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TD 8: Partial-Order Reduction

Reminder:
(CO) red(s) =0 iff en(s) = 0.

(C1) For every path s 25 51 22 ... 2% 5, % tin K (for any n > 0), if a ¢ red(s) and a
depends on some action in red(s) (i.e. there exists b € red(s) such that (a,b) ¢ I),
then there exists 1 < i < n such that a; € red(s).

(C2) If red(s) # en(s), then all actions in red(s) are invisible.

(C3) For all cycles in the reduced system K', the following holds: if a € en(s) for some
state s in the cycle, then a € red(s’) for some (possibly other) state s’ in the cycle.

Exercise 1. Consider the condition (C1): for any s with red(s) # en(s), any a in red(s)
is independent from every b in en(s)\red(s).

1. Show that (C7) implies (C]).

2. Show that (Cp), (C1), (Ca), (C3) are not sufficient to ensure stuttering equivalence,
i.e., that there exists a Kripke structure K and an assignment red satisfying con-
ditions (Cp), (C1), (C2), (C3) but such that the reduced system K’ induced by red
is not stuttering equivalent to /.

Exercise 2. Show that (Cp)—(C2) is not sufficient to ensure stuttering equivalence.

Exercise 3. Show that checking condition (C) is as hard as reachability checking.

More precisely, let K1 be a system with initial state r, some atomic proposition a,
and an action \ such that for all states s, s’, we have s A & iff s = §'. Extend K; into
Ko, with O(|K2|) = |K1[, such that the choice red = {a} violates (C4) iff K1 has a state
satisfying a.
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Exercise 4. Consider the following system with A = {a,b, ¢, d}:

d d d
{r} {r} {r}
d d

1. Let red(sp) = {b,c} and red(s) = en(s) for s # sp; show that this ample set
assignment is compatible with Cp—Cjs.

2. Exhibit a CTL formula that distinguishes between the original system and its
reduction. You may not use EX or AX.

Exercise 5. Let ¢ be an LTL formula. We define the X-depth dx(y) and the U-depth
dy(p) of ¢ as the maximal nesting of X- or U-operators in ¢:

dx(p) = dy(p) =0
dx(—¢) = (90) du(—p) = du(p)
dx(so A1) = max(dx(p), dx () du(p A ¢) = max(dy(p), du(¥))
dx(Xp) =1+ dx(¢) dy(X¢) = duy(p)
dx (¢ U ¢) = max(dx (), dx(¢)) du(p Uv) =1+ max(dy(p),du(¥))

We denote by LTL(U™,X") the set of LTL formulas ¢ with dx(¢) < n and dy(y) < m,
where n = 0o or m = oo indicates no restriction of the operator in question.

1. We say that two words w,w’ € X% are n-stutter-equivalent if there exists let-
ters ag,ay,... € X and f,g : N — N\ {0} such that w = ag(o)a{(l)..., w =
ao() 9(1)..., and for all 7 > 0, a; = a;41 implies a; = a; for all j > ¢, and
f(i) <n+1org(i) <n+1implies f(i) = g(7).

Show that for all n > 0 and ¢ € LTL(U>,X"), L(yp) is closed under n-stutter-
equivalence.

2. A similar principle can be formulated when the U-depth is restricted, by con-
sidering stuttering of factors instead of letters. Show that for all m > 1 and
¢ € LTL(U™, X%, for all u,v € ©* and w € ¥, we have wv™w € L(p) iff
w™w € L(yp).



