Pushdown systems

Example 1

A small program (where n > 1):

bool g=true; void level;() {

void main () { leveljp1 ();
levelq () ; leveljpq ();
levelq (); }

h

volid levelnp() {
g:=not g;

ki

Question: Is g true when the program terminates?

Example 1 has got finitely many states.
(The call stack is bounded by n.)

Can be treated by “inlining” (replace procedure calls by a copy of the callee).
Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated
separately.

Inlining not applicable for recursive procedure calls.

Example 2: Drawing skylines

procedure p; procedure s;
po: if 7 then So. If ? then return; end if;
p1: call s; right; s1: up; call p; down;
po: if ? then call p; end if; So>: return;
else
p3: up; call p; down; procedure main;
end if mg: call s;
pa: return my . return;
S={po,..-,Ps4,50,---,S2, Mg, M }*, initial state mg

mil — ¢
—>m0—>50m1\ p1s2mi1 — s0p2s2mi
si1m1 — p0s2 mi
p3s2m1 — p0p4s2mi

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naively searching all reachable states.

We shall require a finite representation of infinitely many states.

Example 3: Quicksort

void quicksort (int left, int right) {
int lo,hi,piv;
1f (left >= right) return;
piv = a[right]° lo = left; hi = right;
while (lo <= hi) {
if (alhi]l>piv) {
hi = hi - 1;
} else {
swap al[lol,alhi];
lo = lo + 1;

}
}

quilcksort (left,hi);
quicksort (lo, right) ;

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely
many reachable states:

finitely many if the program terminates

infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

A computation model for procedural programs

Control flow:

sequential program (no multithreading)

procedures

mutual procedure calls (possibly recursive)

Data:

global variables (restriction: only finite memory)

local variables in each procedure (one copy per call)

Pushdown systems

A pushdown system (PDS) is a triple (P, ", A), where

P is a finite set of control states;

[is a finite stack alphabet;

A is a finite set of rules.

Rules have the form pA — qw, where p,g e P, Ac ', we ™.

© (A

@ W W

Like acceptors for context-free language, but without any input!

10

Behaviour of a PDS

Let P = (P,I',A)beaPDSandcyc P x I .

With P we associate a transition system 7p = (S, —, r) as follows:

S = P x I'* are the states (which we call configurations);

we have pAw’' — qww’ for all w’ € IT* iff pA — gw € A;

r = Cp is the initial configuration.

11

Transition system of a PDS

P
?
p:D<—q,B <—p,,A<—p,DA<—
pA — QB p,C =———p,DC =
pA — pC
y
pC — pAD
y

l

p,DDD =— q,BDD =— p,ADD =— p,DADD —=— -

T !

12

Procedural programs and PDSs

P may represent the valuations of global variables.
[C may contain tuples of the form (program counter, local valuations)

Interpretation of a configuration pAw:

global values in p, current procedure with local variables in A

“suspended” procedures in w

Rules:

pA — gB = statement within a procedure

pA — gBC = procedure call

pPA — ge = return from a procedure

13

Reachability in PDS

Let P be a PDS and ¢, ¢’ two of its configurations.

Problem: Does ¢ —* ¢’ hold in 7p?

Note: 7p has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

14

Finite automata for configurations

To represent (infinite) sets of configurations, we shall employ finite automata.
Let P = (P,I"',A) beaPDS.Wecall A= (Q,I,P, T, F)aP-automaton.
The alphabet of A is the stack alphabet I".

The initial states of .A are the control states P.

We say that A accepts the configuration pw if A has got a path labelled by input
w starting at p and ending at some final state.

Remark: In the following, we shall use the following notation:
pw = p'w (inthe PDSP) and p-= g (in P-automata)

15

Reachability in PDS

An automaton is normalized if there are no transitions leading into initial states.
(And any automaton can be brought into a normalized form.)

Let pre*(C) = {c’ | dc € C: ¢’ = ¢} denote the predecessors of C.

The following result is due to Buchi (1964):

Let C be a regular set and A be a normalized P-automaton accepting C.

If C is regular, then so is pre*(C).

Moreover, A can be transformed into an automaton accepting pre*(C).

16

The basic idea (for pre)

Saturation rule: Add new transitions to A as follows:

If g % r currently holds in A and pA < qw is a rule, then add the
transition (p, A, r) to A.

Repeat this until no other transition can be added.
At the end, the resulting automaton accepts pre*(C).

Complexity: O(|Q|? - |A|) time.

17

Automaton A for C

P
pD<——gB =—pA=<——pDA =~— -
Y
D D p,DD =— q,BD =—— p,AD =—— p,DAD —=
A

B Y
— p,CD =—p,DCD —=— -~

p,DDD =— q,BDD =— p,ADD =— p,DADD —=— -

T !

18

Extending A

19

Extending A

If the right-hand side of a rule can be read,

Rule: pA — gB Path: q§> S1

20

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

nONGRO,

A
D||D

~O—)

Rule: pA — gB Path: q§> S1 New path: pi S1

21

Extending A

If the right-hand side of a rule can be read,

nONGRC,

A
D||D

~O—)

Rule: pC — pAD Path: pi S1 L4 S5

22

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

O ®
ADD

~O—)

Rule: pC — pAD Path: p A S1 124 S5 New path: p < S5

23

Final result

P

?

pD<+—qB =——pA=<——pDA=— -

l

p,C <—p,DC - e

y
p,DD =— q,BD =—— p,AD =—— p,DAD —=— -
A

y

l

p,DDD =— ,BDD =— p,ADD <— p,DADD <~— -

T !

24

p,CD =—p,DCD =— -

Proof of correctness

We shall show:

Let B be the P-automaton arising from A by applying the saturation rule.
Then L(B) = pre*(C).

Part 1: Termination

The saturation rule can only be applied finitely many times because no states
are added and there are only finitely many possible transitions.

Part 2: pre*(C) C L(B)

Let ¢ € pre*(C) and ¢’ € C such that ¢’ is reachable from ¢ in k steps. We
proceed by induction on k (simple).

25

Part 3: £L(B) C pre*(C)

Let — denote the transition relation of the automaton after the saturation rule
/
has been applied i times.

We show the following, more general property: If pi@ g, then there exist p’w’
/

with p/ %; qg and pw = p'w’; if g € P, then additionally w’ = ¢.
Proof by induction over i: The base case i/ = O is trivial.

Induction step: Let t = (p1, A, @’) be the transition added in the i-th
application and k the number of times t occurs in the path pﬂ,@ qg.
/

Induction over k: Trivial for Kk = 0. So let kK > 0.

26

There exist po, o/, u, v, w’, wo with the following properties:

(1) p = p1 AgLq (spliting the path p% q)
1— I I /

(2) p1A — powo (pre-condition for saturation rule)
(3) po ,-Vl% q (pre-condition for saturation rule)
(4) pu = pqc (ind.hyp. on /)

(5) poworv = p'w (ind.hyp. on k)

6) o/ % q (ind.hyp. on k)

The desired proof follows from (1), (4), (2), and (5).
If g € P, then the second part follows from (6) and the fact that A is normalized.

27

LTL and Pushdown Systems

Let P = (P, I, A) be a PDS with initial configuration cg, let 7p denote the
corresponding transition system, AP a set of atomic propositions, and
v: P x ™ — 2AP a valuation function.

Tp, AP, and v form a Kripke structure K; let ¢ be an LTL formula (over AP).

Problem: Does K = ¢?

Undecidable for arbitrary valuation functions!
(could encode undecidable decision problemsinv ...)

However, LTL model checking is decidable for certain restrictions of v.

28

In the following, we consider “simple” valuation functions satisfying the following
restriction:

v(pAw) = v(pA),forallpe P, Ael,andw € ",

In other words, the “head” of a configuration holds all information about
atomic propositions.

LTL model checking is decidable for such “simple” valuations.

29

Approach

Same principle as for finite Kripke structures:

Translate —¢ into a Blchi automaton B.

Build the cross product of K and B.

Test the cross product for emptiness.

Note that the cross product is not a Buchi automaton in this case, but another
pushdown system (with a Blchi-style acceptance condition).

30

Blchi PDS

The cross product is a new pushdown system Q, as follows:

Let P = (P,I", A) be a PDS, pgwy the initial configuration, and AP, v as
usual.

Let B = (Q,24F, qo, T, F) be the Blichi automaton for —.

Construction of O:

Q= (PxQ,TI,A", where
(P, DA — (P, q)w e A iff
— PA— p'w e A and

— (q,L,q") € T such that v(pA) = L.

Initial configuration: (pg, go) wo

31

Let p be a run of Q with p(i) = (p;, ;) w;.

We call p accepting if g; € F for infinitely many values of /.

The following is easy to see:

P does not satisfy ¢ iff there exists an accepting run in Q.

32

Characterization of accepting runs

Question: If there an accepting run starting at (pg, go)wp?

In the following, we shall consider the following, more general global
model-checking problem:

Compute all configurations ¢ such that there exists an accepting run starting
at c.

Lemma: There is an accepting run starting at c iff there exists (p,q) € P x Q,
A € " with the following properties:

(1) c = (p,q)Aw for some w € I'*
2) (p,q9)A = (p,q)Aw’ for some w’ € I'*, where

the path from (p, g)Ato (p, @) Aw’ contains at least one step;

the path contains at least one accepting Blchi state.

33

Repeating heads

We call (p, q)A a repeating head if (p, q) A satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads (p, g) A.
E.g., check for each head if (p, q)A € pre*({ (p, Q)AwW | w € T* }).
(Additionally, one needs to check whether an accepting state is visited along

the way, which can be encoded into the control state.)

2. Compute the set pre*({ (p,q)Aw | (p, q)Ais a repeating head, w € T'* })

34

Remarks

Other temporal logics for PDS are also decidable (sketch):

CTL*: Adapt the technique from finite-state systems: Find an E-free
subformula ¢, compute the (regular) set configurations C satisfying E¢. Then
encode the states of the automaton for C into the stack, replace E¢ by a
fresh atomic proposition p that is true whenever the modified stack tells us
that we are in a configuration satisfying E¢.

CTL: (special case) Translate formula into an alternating automaton, adapt
pre* algorithm to alternating automata, then apply a technique similar to LTL.

35

