Second Exam – Introduction to Verification

January 13, 2023

Answers can be given in either French or English. Justify all your answers.

1 Partial-order reduction

Consider the structure shown below, where states with identical shades (white, grey, black) indicate that they satisfy the same atomic properties.

- (a) Which pairs of actions are independent of each other? (It suffices to examine those that actually appear together at some state.) Which actions are visible and invisible?
- (b) According to the rules of reduction C0–C3, which transitions (and states) can be eliminated from the system?
- (c) Ignoring C0–C3, propose a maximal set of transitions that can be removed while maintaining stuttering equivalence.

Reminder: $CO =$ no additional deadlocks may be introduced; $C1 =$ for every state s, every path starting at s in the original system satisfies the following: no action that depends on some action in $red(s)$ occurs before an action from $red(s)$; $C2 =$ when reducing, only invisible actions can be kept; $C3 =$ for all cycles in the reduced system: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s')$ for some state s' in the cycle.

2 Petri nets

Let $N = \langle P, T, F, W, m_0 \rangle$ be a Petri net, and let $R := reach(m_0)$, i.e. the set of markings reachable from m_0 in N. With $N(m)$ we denote the net that is like N but with m as the intitial marking. We write $m \geq m'$ if $m(p) \geq m(p')$ for all $p \in P$. An *invariant* of N is a vector I with one entry for each place such that $C^{T} I = 0$, where C is the incidence matrix of N. An invariant is called *positive* if $I(p) > 0$ for every place $p \in P$.

We define the following properties of nets:

• N is bounded if there is some K such that for all $p \in P$ and $m \in R$, $m(p) \leq K$.

- N is live if for every marking $m \in R$ and every transition $t \in T$, m can reach a marking m' such that m' enables t (intuitively, every transition t can always occur again).
- N is cyclic if every marking $m \in R$ can reach m_0 .
- (a) Consider the eight different combinations of these three properties and their negations:
	- (i) not bounded, not live, not cyclic (v) bounded, not live, not cyclic
		- (vi) bounded, not live, cyclic
	- (ii) not bounded, not live, cyclic (iii) not bounded, live, not cyclic
- (vii) bounded, live, not cyclic
- (iv) not bounded, live, cyclic (viii) bounded, live, cyclic

For each case, either give an example of a Petri net *with one single place* that exhibits these properties or explain why it is not possible to construct such a net.

- (b) Prove or refute the following properties:
	- (i) If N has a positive invariant, then N is bounded.
	- (ii) If N is live and $m \geq m_0$, then $N(m)$ is live.

3 Coverability graphs

The following algorith for computing coverability graphs was presented in the course:

COVERABILITY-GRAPH $(\langle P, T, F, W, M_0 \rangle)$

```
1 \langle V, E, v_0 \rangle := \langle \{M_0\}, \emptyset, M_0 \rangle;2 Work: set := {M_0};3 while Work \neq \emptyset4 do remove some M from Work;
 5 for t \in enabled(M)6 do M' := \text{fire}(M, t);7 M' := \text{AddOmega}(M, M', V);8 if M' \notin V9 then V := V \cup \{M'\}10 Work := Work \cup \{M'\};11 E := E \cup \{\langle M, t, M'\rangle\};12 return \langle V, E, v_0 \rangle;
\text{ADDOMEGAS}(M, M', V)1 repeat saved := M';
2 for all M'' \in V s.t. M'' \to^* M3 do if M'' < M'4 then M' := M' + ((M' - M'') \cdot \omega);5 until saved = M';
6 return M';
```
- (a) The algorithm above is partially non-deterministic: e.g., the order in which nodes are removed from the worklist is undefined. Find an example of a net N for which the algorithm could produce two different, non-isomorphic coverability graphs. For both coverability graphs, indicate the order in which nodes were treated in the worklist.
- (b) A marking of a net N is said to be a *deadlock* if no transition can fire in it. Clearly, N contains a reachable deadlock if and only if the reachability graph of N contains a node with no outgoing edges. Is the same true of N and any of its coverability graphs?

4 Bisimulation

Recall: Let $\mathcal{K}_1 = \langle S, \to_1, s_0, A_P, \nu \rangle$ and $\mathcal{K}_2 = \langle T, \to_2, t_0, A_P, \mu \rangle$ be two Kripke structures. $H \subseteq S \times T$ is a bisimulation between \mathcal{K}_1 and \mathcal{K}_2 if $\langle s_0, t_0 \rangle \in H$ and for all $\langle s, t \rangle \in H$ the following hold:

- (i) $\nu(s) = \mu(t);$
- (ii) for every s' with $s \to 1$ s', there exists t' such that $t \to 2$ t' and $\langle s', t' \rangle \in H$;
- (iii) for every t' with $t \to_2 t'$, there exists s' such that $s \to_1 s'$ and $\langle s', t' \rangle \in H$.
- (a) In the figure below, black nodes satisfy p while white nodes do not. Determine for each pair of Kripke structures K_i, K_j whether $K_i \equiv K_j$. If $K_i \equiv K_j$, give a bisimulation. If $K_i \not\equiv K_j$, give a CTL formula using only the modalities AX and EX that distinguishes the two.

- (b) Prove or refute (by a counterexample) the following claim:
	- Let H be a bisimulation between structures K_1 and K_2 and J a bisimulation between K_2 and $K_3.$ Is $H\circ J$ a bisimulation between K_1 and $K_3?$