
Exam solution – Introduction to Verification

January 13, 2023

1 Partial-order reduction

(a) The following states have multiple enabled actions:

– s2 with {a, c, e}: 〈a, c〉 and 〈a, e〉 form a ‘diamond’, but 〈c, e〉 do not.

– s1 with {a, d}: we conclude that 〈a, d〉 are not independent.

– s3 with {a, f}: ditto for 〈a, f〉.
– t1, t2, t3: analogous, with b taking the role of a.

Thus, the only relevant dependent pairs are {a, b} × {d, f} and 〈c, e〉.
Obviously, only d and f are visible, the other actions are invisible.

(b) In s2, the outgoing a-transition can be removed (which eliminates t2 altogether). No other
transition (or state) can be eliminated, it suffices to apply rules C0 and C1, due to the
dependencies found in (a).

(c) There are three classes for stutter equivalence to preserve: a run (i) either remains in the
white states, (ii) or eventually reaches the black states, (iii) or eventually reaches the grey
states. A possible result is shown below.
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2 Petri nets

(a) (i) not bounded, not live, not cyclic
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(ii) not bounded, not live, cyclic: impossible

Suppose that a net (with place p) is cyclic and unbounded but not live, i.e. there
exists a transition t and a marking m ∈ R such that m cannot reach any m′ with
m′(p) ≥W (p, t).

But due to cyclicity, one can reach m0 from any m ∈ R, and due to unboundedness,
R = reach(m0) contains a marking m′ with m′(p) ≥W (p, t), a contradiction.

(iii) not bounded, live, not cyclic
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(iv) not bounded, live, cyclic
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(v) bounded, not live, not cyclic

(vi) bounded, not live, cyclic
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(vii) bounded, live, not cyclic: impossible

Let p be the single place. Call a transition t increasing if W (p, t) < W (t, p), preserving
if W (p, t) = W (t, p), and decreasing if W (p, t) > W (t, p).

Suppose that the net is bounded but not cyclic. Boundedness implies that no transition
can be increasing. If the net had preserving transitions only, then only the initial
marking is reachable, and the net would be cyclic. Thus the net must have at least
one decreasing transition t. Consider the run where we repeat t until the number of
tokens is less than W (p, t). After this, t can never fire again, hence the net is not live.

(viii) bounded, live, cyclic

(b) (i) Let I be a positive invariant, m some reachable marking and q some place. From the
definition it follows that any multiple of an invariant is also an invariant, so w.l.o.g.
assume that all entries of I are at least 1. We then have

m(q) ≤ m(q) · I(q) ≤
∑
p∈P

I(p) ·m(p) =
∑
p∈P

I(p) ·m0(p).

The first two steps are justified by the fact that I is positive and m(p) ≥ 0 for all p.
The last step follows from the fact that I is an invariant. The latter expression is a
constant and provides a bound for q (and in fact for all places).

(ii) The statement is false. The net shown below is live and can reach any odd number of
tokens. However, if m(p) = 2, the net can reach 0 tokens and is unable to continue
afterwards.
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3 Coverability graphs

(a) An example is shown in the figure below. The left-hand side shows a simple net. The
centre shows the coverability graph obtained if the marking m1 := 〈0, 1, 0〉 is treated before
m2 := 〈0, 0, 1〉. This makes m1 a predecessor of m2, so when m2 is treated, firing d leads to
〈0, ω, 0〉 rather than simply 〈0, 2, 0〉. The right-hand side shows the coverability graph when
m2 is treated before m1.
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(b) The statement is not true. Indeed, it suffices to use the net from Question 2(b), the ex-
ample below shows a modified version. It has a deadlock (by firing t1, t2), but its (unique)
coverability graph has two nodes, both with outgoing edges (left figure: net; centre: excerpt
of reachability graph; right: coverability graph).
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4 Bisimulation

1. K2 satisfies EX EX AX p, but K1 and K3 do not. Thus, K2 is not bisimilar to either of
them. K1 and K3 are bisimilar as witnessed by the relation {(a, g), (b, h), (c, i), (c, k)}.

2. The definition is equivalent to saying that H is a bisimulation iff both H and H−1 are.
Therefore, it suffices to show that if H and J are simulations, then so is H ◦ J ; the rest
follows from (H ◦ J)−1 = J−1 ◦H−1.

Points (i) and (ii) are trivial. For (iii), suppose that 〈s, t〉 ∈ H ◦ J and s→ s′. Then there
exists u such that 〈s, u〉 ∈ H and 〈u, t〉 ∈ J ; since H is a simulation, then there is u′ with
u → u′ and 〈s′, u′〉 ∈ H. Likewise, from 〈u, t〉 ∈ J we can deduce the existence of t′ with
t→ t′ and 〈u′, t′〉 ∈ J . But then 〈s′, t′〉 ∈ H ◦ J , and we are done.
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