TD 8: Partial-Order Reduction

Reminder:

- (C0) $red(s) = \emptyset$ iff $en(s) = \emptyset$.
- (C1) For every path $s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} s_n \xrightarrow{a} t$ in \mathcal{K} (for any $n \ge 0$), if $a \notin red(s)$ and a depends on some action in red(s) (i.e. there exists $b \in red(s)$ such that $(a, b) \notin I$), then there exists $1 \le i \le n$ such that $a_i \in red(s)$.
- (C2) If $red(s) \neq en(s)$, then all actions in red(s) are invisible.
- (C3) For all cycles in the reduced system \mathcal{K}' , the following holds: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s')$ for some (possibly other) state s' in the cycle.

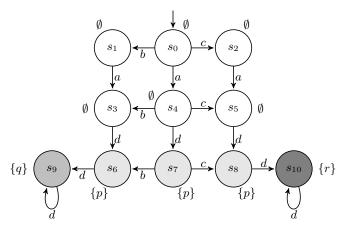
Exercise 1. Consider the condition (C'_1) : for any s with $red(s) \neq en(s)$, any a in red(s) is independent from every b in $en(s) \setminus red(s)$.

- 1. Show that (C_1) implies (C'_1) .
- 2. Show that $(C_0), (C'_1), (C_2), (C_3)$ are not sufficient to ensure stuttering equivalence, i.e., that there exists a Kripke structure \mathcal{K} and an assignment *red* satisfying conditions $(C_0), (C'_1), (C_2), (C_3)$ but such that the reduced system \mathcal{K}' induced by *red* is not stuttering equivalent to \mathcal{K} .

Exercise 2. Show that $(C_0) - (C_2)$ is not sufficient to ensure stuttering equivalence.

Exercise 3. Show that checking condition (C_1) is as hard as reachability checking.

More precisely, let \mathcal{K}_1 be a system with initial state r, some atomic proposition a, and an action λ such that for all states s, s', we have $s \xrightarrow{\lambda} s'$ iff s = s'. Extend \mathcal{K}_1 into \mathcal{K}_2 , with $\mathcal{O}(|\mathcal{K}_2|) = |\mathcal{K}_1|$, such that the choice $red = \{\alpha\}$ violates (C_1) iff \mathcal{K}_1 has a state satisfying a. **Exercise 4.** Consider the following system with $A = \{a, b, c, d\}$:



- 1. Let $red(s_0) = \{b, c\}$ and red(s) = en(s) for $s \neq s_0$; show that this ample set assignment is compatible with C_0-C_3 .
- 2. Exhibit a CTL formula that distinguishes between the original system and its reduction. You may not use EX or AX.

Exercise 5. Let φ be an LTL formula. We define the X-depth $d_X(\varphi)$ and the U-depth $d_U(\varphi)$ of φ as the maximal nesting of X- or U-operators in φ :

$$\begin{aligned} d_{\mathsf{X}}(p) &= 0 & d_{\mathsf{U}}(p) &= 0 \\ d_{\mathsf{X}}(\neg \varphi) &= d_{\mathsf{X}}(\varphi) & d_{\mathsf{U}}(\neg \varphi) &= d_{\mathsf{U}}(\varphi) \\ d_{\mathsf{X}}(\varphi \land \psi) &= \max(d_{\mathsf{X}}(\varphi), d_{\mathsf{X}}(\psi)) & d_{\mathsf{U}}(\varphi \land \psi) &= \max(d_{\mathsf{U}}(\varphi), d_{\mathsf{U}}(\psi)) \\ d_{\mathsf{X}}(\mathsf{X} \varphi) &= 1 + d_{\mathsf{X}}(\varphi) & d_{\mathsf{U}}(\mathsf{X} \varphi) &= d_{\mathsf{U}}(\varphi) \\ d_{\mathsf{X}}(\varphi \lor \psi) &= \max(d_{\mathsf{X}}(\varphi), d_{\mathsf{X}}(\psi)) & d_{\mathsf{U}}(\varphi \lor \psi) &= 1 + \max(d_{\mathsf{U}}(\varphi), d_{\mathsf{U}}(\psi)) \end{aligned}$$

We denote by $LTL(U^m, X^n)$ the set of LTL formulas φ with $d_X(\varphi) \leq n$ and $d_U(\varphi) \leq m$, where $n = \infty$ or $m = \infty$ indicates no restriction of the operator in question.

1. We say that two words $w, w' \in \Sigma^{\omega}$ are *n*-stutter-equivalent if there exists letters $a_0, a_1, \ldots \in \Sigma$ and $f, g : \mathbb{N} \to \mathbb{N} \setminus \{0\}$ such that $w = a_0^{f(0)} a_1^{f(1)} \ldots, w' = a_0^{g(0)} a_1^{g(1)} \ldots$, and for all $i \ge 0$, $a_i = a_{i+1}$ implies $a_i = a_j$ for all j > i, and f(i) < n + 1 or g(i) < n + 1 implies f(i) = g(i). Show that for all $n \ge 0$ and $\varphi \in \mathrm{LTL}(\mathsf{U}^{\infty}, \mathsf{X}^n), L(\varphi)$ is closed under *n*-stutter-

equivalence.

2. A similar principle can be formulated when the U-depth is restricted, by considering stuttering of factors instead of letters. Show that for all $m \ge 1$ and $\varphi \in \text{LTL}(U^m, X^0)$, for all $u, v \in \Sigma^*$ and $w \in \Sigma^{\omega}$, we have $uv^m w \in L(\varphi)$ iff $uv^{m+1}w \in L(\varphi)$.