Trees

We consider *finite ordered ranked* trees.

- ordered : internal nodes have children 1...n
- *ranked* : number of children fixed by node's label

Let N denote the set of positive integers.

Nodes (*positions*) of a tree are associated with elements of N^* :

Definition: Tree

A (finite, ordered) *tree* is a non-empty, finite, prefix-closed set $Pos \subseteq N^*$ such that $w(i + 1) \in Pos$ implies $wi \in Pos$ for all $w \in N^*$, $i \in N$.

Ranked Trees

Ranked symbols

Let $\mathcal{F}_0, \mathcal{F}_1, \ldots$ be disjoint sets of symbols of arity $0, 1, \ldots$ We note $\mathcal{F} := \bigcup_i \mathcal{F}_i$.

• Notation (example): $\mathcal{F} = \{f(2), g(1), a, b\}$

Let \mathcal{X} denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping $t : Pos \rightarrow (\mathcal{F} \cup \mathcal{X})$ satisfying:

- Pos is a tree;
- for all $p \in Pos$, if $t(p) \in \mathcal{F}_n$, $n \ge 1$ then $Pos \cap pN = \{p1, \dots, pn\}$;
- for all $p \in Pos$, if $t(p) \in \mathcal{X} \cup \mathcal{F}_0$ then $Pos \cap pN = \emptyset$.

Trees and Terms

Definition: Terms

The set of *terms* $T(\mathcal{F}, \mathcal{X})$ is the smallest set satisfying:

•
$$\mathcal{X} \cup \mathcal{F}_0 \subseteq T(\mathcal{F}, \mathcal{X});$$

• if $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_n$, then $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{X})$. We note $T(\mathcal{F}) := T(\mathcal{F}, \emptyset)$. A term in $T(\mathcal{F})$ is called *ground term*. A term of $T(\mathcal{F}, \mathcal{X})$ is *linear* if every variable occurs at most once.

Example:
$$\mathcal{F} = \{f(2), g(1), a, b\}$$
, $\mathcal{X} = \{x, y\}$

- $f(g(a), b) \in T(\mathcal{F});$
- $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- $f(x,x) \in T(\mathcal{F},\mathcal{X})$ is non-linear.

We confuse terms and trees in the obvious manner.

Subterms / subtrees

Definition: Subtree

Let $t, u \in T(\mathcal{F}, \mathcal{X})$ and p a position. Then $t|_p : Pos_p \to T(\mathcal{F}, \mathcal{X})$ is the ranked tree defined by

- $Pos_p := \{ q \mid pq \in Pos \};$
- $t|_{p}(q) := t(pq).$

Moreover, $t[u]_p$ is the tree obtained by replacing $t|_p$ by u in t.

 $t \ge t'$ (resp. t > t') denotes that t' is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution

- (Ground) substitution σ : mapping from \mathcal{X} to $\mathcal{T}(\mathcal{F}, \mathcal{X})$ resp. $\mathcal{T}(\mathcal{F})$
- Notation: $\sigma := \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\}$, with $\sigma(x) := x$ for all $x \in \mathcal{X} \setminus \{x_1, \dots, x_n\}$
- Extension to terms: for all $f \in \mathcal{F}_m$ and $t'_1, \ldots, t'_m \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ $\sigma(f(t'_1, \ldots, t'_m)) = f(\sigma(t'_1), \ldots, \sigma(t'_m))$
- Notation: $t\sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in T(\mathcal{F}, \mathcal{X})$ with variables x_1, \ldots, x_n . We note $C[t_1, \ldots, t_n] := C\{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}.$

 $C^{n}(\mathcal{F})$ denotes the contexts with *n* variables and $C(\mathcal{F}) := C^{1}(\mathcal{F})$. Let $C \in C(\mathcal{F})$. We note $C^{0} := x_{1}$ and $C^{n+1} = C^{n}[C]$ for $n \geq 0$.

Tree automata

Basic idea: Extension of finite automata from words to trees Direct extension of automata theory when words seen as unary terms:

 $abc \cong a(b(c(\$)))$

Finite automaton: labels every prefix of a word with a state. Tree automaton: labels every position/subtree of a tree with a state. Two variants: bottom-up vs top-down labelling

Basic results (preview)

- Non-deterministic bottom-up and top-down are equally powerful
- Deterministic bottom-up equally powerful
- Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where:

- Q is a finite set of *states*;
- \mathcal{F} a finite ranked alphabet;
- G ⊆ Q are the final states;
- Δ is a finite set of rules of the form

$$f(q_1,\ldots,q_n) \to q$$

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$.

Example: $Q := \{q_0, q_1, q_f\}, \ \mathcal{F} = \{f(2), g(1), a\}, \ G := \{q_f\}, \ \text{and rules}$ $a \to q_0 \quad g(q_0) \to q_1 \quad g(q_1) \to q_1 \quad f(q_1, q_1) \to q_f$

Move relation and computation tree

Move relation

Let $t, t' \in T(\mathcal{F}, Q)$. We write $t \to_{\mathcal{A}} t'$ if the following are satisfied:

- $t = C[f(q_1, \ldots, q_n)]$ for some context C;
- t' = C[q] for some rule $f(q_1, \ldots, q_n) \rightarrow q$ of \mathcal{A} .

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write \rightarrow_{A}^{*} for the transitive and reflexive closure of \rightarrow_{A} .

Computation

Let $t : Pos \to \mathcal{F}$ a ground tree. A *run* or *computation* of \mathcal{A} on t is a labelling $t' : Pos \to Q$ compatible with Δ , i.e.:

• for all $p \in Pos$, if $t(p) = f \in \mathcal{F}_n$, t'(p) = q, and $t'(pj) = q_j$ for all $pj \in Pos \cap pN$, then $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$

Regular tree languages

A tree *t* is *accepted* by \mathcal{A} iff $t \rightarrow^*_{\mathcal{A}} q$ for some $q \in G$.

 $\mathcal{L}(\mathcal{A})$ denotes the set of trees accepted by \mathcal{A} .

L is *regular/recognizable* iff $L := \mathcal{L}(\mathcal{A})$ for some NFTA \mathcal{A} .

Two NFTAs A_1 and A_2 are *equivalent* iff $\mathcal{L}(A_1) = \mathcal{L}(A_2)$.

◆□ → ◆□ → ◆ 三 → ▲ 三 · ⑦ Q (· 9/18)

NFTA with ε -moves

Definition:

An ε -NFTA is an NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where Δ can additionally contain rules of the form $q \rightarrow q'$, with $q, q' \in Q$.

Semantics: Allow to re-label a position from q to q'.

Equivalence of ε -NFTA

For every ε -NFTA \mathcal{A} there exists an equivalent NFTA \mathcal{A}' .

Proof (sketch): Construct the rules of \mathcal{A}' by a saturation procedure.

Deterministic, complete, and reduced NFTA

An NFTA is *deterministic* if no two rules have the same left-hand side. An NFTA is *complete* if for every $f \in \mathcal{F}_n$ and $q_1, \ldots, q_n \in Q$, there exists at least one rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$.

As usual, a DFTA has *at most* one run per tree. A DCFTA as *exactly* one run per tree.

A state q of \mathcal{A} is accessible if there exists a tree t s.t. $t \to_{\mathcal{A}}^{*} q$. \mathcal{A} is said to be reduced if all its states are accessible.

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $\mathcal{A} = \langle Q, \mathcal{F}, I, \Delta \rangle$, where Q, \mathcal{F} are as in NFTA, $I \subseteq Q$ is a set of *initial states*, and Δ contains rules of the form

$$q(f) \rightarrow (q_1, \ldots, q_n)$$

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$.

Move relation: $t \rightarrow_{\mathcal{A}} t'$ iff

t = C[q(f(t₁,...,t_n))] for some context C, f ∈ F_n, and t₁,...,t_n ∈ T(F);
t' = C[f(q₁(t₁),...,q_n(t_n))] for some rule q(f) → (q₁,...,q_n).
t is accepted by A if q(t) →^{*}_A t for some q ∈ I.

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: *L* is accepted by NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ iff it is accepted by T-NFTA $\mathcal{A}' = \langle Q, \mathcal{F}, G, \Delta' \rangle$, with

$$\Delta' := \{ q(f) \rightarrow (q_1, \ldots, q_n) \mid f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$$

Proof: Let $t \in T(\mathcal{F})$. We show $t \rightarrow^*_{\mathcal{A}} q$ iff $q(t) \rightarrow^*_{\mathcal{A}'} t$.

• Base:
$$t = a$$
 (for some $a \in \mathcal{F}_0$)
 $t = a \rightarrow_{\mathcal{A}}^* q \iff a \rightarrow_{\Delta} q \iff q(a) \rightarrow_{\Delta'} \varepsilon \iff q(a) \rightarrow_{\mathcal{A}'}^* a$

• Induction:
$$t = f(t_1, ..., t_n)$$
, hypothesis holds for $t_1, ..., t_n$
 $f(t_1, ..., t_n) \rightarrow^*_{\mathcal{A}} q \iff \exists q_1, ..., q_n : f(q_1, ..., q_n) \rightarrow_{\Delta} q \land \forall i : t_i \rightarrow^*_{\mathcal{A}} q_i$
 $\iff \exists q_1, ..., q_n : q(f) \rightarrow_{\Delta'} (q_1, ..., q_n) \land \forall i : q_i(t_i) \rightarrow^*_{\mathcal{A}'} t_i$
 $\iff q(f(t_1, ..., t_n)) \rightarrow_{\mathcal{A}'} f(q_1(t_1), ..., q_n(t_n)) \rightarrow^*_{\mathcal{A}'} f(t_1, ..., t_n)$

From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}' = \langle 2^Q, \mathcal{F}, G', \Delta' \rangle$ also recognizes L:

•
$$G' = \{ S \subseteq Q \mid S \cap G \neq \emptyset \}$$

• for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \to S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \to q \in \Delta \}$

Proof: For $t \in T(\mathcal{F})$, show $t \rightarrow^*_{\mathcal{A}'} \{ q \mid t \rightarrow^*_{\mathcal{A}} q \}$, by structural induction.

DFTA with accessible states

In practice, the construction of \mathcal{A}' can be restricted to accessible states: Start with transitions $a \to S$, then saturate.

Deterministic top-down are less powerful E.g., $L = \{f(a, b), f(b, a)\}$ can be recognized by DFTA but not by T-DFTA.

Closure properties

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 15/18

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states) Let $\langle Q, \mathcal{F}, G, \Delta \rangle$ be a DCFTA recognizing *L*. Then $\langle Q, \mathcal{F}, Q \setminus G, \Delta \rangle$ recognizes $\mathcal{T}(\mathcal{F}) \setminus L$.

Union (juxtapose)

Let $\langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i , for i = 1, 2. Then $\langle Q_1 \uplus Q_2, \mathcal{F}, G_1 \cup G_2, \Delta_1 \cup \Delta_2 \rangle$ recognizes $L_1 \cup L_2$.

Cross-product construction

Direct intersection

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i , for i = 1, 2. Then $A = \langle Q_1 \times Q_2, \mathcal{F}, G_1 \times G_2, \Delta \rangle$ recognizes $L_1 \cap L_2$, where

$$\frac{f(q_1,\ldots,q_n) \to q \in \Delta_1 \quad f(q_1',\ldots,q_n') \to q' \in \Delta_2}{f(\langle q_1,q_1'\rangle,\ldots,\langle q_n,q_n'\rangle) \to \langle q,q'\rangle \in \Delta}$$

Remarks:

- If $\mathcal{A}_1, \mathcal{A}_2$ are D(C)FTA, then so is \mathcal{A} .
- If A₁, A₂ are complete, replace G₁ × G₂ with (G₁ × Q₂) ∪ (Q₁ × G₂) to recognize L₁ ∪ L₂.

Tree languages and context-free languages

Front

Let t be a ground tree. Then $fr(t) \in \mathcal{F}_0^*$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example:
$$t = f(a, g(b, a), c)$$
, $fr(t) = abac$

Leaf languages

- Let L be a recognizable tree language. Then fr(L) is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA A with $L = fr(\mathcal{L}(A))$.

Proof (idea):

- Given a T-NFTA recognizing L, construct a CFG from it.
- L is generated by a CFG using productions of the form A → BC | a only. Replace A → BC by A → A₂ and A₂ → BC, construct a T-NFTA from the result.