
Initiation à la Vérification

Emptiness Test for Büchi automata

Stefan Schwoon

November 15, 2024

1



Overview

Result from the first half of the course:

Model-checking LTL reduces to checking emptiness of some Büchi
automaton B.

Reminder (for universal model-checking, existential is analogus):

B is the intersection of a Kripke structure K with a BA for the negation of an
LTL formula φ.

If B accepts some word, we call such a word a counterexample.

K |= φ iff B accepts the empty language.

2



Complexity: O(|K| · |B¬φ|)

Typical instances:

Size of K: between several hundreds to millions of states.

Size of B¬φ: exponential in |φ|, but usually just a couple of states.

Typical setting:

K indirectly given by some concise description (modelling or programming
language); model-checking tools will generate K internally.

B¬φ can be generated from φ before start of emptiness check.

3



Typical setting:

B generated “on-the-fly” from (the description of) K and from B¬φ and tested
for emptiness at the same time.

As a consequence, the size of K (and of B) is not known initially!

At the beginning, only the initial state is known, and we have a function
succ: S → 2S for computing the immediate successors of a given state
(where succ implements the semantics of the description).

4



Naı̈ve solution: Check for Lassos

Let B = (Σ,S, s0, δ,F) be a Büchi automaton.

L(B) 6= ∅ iff there is s ∈ F such that s0 →∗ s →+ s

s0 s ... s ...... ...

Naı̈ve solution:

Check for each s ∈ F whether there is a cycle around s; let F◦ ⊆ F denote
the set of states with this property.

Check whether s0 can reach some state in F◦.

Time requirement: Each search takes linear time in the size of B, altogether
quadratic run-time→ unacceptable for millions of states.

5



Strongly connected components

C ⊆ S is called a strongly connected component (SCC) iff

s →∗ s′ for all s, s′ ∈ C;

C is maximal w.r.t. the above property, i.e. there is no proper superset of C
satisfying the above.

An SCC C is called trivial if |C| = 1 and for the unique state s ∈ C we have
s 6→ s (single state without loop).

6



Example: SCCs

s0

s1

s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

The SCCs {s0} and {s1} are trivial.

7



Depth-first search (basic version)

nr = 0;

hash = {};

dfs(s0);

exit;

dfs(s) {

add s to hash;

nr = nr+1;

s.num = nr;

for (t in succ(s)) {

// deal with transition s -> t

if (t not yet in hash) { dfs(t); }

}

}

8



Memory usage

Global variables: counter nr, hash table for states

Auxiliary information: “DFS number” s.num

search path: Stack for memorizing the “unfinished” calls to dfs

9



Solution (1): based on SCCs

The algorithm of Tarjan (1972) can identify the SCCs in linear time (i.e.
proportional to |S|+ |δ|).

Said algorithm is a slight extension of basic DFS with some additional
constant-time operations on each state and transition.

Given the SCCs, one can then check if there exists a non-trivial SCC containing
an accepting state.

10



Solution (2): nested DFS

Algorithm proposed by Courcoubetis, Vardi, Wolper, Yannakakis (1992).

The nested-DFS algorithm is an alternative requiring only two bits per state.

States are “white” initially.

A first DFS makes all the states that it visits blue.

Whenever the first (blue) DFS backtracks from an accepting state s, it starts a
second (red) DFS to see if there is a cycle around s.

The red DFS only visits states that are not already red (including from a previous
visit). Thus, every state and edge are considered at most twice.

11



Nested depth-first search: Algorithm

hash = {};
blue(s0);
report "no accepting run"

blue(s) {
add (s,0) to hash;
for t in succ(s)

if (t,0) not in hash { blue(t) }
if s is accepting and (s,1) not in hash { seed=s; red(s) }

}

red(s) {
add (s,1) to hash;
for t in succ(s)

if t=seed { report "accepting run found"; exit }
if (t,1) not in hash { red(t) }

}

12



Nested DFS: Example

Blue phase: Start at initial state.

... ... ...

13



Nested DFS: Example

Visit states depth-first, colouring them blue.

... ... ...

14



Nested DFS: Example

Simply backtrack from non-accepting states.

... ... ...

15



Nested DFS: Example

Continue blue search . . .

... ... ...

16



Nested DFS: Example

Continue blue search until backtracking from an accepting state.

... ... ...

17



Nested DFS: Example

Before backtracking, start a “red” DFS . . .

... ... ...

18



Nested DFS: Example

. . . that searches for a loop back to that accepting state.

... ... ...

19



Nested DFS: Example

If red search is unsuccessful, backtrack.

... ... ...

20



Nested DFS: Example

Carry on . . .

... ... ...

21



Nested DFS: Example

Future red searches only consider non-red states.

... ... ...

22



Properties of Nested DFS

Very economic in terms of memory

Implemented in state-of-the-art tools like Spin

Can be combined with further optimization (partial-order reduction)

Tends to prefer long counterexamples “deep down” in the state graph

→ variants of Tarjan (not shown) can identify counterexamples more quickly,
but are less economic on memory and more difficult to combine with other
optimizations

23


