MPRI 1-22 Basics of Verification December 20, 2024

TD 10: Pushdown Systems

Exercise 1 (Labelled Pushdown Systems). Let P = (P,I", A, ¥) be a labelled pushdown

system, i.e. the rules in A are of the form pA < qw, where p, g € P are control locations,
A €T and w € I'* are stack symbols, and additionally a € 3 is an action. The set of
configurations Con(P) consists of the tuples qw with ¢ € P and w € T'*. For two
configurations ¢, ¢ we write ¢ = ¢/, where w € ¥*, if ¢ can be transformed into ¢ by a
sequence of rules whose labels yield w.
Given a regular set of configurations C, it is known how to compute pre*(C) = {c €
w

Con(P) |3 € C,w € ¥* : ¢ = ¢ }. If C is accepted by an automaton with n states,
this takes O(n? - |A|) time.

1. Let L C ¥* be a regular language and C be a regular set of configurations. We
define
pre*[L)(C) :={c€ Con(P) |3 € C,w e L:c = }.

One can prove that pre*[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre*[L](C).

2. Give a bound on the amount of time it takes to compute pre*[L](C).

Exercise 2 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

Nit Np
T=25 Yy =2
(»)
call(p) skip r =0

n2 Tp
skip @ Q

Formally, a flow graph for procedure p € Proc is a tuple G, = (Np, A, Ep, ey, Tp),
where

MPRI 1-22 Basics of Verification December 20, 2024

e N, are the nodes, corresponding to program locations; we denote N := Np.

p€ Proc

o A= ArU{call(p)|p € Proc} are the actions, where Ay are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

e 5, C N, x A x N, are the edges, labelled with actions from A. We denote
E:= UpEPmc Ep‘

e ¢, is the entry point of procedure p, i.e. when p is called, execution will start at e,.

e 1, is the exit point of p (without any outgoing edges); when z, is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in A; describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then D, C Ay is the set of actions that assign a value to v
and R, C Aj the set of actions where v occurs on the right-hand side.

Let Init € Proc be an initial procedure and n € N a node in the flow graph. We say
that variable v is live at n if there exists a node n’ and an execution that (i) starts at
€nit, (1) passes n, (iii) finally reaches n’ with an action from R,, and (iv) there is no
assignment to v between n and n’ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n; and e,, but not in the other
nodes.

2. Describe a regular language L C A* that describes the sequences of actions that
can happen along such executions between n and n/'.

3. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

Exercise 3 (Basic Pushdown Processes). A Basic Pushdown Process (BPP) is a push-
down system with one single state ¢q. Find a pushdown system P such that there exists
no BPP O bisimilar to P.

