
Pushdown systems

1

Example 1

A small program (where n ≥ 1):

bool g=true;

void main() {
level1();

level1();

}
void leveln() {

g:=not g;

}

void leveli() {
leveli+1();

leveli+1();

}

Question: Is g true when the program terminates?

2

Example 1 has got finitely many states.
(The call stack is bounded by n.)

Can be treated by “inlining” (replace procedure calls by a copy of the callee).

Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated
separately.

Inlining not applicable for recursive procedure calls.

3

Example 2: Drawing skylines

procedure p;
p0: if ? then
p1: call s; right ;
p2: if ? then call p; end if;

else
p3: up; call p; down;

end if
p4: return

procedure s;
s0: if ? then return; end if;
s1: up; call p; down;
s2: return;

procedure main;
m0: call s;
m1: return;

S = {p0, . . . , p4, s0, . . . , s2,m0,m1}∗, initial state m0

m0 s0 m1
s1 m1

m1 ε

p0 s2 m1

p3 s2 m1

p1 s2 m1

p0 p4 s2 m1

s0 p2 s2 m1

...

...

4

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naı̈vely searching all reachable states.

We shall require a finite representation of infinitely many states.

5

Example 3: Quicksort

void quicksort (int left, int right) {
int lo,hi,piv;

if (left >= right) return;

piv = a[right]; lo = left; hi = right;

while (lo <= hi) {
if (a[hi]>piv) {
hi = hi - 1;

} else {
swap a[lo],a[hi];

lo = lo + 1;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

6

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely
many reachable states:

finitely many if the program terminates

infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

7

A computation model for procedural programs

Control flow:

sequential program (no multithreading)

procedures

mutual procedure calls (possibly recursive)

Data:

global variables (restriction: only finite memory)

local variables in each procedure (one copy per call)

8

Pushdown systems

A pushdown system (PDS) is a triple (P,Γ,∆), where

P is a finite set of control states;

Γ is a finite stack alphabet;

∆ is a finite set of rules.

9

Rules have the form pA ↪→ qw , where p, q ∈ P, A ∈ Γ, w ∈ Γ∗.

q w’

p A w’

w

Like acceptors for context-free language, but without any input!

10

Behaviour of a PDS

Let P = (P,Γ,∆) be a PDS and c0 ∈ P × Γ∗.

With P we associate a transition system TP = (S,→, r) as follows:

S = P × Γ∗ are the states (which we call configurations);

we have pAw ′ → qww ′ for all w ′ ∈ Γ∗ iff pA ↪→ qw ∈∆;

r = c0 is the initial configuration.

11

Transition system of a PDS

pA ↪→ qB
pA ↪→ pC
qB ↪→ pD
pC ↪→ pAD
pD ↪→ pε

p,DDD q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

q,BD

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

12

Procedural programs and PDSs

P may represent the valuations of global variables.

Γ may contain tuples of the form (program counter, local valuations)

Interpretation of a configuration pAw :

global values in p, current procedure with local variables in A

“suspended” procedures in w

Rules:

pA ↪→ qB =̂ statement within a procedure

pA ↪→ qBC =̂ procedure call

pA ↪→ qε =̂ return from a procedure

13

Reachability in PDS

Let P be a PDS and c, c′ two of its configurations.

Problem: Does c →∗ c′ hold in TP?

Note: TP has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

14

Finite automata for configurations

To represent (infinite) sets of configurations, we shall employ finite automata.

Let P = (P,Γ,∆) be a PDS. We call A = (Q,Γ,P,T ,F) a P-automaton.

The alphabet of A is the stack alphabet Γ.

The initial states of A are the control states P.

We say that A accepts the configuration pw if A has got a path labelled by input
w starting at p and ending at some final state.

Remark: In the following, we shall use the following notation:

pw ⇒ p′w ′ (in the PDS P) and p w→ q (in P-automata)

15

Reachability in PDS

An automaton is normalized if there are no transitions leading into initial states.
(And any automaton can be brought into a normalized form.)

Let pre∗(C) = { c′ | ∃c ∈ C : c′ ⇒ c } denote the predecessors of C.

The following result is due to Büchi (1964):

Let C be a regular set and A be a normalized P-automaton accepting C.

If C is regular, then so is pre∗(C).

Moreover, A can be transformed into an automaton accepting pre∗(C).

16

The basic idea (for pre)

Saturation rule: Add new transitions to A as follows:

If q w→ r currently holds in A and pA ↪→ qw is a rule, then add the
transition (p,A, r) to A.

Repeat this until no other transition can be added.

At the end, the resulting automaton accepts pre∗(C).

Complexity: O(|Q|2 · |∆|) time.

17

Automaton A for C

p

q

D D

B

q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

q,BD

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

p,DDD

18

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

19

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

20

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

A

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

21

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

A

Rule: pC ↪→ pAD Path: p A→ s1
D→ s2 New path: p C→ s2

22

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

C

A

Rule: pC ↪→ pAD Path: p A→ s1
D→ s2 New path: p C→ s2

23

Final result

p

D D

B

s2

s1q

A
A

C

C
D

q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

p,DDD

q,BD

24

Proof of correctness

We shall show:

Let B be the P-automaton arising from A by applying the saturation rule.
Then L(B) = pre∗(C).

Part 1: Termination

The saturation rule can only be applied finitely many times because no states
are added and there are only finitely many possible transitions.

Part 2: pre∗(C) ⊆ L(B)

Let c ∈ pre∗(C) and c′ ∈ C such that c′ is reachable from c in k steps. We
proceed by induction on k (simple).

25

Part 3: L(B) ⊆ pre∗(C)

Let→
i

denote the transition relation of the automaton after the saturation rule

has been applied i times.

We show the following, more general property: If p w→
i

q, then there exist p′w ′

with p′ w ′→
0

q and pw ⇒ p′w ′; if q ∈ P, then additionally w ′ = ε.

Proof by induction over i : The base case i = 0 is trivial.

Induction step: Let t = (p1,A, q′) be the transition added in the i-th
application and k the number of times t occurs in the path p w→

i
q.

Induction over k : Trivial for k = 0. So let k > 0.

26

There exist p2, p′, u, v ,w ′,w2 with the following properties:

(1) p u→
i−1

p1
A→
i

q′ v→
i

q (splitting the path p w→
i

q)

(2) p1A ↪→ p2w2 (pre-condition for saturation rule)

(3) p2
w2→
i−1

q′ (pre-condition for saturation rule)

(4) pu ⇒ p1ε (ind.hyp. on i)

(5) p2w2v ⇒ p′w ′ (ind.hyp. on k)

(6) p′ w ′→
0

q (ind.hyp. on k)

The desired proof follows from (1), (4), (2), and (5).
If q ∈ P, then the second part follows from (6) and the fact that A is normalized.

27

LTL and Pushdown Systems

Let P = (P,Γ,∆) be a PDS with initial configuration c0, let TP denote the
corresponding transition system, AP a set of atomic propositions, and
ν : P × Γ∗ → 2AP a valuation function.

TP , AP, and ν form a Kripke structure K; let φ be an LTL formula (over AP).

Problem: Does K |= φ?

Undecidable for arbitrary valuation functions!
(could encode undecidable decision problems in ν . . .)

However, LTL model checking is decidable for certain restrictions of ν.

28

In the following, we consider “simple” valuation functions satisfying the following
restriction:

ν(pAw) = ν(pA), for all p ∈ P, A ∈ Γ, and w ∈ Γ∗.

In other words, the “head” of a configuration holds all information about
atomic propositions.

LTL model checking is decidable for such “simple” valuations.

29

Approach

Same principle as for finite Kripke structures:

Translate ¬φ into a Büchi automaton B.

Build the cross product of K and B.

Test the cross product for emptiness.

Note that the cross product is not a Büchi automaton in this case, but another
pushdown system (with a Büchi-style acceptance condition).

30

Büchi PDS

The cross product is a new pushdown system Q, as follows:

Let P = (P,Γ,∆) be a PDS, p0w0 the initial configuration, and AP, ν as
usual.

Let B = (Q,2AP, q0,T ,F) be the Büchi automaton for ¬φ.

Construction of Q:

Q = (P × Q,Γ,∆′), where

(p, q)A ↪→ (p′, q′)w ∈∆′ iff

– pA ↪→ p′w ∈∆ and

– (q, L, q′) ∈ T such that ν(pA) = L.

Initial configuration: (p0, q0)w0

31

Let ρ be a run of Q with ρ(i) = (pi , qi)wi .

We call ρ accepting if qi ∈ F for infinitely many values of i .

The following is easy to see:

P does not satisfy φ iff there exists an accepting run in Q.

32

Characterization of accepting runs

Question: If there an accepting run starting at (p0, q0)w0?

In the following, we shall consider the following, more general global
model-checking problem:

Compute all configurations c such that there exists an accepting run starting
at c.

Lemma: There is an accepting run starting at c iff there exists (p, q) ∈ P × Q,
A ∈ Γ with the following properties:

(1) c ⇒ (p, q)Aw for some w ∈ Γ∗

(2) (p, q)A⇒ (p, q)Aw ′ for some w ′ ∈ Γ∗, where

the path from (p, q)A to (p, q)Aw ′ contains at least one step;

the path contains at least one accepting Büchi state.

33

Repeating heads

We call (p, q)A a repeating head if (p, q)A satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads (p, q)A.
E.g., check for each head if (p, q)A ∈ pre∗({ (p, q)Aw | w ∈ Γ∗ }).
(Additionally, one needs to check whether an accepting state is visited along
the way, which can be encoded into the control state.)

2. Compute the set pre∗({ (p, q)Aw | (p, q)A is a repeating head, w ∈ Γ∗ })

34

Remarks

Other temporal logics for PDS are also decidable (sketch):

CTL∗: Adapt the technique from finite-state systems: Find an E-free
subformula φ, compute the (regular) set configurations C satisfying Eφ. Then
encode the states of the automaton for C into the stack, replace Eφ by a
fresh atomic proposition p that is true whenever the modified stack tells us
that we are in a configuration satisfying Eφ.

CTL: (special case) Translate formula into an alternating automaton, adapt
pre∗ algorithm to alternating automata, then apply a technique similar to LTL.

35

