the right of the symbol : − is called the body of the query.
The tuples x̄ and t̄1, . . . , t̄ℓ consist of variables and/or constants. The atoms
Ri(t̄i) are such that Ri is the name of a relation occurring in the database
schema and whose arity coincides with the length of the tuple t̄i. The t̄i are
not necessarily disjoint and altogether have to contain all variables of x̄. The
above query’s result Q(D) over a database D is obtained as follows: for each
possible assignment α of values to the variables present in x̄, t̄1, . . . , t̄ℓ such
that, for each i ∈ {1, . . . , ℓ}, the resulting tuple α(t̄i) belongs to the database
relation RD

i
, the tuple α(x̄) is in Q(D).

The set of all conjunctive queries is denoted by CQ. The reader should note
that the name ”conjunctive queries” is really justified: a variable assignment
has to fulfill a conjunction of conditions to produce an output tuple.

1.3.2 Limitations of the expressive power of CQ

Given two databases D1 and D2 over the same schema, we write D1 ⊆ D2 if
RD1 ⊆RD2 , for each relation nameR. A query q is said to bemonotone ifD1 ⊆D2

implies q(D1) ⊆ q(D2). For example, query (1) is monotone while query (6),
asking for artists who never performed in an opera written by Bizet, is not:
by adding the tuple (Scala, Carmen, Pavarotti) to the C relation, Pavarotti
would no longer be in the result of that query.

It is not hard to obtain the following (see e.g. [3] for a proof):

THEOREM 1.1
CQ can define only monotone queries.
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As a consequence, query (6) is not expressible in CQ. Even though mono-
tonicity is a useful tool for testing non-expressiveness in CQ, it does not yield
a complete characterization of CQ. In fact, there are monotone queries that
cannot be expressed in CQ. An example is query (2) asking about theaters
playing Puccini or Bizet.

1.3.3 Complexity of CQ

Next we discuss the complexity of evaluation and static analysis for conjunc-
tive queries.

Evaluation. The naive way of evaluating a conjunctive query is by trying
out each possible variable assignment, resulting in about |adom(D)|k steps if k
is the overall number of variables in the query. The complexity of thismethod
is exponential in the number of variables and thus in the size of the query.
If the query is considered fixed, however, it is polynomial in the size of the
database. Using the terminology introduced in Section 1.2.5, the following
complexity results hold:

THEOREM 1.2

(a) The data complexity of Eval(CQ) is in AC0 [65] and thus, in particular,
in LogSpace.

(b) The combined complexity of Eval(CQ) is NP-complete [20].

(c) The parameterized complexity of Eval(CQ) (with the size of the query as
parameter) is W[1]-complete [88].

Statement (c) basically says that, as in the above naive algorithm, an expo-
nent that grows with increasing k, can never be avoided. Specifically, it says
that if the (widely believed) complexity theoretic conjecture “W[1] , FPT” is
true, then there is no algorithm that solves Eval(CQ) in time f (k) · |adom(D)|c,
where f is an arbitrary computable function, k is the size of the input query,
D is the input database, and c is an arbitrary integer. It is not difficult to
see that statement (c) is equivalent to the following statement: if W[1] , FPT,
then there does not exist a pair (Aopt, Aeval) of algorithms such that Aopt is an
algorithm of arbitrary complexity that optimizes an input conjunctive query
q, and Aeval is an algorithm that takes as input the optimized query and a
database D and computes the query’s result q(D) in time polynomial in the
size of D (see [52] for details).

Statement (b) seems to indicate that the evaluation of conjunctive queries
against a relational database is intractable, clearly contradicting everyday
experience. Some explanations for this counter intuitive phenomenon will
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be given in Section 1.4.3. The proof of statement (b) is by a straightforward
reduction of the NP-complete clique problem for undirected graphs to the
query evaluation problem for conjunctive queries: an input instance (G,k) for
the clique problem is simply mapped to a database representing the graph G
and a conjunctive query asking whether G contains a clique of size k.

Static Analysis. It is not difficult to see that every conjunctive query q :=
Q(x̄) : −R1(t̄1), · · · ,Rℓ(t̄ℓ) is satisfiable. In fact, there is a canonical database Dq

witnessing this: to construct Dq just put, for every i, the tuple t̄i into relation
Ri. Then, Q(Dq) at least contains the tuple x̄. E.g., the canonical database
for the example query (1.1) has the tuple (z, y,x) in C and (Puccini,x) in
O, hereby viewing x, y, z as ordinary data values. Thus, the problem
Sat(CQ) is trivially solvable, since every conjunctive query is satisfiable.

As a matter of fact, a very similar approach also works for Cont(CQ):

THEOREM 1.3 [20]

Let q1(x̄) and q2(x̄) be two conjunctive queries with the same free variables x̄.
Then q1 ⊆ q2 if and only if x̄ ∈ q2(Dq1 ).

This theorem is very often stated in terms of homomorphisms: Given two
databasesD1 andD2 we say that h : adom(D1)→ adom(D2) is a homomorphism
fromD1 toD2 if, for each relation R, ā ∈ RD1 implies h(ā) ∈ RD2 . The homomor-
phism theorem [20] then states that, with the notation of Theorem 1.3, q1 ⊆ q2 if
and only if there is a homomorphism from Dq2 to Dq1 fixing x̄. The following
is a corollary of Theorem 1.3 and Theorem 1.2 (b).

THEOREM 1.4 [20]

The containment problem Cont(CQ) and the equivalence problem Equiv(CQ)
are NP-complete.

Furthermore, conjunctive queries can beminimized in the following sense:
There is an algorithmwhich takes as input a conjunctive query q and outputs
an equivalent conjunctive query q′ such that the number of atoms in the body
of q′ is as small as possible (cf., e.g., the textbooks [102, 3] for details).

1.3.4 Acyclic conjunctive queries

We have seen that the combined complexity and the parameterized complex-
ity of evaluating conjunctive queries are NP-complete and W[1]-complete,
respectively, and thus theworst case complexity can, to the best of our knowl-
edge, be expected to be exponential in the size of the query. Nevertheless, for
practical purposes and if the query structure is “simple”, there are smarter
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evaluation algorithms than the naive “test all possible variable assignments”
approach mentioned above.

To illustrate this, let us consider the query (4) asking whether any theatre
plays a piece whose composer’s birthday is 12/22. We can express this by the
Boolean conjunctive query

BA() : − C(z, y,x), O(x′, y), P(x′,Composer,12/22).

One possible evaluation plan for this query is as follows: First, combine
C and O to obtain an intermediate relation R in the following way:
combine each tuple in C with all tuples in O that have the same
entry in the Piece column (due to the two occurrences of y). For our example
database, the resulting relation R is shown in Figure 1.2. Afterward, let S be
the relation (also shown in Table 1.2) that consists of all tuples t̄ from R for
which there is a tuple in Pwith entries Composer and 12/22 in the Type
and Birthday column andwhose entry in the Artist column coincides with t̄’s
entry in the Composer column. Finally, the answer returned by the BA
query is “yes” if and only if the relation S is non-empty.

R Theatre Piece Artist Composer
Scala Turandot Pavarotti Puccini

Bayreuth Tristan Nilsson Wagner
Covent Garden Peter Grimes Vickers Britten

Met Tosca Callas Puccini
Scala Turandot Raisa Puccini

S Theatre Piece Artist Composer
Scala Turandot Pavarotti Puccini
Met Tosca Callas Puccini
Scala Turandot Raisa Puccini

FIGURE 1.2

Intermediate results for the BA query.

The evaluation order of this strategy can be depicted as a tree as shown in
Figure 1.3 (a). Note that in this tree, the relation atoms of the query occur at
the leaves, and the inner nodes correspond to intermediate results. From the
root, the final result can be obtained by dropping some (maybe all or none)
of the columns.

Even though it does not hurt in this small example, it could be annoying
that the arity of the intermediate relation R is larger than the arities of the
input relations. Furthermore, R is basically the cartesian product of two
relations, joined in their Piece column. For a larger query this might result in
a wide table which on a “real life” database could grow very large.
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S(z, y,x,x′)

R(z, y,x,x′)

C(z, y,x) O(x′, y)

P(x′,Composer,12/22)

(a)

S′(x′, y)

R′(x′, y)

O(x′, y) P(x′,Composer,12/22)

C(z, y,x)

(b)

FIGURE 1.3

Two different evaluation trees for the PS query.

Nevertheless, a closer look at the query shows that these problems can be
avoided when using a different evaluation plan, depicted in Figure 1.3 (b).
Even though at first sight it looks similar to the original plan, it has an
important extra property: all tuples that enter the intermediate relation R′

have to be tuples from relation O, and the same holds true for relation
S′. In particular, the intermediate relations do not grow in arity, and their
content is never obtained by an expensive product operation but rather by a
kind of filter operation selecting tuples from one relation, controlled by the
other relation. One could say that each intermediate relation is guarded by
one of the input relations. Evaluation trees with this property are sometimes
called join trees, and queries for which such a join tree exists, are called acyclic.
We denote the class of acyclic conjunctive queries by ACQ. For example,
query (4) is acyclic whereas query (5) is not.

If a join tree is given for a Boolean query q, the query can be evaluated by
processing the join tree bottom-up. It is easy to see that each intermediate step
can be performed in polynomial time. As it is possible to test in polynomial
time (even in LogSpace [47, 91]) whether a join tree exists and to actually
compute one if this is the case, it follows that Eval(ACQ) is in PTime [111].

Note that the intuition given above is accurate only for Boolean queries. But
analogous notions of join trees and acyclic queries also exist for non-Boolean
queries (see [3] for details) that can be evaluated efficiently by processing a
join tree in a bottom-up phase followed by a top-down phase and, possibly,
another bottom-up phase (see [111, 39] for an explanation of the bottom-up
and top-down phases). The class of acyclic queries has been characterized in
various ways (cf. [3]); the term “acyclic” is due to a characterization referring
to acyclic hypergraphs [12].

A precise complexity analysis yields the following result, showing that
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query evaluation and static analysis of acyclic queries not only belong to
PTime but can even be efficiently parallelized:

THEOREM 1.5 [47]

(a) The combined complexity of Eval(ACQ) is LogCFL-complete.

(b) The containment problem Cont(ACQ) is LogCFL-complete.

In this sense acyclic queries behave nicely, and it is natural to wonder
whether there are further classes of well-behaved queries. Indeed, there are
several extensions and variations of the notion of acyclicity.

One line of variations is based on the tree-width of query graphs (see [47, 39]
for the basic concept and references to the literature). For a conjunctive query
q, the graph of q is the graph whose vertices are the variables of q and which
has an (undirected) edge between two vertices whenever the corresponding
variables occur in the same atom in the body of q. Given a class C of graphs,
let CQ[C] be the set of conjunctive queries q such that the graph of q is in
C. For instance, if A is the set of acyclic graphs, then CQ[A] is a subset of
ACQ. In order to generalize this we let, for each number k, CQk be the class
of conjunctive queries whose graph has tree-width at most k. It is known
that, for any number k, an analogue of Theorem 1.5 holds (a PTime upper
bound was obtained already in [23]), and static analysis is also tractable for
conjunctive queries of bounded tree-width:

THEOREM 1.6 [47]

(a) For any number k ≥ 1, the combined complexity of Eval(CQk) is LogCFL-
complete.

(b) For any number k ≥ 1, Cont(CQk) is LogCFL-complete.

When the schema is fixed, relative to a plausible complexity theoretic as-
sumption, even a precise characterization of the tractable graph-based classes
of conjunctive queries is known:

THEOREM 1.7 [58]

Assume that W[1], FPT and let C be a recursively enumerable class of graphs.
Then the combined complexity of Eval(CQ[C]) is in PTime if and only if C
has bounded tree-width.
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Even more, an extension of the above result providing a complete charac-
terization of all tractable classes of conjunctive queries over a fixed schema
has been obtained in [53].

When (the arity of) the schema is not fixed, a larger class of tractable
queries can be found by considering the hypergraph of a query instead of
the graph. The hypergraph of query q has one hyperedge per query atom A
(in the body of q) which contains all nodes corresponding to variables in
A. In [48], the concepts of hypertree decompositions and hypertree-width were
introduced. It was shown that the acyclic conjunctive queries are precisely
the queries whose hypergraph has a hypertree decomposition of hypertree-
width 1, and that for each number k ≥ 1, the statement of Theorem 1.5 (a)
can be generalized from ACQ to the class of all conjunctive queries that
have a hypertree decomposition of hypertree-width at most k. Various other
classes of tractable queries based on hypergraph decompositions have been
proposed in the literature; we refer to [94] for a survey.

1.3.5 Relational view

So far we considered only SQL and rule-based conjunctive queries as query
languages. They are both declarative in the sense that they specify answers
by their properties rather than by operations used to construct them. We
already talked about evaluation plans in Section 1.3.4. A concise way to
express evaluation plans is offered by the relational algebra. It consists of a few
simple operators for manipulating relations. For the following it is useful to
think of a relation as a tablewhere each row (column) of the table corresponds
to a tuple (attribute) of the relation.

The operators of the relational algebra that are needed for expressing
conjunctive queries are (1) extraction of rows of a table (selection), (2) ex-
traction of columns of a table (projection), (3) gluing together two tables
along some columns (join) and (4) renaming of columns. For example,
σComposer=’Puccini’(O) is a selectionwhich extracts all rowswhere the com-
poser (i.e., the first attribute) is ’Puccini’. The expression πTheatre,Piece(C)
extracts the first two columns of the C relation. Note that the resulting
table only has four rows. The expression CZO is a join which com-
bines each row of the C table with each row of the O table, provided
they have the same value, in each column with the same name, i.e., provided
they match on the Piece attribute. Thus, the resulting table is the relation
R depicted in Figure 1.2; it has four columns and five rows. Query (1) can

thus be expressed by πArtist

(

σComposer=’Puccini’(C Z O)
)

, whereas the

query asking for all sopranos who perform in an opera written by Puccini is
expressed by

πArtist

(

σComposer=’Puccini’(CZO)Z σType=’Soprano’(P)
)

.

The algebra consisting of the four operators of selection, projection, join,
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and renaming is called the SPJR algebra. Note that the SPJR algebra can
express unsatisfiable queries, e.g., σComposer=’Puccini’(σComposer=’Verdi’(O))
will never return any opera. There is a straightforward polynomial time
algorithm to test whether an SPJR query is satisfiable.

However, the ability to express unsatisfiable queries is the only difference
between SPJR and CQ with respect to expressive power. It is not difficult to
see the following (cf. [3] for details).

THEOREM 1.8

CQ and satisfiable SPJR have the same expressive power. Moreover, queries
can be translated from either language to the other in polynomial time.

Recall that basic SQL queries are formed using the following syntax:

select attributes
from relations
where test.

Conjunctive queries are essentially those which can be expressed by SQL
queries where the test part contains only conjunctions of equality tests.

1.4 The gold standard: Codd-complete languages

We recall from Section 1.3.2 that conjunctive queries can only express mono-
tone queries, i.e. queries which never produce smaller result sets if something
is added to the database. Of course, there are interesting non-monotone
queries, e.g. query (6) from Section 1.2.2. Furthermore, simple disjunctions
like query (2) are not expressible in CQ either. In this section we consider ex-
tensions of CQ that are capable of expressing such queries: Codd-equivalent
languages such as the relational algebra, the relational calculus, and the non-
recursive rule-based queries. After introducing these query languages, we
study their expressive power and their complexity.

1.4.1 Codd-equivalent query languages: definition

The rule-basedqueries of Section 1.3.1 canbe extendedby (1) allowingqueries
to consist of more than one rule, (2) allowing relations defined by one ormore
rules to be used in the body of other rules, and (3) allowing negated atoms in
the body of rules. A query is thus a finite set of rules of the form

Q(x̄) : − A1(t̄1), · · · ,Aℓ(t̄ℓ)
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where the atoms Ai(t̄i) are either of the form S(t̄i) or of the form ¬S(t̄i), where
S is either a relation name of the database schema or a the name of a relation
symbol used in the head of one of the rules of the query §.

Nevertheless, recursion is not allowed. More formally, the following di-
rected graph is not allowed to contain a directed cycle: the graph’s nodes are
the relation names, and there is an edge from R1 to R2 if R1 appears in the
body of a rule having R2 in its head.

As an example, the following rules

S(x) : − C(Scala, y,x)
S(x) : − C(Met, y,x)

R(x) : − C(Bayreuth, y,x), ¬S(x)

describe query (7) from Section 1.2.2, selecting all artists who have performed
in Bayreuth but neither at the Scala nor at the Met. We call such queries non-
recursive rule-based queries.

The same expressive power can be obtained in two other ways:

(1) By adding the relational union and difference operators to the SPJR algebra
one gets the full relational algebra.

(2) The relational calculus consists of the logical formulas of the predicate
calculus (i.e., first-order logic FO) which use the relations of the database
schema plus equality as relation symbols and do not use any function
symbols. We will sometimes briefly write FO to denote the relational
calculus.

Query (7) from Section 1.2.2, for example, can be expressed by the relational
algebra expression

πArtist(σTheatre=’Bayreuth’(C))−πArtist(σTheatre=’Met’(C)∪σTheatre=’Scala’(C)))

and by the relational calculus formula ϕR(x) :=

(

∃y C(Bayreuth, y,x) ∧ ∀y ¬
(

C(Scala, y,x)∨C(Met, y,x)
))

When fixing the precise semantics of the relational calculus, some care
needs to be taken to decide over which domain variables should range. One
possible solution is to let the quantifiers range only over elements in the
active domain of the underlying database; another way is to let them range
over the entire domain of potential data values but to restrict the syntax in a
“safe” way to avoid infinite query results and to ensure efficient evaluation.
A similar problem occurs in the context of negations in non-recursive rule-
based queries. Again, to avoid infinite query results, one can either restrict

§Recall from Section 1.3.1 that the body of a rule consists of the atoms to the right of the symbol
: − and the head of a rule is the atom to the left of the symbol : −.
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attention to the active domain of the underlying database or impose the
syntactic restriction that in every rule each variable has to occur in at least
one positive atom of the rule’s body. It turns out that both variants have
the same expressive power. A discussion of these issues can be found in [3].
In the rest of this chapter we will assume that all quantifiers range over the
active domain.

The widely used query language SQL combines and extends features of
both, relational calculus and algebra.

Codd’s following theoremsummarizes one of themost fundamental results
in database theory:

THEOREM 1.9 [26]

Relational calculus, relational algebra, and non-recursive rule-based queries
have the same expressive power.

Furthermore, translations are effective, and the translation from relational
calculus to relational algebra and vice versa can be done in polynomial time.
In particular, it is always possible to compile a query expressed in the relational
calculus into an expression of the relational algebra. The latter can then be
evaluated efficiently.

Query languages with (at least) the expressive power of the relational
algebra or the relational calculus are called Codd-complete.¶ Languages which
have exactly the same expressive power as the relational algebra are called
Codd-equivalent.

It shouldbenoted that conjunctive queries (cf. Section 1.3) correspond exactly
to formulas of the relational calculus that use only conjunction and existential

quantification, i.e., to formulas of the form ∃x̄
(

R1(x̄1)∧· · ·∧Rℓ(x̄ℓ)
)

.

1.4.2 Limitations of the expressive power

Even though Codd-equivalent query languages like the relational algebra
can express many everyday queries against a relational database, they still
cannot express ”everything”. Theorem 1.9 is a key to understanding the
precise expressive power of such languages: it relates them to the relational
calculus, therefore allowing logic-basedmethods to prove that certain queries
cannot be expressed.

In a nutshell, Codd-equivalent languages cannot count and cannot express
recursion. E.g., they can neither ask “Which artist performed in more operas
than any other artist?” nor “Is the total number of operas in the database
even?”. Furthermore, in a database that consists of a parent-child-relation,
they cannot ask whether A is an ancestor of B.

¶Codd himself called these query languages relationally complete [26].



Database theory: Query languages 21

All these statements can be directly proved by Ehrenfeucht-Fraı̈ssé games, as
is explained, e.g., in [81]. Very often, however, the impossibility to express a
certain query can also be concluded in a simpler way, either by using 0-1 laws
or by using locality. We present both notions next.

0-1 laws. Let q be a Boolean query and let σ be its schema, i.e., the set of
relation names it mentions. For the moment, we consider only databases
with schema σ whose active domain is an initial segment {1, . . . ,n} of the
natural numbers. We are interested in the ratio of databases of size n on
which q yields the answer “yes” compared to all databases of size n, when
n approaches infinity. More precisely, we denote by µn(q) the number of
database instances over σ with active domain {1, . . . ,n} on which q evaluates
to “yes”, divided by the number of all databases with schema σ and active
domain {1, . . . ,n}. A Boolean query q is almost surely true (respectively, almost
surely false) if the limit µ(q) := limn→∞µn(q) exists and is 1 (respectively, 0).

For instance, it is not hard to see that for query (8) from Section 1.2.2, i.e., for
the query EO asking whether the number of operas in the database
is even, µ(EO) = 1/2.

A query language Q is said to have the 0-1 law if every Boolean query of Q
that does notmention any constants from the domain of potential data values
is almost surely true or almost surely false.

THEOREM 1.10 [44, 38]

Codd-equivalent query languages have the 0-1 law.

A simple consequence of this is that EO cannot be expressed by
Codd-equivalent query languages. Also, many other counting queries q
either have no limit µ(q) or a limit different from 0 and 1 and thus are not ex-
pressible byCodd-equivalent languages. Note, however, that counting “up to
a constant threshold” is possiblewith Codd-complete languages; for example
query (3), askingwhether there is an artist starring in at least two theaters, can

be expressed in the relational calculus via ∃x∃y1∃z1∃y2∃z2
(

C(z1, y1,x)∧

C(z2, y2,x)∧¬z1=z2
)

.

Locality. Unfortunately, the 0-1- law is not a very natural tool in the pres-
ence of non-Boolean queries. However, locality arguments can often be used
to extend inexpressibility results to non-Boolean queries. In a nutshell, a
query language is called local if it cannot express queries that depend on an
unbounded number of tuples ”connecting” one data item with another one
(like, for example, the query A(x, y) which asks whether person x is
an ancestor of person y in a parent-child database).
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To be more precise, the Gaifman-graph GD of a databaseD is the undirected
graph whose vertices are the elements of the active domain of the database,
and there is an edge between two vertices whenever they appear in a tuple
of a relation of D. The distance between two elements of D is their distance
in GD. For any number k, the k-neighborhood ND

k
(ā) of a tuple ā of elements is

the sub-database induced by all elements of D that have distance at most k
from some element of ā. E.g., the k-neighborhood of a person in the parent-
child database consists of all persons to which he or she is related by at
most k parent-child tuples and all tuples of the database containing only such
persons.

A query q is called Gaifman-local if there exists a number k such that for any
database D and any tuples ā and b̄ of D (of the right arity for q), if whenever
ND

k
(ā) is isomorphic to ND

k
(b̄) then ā ∈ q(D) iff b̄ ∈ q(D).

Obviously, there is no such k for the A query, i.e., the A
query is not Gaifman-local. The following theorem therefore tells us that
Codd-equivalent languages cannot express this query:

THEOREM 1.11 [41, 62]

Codd-equivalent languages can only express Gaifman-local queries.

Theorem 1.11 can be considered a formalization of the intuitive statement
that Codd-equivalent languages lack recursion.

There are other notions of locality like Hanf-locality and bounded number of
degrees property that hold for Codd-equivalent languages and some of their
extensions. In particular, Hanf-locality can be used to prove that certain
Boolean queries respecting the 0-1 law (like connectivity of a graph) cannot
be expressed by Codd-equivalent languages. We refer the interested reader
to [81, 80] and the references therein.

1.4.3 Complexity

Evaluation. Each operator of the relational algebra can be evaluated in a
straightforward way. For example, the naive processing of a join operation
R1 Z R2 roughly requires |R1| · |R2| steps since each tuple in R1 is combined
with all tuples in R2. In general, the evaluation of a query which involves
intermediate results of arity k can be evaluated on a database D in time
O(|adom(D)|k). Likewise, formulas of the relational calculus can be evaluated
by essentially turning each quantifier into a FOR-loop, resulting in a similar
complexity.

Parts (b) and (c) of the following theorem show that, in the worst case, this
upper bound cannot be significantly improved unless some widely believed
complexity theoretic assumptions fail. Recall that we denote the relational
calculus by FO because it is based on first-order logic formulas. Although
formulated for FO, the following theoremalso holds for the relational algebra.
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THEOREM 1.12

(a) The data complexity of Eval(FO) is in AC0 [65] and thus, in particular,
in LogSpace.

(b) The combined complexity of Eval(FO) is PSpace-complete [106, 99].

(c) The parameterized complexity of Eval(FO) (with the size of the query as
parameter) is AW[∗]-complete [36].

The results above show that evaluating Codd-equivalent queries in a sce-
nario where the query is not fixed is rather difficult in general. Just as in
the case of Theorem 1.2 for conjunctive queries, this seems to contradict the
empirical experience that SQL queries can usually be evaluated reasonably
fast. The explanation for this has several facets:

First of all, Theorem 1.2 and Theorem 1.12 talk about worst cases. The
queries constructed in the proofs are of a very complicated structure that
usually does not occur in practice. This observation is the starting point for
many investigations on how the structure of queries influences the evaluation
complexity. We will come back to this issue in Section 1.5.

A second aspect is that in practice, queries are rather small whereas
databases are large. Thus, data complexity seems to be a better measure
than combined complexity — and Theorem 1.12 (a) tells us that the data
complexity is very low.

Furthermore, the structure of the database can have an impact on the
complexity, and usually databases are not ”arbitrarily complicated”. In fact,
the parameterized complexity of Eval(FO) gets feasible when attention is
restricted to certain classes of database instances. For example, in [32] it is
shown that over classes of databases that locally exclude a minor (see [32] for
the definition), the parameterized complexity of Eval(FO) is fixed parameter
tractable, i.e., belongs to the complexity class FPT. This result subsumes
most of the previously known fixed parameter tractability results for query
evaluation; see [54] for a survey. Nevertheless, restricting the structure of
databases does not help to improve the evaluation complexity in the setting
of Theorem 1.12 (b) since the combined complexity of Eval(FO) is PSpace-
complete already on databases with only two data items.

Finally, the massive amounts of data handled by database systems usually
reside in external memory. When processing such data, the input/output
communication between fast internal memory and slower external memory
is a major performance bottleneck: during the time required for a single
random access to external memory, a huge number of computation steps
could be performed on data present in internal memory. Indeed, modern
database technology uses clever heuristics to minimize the costs caused by
accesses to external memory (cf., e.g., [108, 90]). Classical complexity classes
such as PTime and NP, however, measure complexity only by counting the
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total number of computation steps, but do not take into account the existence
of different storage media. In recent years, machine models that distinguish
between external memory and internal memory have also been proposed
and studied (for an overview, see the surveys [108, 96] and the references
therein).

Static analysis. In general, static analysis for Codd-complete languages is
impossible:

THEOREM 1.13 [101]
The satisfiability problem Sat(FO) is undecidable.

As a consequence, one immediately obtains that also the equivalence prob-
lem Equiv(FO) and the containment problem Cont(FO) are undecidable. The
next section presents a couple of restrictions of FO for which static analysis
is decidable.

1.5 Towards lower complexity: restricted query languages

In this section we revisit the idea that queries in practice, even if they go
beyond conjunctive queries, are not arbitrarily complicated. We consider re-
strictions of the relational calculus FO (andotherCodd-equivalent languages)
which are not Codd-complete, but for which static analysis is decidable and
the combined complexity of query evaluation is considerably lower than that
of full FO.

First, we concentrate on simple extensions of conjunctive queries by adding
either union or inequalities. Afterwards, we consider a restriction of the re-
lational calculus in which the number of variables is bounded. Finally, we
consider a variant of the relational algebra in which the use of joins is re-
stricted. We will see that in the latter case the resulting query language
corresponds to a variant of the relational calculus in which the use of quanti-
fiers is restricted, and also to a variant of the non-recursive rule-based queries
in which single rules are based on acyclic conjunctive queries.

1.5.1 Extensions of conjunctive queries

There are several simple ways to extend the rule-based approach of CQ in
order to gain more expressive power. For instance one could allow other
kinds of atoms in the body of a rule, typically atoms of the form x , y. One
could also consider defining a query using several rules instead of just a
single rule. We denote by CQ(,) the extension of CQ allowing inequality
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atoms in the body of a rule. The class UCQ of unions of conjunctive queries is
the extension of CQ allowing a finite number of rules in the definition of a
query. We use UCQ(,) to denote the combination of the two extensions. For
instance, query (3) of Section 1.2.2 can be expressed in CQ(,), and query (2)
can be expressed in UCQ, while none of them is expressible in CQ.

It is easy to see that UCQ, CQ(,), and UCQ(,) have exactly the same
data complexity and combined complexity as CQ. The satisfiability problem
Sat(CQ(,)) (and therefore also Sat(UCQ(,))) can be decided in polynomial
time. The containment problem for the three languages is still decidable, but
slightly more difficult than that of CQ. In the theorem below, ΠP

2
refers to

the second level of the polynomial time hierarchy (recall that (NP∪co-NP) ⊆
ΠP

2
⊆ PSpace).

THEOREM 1.14

(a) If Q is one of the query languages CQ(,), UCQ, UCQ(,), then

(i) The data complexity of Eval(Q) is in AC0 and thus, in particular,
in LogSpace.

(ii) The combined complexity of Eval(Q) is NP-complete.

(b) The containment problem for CQ(,), UCQ(,) is ΠP
2
-complete [93, 105].

The containment problem for UCQ is NP-complete.

For more information on extensions of conjunctive queries see [73, 93, 105]
and the references therein.

1.5.2 Bounding the number of variables

A natural way of restricting the relational calculus is to bound the number of
variables used in formulas. For each number k ≥ 1 let FOk be the restriction
of FO to formulas that use at most k variables. Note that variables may be
re-quantified inside a formula.

It turns out that bounding the number of variables to k improves the eval-
uation complexity for every k but enables static analysis only for k = 2:

THEOREM 1.15

(a) For each k≥ 2, the combined complexity of Eval(FOk) is PTime-complete [107].

(b) The satisfiability problem Sat(FO2) is decidable [84].
As a consequence, Equiv(FO2) and Cont(FO2) are also decidable.
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(c) For each k ≥ 3, the satisfiability problem Sat(FOk) is undecidable‖ [68, 59,
14].

As a consequence, also Equiv(FOk) and Cont(FOk) are undecidable.

In the same way as full FO, the k-variable fragment FOk also has a rule-
based counterpart, the so-called NRSD-programs of strict tree-width at most
(k−1). This is a restriction of the non-recursive rule-based queries where the
query graph of every single rule has a strict tree decomposition of width at
most (k−1); see [39] for details.

A survey on FOk and related finite variable logics can be found in [49].

1.5.3 The semijoin algebra

When looking at the relational algebra one notices that, in terms of complexity
of query evaluation, the most troublesome operation is join. The arity of
R1 Z R2 is usually larger than that of R1 and R2, and the size of R1 Z R2 can be
as large as the product of |R1| and |R2|. An interesting restriction of the join
operator Z is the semijoin operator X. Given two relations R and S, R X S
consists of all tuples of R that can be joined with some tuple in S in the sense
of the operator Z. In particular, RX S has the same attribute names as R, and
the result of RX S always is a subset of R.

The semijoin algebra SA (cf. [76, 77]) is the variant of relational algebra
where the join operator Z is replaced by the semijoin operator X. Strictly
speaking, the semijoin algebra is defined in a slightly different framework
where attributes do not have names and are addressed via column numbers
instead. The reader might think of the semijoin algebra as being equipped
with operators for selection, projection, renaming, union, difference, semijoin,
andanadditional operatorwithwhich columnsof a relation canbeduplicated
(see [78] for details).

It is not difficult to see that for every databaseD and every semijoin algebra
query q, the result q(D) consists of so-called stored tuples, i.e., tuples that are
obtained from tuples in D by projecting to and, possibly, duplicating some
attributes. In particular, for each fixed semijoin algebra query q, the output
size of q is atmost linear in its input size, i.e., the number of tuples in the query
result q(D) is at most linear in the number n of tuples in the input database
D. Of course, this also holds for all subexpressions of q. A remarkable result
from [77] shows that the reverse is also true: Any relational algebra query all
of whose subexpressions compute relations of size O(n) is in fact expressible
in the semijoin algebra. Furthermore, every query not expressible in the
semijoin algebra has a subexpression that may produce results of sizeΩ(n2).

‖Undecidability of (not necessarily finite) satisfiability of FO3 follows from [68]. That finite
satisfiability is undecidable as well follows from [59], see [14] for a discussion.
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The complexity of query evaluation of the semijoin algebra is much lower
than that of the relational algebra, and static analysis is decidable:

THEOREM 1.16 [76]

(a) Eval(SA) can be solved in time O(k ·n), where k denotes the size of the
query and n denotes the size of the input database.
In particular, the combined complexity of Eval(SA) is in PTime.

(b) The satisfiability problem Sat(SA) is ExpTime-complete.
As a consequence, Equiv(SA) and Cont(SA) are also ExpTime-complete.

The semijoin algebra cannot express all conjunctive queries, but at least
it can express all acyclic conjunctive queries whose result is a set of stored
tuples. Moreover, it can also express many natural non-conjunctive queries
such as, e.g. query (7): the relational algebra formulation of this query given
in Section 1.4.1 in fact belongs to the semijoin algebra.

In the same way as the relational algebra, the semijoin algebra also has a
logical and a rule-based counterpart:

The logical counterpart is the guarded fragment of FO, denoted by GF (see
[6]). GF is a fragment of FO where first-order quantifications have to be
guarded by atomic formulas. More precisely, GF is defined as follows: All
atomic formulas belong to GF. If ϕ and ψ belong to GF then also ¬ϕ, (ϕ∧ψ)
and (ϕ∨ψ) belong to GF. If α is an atomic formula and ϕ is a GF-formula
whose free variables belong to the variables of α, then for every tuple x̄ of
variables, the formulas ∃x̄ (α∧ϕ) and ∀x̄ (α→ϕ) belong to GF. A GF-formula
is called strictly guarded if it either has no free variable or it is of one of the
forms (α∧ϕ) and ∃x̄ (α∧ϕ), where α is an atomic formula and ϕ is a GF-
formula whose free variables belong to the variables of α. We say that a
GF-formula is guarded by stored tuples if it is a disjunction of strictly guarded
GF-formulas.

The rule-based counterpart of SA is based on the restriction of the non-
recursive rule-based queries where every single rule is a variant of an acyclic
conjunctive query in which also negated atoms may occur. The resulting
queries are called strictly acyclic NRSD-programs; for the precise definition we
refer to [39]. A slightly different rule-based characterization is proposed in
[46], the so-called recursion-free Datalog LITE.

The following theorem summarizes the relation between SA, GF, and their
rule-based counterparts.

THEOREM 1.17
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(a) SA has the same expressive power as the class of GF-formulas that are
guarded by stored tuples [76].

(b) The class of GF-formulas that are guarded by stored tuples has the same
expressive power as the strictly acyclic NRSD-programs [39].

(c) Recursion-free Datalog LITE can express the same Boolean queries as
sentences in the guarded fragment GF [46].

The translations between SA, GF, and the rule-based languages that are
provided by the proof of the Theorem 1.17 are effective. The translations
from GF to SA, to strictly acyclic NRSD-programs, and to recursion-free
Datalog LITE, respectively, can be done in polynomial time. The translations
in the opposite directions are a bit more involved.∗∗

1.6 Towards more expressiveness: recursion and counting

As pointed out in Section 1.4.2, Codd-equivalent query languages neither
support recursionnor counting. Having these limitations inmind, it is natural
to extend Codd-equivalent languages by recursion or counting capabilities
whilemaintaining asmuchof thedesirable algorithmic properties as possible.
The query language SQL, in particular, contains constructs for counting and,
starting with the SQL:1999 standard, also for expressing queries involving
recursion. Corresponding extensions of the relational algebra and relational
calculus have been investigated in [80].

In this section, we consider rule-based query languages with recursion
and logics that are enhanced by fixpoint operators and counting. Further-
more, we discuss the possibility of finding a query language that precisely
expresses the polynomial-time computable queries. Finally, we briefly con-
sider more expressive languages that are capable of defining also queries of
higher complexity.

1.6.1 Rule-based queries with recursion

The query language datalog is a rule-based language which allows more than
one rule, recursion, but no negation. A simple example is the following
program which defines in a parent-child database a relation A(x, y)

∗∗The translations from [76, 39, 46] induce an exponential blow-up in terms of the size of the
queries. It remains open if more efficient translations exist.
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consisting of all pairs (a,b) for which a is an ancestor of b:

A(x, y) : − P(x, y)
A(x, y) : − P(x,z), A(z, y).

More formally, a datalog program over a database schema σ consists of finitely
many rules of the form Q(x̄) : −R1(t̄1), · · · ,Rℓ(t̄ℓ) where the relation symbol
Q does not belong to σ, and each variable in x̄ occurs in at least one of the
tuples t̄1, . . . , t̄ℓ. Relation symbols occurring in the head of some rule are called
intensional relation symbols, whereas the symbols in σ are called extensional
relation symbols. The body of each rule of a datalog program consists of
atoms with intensional or extensional relation symbols. The schema σP of
a datalog program P consists the symbols in σ and the intensional relation
symbols of P.

Given a database D of schema σ, a datalog program P is evaluated as fol-
lows: start with empty intensional relations and proceed step-wise, by adding
tuples that satisfy a rule of the program, until nothing changes. Formally, the
semantics of a datalog program P can be defined in various equivalent ways.
One possibility is to associate with P an operator TP, the so-called immediate
consequence operator, which maps a database E of schema σP to a database
TP(E) of the same schema: Extensional relations R remain unchanged, i.e.,
RTP(E) = RE. For each intensional relation symbol Q, the relation QTP(E) is
obtained as follows: take all rules of P whose head contains Q, view each of
these rules as a conjunctive query, and letQTP(E) be the union of the results of
these conjunctive queries when applied to database E.

The result of P when applied to a database D of schema σ is the database
P(D) of schema σP obtained as follows: let D0 be the extension of D to
schema σP where all intensional relations are empty, and repeatedly apply
the operator TP to obtain databases D1 := TP(D

0), D2 := TP(D
1), D3 := TP(D

2),
etc. I.e., Di is obtained by starting with D0 and applying the operator TP for i
times. As TP is amonotone operator††, the sequence of theDi is increasing, i.e.,
D0 ⊆ D1 ⊆ D2 ⊆ · · · . Since the active domain of each Di consists of constants
occurring in P and of elements from the active domain of the original (finite)
database D, a fixpoint will be reached eventually, i.e., there exists a number j
such that D j = D j+1. The result of P on D is defined as P(D) := D j. It is not
difficult to see that j is of size polynomial in the size ofD and that P(D) can be
computed in time polynomial in the size of D (with the exponent depending
on the particular datalog program P). Furthermore, P(D) is actually the least
fixpoint of TP that contains D.

A datalog query is a datalog program together with a designated intensional
relation symbol which specifies the relation defined by the query. In the
following we write “Datalog” to denote the class of all datalog queries.

††in the sense that for all databases E and E′ of schema σP, E ⊆ E′ implies that TP(E) ⊆ TP(E
′)
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Concerning limitations of the expressive power it should be noted that,
similarly as CQ (see Theorem 1.1), Datalog can define only monotone queries
(this immediately follows from the fact that TP is a monotone operator).
Thus, the expressive power of Datalog is incomparable to the expressive
power of Codd-equivalent query languages: On the one hand, there are
simple non-monotone queries such as, e.g., query (6) from Section 1.2.2, that
are expressible in the relational calculus FO but not in Datalog. On the other
hand, there are recursive queries such as, e.g., the A query, that can
be expressed in Datalog but not in FO.

There are many results on algorithmic properties of Datalog. We only
mention the main results here; for a survey the reader is referred to [31]. In
terms of query evaluation, the following holds:

THEOREM 1.18

(a) The data complexity of Eval(Datalog) is PTime-complete (implicit in [106,
64]).

(b) The combined complexity of Eval(Datalog) is ExpTime-complete (implicit
in [106]).

Concerning the worst case complexity of Eval(Datalog), it is known (even
without relying on any complexity theoretic assumption) that the exponential
dependence on the size of the input query cannot be avoided: there exists
a sequence of (Boolean) Datalog queries qk of size polynomial in k, such
that qk(D) can be computed in time |adom(D)|k but not in time |adom(D)|k−1.
The proof even holds for a suitable fixed database schema σ; the arity of
the intensional relation symbols of qk, however, has to grow with increasing
k. When restricting attention to relations of a fixed arity, the parameterized
complexity of Eval(Datalog) is known to be W[1]-complete, i.e., the same as
for conjunctive queries (cf. Theorem 1.2 (c)). Details can be found in [88].

In terms of static complexity the following holds:

THEOREM 1.19

(a) The satisfiability problem Sat(Datalog) is decidable.

(b) The equivalence problem Equiv(Datalog) and the containment problem
Cont(Datalog) are undecidable [98].

The proof of (a) is easy (see [3] for details). Concerning equivalence and
containment, it should be noted that they are undecidable for datalog queries.
Their “uniform” variants for datalog programs, asking whether all intensional
relations defined by one program are equivalent to, respectively, included
in the corresponding intensional relations of another datalog program, are
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decidable [92]. Furthermore, query containment becomes decidable if one of
the two involved queries is non-recursive [92, 22].

Apart from equivalence and containment, another key problem relevant
for static analysis of Datalog is the boundedness problem, asking for a given
datalog query q whether or not the recursion depth necessary for evaluating
q is bounded by a number that only depends on the query but not on the
input database. This problem is closely related to the problem whether a
given datalog query is expressible in FO, i.e., without using recursion. It is
known that the boundedness problem is undecidable [42].

In the literature, various restrictions of Datalog have been identified for
which the problems of boundedness, equivalence and containment are de-
cidable (see, e.g., [28, 22] and the references therein). Also variants of Datalog
that can be evaluated in linear time w.r.t. data complexity have been consid-
ered, e.g. Datalog LITE [46].

1.6.2 Relational calculus with fixpoints

In Section 1.6.1 we have seen how to extend conjunctive queries with a
recursionmechanismviafixpoints. It is natural to consider a similar extension
for the relational calculus.

Similarly to the immediate consequence operator TP from Section 1.6.1, a
formula of the relational calculus FO can define an operator on relations as
follows: Let R be a relation symbol that is not present in the given database
schema σ, and let k be the arity of R. Let ϕ(x̄) be a formula with k free
variables over the extended schema σ∪ {R}. Then, on any database D of
schema σ, the formula ϕ(x̄) defines an operator ϕD between k-ary relations
over the active domain of D. Given a k-ary relation R̂, ϕD(R̂) is the result
of the query ϕ(x̄) when applied to the extension of D in which the relation
symbol R is interpreted by the relation R̂.

Analogously to the iterated application of the operator TP in Section 1.6.1,
we can now consider the iterated application of the operator ϕD, yielding a
sequence of relationsR0 := ∅,R1 :=ϕD(R0),R2 :=ϕD(R1), . . . , i.e.,Ri is obtained
by starting with the empty relation and applying the operator ϕD for i times.
Note that, unlike with datalog, there exist FO-formulas ϕ (for example, the
formula ϕ(x̄) := ¬R(x̄)) for which the sequence R0,R1,R2, . . . is not increasing
and does not reach a fixpoint.

There are several natural ways of ensuring that only those operators are
considered for which the sequence R0,R1,R2, . . . is increasing and eventually
reaches a fixpoint. In the following, we present two of them: monotone
operators and inflationary operators.

Monotone operators and the logic LFP. It is easy to see that if ϕD is a
monotone operator, then R0 ⊆ R1 ⊆ R2 ⊆ · · · , and a fixpoint will be reached
eventually, i.e., there exists a j such that R j = R j+1. Furthermore, this fixpoint
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is in fact the least fixpoint‡‡ of the operator ϕD. So it would be natural to
semantically restrict attention to those formulas ϕ for which the operator ϕD

is monotone for all databases D. Unfortunately, this kind of monotonicity
of a formula is undecidable (see e.g., the textbook [81]). Of course it makes
little sense to define a query language based on an undecidable property of
formulas, because then it is not even decidable if a given string belongs to
the query language or not.

Fortunately, there is a second option which enforces monotonicity at the
syntactic (rather than the semantic) level: restrict attention to those formulas
ϕ in whichR occurs only positively, i.e., within the scope of an even number of
negations. It is straightforward to see that this implies that on every database
D the operator ϕD is monotone. The opposite is of course not true but it turns
out that any fixpoint obtained by amonotone formula can also be obtained by
a positive formula [61]. Hence the syntactic restriction is harmless in terms
of expressive power of the corresponding fixpoint logics.

This syntactic restriction leads to the least fixpoint logic LFP, which extends
first-order logic FO by the following rule: If ϕ(x̄) is an LFP-formula in which
R occurs only positively, then [lfpR,x̄ϕ](x̄) is also an LFP-formula. The
semantics of this formula is as follows: The result of query [lfpR,x̄ϕ](x̄) on

a database D is the limit of the sequence R0 := ∅, R1 := ϕD(R0), R2 := ϕD(R1),
R3 := ϕD(R2) etc., and thus the least fixpoint of ϕD.

For example, ifϕ(x, y) is the formula P(x, y)∨∃z(P(x,z)∧R(z, y)),
then [lfpR,xyϕ](x, y) is an LFP-formula that defines the ancestor relation for

parent-child databases.

Inflationary operators and the logic IFP. Another way of ensuring that the
considered sequence of relations R0,R1,R2, . . . is increasing is to use instead of
ϕD the operator IDϕ which maps a relation R̂ to the relation IDϕ (R̂) := R̂∪ϕD(R̂).

By definition, the sequence based on this operator, i.e., the sequence R0 := ∅,
R1 := IDϕ (R

0), R2 := IDϕ (R
1), . . . is increasing and thus eventually reaches a

fixpoint (nomatterwhatϕ(x̄) looks like). This fixpoint is called the inflationary
fixpoint of ϕ. The inflationary fixpoint logic IFP extends first-order logic FO by
the following rule: If ϕ(x̄) is a IFP-formula, then [ifpR,x̄ϕ](x̄) is also an IFP-
formula. The semantics of this formula is as follows: The result of query
[ifpR,x̄ϕ](x̄) on a database D is the fixpoint reached by the sequence R0 := ∅,

R1 := IDϕ (R
0), R2 := IDϕ (R

1), R3 := IDϕ (R
2), etc.

Complexity and expressive power of LFP and IFP. From the definition
of the logics it is not difficult to see that the data complexity of evaluating
queries definable in LFP or IFP belongs to PTime. In fact, query evaluation
of these languages has the following complexity:

‡‡i.e., R j ⊆ S, for every relation S with ϕD(S) = S
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THEOREM 1.20

(a) The data complexity of Eval(IFP) and Eval(LFP) is PTime-complete [106,
64].

(b) The combined complexity of Eval(IFP) and Eval(LFP) is ExpTime-complete
[106].

Since LFP and IFP are extensions of FO, static analysis of these languages
is impossible in general (cf. Theorem 1.13). Concerning the expressive power
of LFP and IFP, the following is known:

THEOREM 1.21 [61]
IFP can express exactly the same queries as LFP.

Note that in the definition of the logics LFP and IFP, nesting of fixpoints
is explicitly allowed. Restricting attention to formulas where just a single
fixpoint operator may be applied to a first-order formula does not change the
expressive power, since nested fixpoints can always be simulated by a single
fixpoint (of potentially higher arity) [64].

It is also possible to get the same expressive power using an extension of
Datalog with negation. Even though the definition of the semantics of this
extension is not an obvious issue (see [3]), it turns out that with the so-called
well-founded semantics it has the same expressive power as IFP and LFP [43].

Even though recursion adds a lot of expressive power to the relational
calculus, it does not help to count. Indeed, the following holds:

THEOREM 1.22 [13]
LFP and IFP have the 0-1 law.

Consequently, e.g. the EO query, i.e., query (8) from Section 1.2.2,
is not definable in LFP or IFP.

For more details on fixpoint logics the reader is referred to the textbooks
[3, 81].

1.6.3 Relational calculus with counting

SQL has several numerical features and counting features which are actually
used in practice much more often than the recursion mechanisms. In Sec-
tion 1.4.2 we have seen, however, that the relational calculus basically cannot
count: it even cannot express the query EO, asking whether the
number of operas in the database is even.

The simplest way to extend the relational calculus with counting facilities
is to explicitly include them in the syntax: We consider the extension FO+C
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of FO with counting quantifiers. FO+C is a two-sorted logic with the second
sort being the natural numbers. The formula

∃i
(

∃ j (i= j+ j) ∧ ∃ !i y (∃xO(x, y) )
)

is an example of a FO+C-formula which expresses the EO query.
Specifically, the formula states that there is a number i which is even (since
there exists an integer j with i= j+ j) such that the number of names y of
pieces listed in the O-relation is exactly i. This formula combines the
three kinds of quantifiers allowed in FO+C: Apart from the usual quantifiers
ranging over elements of the active domain, it uses quantifiers of the form
∃i that range over natural numbers (to be precise, the variables ranging over
natural numbers only take values which are at most the size of the active
domain of the underlying database). Furthermore, if variable i is interpreted
by a natural number n, then a formula of the form ∃ !i y ϕ(y) expresses that
there are exactly n distinct elements a (in the active domain of the underlying
database) for which ϕ(a) holds. Apart from these quantifiers, FO+C also
contains arithmetic predicates such as the linear order <, the addition +, and
the multiplication ×.

Since FO+C contains FO, static analysis is impossible in general (cf. Theo-
rem 1.13). The complexity of query evaluation for FO+C is not much higher
than that of the relational calculus:

THEOREM 1.23

(a) The data complexity of Eval(FO+C) is in TC0 [11] and thus, in particular,
in LogSpace.

(b) The combined complexity of Eval(FO+C) is PSpace-complete.

Concerning the proof of (b), the inclusion in PSpace is straightforward, and
the PSpace-hardness immediately follows from Theorem 1.12 (b).

By definition, FO+Cextends the relational calculuswith facilities for count-
ing and for doing arithmetic. However, FO+C fails to express simple recur-
sive queries such as, e.g., the A query. Actually, it is still Gaifman-
local [79]. For a more detailed overview of FO+C and related logics, we refer
to [79, 95] and the references therein.

1.6.4 The quest for PTime

Aswe have seen in Section 1.6.2 and 1.6.3, recursion or counting can be added
to FO while keeping the data complexity of query evaluation in polynomial
time. Often, a query is considered tractable iff it can be evaluated in poly-
nomial time w.r.t. data complexity. It would, of course, be desirable to have
a query language that is capable of expressing exactly the tractable queries,
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i.e., exactly those queries that can be evaluated in polynomial time w.r.t. data
complexity. The quest for such a query language is often stated as ”Is there a
language capturing PTime?”.

We have seen that both FO+C and IFP fail to capture all of PTime: for
example, FO+C cannot express the A query and IFP cannot express
the EO query, but both queries can easily be evaluated in time
polynomial in the size of the underlying database. It thus is natural towonder
whether the combination of IFP and FO+C (as it accounts for counting and
recursion at the same time) does capture PTime. Let IFP+C be the language
extending FO with both, inflationary fixpoints and counting. IFP+C has
several nice properties, e.g., it can express the EO query and the
A query, and its data complexity of query evaluation belongs to
PTime. However it fails to capture all PTime-computable queries:

THEOREM 1.24 [16]
There exists a query that can be evaluated in polynomial time (w.r.t. data
complexity) but that is not expressible in IFP+C.

Nevertheless, when restricting attention to particular classes of databases,
IFP+C and, in some cases, even IFP do capture all of PTime. The following
theorem summarizes some results in this vein. Here, an ordered database is
a database which contains a relation that is a linear order on the database’s
active domain.

THEOREM 1.25

(a) IFP captures PTime on the class of all ordered databases [64, 106].

(b) IFP+C captures PTime on all classes of databases of bounded treewidth [56]
and on the class of databases corresponding to planar graphs [50].

Note that (a) implies that IFP and IFP+C have the same expressive power
on the class of ordered databases. Specifically, they express exactly those
queries that can be evaluated in polynomial time data complexity.

Several generalizations of Theorem 1.25 (to larger classes of databases) and
Theorem 1.24 (to certain restricted classes of databases) are known; see e.g.
[34, 30].

The question ofwhether there is a query language or logic capturing PTime
originated in the work of Chandra and Harel [18, 19] and is considered one
of the main challenging open problems in database theory and finite model
theory. The logic must be reasonable in a sense defined by Gurevich [60] (in
particular it must have an effective syntax). More details on the “quest for
PTime” can be found in [55, 86] and the references given therein.
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1.6.5 Beyond PTime

All the query languages considered so far in this chapter are capable of
expressing only queries that can be evaluated in polynomial time w.r.t. data
complexity. Sometimes, however, there is a need for query languages that
can define also more complex queries.

A simple way of extending the expressive power of least fixpoint logic
or inflationary fixpoint logic is to drop the requirement that the sequence
R0,R1,R2, . . . is monotone: Similarly to the definition of LFP, we consider the
sequence obtained by iterated application of the operator ϕD, starting with
R0 := ∅. Now, however, ϕmay be an arbitrary formula such that the sequence
R0,R1,R2, . . . is not necessarily increasing. Thus, depending on the particular
formula ϕ and the database D at hand, the sequence may or may not reach a
fixpoint. If no fixpoint is reached, the partial fixpoint is, by convention, defined
to be the empty relation ∅. This leads to the partial fixpoint logic PFP which
extends first-order logic FO by the following rule: If ϕ(x̄) is a PFP-formula,
then [pfpR,x̄ϕ](x̄) is also a PFP-formula. The semantics of this formula is as
follows: The result of query [pfpR,x̄ϕ](x̄) on a database D is the fixpoint of

the sequence R0 := ∅, R1 := ϕD(R0), R2 := ϕD(R1), R3 := ϕD(R2), etc., if such a
fixpoint exists; otherwise, it is defined to be the empty relation ∅.

Notice that all the intermediate relationsRi are of size polynomial in the size
of the database. Furthermore, convergence (respectively, non-convergence)
to a fixpoint can be detected in PSpace. Altogether, this leads to an algorithm
for evaluating a PFP-query in space polynomial in the size of the underlying
database (where the exponent depends on the particular PFP-query).

Some more results on PFP are summarized in the following theorem:

THEOREM 1.26

(a) The data complexity of Eval(PFP) is PSpace-complete [106].

(b) PFP has the 0-1 law [74].

(c) PFP captures PSpace on the class of all ordered databases [106].

(d) IFP has the same expressive power as PFP if, and only if, PTime=PSpace [5].

It is straightforward to see that all IFP-queries can be expressed in PFP, i.e.,
PFP has at least the expressive power of IFP. Part (d) of Theorem 1.26 tells us
that showing that the expressive power of PFP is strictly larger than that of
IFP (on the class of arbitrary databases) is no easier than showing the (widely
believed but, up to date, unproven) complexity theoretic assumption that
PTime , PSpace. On the other hand, part (b) implies that the EO
query, i.e., query (8) fromSection 1.2.2, cannot be expressed inPFP. This query,
however, can easily be evaluated in polynomial time. Thus, on the class of
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arbitrary databases, PFP is not capable of expressing all tractable queries, let
alone, all PSpace computable queries. Thus, PFP does not capture PSpace on
the class of all databases. When restricting attention to the class of all ordered
databases, however, Theorem 1.26 (c) tells us that PFP precisely captures
PSpace.

To conclude this section let us briefly consider a different (andwidely used)
way of extending the expressive power of query languages: Most database
systems allow embedding of SQL queries into more powerful programming
languages like C++ and java. This gives the user the capabilities to express
arbitrary queries. The price to pay, however, is twofold: First of all, no
optimization is performed except for, possibly, the SQL parts of the query.
Furthermore, embedding a query language in a programming language im-
plies that it is possible to specify queries that are not computable, i.e., queries
for which there exists no evaluation algorithm that, on any input databaseD,
stops after a finite number of steps and outputs the query result.

Several formalizations of the approach of embedding a query language
into a programming language have been considered in the literature. We
refer to chapter 18 of [3] for a discussion on such and other highly expressive
languages.

1.7 Towards more flexibility: query languages for other data
models

Throughout the previous sections we restricted attention to the relational
data model. In the present section we conclude with a brief discussion of
some other major data models.

Set semantics vs. bag semantics. The relational model is based on the so-
called set semantics: no relation can have two (or more) identical tuples.
During the evaluation of a query, however, it is often the case that identical
tuples are generated, for instance when projecting a relation on one of its
attributes. Eliminating duplicates is a costly operation as it often requires to
sort the tuples in order to identify duplicates. Moreover, in some applications,
counting the numbers of duplicatesmay be desirable, e.g. for the query “How
many shows are performed in the MET each year?”. Therefore, in most
relational database systems duplicates are not eliminated unless explicitly
requested by the query (this is the role of the SELECT DISTINCT construct
of SQL).

Instead of the set semantics (considered throughout the previous sections
of this chapter), the relationalmodel can also be equippedwith a bag semantics.
With bag semantics, the number of occurrences of a tuple in the output of a
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CQ query corresponds to the number of variable assignments satisfying the
query.

With respect to query evaluation, the change from set semantics to bag
semantics does not cause a considerable change in complexity (at least not
for the “worst-case” analysis), since the complexity of intermediate sorting
steps usually is dominated by the complexity of evaluating joins.

However, going from set semantics to bag semantics does change the com-
plexity of static analysis, since the containment problem and the equivalence
problem must take into account the number of occurrences of tuples in the
query result. E.g., two queries are equivalent iff they produce the same tu-
ples with the same multiplicities. This makes a dramatic difference. Indeed,
considering the class CQ of conjunctive queries under bag semantics, it is
known that the equivalence problem Equiv(CQ) is as hard as testing graph
isomorphism (and hence it is in NP) [21]. For the containment problem un-
der bag semantics, however, it is still an open question whether Cont(CQ) is
decidable.

For the class UCQ of unions of conjunctive queries and for the extension
CQ(,) of conjunctive queries where also inequalities are allowed as atoms,
the containment problems Cont(UCQ) and Cont(CQ(,)) become undecid-
able [66, 67]. Recall from Theorem 1.14 that under set semantics these two
problems are decidable. Concerning, however, the equivalence problem un-
der bag semantics, it is known that Equiv(CQ(,)) is decidable and belongs to
PSpace [27].

The nested relational model. A further limitation of the relational model is
given by the so-called first normal formwhich restricts attribute values to being
atomic. In this sense, relations in the relational model are flat. The nested rela-
tional model (or complex value model) contains nested type constructors which
allow to build nested relations from atomic types by using tuple constructors
and set constructors. Apart from suitable generalizations of the operators of
the (flat) relational algebra, it has operators for nesting and unnesting rela-
tions. An equivalence between the logical calculus and the algebra can be
established just as in the flat case [89, 1]. Interestingly, the nested operators do
not add any expressive power to the relational algebra for flat queries on flat
databases [89]. This result was generalized in [110] for non-flat queries. On
the other hand, adding a powerset operator to the nested relational algebra
strongly extends its expressive power, e.g., it allows to express the A
query [1]. Apart from the references mentioned above, we refer to [3, 15] for
more detailed information.

Object-oriented databases. Object-oriented databases further extend the
nested relational model towards the object oriented paradigm. Each object,
or entity, is given a unique identifier (OID). In the relationalmodel this would
correspond to adding an extra “ID” attribute to each relation and requiring
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that this attribute be a key. The model also allows OID as a possible attribute
for an object. Query languages can be derived from those for nested relations,
cf., for example, the language OQL [24], which was implemented in the O2

database system [10]. A logical foundation for the object-oriented model was
presented in [71]. For further information we refer to [17, 3, 104, 4, 35].

Constraint databases. Another feature of the relational model is that all
relations are finite. There are many applications where this restriction can be
seen as a limitation, for instance in spatial databases where a relation may
correspond to a set of points in the plane. The constraint database framework is
an elegant way of extending the relational model beyond finite relations. The
idea is to manipulate implicit presentations of relations instead of explicit
presentations that list all tuples. This is done by first specifying a logical
framework, for instance first-order logic on the field of reals. Then, each
(possibly infinite) relation is represented by a formula of the logical frame-
work. In the case of first-order logic over the real field, this defines precisely
the semi-algebraic relations. Then, depending of the logical framework and
on the query language at hand, query evaluation can or cannot be performed
effectively. Typically, if the logical framework is first-order logic and admits
quantifier elimination, as in the real field, then first-order queries can be
evaluated (actually in PTime data complexity for the case of the real field).
Since the seminal paper on constraint databases [70], this area has generated
a lot of theoretical work concerning various logical frameworks, and several
prototypes have been developed. The main application is in spatio-temporal
databases. For a short introduction to constraint databases we refer to [103];
a comprehensive survey is provided in the book [75].

The semi-structured data model. With the Internet, data is geographically
distributed, and vast amounts of data are frequently exchanged between sev-
eral database (and non-database) systems. The rigid structure of a relational
database, enforced by its schema, makes it difficult to use the relational data
model for transferring data from one site to another. To this end a new,
more flexible model has been introduced: the semi-structured model (see [2]
for a comprehensive overview). The general idea is that data is now “self-
describing”, i.e. its structure is part of the data. The most widespread imple-
mentation of the semi-structured model is the Extensible Markup Language
(XML), specified by the World Wide Web Consortium. An XML document
is a well-formed nested sequence of opening and closing tags in between
which text and data values can be found. The tag structure can be seen as a
labeled tree; it provides the “structure” of the document. A crucial difference
with the relational setting is that data is now queried also by its position in
the (possibly deeply nested) document tree. Hence, XML query languages
must combine navigation in the document tree with other, more classical,
database functionalities such as joins. Many query languages for XML have
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been proposed. They are designed for differing purposes, e.g., navigating to
(or extracting) positions in a document, transforming documents into new
documents, and posing Boolean queries about documents. The most im-
portant XML query languages, XPath, XSLT and XQuery are maintained
by the World Wide Web Consortium and are still under development, see
http://www.w3.org/XML/ for up-to-date information.

The theoretical foundations build upon concepts from automata theory
and mathematical logic, among them tree automata, monadic second-order
logic, and logics with navigating features similar to those in temporal logic.
For details see [82, 72, 97] and the references therein.

The data stream model. The data stream model considers data that is not
stored but, instead, arrives in multiple, continuous, rapid, and time-varying
streams. Typical application areas for which data stream processing is rel-
evant are, e.g., IP network traffic analysis, mining text message streams,
or processing data generated by sensor networks. In all these application
areas it is not feasible to simply load the arriving data into a traditional rela-
tional database management system (DBMS) and query it there. Instead, the
streaming data has to be processed on-the-fly by using only a limited amount
of memory. Instead of the precise query answers provided by traditional
DBMS, queries against data streams are often evaluated by randomized algo-
rithms that produce approximate solutions. Systems-oriented overviews of
query languages for data streams and general purpose data streammangage-
ment systems (DSMS) can be found in [7, 100]. A survey of machine models
and lower bounds for stream-based query processing is given in [96]. For an
introduction to efficient algorithms for data stream processing see [85].

Many other data models have been considered in the literature, each with
its own query languages, and it seems that there will always be new data
models and database applications. The area of query languages will thus be
evolving in the foreseeable future and there remain a lot of challenges for
research.
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