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Another extension of the work reported here is incorporation of probabilistic informa-
tion in a timed graph. We add probabilities to our model by associating fixed distributions
with the delays. Now we can express constraints like “the delay between the request and
the response is distributed uniformly between 2 to 4 seconds”. This extension makes a
timed graph a generalized semi-Markov process (GSMP). While defining the semantics
of TCTL-formulas in this probabilistic model, the existential quantifier is interpreted as
“with positive probability,” and the universal quantifier means “with probability 1.” In
[3], we present an algorithm for checking whether a GSMP satisfies its TCTL-specification.
That algorithm combines model-checking algorithm of this paper with model-checking for
discrete-time Markov chains.

To apply our algorithm to verify any practical system, we must devise ways to cope
with the PSPACE complexity of the problem. Recently heuristics to implement CTL
model-checking without explicitly enumerating all the states have been proposed. For
instance, Burch et.al. [11] propose the use of binary decision diagrams to represent large
state sets symbolically. Henzinger et.al. [21] have shown how to extend these symbolic
methods to model-checking of TCTL formulas.
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TCTL with freeze quantifiers

For writing real-time specifications the linear-time logic TPTL [6] uses a syntax different
from the usual bounded temporal operators. In this logic the bounded response property

”

that “every p-state is followed by some g-state within 5 time units,” is written as

Oz.(p—=<y. (g Ny <ax+D)).
The time quantifier “x.” binds the associated variable x to the “current” time: z.¢(x)
holds at time ¢ iff ¢(¢) does. Read the above formula as “in every state with time z, if
p holds then there is a later state with time y such that both ¢ and (y < x + 5) hold”.
A similar extension of the syntax is possible for TCTL also, and has been studied in [2];
let us call this extension TCTL,. The syntax of TCTL, uses the time quantifiers which
allow references to the times of states, and admits the addition of timing constraints; that
is, atomic formulas that relate the times of different states. As timing constraints, we
permit comparisons of clock values, possibly with addition of constants. The formulas of
TCTL, are built from propositions and timing constraints by connectives, CTL temporal
operators, and time quantifiers. Note that the logic TCTL, is strictly more expressive
than TCTL. For example, consider the formula:

IOz [p A IO (g A IOz (r Az < x4 5))]

It says: “there exists a computation path with a p-state followed by a ¢-state, followed
by an r-state, which is within 5 time units from the p-state.” No formula of TCTL
specifies this property. The model-checking algorithm can be modified to handle formulas
of TCTL, [2]. This is done by introducing additional clocks, one per each temporal
operator in the TCTL,-formula, while constructing the region graph. Recall that, in
contrast, only one additional clock suffices to check any TCTL-formula.

Recent results

Since we presented our results in the 5th IEEE Symposium on Logic in Computer Science
in June 1990, researchers have solved many other problems in the context of reasoning
about real-time systems modeled as timed graphs. We will briefly survey these results.

Alur et.al. have developed an algorithm for checking specifications in the linear-time
logic MITL against a timed graph [5]. The logic MITL extends the syntax of the linear-
time temporal logic PTL by allowing subscripts on the temporal operators. The subscript
on a temporal operator may be any nonsingular interval of R with integer boundaries.
It is interesting that allowing singular intervals as subscripts, that is, operators such as
_3, makes the model-checking problem undecidable!

Courcoubetis and Yannakakis use timed graphs to solve certain minimum and maxi-
mum delay problems for real-time systems [13]. For instance, they show how to compute
the earliest and the latest time a target state can appear along the runs of a timed graph
given an initial state and a clock assignment.

The research on timed graphs has been linked up to the research on real-time process
algebras also. Sifakis et.al. show how to translate a term of the real-time process algebra

ATP to a timed graph [31].



in the automatic verification of finite-state concurrent systems, we feel hopeful that the
model-checking algorithm developed in this paper can be used in practice for verifying
communication protocols, asynchronous circuits, and real-time control systems. In this
section we discuss the complexity of our method in comparison with others, some exten-
sions, and some of the more recent results.

Complexity of reasoning about real-time

Let us analyze the increase in the complexity of temporal reasoning due to the introduction
of real-time in temporal logics. Recall that the complexity of the model-checking algorithm
for CTL is linear in the product of the size of the formula and the size of the state-
transition graph. In TCTL, adding time constants in the formulas contributes another
multiplicative factor equal to the largest constant in the formula, while adding clocks to
the state-transition graph contributes a factor equal to the product of the constants in
the timing constraints and the factorial of the number of clocks. Thus one has to pay a
cost of an extra exponential for introducing real-time. This blow-up by an exponential
is observed for other real-time formalisms also. For instance, the satisfiability problem
for the linear-time temporal logic PTL is PSPACE-complete, whereas the satisfiability
problem for its real-time extension TPTL is EXPSPACE-complete [6]. The satisfiability
problem for CTL is hard for deterministic exponential time, but the satisfiability problem
for its real-time extension RTCTL is hard for deterministic doubly-exponential time [18].

We should also compare the cost of real-time reasoning in the discrete models to that
in the dense-time model. We claim that the added cost of the dense-time model over
discrete models is small. To be specific let us consider the model-checking problem for
TCTL in the discrete-time model. That is, we keep the syntax of TCTL-formulas and
the timed graphs unchanged, but change the time domain from R to N (or, alternatively,
require t;41 = t; + 1 for all ¢ > 0, in the definition of the run). The problem is PSPACE-
complete even in this new setting. We can modify our algorithm so that its worst-case
time complexity is O[ || - (|S]|+ |E|) - Hzecer ]. Thus, the only extra cost of choosing the
domain R is the multiplicative factor of |C|!.

Introducing Fairness into TCTL

To handle fairness CTL was extended to CTLY. A similar extension is possible for TCTL
also. We call the resulting logic TCTL®. The syntax is same as that of TCTL; but now
a timed graph is augmented with a set of fairness constraints /' C 25. An (s, v)-run
{(si,vi, ;) 10 > 0} of G is said to be F-fair iff for each a € F, there are infinitely many
i such that s; € a. Given a TCTL -formula ¢, we change the meaning of G |= ¢ so that
the path-quantifiers range over only those paths that correspond to the F-fair runs of G.

For model-checking, we construct the region graph R(G, ¢) as before. The fairness
family F’ for R(G, ¢) is obtained by replacing each « in F' by the set {(s,[v]*) : s € a}.
The labeling algorithm is as before, with the modification that while checking for the
path-formulas, we restrict attention to (£’ U F},)-fair paths in R(G, ¢). The complexity of
the algorithm increases by a multiplicative factor equal to the cardinality of F.



Now, it is a straightforward exercise to show that G | ¢ iff « is true. Note that the
graph G has O[n ] nodes and edges, O[n] clocks, and the length of its timing constraints
is O[n-log n]. The lemma follows. m

Lemma [Model-checking is in PSPACE]. Given a timed graph G and a TCTL-
formula ¢, the problem of deciding whether or not G | ¢ can be solved using space
polynomial in the length of the input. =

Proof. The region graph has size exponential in the length [ of the input, and hence
if we construct it fully, and label its vertices with the subformulas of ¢, the algorithm will
need space exponential in [. We sketch out another version of the labeling algorithm which
saves on the work-space, by computing the labels of the vertices as they are required. The
trick involved is fairly standard.

The main procedure of the algorithm is a recursive procedure label(v, 1)), which returns
true if v should be labeled with v else returns false. First, note that every vertex can
be represented in space O[[], and its outgoing edges can be computed using the same
amount of space. Let n be the maximum depth of the nesting of the path-quantifiers in
Y. We claim that a non-deterministic version of label can be implemented so as to use
space O[l-n]. This can be proved by an induction on the structure of 1.

The cases v € AP, @ = false, and ¥ = ¥; — 1, are straightforward.

For ¢» = 3 (¢1U~.¢2), the procedure nondeterministically guesses a path v — vy —
-+ v,,. The path is guessed vertex by vertex, at each step checking that the newly guessed
vertex is connected by an edge from the previous vertex. Furthermore, some F,-fair path
should be accessible from v,,. The procedure checks that label(v;, ¢1) returns true for
i < m, and also label(vy,, ¢2 A pac A (py V ¢1)) returns true (py, and p.. are as defined in
the labeling algorithm, and for them label can be implemented in constant space). It just
needs to remember the current guess and the previous guess. This does involve recursive
calls to label, so the total space required is O[!] plus the space for label when called with
¢1 or ¢, as the second argument. The claim follows by the inductive hypothesis.

Now consider the case ©» = V(¢1Uw.¢2). The negation of ¢ can be written using
existential path-quantifiers. For instance, the following equivalence holds:

V(1 Ucchr) = =[F(md2Ucc(=P1 A =¢2)) V FOmy]

The procedure label is called recursively on each subformula of the above translation. The
case ¥ = 30_.¢' is handled as in the previous case.

By Savitch’s theorem the deterministic version can be implemented in space polyno-
mial in [|¢]-{]. =

The following theorem follows immediately from the above lemmas:

Theorem [Complexity of Model-checking)]. Given a timed graph G and a
TCTL-formula ¢, the problem of deciding whether or not G | ¢ is PSPACE-complete. m

6 Discussion

We have presented a theory for modeling, specitying, and verifying finite-state real-time
systems. The main contribution of the paper is working out the mathematics of tempo-
ral reasoning in the dense-time model. With the success of the CTL-based techniques



(x=2)?

Figure 4: Timed graph encoding QBF

Proof. The set of timed graphs is enumerable. For any given timed graph G one
can find whether or not G models the given TCTL-formula. Consequently, the set of
TCTL-formulas for which there exists a timed graph model, is recursively enumerable.
Y1-hardness was proved earlier. m

Note that since the set of satisfiable TCTL-formulas is not recursively enumerable,
there must be some formulas which are satisfiable but not satisfiable by a timed graph.

5.5 Model-checking is PSPACE-complete

The model-checking algorithm we considered, requires time exponential in the length of
the timing constraints. Now we establish a lower bound for the problem, and show the

problem to be PSPACE-complete.

Lemma [Model-checking is PSPACE-hard|.  Given a timed graph G and a
TCTL-formula ¢, the problem of deciding whether or not G [ ¢, is PSPACE-hard. =

Proof. The problem of deciding the truth of a quantified boolean formula (QBF) is
known to be PSPACE-hard [22]. We will reduce this problem to TCTL model-checking.

Let o = Qip1- Qa2p2 - .. Qupn. B(p1, ... pn) be a QBF, where 3 is a formula of proposi-
tional logic over the propositions py,...p,, and each @); is either a universal or existential
quantifier.

We construct a timed graph G as shown in Figure 4. The set of clocks Cis {z, z1, ...z, }.
The start node is sg. The enabling condition b is obtained from 3 by replacing each p;
with the atomic formula (z; = n 4+ 1 — 7). There is just one proposition p, and it is true
at the node s, and false everywhere else.

For every (sg, Vinit)-run, the node s; is reached at time ¢ for 1 < ¢ < n. Furthermore,
(Sn,v,n) appears on the run, where v(z) = n, and for 1 <i < n, v(x;) equals n or n —1
depending on which of the two paths between s;,_; and s; was taken. There are 2" different
paths from sg to s,, and each can be viewed as encoding a different truth assignment for
the propositions. It is easy to see that (s,41, 7+ 1,n+4 1) appears on this path if 3 is true
with respect to the truth assignment I defined as: if v(z;) = n — ¢ then I(x;) = true else

I(x;) = false. Let ¢ be the TCTL-formula, Q10=1. Q2C=1. ... QrC=1. IO1p.



part of v(y) equals the fractional part of its #-predecessor. The array ~ represents a clock
assignment v iff for each y € C%, v(y) equals 0 iff there is a clock z € C¥ such that
B(z) = B(y)+ 1 and fract(v(y)) equals fract(v(z)).

Thus « encodes the integral parts of the clock assignments, and 3 together with ~
encodes the ordering of their fractional parts. The triple (o, 3,~) represents the set of
clock assignments v such that each of «, 3, and = represent v according to the above
convention. It is easy to see that the sets represented by these triples are in fact the
equivalence classes of =", and every equivalence class is represented by some triple. We
use this representation to prove the following lemma:

Lemma [Number of equivalence classes]. The number of equivalence classes of
I'*(G) induced by 2% is bounded by |C*|!- 21" [T, ccx(2-¢, +2). u

Proof. The number of equivalence classes is bounded by the number of triples (a, 3,7)
of the desired form. The number of ways to choose « is Il,ec+(2-¢, +2). For a given a, the
number of ways to choose 3 is bounded by the number of permutations over C?, which

is bounded by |C*|!, and the number of ways to choose v is bounded by the number of
boolean arrays over C*, which is bounded by 2/°"l,

Now from the definition of the region graph, and from the above lemma, it follows
that
[V =0le(é) - [S] - [C] - Hyec ey ].

The first clause in the definition of £* contributes at most one edge for every vertex, and
the second clause contributes at most two edges for an edge in E and an equivalence class
of I'*(G). Hence,

[£7[ = O[e(9) - (18] + [E[) - |C]!- yeo ¢y ]

Thus the size of the region graph is (i) exponential in the number of clocks, (ii)
exponential in the length of timing constraints assuming binary encoding for the constants,
(iii) linear in the size of the node-transition graph, (iv) linear in the number of operators
in ¢, and (v) exponential in the length of the subscripts in ¢.

Theorem [Model-checking for TCTL]. Given a timed graph G and a TCTL-
formula ¢, there is a decision procedure for checking whether or not G satisfies ¢ which

runs in time O[¢(¢) - |¢] - (IS| + |E|) - |[C]! - yec ¢y |- m

Proof. First construct the region graph R(G, ¢) = (V*, E*). Using the above men-
tioned representation the successor class of any class can be computed in time O[|C*|].
Hence, R(G, ¢) can be constructed in time O[|V*| + |E*|]. Then run the labeling algo-
rithm on the subformulas of ¢. The number of fairness constraints is [C*|. The vertices of
R(G, ¢) can be marked with a formula % in time O[ (|V*|+|FE*|)-|C*|], assuming they are
already marked with the subformulas of t, using the labeling algorithm for CTL" [12].
So the labeling algorithm takes time O[|¢| - |C*| - (|[V*| + |E*|)]. The complexity follows

from the bounds on the sizes of V* and £*. u
Since we have shown that the model-checking problem is decidable, we can also char-
acterize the complexity class of deciding finite satisfiability of TCTL-formulas.

Corollary [Complexity of finite satisfiability]. The problem of deciding whether
a given TCTL-formula is finitely-satisfiable is complete for the class of recursively enu-
merable problems (¥;-complete). u



such that for ¢ < n, v; is labeled with ¢1, and if v, = (s,,[v,]*) then v, E x ~ ¢, v, is
labeled with ¢,, and either [v,]* is a boundary class or v, is labeled with ¢, .

Let ¢1,%2,... be the (infinite) sequence of integers such that the edge vi; to vi
corresponds to a state-transition. Since the edges representing passage of time do not
form loops such an infinite sequence exists (recall that the end-class does not have a
successor and, hence, no outgoing edge corresponding to the passage of time).

Let s = s, and vy = v. Using the observation mentioned above, we can write
v 41 = (8j, [z — t;]v]*), 7 = 1, such that the sequence {(s;,v;,t;) : j > 0} satisfies all
the conditions to be qualified as (s, v)-run of G, except possibly the progress condition. We
will show that we can always choose ¢;’s so that the sequence satisfies progress condition.
Suppose there exists a clock y which gets reset infinitely often and infinitely many times
satisfies y = 1, then the time sequence has to progress. The only problematic case is
when after a certain transition point k, for each clock y, either it stays greater than ¢,
all the time, or gets reset infinitely often without ever assuming the value 1. In this case
a converging sequence of time values is possible. But in such a case, after k-th transition
point, the only atomic conditions that are true are of the form y < 1 or y > ¢,. It is easy
to show that we can choose a progressing sequence of time values maintaining the truth
of all enabling conditions along the path.

By an argument symmetric to the first part of the proof it can shown that this run
satisfies . m

This suggests a decision procedure for model-checking:

Given a timed graph G and a TCTL-formula ¢, first construct the region graph
R(G, ¢). Then label all the augmented regions with the subformulas of ¢ using
the labeling procedure. The timed graph G satisfies the TCTL-specification ¢
U (Sinit, [Vini)*) 1s labeled with ¢.

5.4 Complexity of the Algorithm

Using the ideas discussed above, one can implement an algorithm for model-checking
which runs in time linear in the qualitative part, and exponential in the timing part of
the input. Before we can analyze the complexity of the algorithm, let us consider how to
effectively represent the equivalence classes.

We can represent an equivalence class [v]* of I'*(G) induced by =* by a triple of arrays
(ar, B,7) as follows:

The array « is an C*-indexed array associating with each clock y € C* one of the
intervals from

{[070]7 (07 1)7 [17 1]7 R (cy - 17cy)7 [clncy]? (cy7 OO)}

The array « represents a clock assignment v iff for each clock y € C*, v(y) € a(y).

Let C% be the set of clocks y such that a(y) is of the form (¢, 4+ 1) for some ¢ < ¢,.
Thus C? is the set of clocks with non-zero fractional part. The array g : C — CF is a
permutation of C. It gives the ordering of the fractional parts of the clocks in C% with
respect to <. The array 3 represents a clock assignment v iff for each pair y,z € C7, if
8(y) < B(2) then fract(v(y)) < fract(u(=)).

The array v is a boolean C?-indexed array, and is used to specify which clocks in C,
have the same fractional parts. For each clock y, ¥(y) tells whether or not the fractional



are self-evident. We prove that (s,v) | ¢ iff the algorithm labels (s, [v]) with ¢, where
b = 3(¢1 U-.92). The other case ¥ =V (¢1U..¢2) is similar.

Proof of =: First observe the following property which follows from the definition
of the successor function. For any clock assignment v, and time values ¢,¢" € R, we can
find a finite sequence of length j of equivalence classes {[v' 4+ ¢;]* : 1 <@ < j} related by
successor function (that is, suce([v' +t;]*) = [v' + ti41]"), such that for all t < ¢ < ¢/, for
some 1 <k <j, (v +t") =" (v + t).

Now suppose (s,v) | . Let r: {{s;,v;,t;) : ¢ > 0} be the (s,v)-run which satisfies
$1 U2, and let p be the corresponding path. There exists ¢ ~ ¢ such that p(t) | ¢
and p(t') = ¢1 for all ¢ < t. We will construct a corresponding F,-fair path in R(G, ¢).

Let vio = [z — t;]y; for © > 0. Using the above mentioned property, for each i > 0, we

can find a path j; through R(G, ¢) of the following form:
(s, [vio]") — (s, [va]") — -+ (si, g, ]") — (sig, [yl ),

for some j;. This path is constructed by taking the successor classes of [v;]* as time
increases from ¢; to t,41, till we reach the class [vio + (tiy1 — t;)]*. We know for all
t; <t < tiy1, there is some 0 < k < j;, such that (v +t' — ;) =* vig.

Let 3 be the concatenation of all such segments. Since time progresses along r, there
is some ¢ such that ¢; > ¢, (and, for any j > 1, t; > ¢,, since & never gets reset). Also for
every clock y € C, if it is not reset after a certain point ¢, then there exists a later point
k such that for any 7 > k,v;(y) > ¢,. So from the construction of 3 it follows that it is
F-fair.

Now we will show that [ satisfies the formula ¢1 U (¢p2 A pac A (pp V ¢1)). We will use
v;; to denote the vertex (s;, [v;]*). Let tp <t < tjq1.

The way we have constructed i, we can find [ < jj such that (vgo +t — t) = vi.

First, since t ~ ¢, we obtain vy () ~ ¢, and hence vy is labeled with p...

Since p(t) E ¢2, and TCTL-formulas cannot distinguish between equivalent states,
(Sky k1) = ¢2. So by the induction hypothesis vy is labeled with ¢,.

Let vgrr, be a node on 3 before vy (that is, either &' < k or (k' = k and I’ < [)). The
way we have constructed Sy, there is t <t < tp41, such that vy + (' —tp) =* vy and
t' < t. Since p(t') = ¢1, we obtain (sp, vpr) | ¢1. So by the induction hypothesis vy is
labeled with ¢;.

If vy is not labeled with py, then v is not a boundary class, and there exists a positive
6 such that vg — 6 =* vy Since p(t — 6) = ¢1, vi should be labeled with ¢;.

Hence the start vertex of 3, that is (s, [[z — 0]v]*), should be labeled with .

Proof of «: Let us start with the following observation which follows from the
construction of the region graph: Let (s, a1),...(s',a,) be a path in R(G, ¢) consisting
solely of edges corresponding to the passage of time. Suppose there is edge from (s, ;)
to (s”,a’) corresponding to a state-transition. Now given that the state (s, ') appears
on a partially constructed run of G at time ¢ such that [z — t]v' € a;, we can find
time ¢’ such that the run can be extended by a transition from s’ to s” at time ¢'. Also
[7((s', ")) = 0](v + 1 —1t) €.

Now assume that the algorithm labels (s, [v]) with ¢). There exists an Fj,-fair path in
R(G, ¢) of the form

(5.1l = 0)U]) = o1 = 02+ = 0 = v



5.3 Labeling Algorithm

We label the augmented regions with subformulas of ¢, or their negations, starting from
the subformulas of length 1, then of length 2, and so on. Initially, we also label the
augmented regions with special propositions as follows. Every vertex is labeled with the
formula true. For every subscript ~ ¢ appearing in ¢, let there be a new proposition p...
Label a vertex (s, [v]*) with p.. if v |E @ ~ ¢, else label it with —p... Furthermore, let p,
be a new proposition which is true at a vertex (s, a) iff  is a boundary class.

Let ¥ be a subformula of ¢. Assume that the vertices are already labeled with each
subformula of 1. Let v = (s, [v]) be any augmented region.

e If ¢ is an atomic proposition, then if ) € u(s) then label v with ¥ else with —.

o If ¢ is the implication ¢; — ¢, then, if v is labeled with =¢; or with ¢, then label
it with @ else with —.

e Suppose © is the temporal formula () (¢1 U..$2), where () is either an existential or
universal quantifier. Label v with 1, if some (or, every, depending upon Q) F,-fair
path through R(G, ¢) starting at (s, [z — 0]v]*), has a prefix vy, vq, . .. v,, such that
each v;, 1 <17 < n, is labeled with ¢;, and v, is labeled with ¢,, and with p.., and
with either p, or ¢;. Otherwise label v with —.

Let us consider the last clause carefully. First, notice that, as mentioned earlier, we
search for the paths starting at (s, [[x — 0]v]*) instead of v itself. This ensures that the
constraints satisfied by = properly reflect the time taken to traverse a path. Clearly, the
last vertex v, should satisfy the constraint x ~ ¢. Also it should be labeled with ¢;, and
all the previous vertices v;, 1 < ¢ < n, should be labeled with ¢;. The last requirement
that v, be labeled with either p, or ¢; requires some explanation. Suppose v, = (s,, ay,).
If o, is not a boundary class then if the equivalence class along a computation path is
ay, at time ¢, then it is «,, at some time ¢’ < t also. Since we want ¢; to hold at all time
instants preceding some point corresponding to v,, we require, in this case, that ¢; should
hold at v,, also.

The condition required for computing a label from the labels of the subformulas can
be tested using conventional model-checking algorithms for CTL [12].

As an example consider again the region graph shown in Figure 3. Suppose there are
two propositions p and ¢, such that the proposition p is true only at sy and the proposition
g is true only at s;. The vertices 0, 2, 4, 5, 7, 10, and 12 are labeled with p;, and the
other vertices are labeled with —p;. Consider the formula ¢ = 3(pU<; ¢ ). The algorithm
will label the vertex 0 with ¢. For instance, the path 0,1,5,8,10,9,9.9... is an infinite
fair path starting at 0 such that all of ¢ and p, and p<; hold at the vertex 5, and p holds
at vertices 0 and 1. On the other hand, for ) = 3C5p, the algorithm labels the vertex
0 with —. This is because none of the vertices appearing on an infinite path starting at
the vertex 0 is labeled with both p and p>;.

The following lemma states the correctness of the above labeling procedure.

Lemma [Correctness of the labeling algorithm]. Let ¥ be a subformula of ¢.

The above labeling algorithm labels (s, [v]) with ¢ iff (Mg, (s,v)) E . =

Proof. We assume that the CTL labeling algorithm works correctly. The proof is
by induction on the structure of 1. The cases v € AP, ¥ = false, and ¥ = ¢; — ¢»
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(s, suce(a)) representing passage of time (if « is the end-class, then it has no successor,
and this edge does not exist). In addition, we put edges representing transitions of G
also. Let e = (s,s') be an edge of G. If the current clock values satisfy the enabling
condition 7(e) then the transition e can be taken before the equivalence class changes.
The new class in this case is a with the clocks in 7 (e) reset to 0, and we put an edge to
(s',[7(e) — 0]cr). Also the transition from s to s’ can occur precisely at the instant when
the current equivalence class changes succ(a), provided this new class suce(«) satisfies the
enabling condition 7(e). In this case, we put an edge to the vertex (s', [x(€) > 0]suce(a)).
The precise definition of the region graph is given below.

Definition [Region graph]|. The region graph R(G, ¢) is defined to be the graph
(V*, E*). The vertex set V* is the set of all augmented regions. The edge set E* consists
of two types of edges:

e Edges representing the passage of time: Each vertex (s, ), where « is not the end
class, has an edge to (s, suce(a)).

e Edges representing the transitions of G: Each vertex (s,a), for each edge e =
(s,s") € E, has an edge to (s', [[x(e) — 0]v]*), provided (i) « is not a boundary class,
and (ii) either v € o or v € suce(r), and (iii) v satisfies the enabling condition 7(e).

There is a simple correspondence between the runs of G and infinite paths through
R(G, ¢). Let r: {(s;,vi,t;) : © > 0} be any run of G. Later we will show that we can
find a path 3 in R(G, ¢) by connecting augmented regions of the form (s;, [[z — t;]vi]").
Since time progresses without bound along r, every clock y € C* is either reset infinitely
often or eventually it always increases. Hence, for each y € C*, along 3, infinitely many
augmented regions satisty either y = 0 or y > ¢,.

Let us denote the set

{{s, [V]) s €S A (vly) =0V v(y) > ¢}

by F,, for y € C*. If we treat the region graph as a structure for CTLY with the fairness
family given by F, = {F, : y € C*}, then the paths corresponding to the runs of G are
F,-fair. Conversely, for any F,-fair path in the region graph, we can find a corresponding
run along which time increases without bound.

The construction of the region graph can be best understood through the example
shown in Figure 3. The timed graph has three states sg, s1, and s, and two clocks y and
z. Looking at the enabling conditions we get ¢, = ¢, = 1. To construct the region graph
we introduce a new clock z, and let ¢, = 1 (this means that we can use the region graph
for model-checking any TCTL-formula ¢ with ¢, = 1). In the region graph, we have
only shown those vertices that are reachable from the initial vertex (so, {x =y = z = 0}).
Each vertex is labeled with the node of the timed graph, and the constraints describing
the equivalence class of clock values (the condition © = z holds at all vertices, but is
omitted). Notice that though the timed graph has an edge from s, to sg, in the region
graph there is no way to reach an sg-vertex from the s,-vertices. Thus the region graph
helps in detecting timing inconsistencies along the paths in the original timed graph.
Every infinite fair path starting at the initial vertex 0 ends in looping at the vertex 9.
Observe that looping indefinitely at vertex 6 or 8 is disallowed by the fairness conditions.



only when the state moves to a new region. Hence, instead of the desired run we search for
a finite sequence of regions starting at (s, [¢]) such that each region can be reached from
the previous one by a state-transition or increase in the values of clocks. Furthermore, %
should be true in the last region in the desired sequence, and the total time elapsed in
traversing it must be less than c.

We could define an edge relation over the regions, and label each region with the
subformulas of ¢ using the above idea. However, the complexity of the algorithm can
be improved using the following trick: To keep track of the time elapsed in traversing a
sequence of regions we introduce an extra clock @ ¢ C. Let C* = CU {z} and let I'*(Q)
denote the set of all assignments from C* to R. Let ¢(¢) denote the largest constant
appearing in ¢. We define an equivalence relation =* over I'*(GG) similar to the relation
= on ['(G) with ¢; = ¢(¢). Furthermore, for a clock assignment v € I'*(G), let [v]*
denote its equivalence class with respect to =*.

Let us call an element of the form (s, [v]*), where s € S and v € T*(G), an augmented
region. Note that each region is refined into many augmented regions. Now to determine
the truth of a formula 3O .1 in a region v, we try to find a region v’ where @ holds,
and a path from the region v augmented with z = 0 to an augmented region which is a
refinement of v’ and satisfies < ¢. The new clock z is never reset along this path, and
is updated consistently with the other clocks. This ensures that the path can indeed be
traversed within time c. If ¢ itself is temporal formula, say, 30541, we search for an
appropriate path starting at the region v’ augmented with z = 0. Thus the clock x gets
reused for evaluating all subformulas. Note that the value of x is used to evaluate the
subscripts on the temporal operators, and is of no importance once it crosses ¢(¢), and
hence while defining =* over I'*(G) we take ¢, = ¢(¢).

The edge relation between augmented regions captures two different types of events:
(1) transitions in G, and (2) moving into a new equivalence class of clock assignments
because of the passage of time. We define a successor function over equivalence classes of
clock assignments to capture the second type of transitions.

Definition [Successor region|. Let « and § be distinct equivalence classes of
I'*(G). The class [ is said to be the successor of «, written succ(a) = 3, iff for each
v € a, there exists a positive t € R such that v+t € 3, and v+t € aU B forall t/ <t. =

Successor is defined for every equivalence class except the end class — the equivalence
class satisfying x > ¢, for all clocks z.

Let us consider the equivalence classes shown in Figure 2 again. The successor of
any class « is the class to be hit first by a line drawn from some point in « in the
diagonally upwards direction. For example, the successor of the class {(1,0)} is the class
{(z,y): (Il <2 <2)A(y=a—1)}. The successor of {(z,y):0 <y <z <1} is the class
{(Ly): 0 <y < 1}.

Let us call an equivalence class a a boundary class, if for each v € a and for any
positive ¢, v and v + t are not equivalent. In the above example, the classes which lie on
either horizontal or vertical lines are boundary classes.

Now we can construct the region graph as follows. Consider a vertex (s, a). Suppose
« i1s a boundary class. Then the only way a region change occurs is due to the passage
of time. This is because the equivalence class changes before any transition of G can
occur. Hence there is a single outgoing edge to the vertex (s, succe()). Now consider
the case that « is not a boundary class. As in the previous case we put an edge to



We will show that there is an (s, v')-run ' : {(s;, v/, t}) : ¢ > 0} such that (v, ;) = (v, 1)
for all « > 0.

Given r we construct the desired run r’ step by step. The base case follows since v = v/
and ty = t; = 0. Now suppose we have constructed " up to 7 steps. Let 6 =t;41 —¢; be
the delay between the (¢ 4+ 1)-th and i-th transition of r. We try to find ¢’ so that we can
extend r’ using the edge e; = (s;, s;41) at time ¢ 4 6’ so that equivalence is maintained at
the (¢ + 1)-th step.

Let A be the set {t;} U{v;(z) : x € C}. The set A’ is defined similarly. Because of the
equivalence at the i-th step, the necessary and sufficient requirement of the desired ¢’ is
that each element in A’ should cross the same number of integer boundaries (due to the
addition of ¢') as the corresponding element from A crosses (due to the addition of ¢).

For example, let C = {z,y}. Let v; = [0.3,1.7], t; =t} =2, v/ =[0.8,1.9], t;11 = 3.4,
and v;4; = [1.7,3.1]. In this case 6 = 1.4, and ¢’ should satisfy: 0.8 + &' € (1,2),
1.94 6" € (3,4), and 24 ¢" € (3,4). So choosing 6" € (1.1,1.2) serves the purpose.

The reader can convince himself that the existence of ¢’ meeting the constraints de-
pends only on the ordering of the fractional parts of the elements in A’ which is same
as the ordering of the fractional parts of the elements in A. Hence, the existence of 6
guarantees the existence of ¢'.

Now we proceed to prove the lemma. The proof is by induction on the structure of ¢.
The base case and the cases corresponding to the logical connectives follow immediately.
We will consider the case ¢ = 3 (¢ Uncha).

Suppose (s,v) | ¢. There exists an (s,v)-run r : {{(s;,v;,t;) : ¢ > 0} with the
corresponding path p and time value ¢ such that ¢ ~ ¢, and p(t) | ¢2, and p(u) E ¢ for
all u < t.

Let r": {(s4, ¥, t}) : © > 0} be the corresponding (s, v’)-run with the associated path p’
constructed as above. Let ¢; <t < t;,;. We know that (v;,?;) and (v},t}) are equivalent.
By an argument identical to the one used in construction of r’, we can find #; < #' <t
such that (v; +1t —1;,1) = (v; +t' — 1%, t'). Clearly, ' ~ c.

Note that p(t) = (s;,v; +t —t;) and p'(¥') = (s;,v; +1' —t’). Hence, by the induction
hypothesis and p(t) | ¢2, we obtain p'(t') = ¢2.

Let u' be such that v’ < t'. Suppose t} <’ <t ,, k < j. Now using the equivalence
of (v}, 1)) and (v, tx), we can find u such that (v, +u'—1),u') = (v +u—1g, u). Note that
p(u) = (sk, vk +u—tx) and p'(v') = (sg, v, +u' —t,). Using the fact that p(u) = ¢,
and the induction hypothesis, we get p'(u’) |= ¢;.

Thus p' fulfills ¢1 U..¢2, and hence, (s, V') = ¢. »

5.2 The region graph

The basic idea of our algorithm is to construct a finite structure from the finitely many
regions and then to employ the usual discrete-time model-checking techniques.

Let ¢ be any TCTL-formula. A subformula of ¢ is simply a syntactic subformula of
¢. We want to label the regions with all the subformulas of ¢ such that (s, [v]) is labeled
with ¥ iff (Mg, (s,v)) E .

Suppose we want to determine whether (s, [v]) should be labeled with 3& b, We
try to find a run starting at (s,r) such that the associated path satisfies O..tp. As time
progresses, the state of the system changes, but the truth of the subformula ¢ can change



Figure 2: Equivalence of clock assignments

Definition [Equivalence of clock assignments]. For clock assignments v and v/
in I'(G), v = v iff the following conditions are met:

e For each clock « € C, either |v(z)]| and |v'(z)] are the same, or both v(z) and v'(x)
are greater than c,.

e For every pair of clocks x,y € C such that v(z) < ¢, and v(y) < ¢,

L. fract(v(z)) < fract(v(y)) iff fract(v'(z)) < fract(v'(y)), and
2. fract(v(z)) = 0 iff fract(v'(z)) = 0.

Let us consider an example with two clocks  and y with ¢, = 2 and ¢, = 1. The
equivalence classes are shown in Figure 2. Corner points (e.g. (1,1)), open line segments
(eg. {(z,y):(0<az<)A(x=y)}, {(x,1): 2 > 2}), and open regions (eg. {(z,y) :
O<z<y<l} {(z,y): (1 <az<2)A(y>1)}) represent different equivalence classes.

We will use [v] to denote the equivalence class of I'(G) to which v belongs. A region
is a pair (s,[v]), where s € S and v € ['(G). Observe that there are only finitely many
such regions. The next lemma says that states belonging to the same region satisty the
same set of TCTL-formulas.

Lemma [Equivalence of clock assignments|. Let s € S, and v, € I'(G) with

v =, For every TCTL-formula ¢, (Mg, (s,v)) E ¢ iff (Mq,(s,v")) E¢. =

Proof. Before we prove the lemma we need to show that the runs starting at (s, v)
and (s,v') are similar in the following sense. Let r be a (s, v)-run {(s;,v;,t;) : ¢ > 0}. We
will show that there exists an (s, v’)-run v’ with the same sequence of state-transitions as
r taken at “almost” the same times.

Let us extend the equivalence relation over clock assignments to pairs of the form
(v,t), where v is a clock assignment and ¢ is a time value. Define (v, t) = (v t') iff the
following conditions hold:

e The clock assignments v and v are equivalent: v = /.

e The time values t and t' agree on their integral parts: (i) [¢t] = [¢'], and (ii)
fract(t) = 0 iff fract(t') = 0.

e The fractional part of the time value has the same relationship to that of the clocks in
both elements: for each clock x, (i) fract(v(z)) < fract(t) iff fract(v'(x)) < fract(t'),
and (ii) fract(v(z)) > fract(t) iff fract(v'(z)) > fract(t).



A TCTL-formula ¢ is called finitely-satisfiable iff there exists a timed graph G such
that G = ¢. =

It turns out that the finite satisfiability question is also undecidable. Consequently,
automatic synthesis of a timed graph meeting the constraints specified by a TCTL-formula
is not possible in general.

Theorem [Undecidability of finite satisfiability]. The set of finitely-satisfiable
TCTL-formulas is not recursive. =

Proof. We reduce the halting problem for 2-counter machines to the finite satisfiability
question.

While proving the undecidability of TCT L-satisfiability, we encoded the computations
of a given 2-counter machine M using a formula ¢. Now let us assume that M is deter-
ministic and its halting corresponds to the location counter taking a specific value, say, n.
Let % be the conjunction of ¢ and the halting requirement V< p,,. It M does not halt, then
Y is not satisfiable. If M halts, then it does so in, say, m steps, with the counter value
never exceeding m. In this case, we construct a timed graph with just one run, which
corresponds to the encoding of the finite computation of M. Thus, % is finitely-satisfiable
iff M halts. =

5 Model-checking

In this section we will develop an algorithm for deciding whether a finite-state real-time
system presented as a timed graph meets its specification given as a TCTL-formula. We
will also study the complexity of the model-checking problem.

5.1 Equivalence of clock assignments

Suppose the system is described by a timed graph G = (S, p, $iit, E, C, 7, 7). The timed
graph has infinitely many states, and the TCTL-structure corresponding to it is infinite.
However, not all of these states are distinguishable by our logic. If two states correspond-
ing to the same node agree on the integral parts of all the clock values, and also on the
ordering of the fractional parts of all the clocks, then the computation trees rooted at
these two states cannot be distinguished by TCTL-formulas. The integral parts of the
clocks in a state are needed to determine whether or not a particular enabling condition
is met, whereas the ordering of the fractional parts is needed to decide which clock will
change its integral part first. For example, if two clocks x and y are between 0 and 1 in a
state, then whether or not a transition with enabling condition x = 1 can be followed by
a transition with enabling condition y = 1, depends on whether or not the state satisfies
r <y.

The integral readings of the clocks can get arbitrarily large. But if a clock z is never
compared with a constant greater than ¢ then its actual value, once it exceeds ¢, is of no
consequence in deciding the allowed paths.

Now we formalize this notion and prove our claim. For x € C, let ¢, be the largest
constant that z is compared with in any enabling condition. For ¢t € R, fract(t) denotes
the fractional part of ¢, and [t] denotes its integral part.



Now we define a run of a timed graph to formally capture its behavior. An (s, v)-
run records the states at time instants at which the transitions occur along a possible
computation of the system started in (s, v).

Definition [(s,v)-run]|. Given a state (s,v) of G, an (s,r)-run of G is an infinite
sequence

({(s0, V0, t0), (S1,1,t1), (S2,v2,12),...)

of nodes s; € S, clock assignments v; € I'(G), and times t; € R satistying the following
constraints:

e [nitialization: The run starts in state (s,v) at time 0: so = s, vg = v, and tg = 0.
o Consecution: For each ¢ > 0:

— Time of (¢4 1)-th transition is strictly greater than the time of 7-th transition:
ti-}—l > ;.

— €; = (8;,8,+1) 1s an edge in E.
— The clock assignment v;41 at time ¢;11 equals [7(e;) — 0](v; + tiy1 — ).

— The clock assignment (v; + t,41 — ;) satisfies the enabling condition 7(e;).

o Progress of time: Every time value is eventually reached, that is, for any ¢ € R,
there exists some j such that ¢; > ¢.

The last restriction in the above definition rules out the behaviors in which an infinite
number of transitions occur in a bounded interval of time.

An (s,v)-run gives a (s,v)-path p as a map from R to the states of the system: for
t e R, ift; <t <tj41 then the state p(t) at time ¢ is (s;,v; +t — ;).

The paths generated by a timed graph have certain noteworthy properties. First, the
state (s;, (v; 4 tiy1 — i) is the left limit of p as time approaches t,;1. At the transition
point there is a possible discontinuity because of resetting of some of the clocks. The
clock assignment at time ¢;11 shows the values of the clocks in 7(e;) as 0. We can view
p as a map giving the truth assignment to propositions at every time instant. Then the
values of all the propositions remain the same over the time interval [t;,¢,41) (thus, p is
right-continuous). Hence, the value of any proposition changes at most w times along p.

Now that we have defined the computation paths generated by a timed graph, we can
associate a TCTL-structure with it.

Definition [TCTL-structure of a timed graph|. Given a timed graph G, the
corresponding TCTL-structure is Mg = (S x I'(G), ¢/, f), where the labeling function
is defined by p'({s,v)) = p(s), and f((s,v)) consists of the paths corresponding to the
(s,v)-runs of G. m

It is straightforward to verify that the collection f of paths in the above definition
satisfies suffix-closure and fusion-closure requirements. Now we can interpret TCTL-
formulas over a timed graph.

Definition [Finite Satisfiability]. For a TCTL-formula ¢ and a timed graph G, we
define G |= ¢ precisely when (Maq, (Sinit, Vinit)) |E ¢, where vy, is defined by vy (z) =0
for all z € C.
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Figure 1: Timed graph

the difference between their readings. Thus having multiple clocks allows modeling of
multiple concurrent delays.

Definition [Timed graph|. A timed graph is a tuple G = (S, g, $iit, E, C, 7, 7),
where

S is a finite set of nodes.
24P is a labeling function assigning to each node the set of atomic

piS —
propositions true in that node.

Sinit € S 1s the start node.

E CS xSis aset of edges.

C is a finite set of clocks.

7 : E — 2° tells which clocks should be reset with each edge.

7 is a function labeling each edge with an enabling condition built using the
boolean connectives from the atomic formulas of the form z < cor ¢ < z,
where x € C and ce N 7.

The system starts at node s;,;; with all its clocks initialized to 0. The values of all
the clocks increase uniformly with time. At any point in time, the system can make a
transition if the associated condition is satisfied by the current values of the clocks. The
transitions are instantaneous. With each transition e, the clocks in 7(e) are reset to 0
and start counting time with respect to that transition. At any instant, the state of the
system can fully be described by specifying the current node and the values of all its
clocks. Any behavior of the system gives a map from R to such states.

A clock assignment for a set of clocks C is a function from C to R. Let I'(G) denote
the set of all clock assignments for the clocks of G. A state of the system is of the form
(s,v), where s € S and v € I'(G).

Some notation: Let v € I'(G) and ¢t € R. Then v + ¢ denotes the clock assignment
which assigns to each clock y the value v(y)+1¢, and [z — t]v denotes the clock assignment
for CU{z} which assigns ¢ to « and agrees with v on the values of the rest of the clocks.

“We could generalize the enabling conditions to allow all quantifier-free formulas built using the
primitives of linear order, constants, and addition by constants, but allowing addition of variables makes
model-checking undecidable [2].



The nature of the initial configuration can be easily expressed in TCTL. To relate
one configuration to the next, we establish a one-to-one correspondence between the
states separated by distance 1. The desired formula ¢ has one conjunct for each program
instruction. For instance, if the second instruction is to increment § (and proceed to
instruction 3), ¢ has the following conjunct:

VOp,2) (P3 A At<icn,izs =pi) A
vo Ujo,1)p2 — vl:‘[0,1) COPy(Pa) N
V(copy(ps) U<1 ¥ (toggle(ps) Uso ps )]

The abbreviation copy(p) stands for the conjunction

(p = VOzup) A (mp = VO 7p),
and toggle(p) stands for the conjunction

(p = VO=1-p) A (mp — VO p).

The first conjunct requires the propositions representing the instruction counter change
according to the desired scheme. The second conjunct makes sure that the number of
times the value of p, changes is the same in the next configuration as in the current one.
The third conjunct holds at time ¢, iff the number of changes in the value of pg in the
interval [t41,t+42) is precisely one greater than the corresponding number for the interval
[t,t+1).

The conjunction of ¢ with the recurrence requirement VOV py is satisfiable iff M
has a computation with the location counter equal to 1 infinitely often. Consequently,

TCTL-satisfiability is X}-hard. m

4 Timed graphs

In this section we introduce timed graphs to model finite-state real-time systems. A timed
graph operates with finite control — a finite set of nodes and a finite set of real-valued
clocks. All clocks proceed at the same rate and measure the amount of time that has
elapsed since they were started (or reset). Each transition of the system may reset some
of the clocks. With each transition we associate an enabling condition which puts certain
constraints on the values of the clocks, and require that the transition may be taken only
if the current values of the clocks satisty this condition.

For example, Figure 1 shows a system with four nodes and two clocks x and y. The
clock x is reset on the transition from sy to s;. At any instant, the value of = equals
the time elapsed since the last time this transition was taken. The enabling condition
associated with the s; to s3 transition expresses the following timing constraint: the delay
between the transition from sy to s; and the transition from s; to ss has lower bound 1
and upper bound 2. Similarly, the clock y constrains the transition from s3 to s¢ to occur
at least 2 time units later than the s; to sy transition.

Thus to express a bound on the delay between two transitions, we reset a clock with
the first transition, and associate an enabling condition with the other transition. Note
that different clocks can be started at different times, and there is no lower bound on



A TCTL-formula ¢ is called satisfiable iff there is a TCTL-structure M and a state s of
M, such that (M,s) = ¢. =

The other logical connectives can be defined as usual. We define abbreviations 3¢
for 3 (true U..¢), VO ¢ for V (true U..¢), I0..¢ for =VO.m¢, and VO ¢ for =IO~ ¢.
The unrestricted temporal operators correspond to TCTL operators subscripted with > 0.
For example, 3 ¢ corresponds to 3C5¢¢. In TCTL we can also define temporal opera-
tors subscripted with time intervals. For instance, 30, 3¢, which says that “¢ holds at
least once during the time interval (a, b) along some computation path,” can be written as
30—e3Cc(1—a)#. Note that TCTL has no next-time operator (), because if time is dense
then, by definition, there is no unique next time.

The denseness of the underlying time domain allows us to encode computations of
2-counter machines in TCTL-formulas. Consequently, unlike other logics with similar
syntax but discrete-time semantics (e.g. RTCTL of [18]), the satisfiability question for
TCTL is undecidable — X1-hard . The proof is similar to the proof of undecidability of
a linear-time dense real-time logic [6].

Theorem [Undecidability of TCTL]. The satisfiability question for TCTL is X}-
hard. =

Proof. The problem of deciding whether a nondeterministic 2-counter machine has
a computation in which the starting location is visited infinitely often is known to be
Y1 hard. We reduce this problem to TCTL-satisfiability.

Let M be a 2-counter machine with counters a and 3, and n program instructions.
Each instruction may increment or decrement one of the counters, or may be a conditional
jump depending on one of them being zero, or may be a nondeterministic jump selecting
between two locations.

A configuration of the machine is represented by a triple (¢, ¢, d), where i gives the
instruction to be executed next, and ¢ and d give the contents of the counters o and 3,
respectively. A computation of the machine is an infinite sequence of triples starting with

(1,0,0).
We encode the computations of M in our logic using the propositions p,, pg, and
P1,...Pn. Let us say that a path p in a given structure encodes a configuration (z, ¢, d)

over the interval [a,b), with a,b € R and a < b, iff the following hold:

e The proposition p, is changes its value exactly ¢ number of times in the interval
[a,b) along p.

e The proposition pg is changes its value exactly d number of times in the interval
[a,b) along p.

e Each proposition p;, j # t, is false everywhere in the interval [a, b) along p.

e The proposition p; is true everywhere in the interval [a, b) along p.

We construct a TCTL-formula ¢ such that for all structures M and states s, (M, s) E ¢
iff there exists a computation {{¢;,¢;,d;) : j > 0} of M such that every s-path p in M
encodes the j-th configuration over the interval [5,7 + 1) for all j > 0.

5The class ¥} consists of highly undecidable problems, including some non-arithmetical sets. See, for
instance, [35] for an exposition of the analytical hierarchy.



1. Suffiz closure:
Vs e S.Vpe f(s).VteR. p' € flp(t)]

2. Fusion closure:

Vs € 8.5p € f(s). V1 € R. [pefp(0)] € ()]

The fusion-closure condition says that the behavior of the system does not depend on
the past and only on the current state. If a state s appears along a path at time ¢, the
set of all possible computation paths can be obtained by concatenating the prefix up to
time ¢ with all the computations in f(s). This requirement ensures that the reachability
relation over § induced by f is transitive.

Since the states of a TCTL-structure are labeled with propositions, every computation
path p has an associated map (p-p) from R to subsets of AP. Note that the definition of a
TCTL-structure admits any variation of truth values of propositions along a computation
path (for instance, one may define a path along which p is true at all rational times
and false at all irrational times). The computation paths of a real-time system should
satisfy the finite variability condition: along a computation path the truth value of a
proposition should change at most w number of times. One can include this requirement
in the definition of a TCTL-structure, but this choice does not change the complexity
results to be presented.

Now we proceed to define the syntax and semantics of TCTL. Let N be the set of
constants {0,1,2,...} denoting the natural numbers ®. Throughout the paper we will use
~ to mean one of the binary relations <, <, =, >, or >.

Definition [Syntax]. The formulas ¢ of TCTL are inductively defined as follows:

¢:=0p | false | O1 — P2 | = (</51 U~c¢2) | V(¢1 U~c¢>2)
where p € AP and c € N. »

Informally, 3( ¢1 U< p2) means that for some computation path, there exists an initial
prefix of time duration less than ¢ such that ¢, holds at the last state of the prefix and ¢,
holds at all its intermediate states. V( ¢1U<.¢2) means that for every computation path,
there is an initial prefix with the above property. We define below what it means for a
TCTL-formula to be true in a state of a TCTL-structure.

Definition [Satisfiability]. For a TCTL-structure M = (S, pu, f), a state s € S,

and a TCTL-formula ¢, the satisfaction relation (M,s) |= ¢ is defined inductively as
follows:

piff p € u(s).

false.

(¢1 = ¢2) iff s = ¢y or s = ¢a.

3 (¢1 Ucp) iff for some p € f(s), for some t ~ ¢, p(t) | ¢2, and for all
0<t' <t p(t') E ¢1.

s |V (d1Up2) i for every p € f(s), for some t ~ ¢, p(t) = ¢q, and for all
0<t' <t p(t') E ¢1.

5Instead of N we can choose a set which has a constant symbol corresponding to each rational number.
With suitable scaling the model-checking algorithm can still be used.
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3 TCTL: Syntax and semantics

In CTL we can write a formula 3 p, which says along some computation path, p even-
tually becomes true. CTL does not provide a way to put a bound on the time at which
p will become true. A natural and straightforward extension is to put subscripts on the
temporal operators to limit their scope in time [25, 18]. For example, we can write 3 5p
to say that along some computation path p becomes true within 5 time units. We use
this approach to introduce explicit time in the syntax of TCTL.

To define the semantics, first we need to generalize the notion of a computation path.
Recall that in the qualitative case, a path is simply an w-sequence of states. In the
quantitative case, if we assume that along any particular computation path there is a
unique state at every instant of time, then we can view the computation paths as maps
from the time domain R * to states of the system.. Formally,

Definition [s-path]. for a set S of states and s € S, an s-path through S is a map
p from R to § satisfying p(0) = s. =

A structure for a branching-time logic should specify a set of labeled states and should
associate a computation tree with each state. In discrete time, a structure can be described
by associating a set of “next” states with each state; that is, by a binary relation over
the set of states. In dense time, there is always a third state between any pair of states
on a path, so another characterization of trees must be used. An alternative way to
describe a tree is by specifying a collection of computation paths satisfying certain closure
conditions [15]. We use this approach to define the structures for TCTL. To state the
precise definition of a “dense” tree consisting of “dense” paths, we need some auxiliary
definitions.

Let S be a set of states, p be an s-path through §, and ¢ € R be any time. The prefiz of
p up to time t, denoted by p;, is a map from [0, 1) to S obtained by restricting the domain
of p. The suffiz of p at time ¢, denoted by p’, is a p(t)-path defined by p'(t') = p(t 4 t')
for every ¢’ € R. Furthermore, if p’ is some map from [0,¢) to S, then its concatenation
with p, denoted by p’-p, is defined by:

' . ’ no_ p'(t) if "<t
for t" € R: (p-p)(t') = { p(t" —t) otherwise

If 11 is a set of s-paths, then p’-1I is defined to be the set {p’-p: p € 11}.
Now we can define the notion of a TCTL-structure. Let AP be a set of atomic
propositions.

Definition [TCTL-structure]. A structure for TCTL is a triple M = (S, u, f),

where

e S is a set of states.

o i : S — 24F is a labeling function which assigns to each state the set of atomic
propositions true in that state.

e [ is a map giving for each s € § a set of s-paths through S. f satisfies the following
closure properties:

“Instead of R we can choose the set of rational numbers to model time. OQur results rely on the fact
that the underlying domain is a dense linear order.



3 O ¢ intuitively means that there is an immediate successor state, reachable by
executing one step, in which ¢ holds. 3 (¢1 U ¢3) means that for some computation path,
there exists an initial prefix of the path such that ¢; holds at the last state of the prefix
and ¢; holds at all the intermediate states. V (¢1U ¢2) means that for every computation
path the above property holds.

Some of the commonly used abbreviations are: 3O ¢ for 3(true U ¢), VO ¢ for V( true U ¢),
10 ¢ for -VO—¢, and VO ¢ for =3O—¢.

Formally, the semantics of CTL is defined with respect to a Kripke structure M =
(S, 1, E), where S is a countable set of states, u : & — 2AF gives an assignment of truth
values to propositions in each state, and E is a binary relation over & giving the possible
transitions. A path is an infinite sequence of states (sg, s1...) such that (s;,s;41) € E for
all ¢ > 0. Given a CTL-formula ¢ and a state s € S, the satisfaction relation (M, s) | ¢
(meaning ¢ is true in M at s) is defined inductively as follows (since the structure is

fixed, we abbreviate (M, s) = ¢ to s |= ¢):

s = p iff p € p(s).

s [~ false.

sk 1 — ¢ iff s £ @1 or s E ¢.

s =30 ¢ iff t | ¢ for some state t € S such that (s,t) € E.

s = J(é1U ¢y) iff for some path (sg,s1,...) with s = sq, for some ¢ > 0,
si = ¢z and s; = ¢q for 0 < 5 < i

s = V(41U ¢y) iff for every path (sg,s1,...) with s = sg, for some ¢ > 0,
si = ¢z and s; = ¢q for 0 < 5 < i

A CTL-formula ¢ is called satisfiable iff there is a Kripke structure M and a state s of it
such that (M, s) = ¢. CTL has the finite-model property: if a CTL-formula is satisfiable,
then it is satisfiable in a structure with a finite set of states (in fact, in a structure of size
exponential in the size of the formula) [17]. Consequently, the satisfiability question for
CTL is decidable. It has been shown that it is deterministic exponential-time complete.
However, the model-checking problem is in PTIME — given a CTL-formula ¢ and a
Kripke structure M = (S, pu, E) together with a state s € S, there is an algorithm for
deciding whether or not (M, s) = ¢ which runs in time O[|¢| - (|S| + |E|)] [16].

Finite-state concurrent systems can be modeled as finite Kripke structures. Given a
system modeled as a Kripke structure and the specification as a CTL-formula, the model-
checking algorithm can be used to decide whether or not the implementation satisfies the
specification.

In verifying concurrent systems, we are generally interested only in correctness along
the fair computation paths [26]. For example, in a system with two processes, we may wish
to consider only those computation sequences in which each process executes infinitely
often.

Since CTL cannot express correctness along fair paths, Clarke et.al. have defined
CTL" by changing the semantics of CTL [12]. The syntax of CTL is same as that
of CTL, however, a CTL" -structure M has an additional component F' C 25. A path
(S0, 81,...) is called F-fair if for each a € F, there are infinitely many 7 such that s; € a.
Given a CTL"-formula ¢, we change the meaning of (M,s) = ¢ so that the path-
quantifiers range only over F-fair paths. The model-checking algorithm for CTL can be
modified to handle this extension of CTL at a cost of a factor of |F].



and the length of the timing constraints, but linear in the size of the state-transition graph
and the length of the formula. We show the problem to be PSPACE-complete.
Finally, in Section 6, we discuss various ways to extend our results.

Related work

There have been several temporal logics with quantitative time (see [7] for a survey).
These include linear-time logics with discrete semantics [23, 32, 6, 19], linear-time logics
with dense semantics [8, 25], and branching-time logics with discrete semantics [18]. The
syntax of our logic is very similar to that of Real-Time CTL of [18]. Verification algorithms
have been developed for the logics with discrete semantics, but in the case of dense-time
model the only previously known result is an undecidability result: in [6] it is shown that
the satisfiability problem for a real-time extension of the linear-time temporal logic PTL
is undecidable (X}-hard) in the dense-time model.

Different ways of incorporating timing constraints in the state-transition graph model
of a system have been studied recently. Perhaps the most standard way of introducing
timing information in a process model is by associating lower and upper bounds with
transitions. Examples of these are timed transition systems [32, 20], timed [/O automata
[29], and Modecharts [24]. Our definition of timed graphs is based on the formalism of
timed automata [14, 4]. Timed automata accept timed traces — sequences of events in
which each element has an associated real-valued time of occurrence. The semantics of
timed automata is linear-time and event-based, whereas the semantics of timed graphs is
branching-time and state-based. An automata-theoretic approach to verification of timing
requirements of real-time systems has been developed using timed automata [4].

A model similar to ours was independently proposed and studied by Lewis [27]. He
defines state-diagrams, and gives a way of translating a circuit description to a state-
diagram. A state-diagram is a finite-state machine where every edge is annotated with
a matrix of intervals constraining various delays. Both the formalisms, state-diagrams
and timed graphs, have the same expressiveness. In [28], Lewis defines a branching-time
logic similar to TCTL: the syntax extends CTL with time-bounded versions of temporal
operators, and the formulas are interpreted over the state-diagrams. Lewis presents an
algorithm for model-checking for a special class of state-diagrams; the ones in which only
a bounded number of transitions can happen in a time interval of unit length. Our
algorithm does not need the latter assumption, and has a better worst-case complexity.
We note that the decidability and lower bound results presented here carry over to his
formalism also.

2 Computation Tree Logic

Computation tree logic (CTL) was introduced by Emerson and Clarke [16] as a specifica-
tion language for finite-state systems. Let us briefly review its syntax and semantics.

Let AP be a set of atomic propositions. The formulas of CTL are inductively defined
as follows:

¢:=p|false [ ¢ — ¢2 | IO ¢1 | F(d1U ¢2) | V(61U ¢2)
where p € AP, and ¢4, ¢5 are CTL-formulas.



transition we associate a time value chosen from the set of nonnegative reals R. We regard
computations as continuous trees, in which the paths are maps from the time domain R
to states of the system. This model differs from the discrete-time model because it allows
an unbounded number of environment events to happen between two successive system
transitions. It differs from the fictitious-clock approach because the exact bounds on the
actual delays between the transitions can be expressed.

We propose a real-time extension of CTL, which we call timed CTL (TCTL), and
interpret formulas over continuous computation trees. We model systems with delays
using titmed graphs. The main result of the paper is a model-checking algorithm for
determining the truth of a TCTL-formula with respect to a timed graph. Our results
show that the choice of a dense domain to model time, instead of a discrete one, does not
significantly affect the complexity of the model-checking problem. On the other hand, we
show that the questions such as satisfiability and finite satisfiability (satisfiability with
respect to some timed graph) are undecidable for TCTL.

Outline

In Section 2, we review the definition and the relevant results about the branching-time
logic CTL. In Section 3, we define the logic TCTL. We extend the syntax of CTL to
allow subscripts of time constants on the temporal operators, limiting their scope in time.
For instance, we write 305 p to mean “there is a p-state along some computation path
within 5 time units.” To define the semantics of the logic, we generalize the notion of
computation paths from w-sequences of states to maps from R to states. We show that
because of the denseness of the underlying domain, the satisfiability question for TCTL
is X1-hard.

In Section 4, we propose the concept of a timed graph to model a finite-state real-time
system. Timed graphs can express constant bounds on the delays between the transitions
of a system. We imagine that the system is equipped with a finite set of real-valued clocks.
The clocks can be reset to 0 (independently of each other) with the state-transitions of
the system, and keep track of the time elapsed since the last reset. To express the timing
delays of the system, we associate with each transition an enabling condition which puts
certain constraints on the values of the clocks, and require that the transition may be
taken only if the current values of the clocks satisfy this condition. To interpret TCTL-
formulas over a timed graph we can associate with it a continuous computation tree over
the states of the system: a state gives a node in the timed graph, and an assignment
of time values to all its clocks. We prove that the problem of deciding whether a given
TCTL-formula is satisfiable with respect to some timed graph is unsolvable.

In section 5, we develop an algorithm for model-checking — the problem of determin-
ing the truth of a TCTL-formula with respect to a timed graph. The main difficulty in
developing such an algorithm is that a timed graph has infinitely many states due to its
real-valued clock variables. The basic idea behind the algorithm is to define an equivalence
relation over the states of the system such that any two equivalent states are indistin-
guishable by TCTL-formulas. There are only a finite number of equivalence classes under
this relation, and this enables us to obtain an ordinary finite Kripke structure from a
timed graph.

The complexity of the model-checking algorithm is exponential in the number of clocks



1 Introduction

As digital systems become smaller and cheaper, their use to control and interact with
physical processes will inevitably increase. These systems must meet hard real-time con-
straints: it is not sufficient for landing gear to descend “eventually” — there are lower
and upper bounds on when the event can occur relative to other events. Since bugs in
these systems can be subtle and expensive (possibly even life-threatening), correctness
is critical. However, traditional methods for temporal reasoning about reactive systems
[34, 33, 16, 30] abstract away from quantitative time, preserving only qualitative proper-
ties (such as “eventually p holds”). In this paper, we extend these qualitative techniques
to reason about quantitative timing behavior as well.

One of the most successful techniques for automatic verification of finite-state systems
has been model-checking: a property is given as a formula of a propositional temporal
logic and automatically compared with a state-transition graph representing the actual
behavior of the system. One of the advantages of this method is its efficiency: model-
checking is linear in the product of the size of the state-transition graph and the size of
the formula, when the logic is the branching-time temporal logic CTL (computation tree
logic) [12]. CTL model-checking has been used for proving the correctness of concurrent
systems such as circuits and communication protocols. Qur approach is to augment both
the state-transition graph and logical formulas with quantitative timing information.

First, we incorporate time explicitly in the underlying formal semantics for processes.
There are three basic approaches to modeling real-time systems. Discrete-time models
use the domain of integers to model time (e.g. [1, 23, 18]). This approach accurately
describes the behavior of synchronous systems, where all components are driven by a
common global clock. However, to model asynchronous systems it becomes necessary
to discretize continuous time by choosing some fixed quantum a priori, which limits the
accuracy with which the system can be modeled. In theory, this allows the possibility that
interesting behaviors (e.g. bugs) will be overlooked. For instance, Brzozowski et.al. show
that the reachability problem for asynchronous circuits with bounded delays cannot be
solved correctly using the discrete-time model [9]. Also the choice of a sufficiently small
time quantum to be “reasonably” safe may blow up the state space to the point where
verification is no longer feasible.

The fictitious-clock approach introduces a special tick transition in the model. Here
time is viewed as a global state variable that ranges over the domain of natural numbers,
and is incremented by one with every tick transition (e.g. [32, 6, 10, 19] ). This model
allows arbitrarily many transitions of any process between two successive tick transitions.
(The discrete-time model can be viewed as a special case where the events happen only in
lock-step with the ticks.) The timing delay between two events is measured by counting
the number of ticks between them. When we require that there be k ticks between two
transitions, we can only infer that the delay between them is at least (k — 1) time units
and at most (k + 1) time units. Consequently, it is impossible to state precisely certain
simple requirements on the delays such as “the delay between two transitions equals 2
seconds.”

The third approach to modeling real-time behavior models time, more realistically, as
a continuous quantity (e.g. [25, 29, 27, 14]). We prefer to use this dense-time model (see
[2] for some advantages of the dense-time model over the discrete models). With each



Model-Checking in Dense Real-time
Rajeev Alur?

Department of Computer Science

Stanford University, Stanford, CA 94305, USA.

Costas Courcoubetis 2

Computer Science Department, University of Crete, and
Institute of Computer Science, FORTH, Heraklion, Crete 71110, Greece.

David Dill 8

Department of Computer Science

Stanford University, Stanford, CA 94305, USA.

Abstract. Model-checking is a method of verifying concurrent systems in which
a state-transition graph model of the system behavior is compared with a temporal
logic formula. This paper extends model-checking for the branching-time logic CTL
to the analysis of real-time systems, whose correctness depends on the magnitudes
of the timing delays. For specifications, we extend the syntax of CTL to allow
quantitative temporal operators such as 35, meaning “possibly within 5 time
units.” The formulas of the resulting logic, Timed CTL (TCTL), are interpreted
over continuous computation trees, trees in which paths are maps from the set of
nonnegative reals to system states. To model finite-state systems we introduce timed
graphs — state-transition graphs annotated with timing constraints.

As our main result, we develop an algorithm for model-checking, for determining
the truth of a TCTL-formula with respect to a timed graph. We argue that choosing
a dense domain instead of a discrete domain to model time does not significantly
blow up the complexity of the model-checking problem. On the negative side, we
show that the denseness of the underlying time domain makes the validity problem
for TCTL II}-hard. The question of deciding whether there exists a timed graph
satisfying a TCTL-formula is also undecidable.

Keywords: Automatic verification, Model-checking, Real-time systems, Temporal
logic.

!Supported by the NSF grant CCR-8812595, by the DARPA contract N00039-84-C-0211, and by the
USAF Office of Scientific Research under contracts 88-0281 and 90-0057. Currently with AT&T Bell
Laboratories, Murray Hill.

2Supported by ESPRIT BRA project SPEC.

3Supported by the NSF under grant MIP-8858807.



