Trees

We consider finite ordered ranked trees.

- ordered: internal nodes have children $1 \ldots n$
- ranked : number of children fixed by node's label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N^{*} :

Definition: Tree
A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos $\subseteq N^{*}$ such that $w(i+1) \in$ Pos implies $w i \in \operatorname{Pos}$ for all $w \in N^{*}, i \in N$.

Ranked Trees

Ranked symbols

Let $\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots$ be disjoint sets of symbols of arity $0,1, \ldots$
We note $\mathcal{F}:=\bigcup_{i} \mathcal{F}_{i}$.

- Notation (example): $\mathcal{F}=\{f(2), g(1), a, b\}$

Let \mathcal{X} denote a set of variables (disjoint from the other symbols).
Definition: Ranked tree
A ranked tree is a mapping $t: \operatorname{Pos} \rightarrow(\mathcal{F} \cup \mathcal{X})$ satisfying:

- Pos is a tree;
- for all $p \in \operatorname{Pos}$, if $t(p) \in \mathcal{F}_{n}, n \geq 1$ then $\operatorname{Pos} \cap p N=\{p 1, \ldots, p n\}$;
- for all $p \in \operatorname{Pos}$, if $t(p) \in \mathcal{X} \cup \mathcal{F}_{0}$ then $\operatorname{Pos} \cap p N=\emptyset$.

Trees and Terms

Definition: Terms

The set of terms $T(\mathcal{F}, \mathcal{X})$ is the smallest set satisfying:

- $\mathcal{X} \cup \mathcal{F}_{0} \subseteq T(\mathcal{F}, \mathcal{X})$;
- if $t_{1}, \ldots, t_{n} \in T(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_{n}$, then $f\left(t_{1}, \ldots, t_{n}\right) \in T(\mathcal{F}, \mathcal{X})$.

We note $T(\mathcal{F}):=T(\mathcal{F}, \emptyset)$. A term in $T(\mathcal{F})$ is called ground term.
A term of $T(\mathcal{F}, \mathcal{X})$ is linear if every variable occurs at most once.
Example: $\mathcal{F}=\{f(2), g(1), a, b\}, \mathcal{X}=\{x, y\}$

- $f(g(a), b) \in T(\mathcal{F})$;
- $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- $f(x, x) \in T(\mathcal{F}, \mathcal{X})$ is non-linear.

We confuse terms and trees in the obvious manner.

Subterms / subtrees

Definition: Subtree

Let $t, u \in T(\mathcal{F}, \mathcal{X})$ and p a position. Then $\left.t\right|_{p}: \operatorname{Pos}_{p} \rightarrow T(\mathcal{F}, \mathcal{X})$ is the ranked tree defined by

- Pos $_{p}:=\{q \mid p q \in \operatorname{Pos}\} ;$
- $\left.t\right|_{p}(q):=t(p q)$.

Moreover, $t[u]_{p}$ is the tree obtained by replacing $\left.t\right|_{p}$ by u in t. $t \unrhd t^{\prime}\left(\right.$ resp. $\left.t \triangleright t^{\prime}\right)$ denotes that t^{\prime} is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution

- (Ground) substitution σ : mapping from \mathcal{X} to $T(\mathcal{F}, \mathcal{X})$ resp. $T(\mathcal{F})$
- Notation: $\sigma:=\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$, with $\sigma(x):=x$ for all $x \in \mathcal{X} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$
- Extension to terms: for all $f \in \mathcal{F}_{m}$ and $t_{1}^{\prime}, \ldots, t_{m}^{\prime} \in T(\mathcal{F}, \mathcal{X})$

$$
\sigma\left(f\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)\right)=f\left(\sigma\left(t_{1}^{\prime}\right), \ldots, \sigma\left(t_{m}^{\prime}\right)\right)
$$

- Notation: $t \sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in T(\mathcal{F}, \mathcal{X})$ with variables x_{1}, \ldots, x_{n}. We note $C\left[t_{1}, \ldots, t_{n}\right]:=C\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$.
$\mathcal{C}^{n}(\mathcal{F})$ denotes the contexts with n variables and $\mathcal{C}(\mathcal{F}):=\mathcal{C}^{1}(\mathcal{F})$. Let $C \in \mathcal{C}(\mathcal{F})$. We note $C^{0}:=x_{1}$ and $C^{n+1}=C^{n}[C]$ for $n \geq 0$.

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

$$
a b c \widehat{=} a(b(c(\$)))
$$

Finite automaton: labels every prefix of a word with a state. Tree automaton: labels every position/subtree of a tree with a state. Two variants: bottom-up vs top-down labelling

Basic results (preview)

- Non-deterministic bottom-up and top-down are equally powerful
- Deterministic bottom-up equally powerful
- Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$, where:

- Q is a finite set of states;
- \mathcal{F} a finite ranked alphabet;
- $G \subseteq Q$ are the final states;
- Δ is a finite set of rules of the form

$$
f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q
$$

for $f \in \mathcal{F}_{n}$ and $q, q_{1}, \ldots, q_{n} \in Q$.
Example: $Q:=\left\{q_{0}, q_{1}, q_{f}\right\}, \mathcal{F}=\{f(2), g(1), a\}, G:=\left\{q_{f}\right\}$, and rules

$$
a \rightarrow q_{0} \quad g\left(q_{0}\right) \rightarrow q_{1} \quad g\left(q_{1}\right) \rightarrow q_{1} \quad f\left(q_{1}, q_{1}\right) \rightarrow q_{f}
$$

Move relation and computation tree

Move relation
Let $t, t^{\prime} \in T(\mathcal{F}, Q)$. We write $t \rightarrow_{\mathcal{A}} t^{\prime}$ if the following are satisfied:

- $t=C\left[f\left(q_{1}, \ldots, q_{n}\right)\right]$ for some context C;
- $t^{\prime}=C[q]$ for some rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ of \mathcal{A}.

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow_{\mathcal{A}}^{*}$ for the transitive and reflexive closure of $\rightarrow_{\mathcal{A}}$.

Computation
Let t : Pos $\rightarrow \mathcal{F}$ a ground tree. A run or computation of \mathcal{A} on t is a labelling $t^{\prime}: \operatorname{Pos} \rightarrow Q$ compatible with Δ, i.e.:

- for all $p \in \operatorname{Pos}$, if $t(p)=f \in \mathcal{F}_{n}, t^{\prime}(p)=q$, and $t^{\prime}(p j)=q_{j}$ for all $p j \in P o s \cap p N$, then $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$

Regular tree languages

A tree t is accepted by \mathcal{A} iff $t \rightarrow_{\mathcal{A}}^{*} q$ for some $q \in G$.
$\mathcal{L}(\mathcal{A})$ denotes the set of trees accepted by \mathcal{A}.
L is regular/recognizable iff $L:=\mathcal{L}(\mathcal{A})$ for some NFTA \mathcal{A}.

Two NFTAs \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent iff $\mathcal{L}\left(\mathcal{A}_{1}\right)=\mathcal{L}\left(\mathcal{A}_{2}\right)$.

NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$, where Δ can additionally contain rules of the form $q \rightarrow q^{\prime}$, with $q, q^{\prime} \in Q$.

Semantics: Allow to re-label a position from q to q^{\prime}.

Equivalence of ε-NFTA
For every ε-NFTA \mathcal{A} there exists an equivalent NFTA \mathcal{A}^{\prime}.
Proof (sketch): Construct the rules of \mathcal{A}^{\prime} by a saturation procedure.

Deterministic, complete, and reduced NFTA

An NFTA is deterministic if no two rules have the same left-hand side. An NFTA is complete if for every $f \in \mathcal{F}_{n}$ and $q_{1}, \ldots, q_{n} \in Q$, there exists at least one rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of \mathcal{A} is accessible if there exists a tree t s.t. $t \rightarrow_{\mathcal{A}}^{*} q$.
\mathcal{A} is said to be reduced if all its states are accessible.

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $\mathcal{A}=\langle Q, \mathcal{F}, I, \Delta\rangle$, where Q, \mathcal{F} are as in NFTA, $I \subseteq Q$ is a set of initial states, and Δ contains rules of the form

$$
q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right)
$$

for $f \in \mathcal{F}_{n}$ and $q, q_{1}, \ldots, q_{n} \in Q$.
Move relation: $t \rightarrow_{\mathcal{A}} t^{\prime}$ iff

- $t=C\left[q\left(f\left(t_{1}, \ldots, t_{n}\right)\right)\right]$ for some context $C, f \in \mathcal{F}_{n}$, and $t_{1}, \ldots, t_{n} \in T(\mathcal{F})$;
- $t^{\prime}=C\left[f\left(q_{1}\left(t_{1}\right), \ldots, q_{n}\left(t_{n}\right)\right)\right]$ for some rule $q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right)$.
t is accepted by \mathcal{A} if $q(t) \rightarrow_{\mathcal{A}}^{*} t$ for some $q \in I$.

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.
Claim: L is accepted by NFTA $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ iff it is accepted by T-NFTA $\mathcal{A}^{\prime}=\left\langle Q, \mathcal{F}, G, \Delta^{\prime}\right\rangle$, with

$$
\Delta^{\prime}:=\left\{q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right) \mid f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta\right\}
$$

Proof: Let $t \in T(\mathcal{F})$. We show $t \rightarrow_{\mathcal{A}}^{*} q$ iff $q(t) \rightarrow_{\mathcal{A}^{\prime}}^{*} t$.

- Base: $t=a$ (for some $a \in \mathcal{F}_{0}$)

$$
t=a \rightarrow_{\mathcal{A}}^{*} q \Longleftrightarrow a \rightarrow_{\Delta} q \Longleftrightarrow q(a) \rightarrow_{\Delta^{\prime}} \varepsilon \Longleftrightarrow q(a) \rightarrow_{\mathcal{A}^{\prime}}^{*} a
$$

- Induction: $t=f\left(t_{1}, \ldots, t_{n}\right)$, hypothesis holds for t_{1}, \ldots, t_{n}

$$
\begin{gathered}
f\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathcal{A}}^{*} q \Longleftrightarrow \exists q_{1}, \ldots q_{n}: f\left(q_{1}, \ldots, q_{n}\right) \rightarrow_{\Delta} q \wedge \forall i: t_{i} \rightarrow_{\mathcal{A}}^{*} q_{i} \\
\Longleftrightarrow \exists q_{1}, \ldots, q_{n}: q(f) \rightarrow_{\Delta^{\prime}}\left(q_{1}, \ldots, q_{n}\right) \wedge \forall i: q_{i}\left(t_{i}\right) \rightarrow_{\mathcal{A}^{\prime}}^{*} t_{i} \\
\Longleftrightarrow q\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \rightarrow_{\mathcal{A}^{\prime}} f\left(q_{1}\left(t_{1}\right), \ldots, q_{n}\left(t_{n}\right)\right) \rightarrow_{\mathcal{A}^{\prime}}^{*} f\left(t_{1}, \ldots, t_{n}\right)
\end{gathered}
$$

From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.
Claim (subset construct.): Let $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}^{\prime}=\left\langle 2^{Q}, \mathcal{F}, G^{\prime}, \Delta^{\prime}\right\rangle$ also recognizes L :

- $G^{\prime}=\{S \subseteq Q \mid S \cap G \neq \emptyset\}$
- for every $f \in \mathcal{F}_{n}$ and $S_{1}, \ldots, S_{n} \subseteq Q$, let $f\left(S_{1}, \ldots, S_{n}\right) \rightarrow S \in \Delta^{\prime}$, where $S=\left\{q \in Q \mid \exists q_{1} \in S_{1}, \ldots, q_{n} \in S_{n}: f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta\right\}$

Proof: For $t \in T(\mathcal{F})$, show $t \rightarrow_{\mathcal{A}^{\prime}}^{*}\left\{q \mid t \rightarrow_{\mathcal{A}}^{*} q\right\}$, by structural induction.
DFTA with accessible states
In practice, the construction of \mathcal{A}^{\prime} can be restricted to accessible states:
Start with transitions $a \rightarrow S$, then saturate.
Deterministic top-down are less powerful
E.g., $L=\{f(a, b), f(b, a)\}$ can be recognized by DFTA but not by T-DFTA.

Closure properties

Theorem (Boolean closure)
Recognizable tree languages are closed under Boolean operations.
Negation (invert accepting states)
Let $\langle Q, \mathcal{F}, G, \Delta\rangle$ be a DCFTA recognizing L.
Then $\langle Q, \mathcal{F}, Q \backslash G, \Delta\rangle$ recognizes $T(\mathcal{F}) \backslash L$.
Union (juxtapose)
Let $\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle$ be NFTA recognizing L_{i}, for $i=1,2$.
Then $\left\langle Q_{1} \uplus Q_{2}, \mathcal{F}, G_{1} \cup G_{2}, \Delta_{1} \cup \Delta_{2}\right\rangle$ recognizes $L_{1} \cup L_{2}$.

Cross-product construction

Direct intersection
Let $\mathcal{A}_{i}=\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle$ be NFTA recognizing L_{i}, for $i=1,2$.
Then $\mathcal{A}=\left\langle Q_{1} \times Q_{2}, \mathcal{F}, G_{1} \times G_{2}, \Delta\right\rangle$ recognizes $L_{1} \cap L_{2}$, where

$$
\frac{f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta_{1} \quad f\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right) \rightarrow q^{\prime} \in \Delta_{2}}{f\left(\left\langle q_{1}, q_{1}^{\prime}\right\rangle, \ldots,\left\langle q_{n}, q_{n}^{\prime}\right\rangle\right) \rightarrow\left\langle q, q^{\prime}\right\rangle \in \Delta}
$$

Remarks:

- If $\mathcal{A}_{1}, \mathcal{A}_{2}$ are $\mathrm{D}(\mathrm{C}) \mathrm{FTA}$, then so is \mathcal{A}.
- If $\mathcal{A}_{1}, \mathcal{A}_{2}$ are complete, replace $G_{1} \times G_{2}$ with $\left(G_{1} \times Q_{2}\right) \cup\left(Q_{1} \times G_{2}\right)$ to recognize $L_{1} \cup L_{2}$.

Tree languages and context-free languages

Front

Let t be a ground tree. Then $\operatorname{fr}(t) \in \mathcal{F}_{0}^{*}$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example: $t=f(a, g(b, a), c), f r(t)=a b a c$
Leaf languages

- Let L be a recognizable tree language. Then $f r(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA \mathcal{A} with $L=\operatorname{fr}(\mathcal{L}(\mathcal{A}))$.

Proof (idea):

- Given a T-NFTA recognizing L, construct a CFG from it.
- L is generated by a CFG using productions of the form $A \rightarrow B C \mid a$ only. Replace $A \rightarrow B C$ by $A \rightarrow A_{2}$ and $A_{2} \rightarrow B C$, construct a T-NFTA from the result.

