
MPRI 1-22 Basics of Verification December 20, 2024

TD 10: Pushdown Systems

Exercise 1 (Labelled Pushdown Systems). Let P = (P,Γ,∆,Σ) be a labelled pushdown

system, i.e. the rules in ∆ are of the form pA
a
↪→ qw, where p, q ∈ P are control locations,

A ∈ Γ and w ∈ Γ∗ are stack symbols, and additionally a ∈ Σ is an action. The set of
configurations Con(P) consists of the tuples qw with q ∈ P and w ∈ Γ∗. For two
configurations c, c′ we write c

w⇒ c′, where w ∈ Σ∗, if c can be transformed into c′ by a
sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre∗(C) = { c ∈
Con(P) | ∃c′ ∈ C,w ∈ Σ∗ : c

w⇒ c′ }. If C is accepted by an automaton with n states,
this takes O(n2 · |∆|) time.

1. Let L ⊆ Σ∗ be a regular language and C be a regular set of configurations. We
define

pre∗[L](C) := { c ∈ Con(P) | ∃c′ ∈ C,w ∈ L : c
w⇒ c′ }.

One can prove that pre∗[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre∗[L](C).

2. Give a bound on the amount of time it takes to compute pre∗[L](C).

Exercise 2 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

n2 xInit

n1

eInit

NInit

xp

n3

ep

Np

x = 5

call(p)
skip

skip

y = 2x

x = 0

Formally, a flow graph for procedure p ∈ Proc is a tuple Gp = (Np, A,Ep, ep, xp),
where

1

MPRI 1-22 Basics of Verification December 20, 2024

• Np are the nodes, corresponding to program locations; we denote N :=
⋃

p∈Proc Np.

• A = AI ∪{ call(p) | p ∈ Proc } are the actions, where AI are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

• Ep ⊆ Np × A × Np are the edges, labelled with actions from A. We denote
E :=

⋃
p∈Proc Ep.

• ep is the entry point of procedure p, i.e. when p is called, execution will start at ep.

• xp is the exit point of p (without any outgoing edges); when xp is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in AI describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then Dv ⊆ AI is the set of actions that assign a value to v
and Rv ⊆ AI the set of actions where v occurs on the right-hand side.

Let Init ∈ Proc be an initial procedure and n ∈ N a node in the flow graph. We say
that variable v is live at n if there exists a node n′ and an execution that (i) starts at
eInit , (ii) passes n, (iii) finally reaches n′ with an action from Rv, and (iv) there is no
assignment to v between n and n′ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n1 and ep, but not in the other
nodes.

2. Describe a regular language L ⊆ A∗ that describes the sequences of actions that
can happen along such executions between n and n′.

3. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

Exercise 3 (Basic Pushdown Processes). A Basic Pushdown Process (BPP) is a push-
down system with one single state q. Find a pushdown system P such that there exists
no BPP Q bisimilar to P.

2

