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1 Exercise 1: Weak WSTSes

A WSTS (X, <,—) is weakly post-finite if, and only if, for every state z € X, Post(x) &t {2/ e X |
x — '} consists of a finite union of equivalence classes with respect to =; we write z = y if, and
only if z < y and y < z. It if weakly post-effective if, and only if, given any = € X, we can compute a
finite set Post;(x) of representatives of these equivalence classes; this means that we can compute a
finite set Post; () such that Post(z) = {a” € X | 32’ € Posty(x), 2" = 2'}. Weak post-effectiveness
implies weak post-finiteness. One may write © —1 2’ to mean x’ € Post; ().

** Question 1. Show that the following termination problem is decidable:
INPUT: a weakly post-effective WSTS (X, <,—) such that < is decidable, a state
xg € X.
QUESTION: is every run xo — x1 — -+ — & — - - - starting from x¢ finite?

We give three possible solutions. The first one is the preferred one since it used theorems
of the lectures instead of (re)proving variants of them.

First solution: we define a new WSTS (X, <,—1) where x —1 y iff y € Posty(x).

e Monotonicity: if x —1 ' and x <y, then we claim that y —1 y} for some yj > 2’
Since x —1 2/, in particular x — x'. Since (X, <,—) is monotonic, there is a state
y € X such that y — v and v’ > x'. But it may be that y /1 y'. Fortunately, by
definition of Posty, there is a state y} € Posti(z") such that yy = vy'. In particular,
Yy > 2!, and 2’ — yj.
o Wqo: < is wqo by assumption.
Since (X, <,—) is weakly post-effective, by definition (X, <,—1) is post-effective. Also,
< is decidable. Hence, by Proposition 1.36 in the lecture notes, termination is decidable
for (X, <, —1).
It remains to show that (X, <,—1) terminates if only if (X,<,—) terminates. Any
mfinite run o —1 1 —1 - -+ S also an infinite run g — x1 — - - -, and conversely, let us
consider an infinite run xo — x1 — -+ . We will build an infinite run x{; —1 ) —1 -+,

with x|, ) zo and x, > x; for every i € N, by induction on i. The base case is clear.
Assuming x}; > x;, we use the fact that (X, <,—) is monotonic: there is a state y' such
that x; — 3y and y' > x;41. By definition of Posty, there is a state 2, =y (hence
Ti .y > wiy1) such that xf —y x .

Second solution. We imitate the proof of Proposition 1.86. There are two semi-
algorithms. The first one attempts to prove termination and builds a reachability tree T



from z¢, using only — transitions. If T is finite, then (X, <,—) terminates starting
from xg: otherwise, as above any infinite run xo — x1 — --- gives rise to an infinite
run xg —1 1 —1 -+ -. Conversely, if (X, <,—) terminates starting from xq, then there
18 no infinite run rg — x1 — - -+, hence no infinite run rg —1 x1 —1 ---; then T has
only finite branches. T is finitely branching (by weak post-finiteness), hence is finite by
Konig’s Lemma, and therefore can be built (using weak post-effectiveness) in finite time.
The other semi-algorithm enumerates all possible finite runs xo —1 x1 —1 -+ - —1 x; and
checks whether x; < x; for some 0 < i < j; this is as in Lemma 1.35, but with — instead
of —. If (X, <,—) does not terminate, then there is an infinite run x{, — =} — -+ with
xy = xo. Hence, as in the First solution there is an infinite run xo —1 1 —1 -+ with
z; > x, for every i € N. Since < is a wqo, there must be a pair of indices i < j such that
x; < x5, hence a finite run as sought by this (second) semi-algorithm.

Conversely, if there is a finite run xo —1 1 —1 -+ —1 x; with x; < x; for some
0 <i < j, then in particular xg — 1 — --- — xj, and Lemma 1.35 then tells us that
(X, <, —) does not terminate starting from x.

Third solution. As with the second solution, but building directly a finite tree as in
the lectures. Its root is labeled by xo, and the tree is built by adding new —1-successors
x; to ewisting vertices (on a branch xy —1 x1 —1 -+ —1 xj_l) until z; < x; for some
0 <i < j. The proof is as with the second solution, or we can recognize that we are just
replaying the algorithm of Proposition 1.36 on (X, <,—1), and that it would perhaps be
more direct to check whether (X, <,—1) is a WSTS, which leads naturally to the first
solution.

2 Exercise 2: Sparse vectors

For a dimension d € N, we consider (Z%, <), the “sparser than” ordering on d-tuples of integers.
This binary relation is defined via

a; < a; if, and only if, b; < b;
a=1(ay,... ad) <spb=(br,....bs) &vije{1,. . d} and
|la; — a;| < [bi — b .

Question 1. Show that (Z%, <) is a wqo.

To show that (Z, <gp) is a wgo we associate, with any vector a € 7%, Boolean values
.o d . d
B(a);; defined, for each i,j in {1,...,k}, by B(a);; % prue iff a;i < aj, ef false

. . . . d ..
otherwise, and natural numbers dist(a); ; defined with dist(a); ) la; — aj|. Writing B
for {true, false}, the definition of <y, can be reformulated as

a <., b iff B(a) = B(b) A dist(a) <x dist(b)

where B(a) and B(b) belong to B (a finite set), and where dist(a) and dist(b) belong
to (NkQ, <x), a known wqo. This provides an embedding

(2%, <) — BT =) x (NT, <)

showing that (Z4,<sp) is a wqo.



A well partial order (a wpo) is a wqo (A, <4) with an antisymmetric ordering <4. A wqo is total (or
“linear”) when any two elements are ordered by <4 (there are no pairs of incomparable elements).

Question 2. For which d is (Z%, <,) a wpo? For which d is it total?

d .
Foranyx € Z, a = (a1,...,aq) =sp a+x :ef<a1—|—3:,...,ad+x>. We say that a +x is a
shift of a. In fact, a =5, b iff a is a shift of b and the equivalence class |a)=,, contains
exactly all the shifts of a.

Thus in (7, <sp) all elements are equivalent w.r.t. =g,. In general, an equivalence class
la]=,, is infinite since it consists of all a + x, unless d = 0 in which case we have only
one element, the empty tuple (), that satisfies () = () + x for any x € Z.

Thus (Zd,gsp) 1 antisymmetric, hence wpo, only when d = 0. It is linear only when
d <1: for d > 2 the elements (1,0,...) and (0,1,...) are incomparable.

The equivalence induced by <, is written =, and defined via a =, b C<1:e)f a<p bAb < a As

usual, we may quotient (Z, <gp) by the induced equivalence and obtain a wpo.
Question 3. Give a simple description (e.g., modulo isomorphism) of the quotient wpo (Z2, <ep)/=sp-

For (72, <sp) we can define the canonical representative of a pair (a1,a2) as the pair
(0,a9 — ay1) obtained by fixing the fist component to zero. For these canonical representa-
tives one has

(0,a) <4 (0,) ¥ jal < |b] A sign(a) = sign(b) ,

where sign(a) € {+,0,—} is + if a > 0, is — if a < 0 and is 0 when a = 0. Thus (0, 1),
(0,0) and (0,—1) are incomparable.

The quotient (Z*,<gp)/=,, is then isomorphic to w U Uw.
Question 4. Give an antichain of size n in (Z3, <gp).

A possible answer is (0,0,n) (0,1,n —1) (0,2,n—2) --- (0,n —1,1).

We consider the norm on Z% given by |{ay, ..., aq)| & max(|ai], ..., |ag]). This turns (Z4, <) into
a normed wqo, or nwqo, and lets us define the length function Lg7(Zd’§Sp). In the following we fix
g(n) =n+ 1 and simply write L, for the corresponding length function.

** Question 5. Give a simple numerical expression for L,(n), i.e., for d = 2. A formal proof is not required
here, only a correct expression with a few lines of justification.

One has L,(n) = 8n+9. The longest (g,n)-controlled bad sequence is

0,0) (n+1,—n—1) (n+1,—n) (n,—n) (n,1—n)y (n—1,1—n) (n—1,2—mn) --- (1,—1) (1,0)
(=3n—3,3n+3) (—3n—3,3n+2) (—3n—2,3n+2) (—3n —2,3n+1) --- (=1,1) (—1,0).

Here, when we pick (n+1,—n — 1) and later (—3n — 3,3n + 3) we pick a <g,-mazimal
element in the residual associated with the previous elements in the bad sequence.



3 Exercise 3: Ordering w-words

Let (A, <) be a wqo. The set A* of finite words over A is ordered by the subword ordering <, as
seen in class. We aim to extend this to infinite words, called w-words since they are infinite to the
right. Now for two w-words v = (;);en and w = (y;)ien in A“, we define

def | there are some indexes ng < ny < ng < «--
v<,w & .
such that z; <y, for all + € N.

Since (A, <) is a quasi-order, <, is reflexive and transitive, hence (A¥, <,,) is a quasi-order.

We start with the w-word extension of (N, <) and consider w-words v, w € N¥ of natural numbers.
We say that an w-word v € N¥ is unbounded if it contains arbitrarily large natural numbers.

Question 1. What is <, restricted to such unbounded w-words?

If v is unbounded then w <, v for any w € N¥. All unbounded w-words are equivalent
w.r.t. <, and are a supremum for (N¥ <,).

With a bounded w-words v € N¥ of the form v = zg,x1,2z9,..., we associate A(v), defined as

A(v) © Jim sup; x; = limg_,oo max;>; z; (note that A(v) is a finite number since v is bounded),

and we let M (v) be the first index such that z; < A(v) for all ¢ > M(v). The finite sequence

o & To, ..., Tpr(p)—1 15 the shortest prefix of v such that v can be written v = ¢ - ¢ with ¥ an

w-length suffix having all its elements bounded by A(v).

Question 2. Assume that w = yg, y1,¥2, - .. is a second bounded w-word and show that
A(v) < A(w) implies ¥ <, W, (1)
(A(v) < Aw) A © <, ) implies v <, w. (1)

(t): A(w) appears infinitely many times in w. This proves ¥ <, W since every element
of ¥ is < A(v).

(1): by combining an embedding of v into w and an embedding of ¥ into W, one builds an
embedding of 0V, i.e., v, into WW, i.e., w.

Question 3. Eq. (1) gives a sufficient condition for v <,, w on bounded w-words. Is it a necessary condition?

No: v <, w requires A(v) < A(w) but does not require © <, w. Consider for example
v=1,0,0,0,... andw=1,1,1,1,.... One has:

v =1(0)*, A(v) =0, M(v) =1, 0 =1, v = (0)~,
w=(1)“, Alw) =1, M(w) =0, W = €, w = (1)“.

Clearly v <, w but one has nonetheless v L w.
Question 4. Show that (N, <) is a wqo.

All the hard work has been done in the first two questions. If an infinite sequence
S = wvg,v1,ve,... contains an unbounded v; then it has an increasing pair as seem in
question Question 1. (except if i = 0). Otherwise all the v;’s are bounded (perhaps after
removing vg) and we can extract an infinite subsequence with increasing A(v;) —since
(N, <) is a wgo—, and further extract a pair with increasing v;’s —since (N*,<,) is a
wgqo by Higman’s Lemma. With now A(v;) < A(vj) and v; <, vj, Eq. (1) yields v; <, v;
and S contains an increasing pair.



Question 5. Generalise the previous question and show that (A%, <) is a wqo when (A, <) is a total (or
linear) wqo, i.e., when any two elements are comparable.

We say that an w-word v = xg,x1,T2,... € A¥ is eventually bounded in A if there is
a € A s.t. x; < a for almost all i. In this case, and since (A, <) is a linear wqo, there

is a smallest a that eventually dominates v, and we let A(v) 9 im sup;en 2 denote this
minimal a. This leads to a factorisation v = 0V such that © € A* is the shortest prefix of
v containing all x; that are strictly above A(v). One can then check that if v,w € AY are
eventually bounded in A then Eq. (1) is satisfied. Therefore, from an infinite sequence
S = vg,v1, v, ... where all v; are eventually bounded, we can extract as in the previous
question a pair v;,v; with A(v;) < A(vj) and U; <, vj, hence with v; <, v;. There
remains the case of words v € A¥ that are not eventually bounded, but then v >, w for
any w, i.e., v is a supremum in (A%, <), and any infinite sequence with such words (not

in first position) contains an increasing pair.

Question 6. We consider a finite alphabet (X, =) equipped with the empty ordering. Show that its w-word
extension (3¢, <,,) is a wqo.

With an w-word v € ¥¥ we associate inf(v) i) the set of symbols that appear infinitely
often in v, and factor v under the form v = 00 such that v is the shortest prefix of v that
contains all x; ¢ inf(v). Clearly, v <, w iff inf(v) C inf(w), and

(inf(v) = inf(w) A O <, W) implies v <, w .
One concludes by extracting from any infinite sequence vy, v1, va, ... of w-word a pair with
inf(v;) = inf(v;) and ¥; <, ¥j. [NB: (£,=) is not a linear wqo, but it is a finite union of

(trivial) linear wqos. The above proof extends to all finite unions of linear wqos.|

*** Question 7. This is an optional question in case you have answered everything else. We return to the
general case where (A4, <) is a wqo. Show that (A%, <,,) is well-founded.

I’ll wait and write an answer when I have looked at all submitted exams: perhaps one will
contain a nice and elegant proof ¢!



