
Final exam for MPRI 2-9-1

20 nov. 2023 — 16h30–18h30 — no documents allowed
Réponses en français acceptées but not mandatory

1 Exercise 1: Weak WSTSes

A WSTS (X,≤,→) is weakly post-finite if, and only if, for every state x ∈ X, Post(x) def
= {x′ ∈ X |

x → x′} consists of a finite union of equivalence classes with respect to ≡; we write x ≡ y if, and
only if x ≤ y and y ≤ x. It if weakly post-effective if, and only if, given any x ∈ X, we can compute a
finite set Post1(x) of representatives of these equivalence classes; this means that we can compute a
finite set Post1(x) such that Post(x) = {x′′ ∈ X | ∃x′ ∈ Post1(x), x′′ ≡ x′}. Weak post-effectiveness
implies weak post-finiteness. One may write x →1 x

′ to mean x′ ∈ Post1(x).

** Question 1. Show that the following termination problem is decidable:
INPUT: a weakly post-effective WSTS (X,≤,→) such that ≤ is decidable, a state

x0 ∈ X.
QUESTION: is every run x0 → x1 → · · · → xk → · · · starting from x0 finite?

We give three possible solutions. The first one is the preferred one since it used theorems
of the lectures instead of (re)proving variants of them.
First solution: we define a new WSTS (X,≤,→1) where x →1 y iff y ∈ Post1(x).

• Monotonicity: if x →1 x′ and x ≤ y, then we claim that y →1 y′1 for some y′1 ≥ x′.
Since x →1 x′, in particular x → x′. Since (X,≤,→) is monotonic, there is a state
y′ ∈ X such that y → y′ and y′ ≥ x′. But it may be that y ̸→1 y′. Fortunately, by
definition of Post1, there is a state y′1 ∈ Post1(x′) such that y′1 ≡ y′. In particular,
y′1 ≥ x′, and x′ → y′1.

• Wqo: ≤ is wqo by assumption.

Since (X,≤,→) is weakly post-effective, by definition (X,≤,→1) is post-effective. Also,
≤ is decidable. Hence, by Proposition 1.36 in the lecture notes, termination is decidable
for (X,≤,→1).
It remains to show that (X,≤,→1) terminates if only if (X,≤,→) terminates. Any
infinite run x0 →1 x1 →1 · · · is also an infinite run x0 → x1 → · · · , and conversely, let us
consider an infinite run x0 → x1 → · · · . We will build an infinite run x′0 →1 x

′
1 →1 · · · ,

with x′0
def
= x0 and x′i ≥ xi for every i ∈ N, by induction on i. The base case is clear.

Assuming x′i ≥ xi, we use the fact that (X,≤,→) is monotonic: there is a state y′ such
that x′i → y′ and y′ ≥ xi+1. By definition of Post1, there is a state x′i+1 ≡ y′ (hence
x′i+1 ≥ xi+1) such that x′i →1 x

′
i+1.

Second solution. We imitate the proof of Proposition 1.36. There are two semi-
algorithms. The first one attempts to prove termination and builds a reachability tree T
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from x0, using only →1 transitions. If T is finite, then (X,≤,→) terminates starting
from x0: otherwise, as above any infinite run x0 → x1 → · · · gives rise to an infinite
run x0 →1 x1 →1 · · · . Conversely, if (X,≤,→) terminates starting from x0, then there
is no infinite run x0 → x1 → · · · , hence no infinite run x0 →1 x1 →1 · · · ; then T has
only finite branches. T is finitely branching (by weak post-finiteness), hence is finite by
König’s Lemma, and therefore can be built (using weak post-effectiveness) in finite time.
The other semi-algorithm enumerates all possible finite runs x0 →1 x1 →1 · · · →1 xj and
checks whether xi ≤ xj for some 0 ≤ i < j; this is as in Lemma 1.35, but with →1 instead
of →. If (X,≤,→) does not terminate, then there is an infinite run x′0 → x′1 → · · · with
x′0 = x0. Hence, as in the First solution there is an infinite run x0 →1 x1 →1 · · · with
xi ≥ x′i for every i ∈ N. Since ≤ is a wqo, there must be a pair of indices i < j such that
xi ≤ xj, hence a finite run as sought by this (second) semi-algorithm.
Conversely, if there is a finite run x0 →1 x1 →1 · · · →1 xj with xi ≤ xj for some
0 ≤ i < j, then in particular x0 → x1 → · · · → xj, and Lemma 1.35 then tells us that
(X,≤,→) does not terminate starting from x0.
Third solution. As with the second solution, but building directly a finite tree as in
the lectures. Its root is labeled by x0, and the tree is built by adding new →1-successors
xj to existing vertices (on a branch x0 →1 x1 →1 · · · →1 xj−1) until xi ≤ xj for some
0 ≤ i < j. The proof is as with the second solution, or we can recognize that we are just
replaying the algorithm of Proposition 1.36 on (X,≤,→1), and that it would perhaps be
more direct to check whether (X,≤,→1) is a WSTS, which leads naturally to the first
solution.

2 Exercise 2: Sparse vectors

For a dimension d ∈ N, we consider (Zd,≤sp), the “sparser than” ordering on d-tuples of integers.
This binary relation is defined via

a = ⟨a1, . . . , ad⟩ ≤sp b = ⟨b1, . . . , bd⟩
def⇔ ∀i, j ∈ {1, . . . , d}


ai ≤ aj if, and only if, bi ≤ bj

and
|ai − aj | ≤ |bi − bj | .

Question 1. Show that (Zd,≤sp) is a wqo.

To show that (Zd,≤sp) is a wqo we associate, with any vector a ∈ Zd, Boolean values

B(a)i,j defined, for each i, j in {1, . . . , k}, by B(a)i,j
def
= true iff ai ≤ aj,

def
= false

otherwise, and natural numbers dist(a)i,j defined with dist(a)i,j
def
= |ai − aj |. Writing B

for {true, false}, the definition of ≤sp can be reformulated as

a ≤sp b iff B(a) = B(b) ∧ dist(a) ≤× dist(b) ,

where B(a) and B(b) belong to Bk2 (a finite set), and where dist(a) and dist(b) belong
to (Nk2 ,≤×), a known wqo. This provides an embedding

(Zd,≤sp) → (Bd2 ,=)× (Nd2 ,≤×)

showing that (Zd,≤sp) is a wqo.
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A well partial order (a wpo) is a wqo (A,≤A) with an antisymmetric ordering ≤A. A wqo is total (or
“linear”) when any two elements are ordered by ≤A (there are no pairs of incomparable elements).

Question 2. For which d is (Zd,≤sp) a wpo? For which d is it total?

For any x ∈ Z, a = ⟨a1, . . . , ad⟩ ≡sp a+x
def
= ⟨a1+x, . . . , ad+x⟩. We say that a+x is a

shift of a. In fact, a ≡sp b iff a is a shift of b and the equivalence class [a]≡sp contains
exactly all the shifts of a.
Thus in (Z1,≤sp) all elements are equivalent w.r.t. ≡sp. In general, an equivalence class
[a]≡sp is infinite since it consists of all a + x, unless d = 0 in which case we have only
one element, the empty tuple ⟨⟩, that satisfies ⟨⟩ = ⟨⟩+ x for any x ∈ Z.
Thus (Zd,≤sp) is antisymmetric, hence wpo, only when d = 0. It is linear only when
d ≤ 1: for d ≥ 2 the elements ⟨1, 0, . . .⟩ and ⟨0, 1, . . .⟩ are incomparable.

The equivalence induced by ≤sp is written ≡sp and defined via a ≡sp b
def⇔ a ≤sp b ∧ b ≤sp a. As

usual, we may quotient (Zd,≤sp) by the induced equivalence and obtain a wpo.

Question 3. Give a simple description (e.g., modulo isomorphism) of the quotient wpo (Z2,≤sp)/≡sp .

For (Z2,≤sp) we can define the canonical representative of a pair ⟨a1, a2⟩ as the pair
⟨0, a2 − a1⟩ obtained by fixing the fist component to zero. For these canonical representa-
tives one has

⟨0, a⟩ ≤sp ⟨0, b⟩ def⇔ |a| ≤ |b| ∧ sign(a) = sign(b) ,

where sign(a) ∈ {+, 0,−} is + if a > 0, is − if a < 0 and is 0 when a = 0. Thus ⟨0, 1⟩,
⟨0, 0⟩ and ⟨0,−1⟩ are incomparable.
The quotient (Z2,≤sp)/≡sp is then isomorphic to ω ⊔ Γ1 ⊔ ω.

Question 4. Give an antichain of size n in (Z3,≤sp).

A possible answer is ⟨0, 0, n⟩ ⟨0, 1, n− 1⟩ ⟨0, 2, n− 2⟩ · · · ⟨0, n− 1, 1⟩.

We consider the norm on Zd given by |⟨a1, . . . , ad⟩|
def
= max(|a1|, . . . , |ad|). This turns (Zd,≤sp) into

a normed wqo, or nwqo, and lets us define the length function Lg,(Zd,≤sp). In the following we fix
g(n) = n+ 1 and simply write L

d
for the corresponding length function.

** Question 5. Give a simple numerical expression for L2(n), i.e., for d = 2. A formal proof is not required
here, only a correct expression with a few lines of justification.

One has L2(n) = 8n+ 9. The longest (g, n)-controlled bad sequence is

⟨0, 0⟩ ⟨n+ 1,−n− 1⟩ ⟨n+ 1,−n⟩ ⟨n,−n⟩ ⟨n, 1− n⟩ ⟨n− 1, 1− n⟩ ⟨n− 1, 2− n⟩ · · · ⟨1,−1⟩ ⟨1, 0⟩
⟨−3n− 3, 3n+ 3⟩ ⟨−3n− 3, 3n+ 2⟩ ⟨−3n− 2, 3n+ 2⟩ ⟨−3n− 2, 3n+ 1⟩ · · · ⟨−1, 1⟩ ⟨−1, 0⟩.

Here, when we pick ⟨n+ 1,−n− 1⟩ and later ⟨−3n− 3, 3n+ 3⟩ we pick a ≤sp-maximal
element in the residual associated with the previous elements in the bad sequence.

3



3 Exercise 3: Ordering ω-words

Let (A,≤) be a wqo. The set A∗ of finite words over A is ordered by the subword ordering ≤∗ as
seen in class. We aim to extend this to infinite words, called ω-words since they are infinite to the
right. Now for two ω-words v = (xi)i∈N and w = (yi)i∈N in Aω, we define

v ≤ω w
def⇔

{
there are some indexes n0 < n1 < n2 < · · ·
such that xi ≤ yni for all i ∈ N.

Since (A,≤) is a quasi-order, ≤ω is reflexive and transitive, hence (Aω,≤ω) is a quasi-order.

We start with the ω-word extension of (N,≤) and consider ω-words v, w ∈ Nω of natural numbers.
We say that an ω-word v ∈ Nω is unbounded if it contains arbitrarily large natural numbers.

Question 1. What is ≤ω restricted to such unbounded ω-words?

If v is unbounded then w ≤ω v for any w ∈ Nω. All unbounded ω-words are equivalent
w.r.t. ≤ω and are a supremum for (Nω,≤ω).

With a bounded ω-words v ∈ Nω, of the form v = x0, x1, x2, . . ., we associate Λ(v), defined as
Λ(v)

def
= lim supi xi = limk→∞maxi≥k xi (note that Λ(v) is a finite number since v is bounded),

and we let M(v) be the first index such that xi ≤ Λ(v) for all i ≥ M(v). The finite sequence
v̇

def
= x0, . . . , xM(v)−1 is the shortest prefix of v such that v can be written v = v̇ · v̈ with v̈ an

ω-length suffix having all its elements bounded by Λ(v).

Question 2. Assume that w = y0, y1, y2, . . . is a second bounded ω-word and show that

Λ(v) ≤ Λ(w) implies v̈ ≤ω ẅ , (†)(
Λ(v) ≤ Λ(w) ∧ v̇ ≤∗ ẇ

)
implies v ≤ω w . (‡)

(†): Λ(w) appears infinitely many times in ẅ. This proves v̈ ≤ω ẅ since every element
of v̈ is ≤ Λ(v).
(‡): by combining an embedding of v̇ into ẇ and an embedding of v̈ into ẅ, one builds an
embedding of v̇v̈, i.e., v, into ẇẅ, i.e., w.

Question 3. Eq. (‡) gives a sufficient condition for v ≤ω w on bounded ω-words. Is it a necessary condition?

No: v ≤ω w requires Λ(v) ≤ Λ(w) but does not require v̇ ≤∗ ẇ. Consider for example
v = 1, 0, 0, 0, . . . and w = 1, 1, 1, 1, . . .. One has:

v = 1(0)ω, Λ(v) = 0, M(v) = 1, v̇ = 1, v̈ = (0)ω,

w = (1)ω, Λ(w) = 1, M(w) = 0, ẇ = ϵ, ẅ = (1)ω.

Clearly v ≤ω w but one has nonetheless v̇ ̸≤∗ ẇ.

Question 4. Show that (Nω,≤ω) is a wqo.

All the hard work has been done in the first two questions. If an infinite sequence
S = v0, v1, v2, . . . contains an unbounded vi then it has an increasing pair as seen in
question Question 1. (except if i = 0). Otherwise all the vi’s are bounded (perhaps after
removing v0) and we can extract an infinite subsequence with increasing Λ(vi) —since
(N,≤) is a wqo—, and further extract a pair with increasing v̇i’s —since (N∗,≤∗) is a
wqo by Higman’s Lemma. With now Λ(vi) ≤ Λ(vj) and v̇i ≤∗ v̇j, Eq. (‡) yields vi ≤ω vj
and S contains an increasing pair.
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Question 5. Generalise the previous question and show that (Aω,≤ω) is a wqo when (A,≤) is a total (or
linear) wqo, i.e., when any two elements are comparable.

We say that an ω-word v = x0, x1, x2, . . . ∈ Aω is eventually bounded in A if there is
a ∈ A s.t. xi ≤ a for almost all i. In this case, and since (A,≤) is a linear wqo, there
is a smallest a that eventually dominates v, and we let Λ(v) def

= lim supi∈N xi denote this
minimal a. This leads to a factorisation v = v̇v̈ such that v̇ ∈ A∗ is the shortest prefix of
v containing all xi that are strictly above Λ(v). One can then check that if v, w ∈ Aω are
eventually bounded in A then Eq. (‡) is satisfied. Therefore, from an infinite sequence
S = v0, v1, v2, . . . where all vi are eventually bounded, we can extract as in the previous
question a pair vi, vj with Λ(vi) ≤ Λ(vj) and v̇i ≤∗ v̇j, hence with vi ≤ω vj. There
remains the case of words v ∈ Aω that are not eventually bounded, but then v ≥ω w for
any w, i.e., v is a supremum in (Aω,≤ω), and any infinite sequence with such words (not
in first position) contains an increasing pair.

Question 6. We consider a finite alphabet (Σ,=) equipped with the empty ordering. Show that its ω-word
extension (Σω,≤ω) is a wqo.

With an ω-word v ∈ Σω we associate inf(v)
def
= the set of symbols that appear infinitely

often in v, and factor v under the form v = v̇v̈ such that v̇ is the shortest prefix of v that
contains all xi ̸∈ inf(v). Clearly, v̈ ≤ω ẅ iff inf(v) ⊆ inf(w), and(

inf(v) = inf(w) ∧ v̇ ≤∗ ẇ
)

implies v ≤ω w .

One concludes by extracting from any infinite sequence v0, v1, v2, . . . of ω-word a pair with
inf(vi) = inf(vj) and v̇i ≤∗ v̇j. [NB: (Σ,=) is not a linear wqo, but it is a finite union of
(trivial) linear wqos. The above proof extends to all finite unions of linear wqos.]

*** Question 7. This is an optional question in case you have answered everything else. We return to the
general case where (A,≤) is a wqo. Show that (Aω,≤ω) is well-founded.

I’ll wait and write an answer when I have looked at all submitted exams: perhaps one will
contain a nice and elegant proof?!
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