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TD 8: Partial-Order Reduction

Reminder:

(C0) red(s) = ∅ iff en(s) = ∅.

(C1) For every path s
a1−→ s1

a2−→ · · · an−→ sn
a−→ t in K (for any n ≥ 0), if a /∈ red(s) and a

depends on some action in red(s) (i.e. there exists b ∈ red(s) such that (a, b) /∈ I),
then there exists 1 ≤ i ≤ n such that ai ∈ red(s).

(C2) If red(s) 6= en(s), then all actions in red(s) are invisible.

(C3) For all cycles in the reduced system K′, the following holds: if a ∈ en(s) for some
state s in the cycle, then a ∈ red(s′) for some (possibly other) state s′ in the cycle.

Exercise 1. Consider the condition (C ′1): for any s with red(s) 6= en(s), any a in red(s)
is independent from every b in en(s)\red(s).

1. Show that (C1) implies (C ′1).

2. Show that (C0), (C
′
1), (C2), (C3) are not sufficient to ensure stuttering equivalence,

i.e., that there exists a Kripke structure K and an assignment red satisfying con-
ditions (C0), (C

′
1), (C2), (C3) but such that the reduced system K′ induced by red

is not stuttering equivalent to K.

Exercise 2. Show that (C0)–(C2) is not sufficient to ensure stuttering equivalence.

Exercise 3. Show that checking condition (C1) is as hard as reachability checking.
More precisely, let K1 be a system with initial state r, some atomic proposition a,

and an action λ such that for all states s, s′, we have s
λ→ s′ iff s = s′. Extend K1 into

K2, with O(|K2|) = |K1|, such that the choice red = {α} violates (C1) iff K1 has a state
satisfying a.

1



MPRI 1-22 Basics of Verification 6 December 2024

Exercise 4. Consider the following system with A = {a, b, c, d}:

s0

∅

s1

∅

s2

∅

s3∅ s4
∅

s5 ∅

s6

{p}

s7

{p}

s8

{p}

s9{q} s10 {r}

b
c

aa a

d

b
c

d d

d b
c d

d d

1. Let red(s0) = {b, c} and red(s) = en(s) for s 6= s0; show that this ample set
assignment is compatible with C0–C3.

2. Exhibit a CTL formula that distinguishes between the original system and its
reduction. You may not use EX or AX.

Exercise 5. Let ϕ be an LTL formula. We define the X-depth dX(ϕ) and the U-depth
dU(ϕ) of ϕ as the maximal nesting of X- or U-operators in ϕ:

dX(p) = 0

dX(¬ϕ) = dX(ϕ)

dX(ϕ ∧ ψ) = max(dX(ϕ), dX(ψ))

dX(Xϕ) = 1 + dX(ϕ)

dX(ϕ U ψ) = max(dX(ϕ), dX(ψ))

dU(p) = 0

dU(¬ϕ) = dU(ϕ)

dU(ϕ ∧ ψ) = max(dU(ϕ), dU(ψ))

dU(Xϕ) = dU(ϕ)

dU(ϕ U ψ) = 1 + max(dU(ϕ), dU(ψ))

We denote by LTL(Um,Xn) the set of LTL formulas ϕ with dX(ϕ) ≤ n and dU(ϕ) ≤ m,
where n =∞ or m =∞ indicates no restriction of the operator in question.

1. We say that two words w,w′ ∈ Σω are n-stutter-equivalent if there exists let-

ters a0, a1, . . . ∈ Σ and f, g : N → N \ {0} such that w = a
f(0)
0 a

f(1)
1 . . . , w′ =

a
g(0)
0 a

g(1)
1 . . . , and for all i ≥ 0, ai = ai+1 implies ai = aj for all j > i, and

f(i) < n+ 1 or g(i) < n+ 1 implies f(i) = g(i).

Show that for all n ≥ 0 and ϕ ∈ LTL(U∞,Xn), L(ϕ) is closed under n-stutter-
equivalence.

2. A similar principle can be formulated when the U-depth is restricted, by con-
sidering stuttering of factors instead of letters. Show that for all m ≥ 1 and
ϕ ∈ LTL(Um,X0), for all u, v ∈ Σ∗ and w ∈ Σω, we have uvmw ∈ L(ϕ) iff
uvm+1w ∈ L(ϕ).
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