L3 Programming December 6, 2012

Polymorphic Type Inference

The first part of your project for Programmation 1.2 is to implement the type infer-
ence algorithm seen in class, called ‘PT(M,©)’ in the lecture notes, on a small subset
of the OCaml language. The second part of this project will add a few more constructs
to the language. The project will be due on January 11, 2013, after the last lab ses-
sion. Oral presentations on both projects, Programmation 1.1 and 1.2, will take place
on January 23, 2013.

You will find at http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/
tp4d_typing/typing.tar.gz the files for this first part.

Deliverables. After scaffolding the project files, you will need to copy your files
‘dag.ml’ and ‘unionfind.ml’ from TP 2 into the ‘fastunif’ subdirectory. You should then
only modify the ‘typedtree.ml’ file, which ought to provide the two functions type_expr
and print_exp_type defined in ‘typedtree.mli’. Your project deliverables are

1. the three files ‘dag.ml’, ‘unionfind.ml’, and ‘typedtree.ml’, along with
2. a short report (of roughly two pages length) containing:

e a general description of the datatypes used by your algorithm,
e how your algorithm works,

e how you tested your program,

e which difficulties you encountered,

e which extensions you implemented, and

e anything else we should know.

A Tiny Language
Abstract Syntax. Here is the abstract syntax of expressions for this first part:
e s=c|z|funx —elee|letz=cine

lete|le—elexe|—e|le=e|le<e|e>e

|eore|ele|le&ke|le&&e

where ¢ ranges over integer constants and x over identifiers.

http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/tp4_typing/typing.tar.gz
http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/tp4_typing/typing.tar.gz

L3 Programming December 6, 2012

Concrete Syntax. The project files contain a simplified OCaml parser, taken from
the actual OCaml source distribution, in the ‘ocaml’ subdirectory. The abstract syntax
trees it constructs are defined in ‘parsetree.mli’ located at the project root; you can
pretty-print parse trees with the command ‘viewast’—after running ‘make’.

There is a slight incongruity in the proposed parse trees: the constructor for appli-
cations e es, namely ‘Pexp_apply of expression * expression’, encodes applications in the
opposite direction: the second child is applied with the first child as argument.

Types for Built-ins. The types for the built-in functions in the language are the
following:

val + : int — int — int

val — : int — int — int

val * : int — int — int

val —u : int — int (x Unary ‘minus’ *)
val = a— 'a— bool

val < a— 'a— bool

val > : ’a— ’a— bool

val or : bool - bool — bool

val || bool — bool — bool

val bool -+ bool —+ bool

&
val && : bool - bool — bool

Test Cases. The file ‘tests.in’ contains a few test cases; here are the outputs I obtain:

13

— : int

(+)s5;

— : int —» int — int
(=);;

— : ’a— ’a— bool
fun x— x;;

— = ’a— ’a

1= 25

— : bool

#fun xy z t— (x=y) & (z = 1);;

— : ’a— ’a— int - b — bool

let id = fun x— x in id x + 1;;

— : int

let id = fun x— x in fun x y z— (id (x > (id 1)) & y);;
— : int - bool — ’a— bool

fun y— let f = fun x— y in f 3;;

— = ’a— ’a

#let f =fun x y— x> 1 &y in f;;

— @ int - bool — bool

#let f =fun x y> x> 1&y in f 0 (1 = 1);;
— : bool

let pair = fun a b f— f a b in pair 10 20;;

L3 Programming December 6, 2012

— : (int —» int — ’a) — ’a

let pair = fun a b f— f a b in
let id = fun x— x in
pair id id;;

—: ((Ca—> ’a)—> (b= ’b)— ’¢)—= ’c

let pair = fun a b f— f a b in
let fst = fun p— p (fun x y— x) in
fst (pair 10 12);;

— : int

let id = fun x— x in let f = fun x— id 20 in id;;

)

— : ’a— ’a

What’s Next? Next week: the second part will add lists, references, if-then-else, etc.

