
L3 Programming December 19, 2012

Project

The second part of your project for Programmation 1.2 is to complete your imple-
mentation of polymorphic type inference in order to handle references.

Recall that the project is due on January 11, 2013, after the last lab session.
Oral presentations on both projects, Programmation 1.1 and 1.2, will take place on
January 23, 2013.

You will find at http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/
project/project.tar.gz the files for this last part.

Deliverables. After scaffolding the project files, you will need to copy your files
‘dag.ml’ and ‘unionfind.ml’ from TP 2 into the ‘ fastunif ’ subdirectory. You should also
copy your file ‘typedtree.ml’ from TP 4 into the root directory. You should then only
modify the ‘typedtree.ml’ file, which ought to provide the two functions type expr and
print exp type defined in ‘typedtree.mli’. Your project deliverables are

1. the three files ‘dag.ml’, ‘unionfind.ml’, and ‘typedtree.ml’, along with

2. a short report (of roughly two pages length) containing:

• a general description of the datatypes used by your algorithm,

• how your algorithm works,

• how you tested your program,

• which difficulties you encountered,

• which extensions you implemented, and

• anything else we should know.

The Language

Abstract Syntax. Here is the abstract syntax of expressions for this last part:

e ::= c | x | fun x→ e | e e | let x = e in e

| e + e | e− e | e ∗ e | −e | e = e | e < e | e > e

| e or e | e ‖ e | e & e | e && e

| let rec x = e in e | e; e | ignore e
| refe | !e | e := e

where c ranges over integer constants and x over identifiers.

1

http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/project/project.tar.gz
http://www.lsv.ens-cachan.fr/~schmitz/teach/2012_prog/part2/project/project.tar.gz

L3 Programming December 19, 2012

Concrete Syntax. The project files contain a simplified OCaml parser, taken from
the actual OCaml source distribution, in the ‘ocaml’ subdirectory. The abstract syntax
trees it constructs are defined in ‘parsetree .mli’ located at the project root; you can
pretty-print parse trees with the command ‘viewast’—after running ‘make’.

There is a slight incongruity in the proposed parse trees: the constructor for appli-
cations e1 e2, namely ‘Pexp apply of expression ∗ expression’, encodes applications in the
opposite direction: the second child is applied with the first child as argument.

Types for Built-ins. The types for the new built-in functions in the language are the
following:

val ref : ’ a→ ’ a ref
val := : ’ a ref → ’ a→ uni t
val ! : ’ a ref → ’ a
val i gno r e : ’ a→ uni t

Test Cases. The file ‘ tests .in’ contains a few test cases; here are the outputs I obtain
on the new tests:

(∗ Theta hand l ing ∗)
fun f → f (l et f = fun x y→ x in f 1) ; ;
− : ((’ a→ i n t) → ’ b) → ’ b
fun f → (l et f = fun x y→ x in f 1) f ; ;
− : ’ a→ i n t
(∗ l e t rec ∗)
l et rec f = fun x→ x + (f x) in f ; ;
− : i n t → i n t
(∗ sequences ∗)
l et id = fun x→ x in

let id ’ = id id in
i gno r e (id ’ (0 < 1)) ;
id ’ 3 ; ;

F i l e ”” , l i n e 48 , c h a r a c t e r s 2−7:
Error : untypable
let id = fun x→ x in

let id ’ = fun x→ id (id x) in
i gno r e (id ’ (0 < 1)) ;
id ’ 3 ; ;

− : i n t
(∗ r e f ∗)
(ref) ; ;
− : ’ a→ ’ a ref
(: =) ; ;
− : ’ a ref → ’ a→ uni t
let x = ref 0 in

i gno r e (! x < 1) ;
x := 1 ;
! x − 1 ; ;

2

L3 Programming December 19, 2012

− : i n t
let f = fun x→ ref x in

i gno r e (! f + 1) ;
f := (0 < 1) ; ;

F i l e ”” , l i n e 66 , c h a r a c t e r s 10−12:
Error : untypable
let f = ref (fun x→ x) in

f := (fun x→ x + 1) ;
(! f) 0 ; ;

− : i n t
let f = ref (fun x→ x) in

f := (fun x→ x + 1) ;
(! f) (0 < 1) ; ;

F i l e ”” , l i n e 75 , c h a r a c t e r s 2−14:
Error : untypable

Value Restricted Terms. In order to safely infer types in the presence of references
and side-effects, a commonly used solution is to apply generalizations in ‘let’ constructs
to ‘value restricted’ terms only. You can look up on the Internet what that means.

This idea is used in OCaml. The first example with sequences

l et id = fun x→ x in
let id ’ = id id in
i gno r e (id ’ (0 < 1)) ;
id ’ 3 ; ;

is untypable due to this typing strategy; it could be accepted in other typing algorithms.

Extensions. You are free to extend this language. You should make conservative
extensions, such that the types are not changed by your modifications.

3

