Final exam for MPRI 2-9-1

20 nov. 2023 — 16h30–18h30 — no documents allowed Réponses en français acceptées but not mandatory

1 Exercise 1: Weak WSTSes

A WSTS (X, \leq, \rightarrow) is weakly post-finite if, and only if, for every state $x \in X$, $Post(x) \stackrel{\text{def}}{=} \{x' \in X \mid x \to x'\}$ consists of a finite union of equivalence classes with respect to \equiv ; we write $x \equiv y$ if, and only if $x \leq y$ and $y \leq x$. It if weakly post-effective if, and only if, given any $x \in X$, we can compute a finite set $Post_1(x)$ of representatives of these equivalence classes; this means that we can compute a finite set $Post_1(x)$ such that $Post(x) = \{x'' \in X \mid \exists x' \in Post_1(x), x'' \equiv x'\}$. Weak post-effectiveness implies weak post-finiteness. One may write $x \to_1 x'$ to mean $x' \in Post_1(x)$.

****** Question 1. Show that the following termination problem is decidable:

INPUT: a weakly post-effective WSTS (X, \leq, \rightarrow) such that \leq is decidable, a state $x_0 \in X$.

QUESTION: is every run $x_0 \to x_1 \to \cdots \to x_k \to \cdots$ starting from x_0 finite?

We give three possible solutions. The first one is the preferred one since it used theorems of the lectures instead of (re)proving variants of them.

First solution: we define a new WSTS (X, \leq, \rightarrow_1) where $x \rightarrow_1 y$ iff $y \in Post_1(x)$.

- Monotonicity: if x →₁ x' and x ≤ y, then we claim that y →₁ y'₁ for some y'₁ ≥ x'. Since x →₁ x', in particular x → x'. Since (X, ≤, →) is monotonic, there is a state y' ∈ X such that y → y' and y' ≥ x'. But it may be that y →₁ y'. Fortunately, by definition of Post₁, there is a state y'₁ ∈ Post₁(x') such that y'₁ ≡ y'. In particular, y'₁ ≥ x', and x' → y'₁.
- $Wqo: \leq is wqo by assumption.$

Since (X, \leq, \rightarrow) is weakly post-effective, by definition (X, \leq, \rightarrow_1) is post-effective. Also, \leq is decidable. Hence, by Proposition 1.36 in the lecture notes, termination is decidable for (X, \leq, \rightarrow_1) .

It remains to show that (X, \leq, \rightarrow_1) terminates if only if (X, \leq, \rightarrow) terminates. Any infinite run $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots$ is also an infinite run $x_0 \rightarrow x_1 \rightarrow \cdots$, and conversely, let us consider an infinite run $x_0 \rightarrow x_1 \rightarrow \cdots$. We will build an infinite run $x'_0 \rightarrow_1 x'_1 \rightarrow_1 \cdots$, with $x'_0 \stackrel{\text{def}}{=} x_0$ and $x'_i \geq x_i$ for every $i \in \mathbb{N}$, by induction on i. The base case is clear. Assuming $x'_i \geq x_i$, we use the fact that (X, \leq, \rightarrow) is monotonic: there is a state y' such that $x'_i \rightarrow y'$ and $y' \geq x_{i+1}$. By definition of Post₁, there is a state $x'_{i+1} \equiv y'$ (hence $x'_{i+1} \geq x_{i+1}$) such that $x'_i \rightarrow_1 x'_{i+1}$.

Second solution. We imitate the proof of Proposition 1.36. There are two semialgorithms. The first one attempts to prove termination and builds a reachability tree T from x_0 , using only \rightarrow_1 transitions. If \mathcal{T} is finite, then (X, \leq, \rightarrow) terminates starting from x_0 : otherwise, as above any infinite run $x_0 \rightarrow x_1 \rightarrow \cdots$ gives rise to an infinite run $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots$. Conversely, if (X, \leq, \rightarrow) terminates starting from x_0 , then there is no infinite run $x_0 \rightarrow x_1 \rightarrow \cdots$, hence no infinite run $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots$; then \mathcal{T} has only finite branches. \mathcal{T} is finitely branching (by weak post-finiteness), hence is finite by König's Lemma, and therefore can be built (using weak post-effectiveness) in finite time. The other semi-algorithm enumerates all possible finite runs $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots \rightarrow_1 x_j$ and checks whether $x_i \leq x_j$ for some $0 \leq i < j$; this is as in Lemma 1.35, but with \rightarrow_1 instead of \rightarrow . If (X, \leq, \rightarrow) does not terminate, then there is an infinite run $x'_0 \rightarrow x'_1 \rightarrow \cdots$ with $x'_0 = x_0$. Hence, as in the First solution there is an infinite run $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots$ with $x_i \geq x'_i$ for every $i \in \mathbb{N}$. Since \leq is a wqo, there must be a pair of indices i < j such that $x_i \leq x_j$, hence a finite run as sought by this (second) semi-algorithm.

Conversely, if there is a finite run $x_0 \to_1 x_1 \to_1 \cdots \to_1 x_j$ with $x_i \leq x_j$ for some $0 \leq i < j$, then in particular $x_0 \to x_1 \to \cdots \to x_j$, and Lemma 1.35 then tells us that (X, \leq, \rightarrow) does not terminate starting from x_0 .

Third solution. As with the second solution, but building directly a finite tree as in the lectures. Its root is labeled by x_0 , and the tree is built by adding new \rightarrow_1 -successors x_j to existing vertices (on a branch $x_0 \rightarrow_1 x_1 \rightarrow_1 \cdots \rightarrow_1 x_{j-1}$) until $x_i \leq x_j$ for some $0 \leq i < j$. The proof is as with the second solution, or we can recognize that we are just replaying the algorithm of Proposition 1.36 on (X, \leq, \rightarrow_1) , and that it would perhaps be more direct to check whether (X, \leq, \rightarrow_1) is a WSTS, which leads naturally to the first solution.

2 Exercise 2: Sparse vectors

For a dimension $d \in \mathbb{N}$, we consider $(\mathbb{Z}^d, \leq_{sp})$, the "sparser than" ordering on *d*-tuples of integers. This binary relation is defined via

$$oldsymbol{a} = \langle a_1, \dots, a_d \rangle \leq_{\mathrm{sp}} oldsymbol{b} = \langle b_1, \dots, b_d \rangle \stackrel{\mathrm{def}}{\Leftrightarrow} orall i, j \in \{1, \dots, d\} \left\{ egin{array}{c} a_i \leq a_j & \mathrm{if, and only if, } b_i \leq b_j \ & \mathrm{and} \ & |a_i - a_j| \leq |b_i - b_j| \ . \end{array}
ight.$$

Question 1. Show that $(\mathbb{Z}^d, \leq_{sp})$ is a wqo.

To show that $(\mathbb{Z}^d, \leq_{sp})$ is a way we associate, with any vector $\mathbf{a} \in \mathbb{Z}^d$, Boolean values $B(\mathbf{a})_{i,j}$ defined, for each i, j in $\{1, \ldots, k\}$, by $B(\mathbf{a})_{i,j} \stackrel{\text{def}}{=} true$ iff $a_i \leq a_j$, $\stackrel{\text{def}}{=} false$ otherwise, and natural numbers $dist(\mathbf{a})_{i,j}$ defined with $dist(\mathbf{a})_{i,j} \stackrel{\text{def}}{=} |a_i - a_j|$. Writing \mathbb{B} for $\{true, false\}$, the definition of \leq_{sp} can be reformulated as

$$\boldsymbol{a} \leq_{sp} \boldsymbol{b} \text{ iff } B(\boldsymbol{a}) = B(\boldsymbol{b}) \wedge dist(\boldsymbol{a}) \leq_{\times} dist(\boldsymbol{b}),$$

where $B(\mathbf{a})$ and $B(\mathbf{b})$ belong to \mathbb{B}^{k^2} (a finite set), and where $dist(\mathbf{a})$ and $dist(\mathbf{b})$ belong to $(\mathbb{N}^{k^2}, \leq_{\times})$, a known wqo. This provides an embedding

$$(\mathbb{Z}^d, \leq_{sp}) \rightarrow (\mathbb{B}^{d^2}, =) \times (\mathbb{N}^{d^2}, \leq_{\times})$$

showing that $(\mathbb{Z}^d, \leq_{sp})$ is a wqo.

A well partial order (a wpo) is a wqo (A, \leq_A) with an antisymmetric ordering \leq_A . A wqo is *total* (or *"linear"*) when any two elements are ordered by \leq_A (there are no pairs of incomparable elements).

Question 2. For which d is $(\mathbb{Z}^d, \leq_{sp})$ a wpo? For which d is it total?

For any $x \in \mathbb{Z}$, $\mathbf{a} = \langle a_1, \ldots, a_d \rangle \equiv_{sp} \mathbf{a} + x \stackrel{def}{=} \langle a_1 + x, \ldots, a_d + x \rangle$. We say that $\mathbf{a} + x$ is a shift of \mathbf{a} . In fact, $\mathbf{a} \equiv_{sp} \mathbf{b}$ iff \mathbf{a} is a shift of \mathbf{b} and the equivalence class $[\mathbf{a}]_{\equiv_{sp}}$ contains exactly all the shifts of \mathbf{a} .

Thus in $(\mathbb{Z}^1, \leq_{sp})$ all elements are equivalent w.r.t. \equiv_{sp} . In general, an equivalence class $[\mathbf{a}]_{\equiv_{sp}}$ is infinite since it consists of all $\mathbf{a} + x$, unless d = 0 in which case we have only one element, the empty tuple $\langle \rangle$, that satisfies $\langle \rangle = \langle \rangle + x$ for any $x \in \mathbb{Z}$.

Thus $(\mathbb{Z}^d, \leq_{sp})$ is antisymmetric, hence wpo, only when d = 0. It is linear only when $d \leq 1$: for $d \geq 2$ the elements $\langle 1, 0, \ldots \rangle$ and $\langle 0, 1, \ldots \rangle$ are incomparable.

The equivalence induced by $\leq_{\rm sp}$ is written $\equiv_{\rm sp}$ and defined via $\boldsymbol{a} \equiv_{\rm sp} \boldsymbol{b} \stackrel{\text{def}}{\Leftrightarrow} \boldsymbol{a} \leq_{\rm sp} \boldsymbol{b} \wedge \boldsymbol{b} \leq_{\rm sp} \boldsymbol{a}$. As usual, we may quotient $(\mathbb{Z}^d, \leq_{\rm sp})$ by the induced equivalence and obtain a wpo.

Question 3. Give a simple description (e.g., modulo isomorphism) of the quotient wpo $(\mathbb{Z}^2, \leq_{sp})/_{\equiv_{sp}}$.

For $(\mathbb{Z}^2, \leq_{sp})$ we can define the canonical representative of a pair $\langle a_1, a_2 \rangle$ as the pair $\langle 0, a_2 - a_1 \rangle$ obtained by fixing the first component to zero. For these canonical representatives one has

 $\langle 0, a \rangle \leq_{sp} \langle 0, b \rangle \stackrel{def}{\Leftrightarrow} |a| \leq |b| \wedge sign(a) = sign(b) ,$

where $sign(a) \in \{+, 0, -\}$ is + if a > 0, is - if a < 0 and is 0 when a = 0. Thus $\langle 0, 1 \rangle$, $\langle 0, 0 \rangle$ and $\langle 0, -1 \rangle$ are incomparable.

The quotient $(\mathbb{Z}^2, \leq_{sp})/_{\equiv_{sp}}$ is then isomorphic to $\omega \sqcup \Gamma_1 \sqcup \omega$.

Question 4. Give an antichain of size n in $(\mathbb{Z}^3, \leq_{sp})$.

A possible answer is $\langle 0, 0, n \rangle \langle 0, 1, n-1 \rangle \langle 0, 2, n-2 \rangle \cdots \langle 0, n-1, 1 \rangle$.

We consider the norm on \mathbb{Z}^d given by $|\langle a_1, \ldots, a_d \rangle| \stackrel{\text{def}}{=} \max(|a_1|, \ldots, |a_d|)$. This turns $(\mathbb{Z}^d, \leq_{\text{sp}})$ into a normed wqo, or nwqo, and lets us define the length function $L_{g,(\mathbb{Z}^d,\leq_{\text{sp}})}$. In the following we fix g(n) = n + 1 and simply write L_d for the corresponding length function.

****** Question 5. Give a simple numerical expression for $L_2(n)$, i.e., for d = 2. A formal proof is not required here, only a correct expression with a few lines of justification.

One has $L_2(n) = 8n + 9$. The longest (g, n)-controlled bad sequence is

 $\begin{array}{l} \langle 0,0\rangle \ \langle n+1,-n-1\rangle \ \langle n+1,-n\rangle \ \langle n,-n\rangle \ \langle n,1-n\rangle \ \langle n-1,1-n\rangle \ \langle n-1,2-n\rangle \ \cdots \ \langle 1,-1\rangle \ \langle 1,0\rangle \\ \langle -3n-3,3n+3\rangle \ \langle -3n-3,3n+2\rangle \ \langle -3n-2,3n+2\rangle \ \langle -3n-2,3n+1\rangle \ \cdots \ \langle -1,1\rangle \ \langle -1,0\rangle . \end{array}$

Here, when we pick $\langle n+1, -n-1 \rangle$ and later $\langle -3n-3, 3n+3 \rangle$ we pick a \leq_{sp} -maximal element in the residual associated with the previous elements in the bad sequence.

3 Exercise 3: Ordering ω -words

Let (A, \leq) be a wqo. The set A^* of finite words over A is ordered by the subword ordering \leq_* as seen in class. We aim to extend this to infinite words, called ω -words since they are infinite to the right. Now for two ω -words $v = (x_i)_{i \in \mathbb{N}}$ and $w = (y_i)_{i \in \mathbb{N}}$ in A^{ω} , we define

 $v \leq_{\omega} w \stackrel{\text{def}}{\Leftrightarrow} \begin{cases} \text{ there are some indexes } n_0 < n_1 < n_2 < \cdots \\ \text{ such that } x_i \leq y_{n_i} \text{ for all } i \in \mathbb{N}. \end{cases}$

Since (A, \leq) is a quasi-order, \leq_{ω} is reflexive and transitive, hence $(A^{\omega}, \leq_{\omega})$ is a quasi-order.

We start with the ω -word extension of (\mathbb{N}, \leq) and consider ω -words $v, w \in \mathbb{N}^{\omega}$ of natural numbers. We say that an ω -word $v \in \mathbb{N}^{\omega}$ is *unbounded* if it contains arbitrarily large natural numbers.

Question 1. What is \leq_{ω} restricted to such unbounded ω -words?

If v is unbounded then $w \leq_{\omega} v$ for any $w \in \mathbb{N}^{\omega}$. All unbounded ω -words are equivalent w.r.t. \leq_{ω} and are a supremum for $(\mathbb{N}^{\omega}, \leq_{\omega})$.

With a bounded ω -words $v \in \mathbb{N}^{\omega}$, of the form $v = x_0, x_1, x_2, \ldots$, we associate $\Lambda(v)$, defined as $\Lambda(v) \stackrel{\text{def}}{=} \limsup_i x_i = \lim_{k \to \infty} \max_{i \ge k} x_i$ (note that $\Lambda(v)$ is a finite number since v is bounded), and we let M(v) be the first index such that $x_i \le \Lambda(v)$ for all $i \ge M(v)$. The finite sequence $\dot{v} \stackrel{\text{def}}{=} x_0, \ldots, x_{M(v)-1}$ is the shortest prefix of v such that v can be written $v = \dot{v} \cdot \ddot{v}$ with \ddot{v} an ω -length suffix having all its elements bounded by $\Lambda(v)$.

Question 2. Assume that $w = y_0, y_1, y_2, \ldots$ is a second bounded ω -word and show that

$$\Lambda(v) \le \Lambda(w) \text{ implies } \ddot{v} \le_{\omega} \ddot{w} , \qquad (\dagger)$$

$$(\Lambda(v) \le \Lambda(w) \land \dot{v} \le_* \dot{w}) \text{ implies } v \le_\omega w.$$
(‡)

(†): $\Lambda(w)$ appears infinitely many times in \ddot{w} . This proves $\ddot{v} \leq_{\omega} \ddot{w}$ since every element of \ddot{v} is $\leq \Lambda(v)$.

(‡): by combining an embedding of \dot{v} into \dot{w} and an embedding of \ddot{v} into \ddot{w} , one builds an embedding of $\dot{v}\ddot{v}$, i.e., v, into $\dot{w}\ddot{w}$, i.e., w.

Question 3. Eq. (‡) gives a sufficient condition for $v \leq_{\omega} w$ on bounded ω -words. Is it a necessary condition?

No: $v \leq_{\omega} w$ requires $\Lambda(v) \leq \Lambda(w)$ but does not require $\dot{v} \leq_* \dot{w}$. Consider for example $v = 1, 0, 0, 0, \ldots$ and $w = 1, 1, 1, 1, \ldots$ One has:

$$v = 1(0)^{\omega},$$
 $\Lambda(v) = 0,$ $M(v) = 1,$ $\dot{v} = 1,$ $\ddot{v} = (0)^{\omega},$
 $w = (1)^{\omega},$ $\Lambda(w) = 1,$ $M(w) = 0,$ $\dot{w} = \epsilon,$ $\ddot{w} = (1)^{\omega}.$

Clearly $v \leq_{\omega} w$ but one has nonetheless $\dot{v} \not\leq_* \dot{w}$.

Question 4. Show that $(\mathbb{N}^{\omega}, \leq_{\omega})$ is a wqo.

All the hard work has been done in the first two questions. If an infinite sequence $S = v_0, v_1, v_2, \ldots$ contains an unbounded v_i then it has an increasing pair as seen in question **Question 1.** (except if i = 0). Otherwise all the v_i 's are bounded (perhaps after removing v_0) and we can extract an infinite subsequence with increasing $\Lambda(v_i)$ —since (\mathbb{N}, \leq) is a wqo—, and further extract a pair with increasing \dot{v}_i 's —since (\mathbb{N}^*, \leq_*) is a wqo by Higman's Lemma. With now $\Lambda(v_i) \leq \Lambda(v_j)$ and $\dot{v}_i \leq_* \dot{v}_j$, Eq. (‡) yields $v_i \leq_\omega v_j$ and S contains an increasing pair.

Question 5. Generalise the previous question and show that $(A^{\omega}, \leq_{\omega})$ is a wqo when (A, \leq) is a *total* (or *linear*) wqo, i.e., when any two elements are comparable.

We say that an ω -word $v = x_0, x_1, x_2, \ldots \in A^{\omega}$ is eventually bounded in A if there is $a \in A$ s.t. $x_i \leq a$ for almost all i. In this case, and since (A, \leq) is a linear wqo, there is a smallest a that eventually dominates v, and we let $\Lambda(v) \stackrel{def}{=} \limsup_{i \in \mathbb{N}} x_i$ denote this minimal a. This leads to a factorisation $v = \dot{v}\ddot{v}$ such that $\dot{v} \in A^*$ is the shortest prefix of v containing all x_i that are strictly above $\Lambda(v)$. One can then check that if $v, w \in A^{\omega}$ are eventually bounded in A then Eq. (\ddagger) is satisfied. Therefore, from an infinite sequence $S = v_0, v_1, v_2, \ldots$ where all v_i are eventually bounded, we can extract as in the previous question a pair v_i, v_j with $\Lambda(v_i) \leq \Lambda(v_j)$ and $\dot{v}_i \leq_* \dot{v}_j$, hence with $v_i \leq_\omega v_j$. There remains the case of words $v \in A^{\omega}$ that are not eventually bounded, but then $v \geq_\omega w$ for any w, i.e., v is a supremum in $(A^{\omega}, \leq_{\omega})$, and any infinite sequence with such words (not in first position) contains an increasing pair.

Question 6. We consider a finite alphabet $(\Sigma, =)$ equipped with the empty ordering. Show that its ω -word extension $(\Sigma^{\omega}, \leq_{\omega})$ is a wqo.

With an ω -word $v \in \Sigma^{\omega}$ we associate $\inf(v) \stackrel{\text{def}}{=}$ the set of symbols that appear infinitely often in v, and factor v under the form $v = \dot{v}\ddot{v}$ such that \dot{v} is the shortest prefix of v that contains all $x_i \notin \inf(v)$. Clearly, $\ddot{v} \leq_{\omega} \ddot{w}$ iff $\inf(v) \subseteq \inf(w)$, and

 $(\inf(v) = \inf(w) \land \dot{v} \leq_* \dot{w}) \text{ implies } v \leq_\omega w.$

One concludes by extracting from any infinite sequence v_0, v_1, v_2, \ldots of ω -word a pair with $\inf(v_i) = \inf(v_j)$ and $\dot{v}_i \leq_* \dot{v}_j$. [NB: $(\Sigma, =)$ is not a linear wqo, but it is a finite union of (trivial) linear wqos. The above proof extends to all finite unions of linear wqos.]

*** Question 7. This is an optional question in case you have answered everything else. We return to the general case where (A, \leq) is a wqo. Show that $(A^{\omega}, \leq_{\omega})$ is well-founded.

I'll wait and write an answer when I have looked at all submitted exams: perhaps one will contain a nice and elegant proof?!