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A term is linear if no variable appears more than once in it. A TRS ℛ is called left-linear if for
each of its rules (𝑙, 𝑟) ∈ ℛ, 𝑙 is linear. Similarly, ℛ is right-linear if for each of its rules (𝑙, 𝑟) ∈ ℛ,
𝑟 is linear.

We say that a TRS is orthogonal if it is left-linear and has no (non-trivial) critical pairs.

Theorem: Every orthogonal TRS is confluent.

In the following, given a TRS ℛ we will denote with→ℛ (or simply→ when clear form the context)
the rewrite relation built form it.

Exercise 1 :

Consider the TRS ℒ

@(a, 𝑥)→ 𝑥

@(@(s, 𝑥), 𝑦)→ 𝑥

@(@(@(p, 𝑥), 𝑦), 𝑧)→ @(@(𝑥, 𝑧), @(𝑦, 𝑧))

1. Is → locally confluent?
2. Define a term Ω such that for all terms 𝑡, @(Ω, 𝑡) →+ @(𝑡, 𝑡). Deduce that → does not

terminate (and therefore we cannot apply Newman’s Lemma to prove confluency).
3. Is ℒ orthogonal? Is → confluent?

Solution:

(1) A TRS is locally confluent if and only if all its critical pairs are joinable. Since ℒ does not
have any non-trivial critical pair, it is locally confluent.
(2) The last rule is the only one that is not right-linear and therefore can be used to make
copies of a subterm. Moreover we notice that @(@(a, 𝑧), @(a, 𝑧)) →* @(𝑧, 𝑧) using the first
rule. Define Ω = @(@(p, a), a). For all terms 𝑡 it holds

@(@(@(p, a), a), 𝑡)→ @(@(a, 𝑡), @(a, 𝑡))→ @(𝑡, @(a, 𝑡))→ @(𝑡, 𝑡)

We conclude that ℒ does not terminate since

@(@(@(p, a), a), @(@(p, a), a))→+ @(@(@(p, a), a), @(@(p, a), a)).

(3) Since any orthogonal TRS is confluent (see Lecture) and ℒ is orthogonal, ℒ is confluent.

Exercise 2 :

Are the rewrite relations of the following TRSs confluent?

• a(𝑥, 𝑥)→ m, r→ s(r), a(𝑥, s(𝑥))→ p;
• a(𝑥, 𝑥)→ m, r→ s(r), s(𝑥)→ a(𝑥, s(𝑥))

Solution:

(1) The TRS is locally confluent (no non-trivial critical pairs), yet it is not confluent. For
example the term a(r, r) has two distinct normal forms m and p.
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a(r, r)

m . . .a(r, s(r))

p . . .

(2) First, we notice that in 4 steps we can reduce r to m:

r → s(r) → a(r, s(r)) → a(s(r), s(r)) → m

So now we know that we can replace r with m in any term. Let’s therefore consider the term
a(r, s(r)), i.e. the second element in the chain of reductions shown above. This element can be
reduced to a(m, s(m)). This term cannot be reduced to m since the only reduction path is the
infinite sequence

a(m, s(m))→ a(m, a(m, s(m)))→ a(m, a(m, a(m, s(m))))→ . . .

We conclude that the TRS is not confluent since from r i can reach both a(m, s(m)) and m.

A labelled rewrite relation (→, 𝐼, >) is a rewrite relation → where arrows are equipped with labels
from a set 𝐼 and > is a well-founded relation on 𝐼. If the arrow in 𝑠→ 𝑡 is labelled by ℓ, then we
say that 𝑠

ℓ−→ 𝑡.

Let (→, 𝐼, >) be a labelled rewrite relation. The pair (𝑎, 𝑏) representing the diagram 𝑎←− 𝑏−→
is called local peak (here, terms are omitted). Moreover, (𝑎, 𝑏) is called (local) critical peak

whenever it represent 𝑡
𝑎←− 𝑏−→ 𝑡′ and (𝑡, 𝑡′) is a critical pair.

Given a strict order > on a set 𝐼, the lexicographic maximum order >lmo is the relation on
𝐼* such that 𝑎 >lmo 𝑏 if and only if |𝑎| >mul |𝑏| where >mul is the multiset order and |.| is defined
recursively as follows:

• |𝜖| = ∅
• |𝑖𝑎| = {|𝑖|}+ (|𝑎|/{|𝑖|})

where 𝑀/𝑆 is the multiset obtained from 𝑀 by removing every occurrence of every element smaller
than an element of 𝑆. >lmo is well-founded if the same holds true for >. We extend (./.) to (𝐼*)2

and we write 𝑎/𝑏 for |𝑎|/|𝑏|.

Let (→, 𝐼, >) be a labelled rewrite relation. A tuple (𝑎, 𝑏, 𝑏′, 𝑎′) representing the diagram

𝑎

𝑏

𝑏′

𝑎′

where 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝐼*, is called decreasing diagram if 𝑏 ≥lmo 𝑏′/𝑎 and 𝑎 ≥lmo 𝑎′/𝑏.

Theorem: A labelled rewrite relation (→, 𝐼, >) is confluent if for all of its local peaks (𝑎, 𝑏) have a
decreasing diagram (𝑎, 𝑏, 𝑏′, 𝑎′). A rewrite relation → is confluent if there exists (𝐼, >) such that
(→, 𝐼, >) is a confluent labelled rewrite relation.

Exercise 3 :

Prove Newman’s lemma using decreasing diagrams techniques.
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Solution:

Suppose → be a terminating and locally confluent rewrite relation on terms 𝑇 . Since → is
terminating, →+ is a well-founded order. We consider the labelled rewrite relation (→, 𝑇,→+)
where each arrow 𝑠 → 𝑡 is labelled by 𝑠. As such, every local peak will have the form (𝑠, 𝑠)
for some 𝑠 ∈ 𝑇 . To prove the Lemma we just need to show that for every of such peaks
there exists a decreasing diagram. Let (𝑠, 𝑠) be the local peak corresponding to 𝑠 → 𝑡′ and
𝑠→ 𝑡′′. Since → is locally confluent, it holds that there exists a term 𝑡 such that 𝑡′ →* 𝑡 and
𝑡′′ →* 𝑡. Let 𝑏′ and 𝑎′ be the concatenation of labels corresponding to 𝑡′ →* 𝑡 and 𝑡′′ →* 𝑡
respectively. It holds that 𝑠→+ 𝑡 for each term 𝑡 in the path 𝑡′ →* 𝑡 and in the path 𝑡′′ → 𝑡.
As such, {|𝑠|}(→*)mul|𝑏′|/{|𝑠|} = ∅ and {|𝑠|}(→*)mul|𝑎′|/{|𝑠|} = ∅. We conclude that there exists
a decreasing diagram from each local peak of (→, 𝑇,→+). By applying the Theorem above, →
is therefore confluent.

Exercise 4 :

1. Let 𝑅 be a left and right linear TRS. For every, (𝑙, 𝑟) ∈ ℛ, define 𝑡
(𝑙,𝑟)−→ 𝑠 iff 𝑡→ℛ 𝑠 using the

rule (𝑙, 𝑟). Assume given a well founded order > on ℛ. Prove that if every critical peak of
(→ℛ,ℛ, >) has a decreasing diagram, then →ℛ is confluent.
This principle is called the rule-labelling heuristic.

2. Consider the following TRS:

nat→ 0 : inc(nat)
inc(𝑥 : 𝑦)→ 𝑠(𝑥) : inc(𝑦)

tl(𝑥 : 𝑦)→ 𝑦

inc(tl(nat))→ tl(inc(nat))

Prove its confluence using the rule-labelling heuristic.
3. Consider the following (non-confluent) TRS ℛ:

a→ b

b→ a

a→ 0

b→ 1

Show that the rule-labelling heuristic cannot hold by proving that for any well-founded order
> on ℛ there exists a critical peak with no decreasing diagrams.

4. Consider the following TRS ℛ:

a→ b

p(a)→ s(p(a))
p(b)→ r

s(𝑥)→ m(𝑥, 𝑥)
m(𝑥, 𝑦)→ r

Why the rule-labelling heuristic cannot be applied? Is it possible to find a set of labels 𝐼 and a
well-founded order > on it such that every local peak of (→ℛ, 𝐼, >) has a decreasing diagram?

Solution:

(1) If ℛ is left and right linear, then for each local peak (𝑎, 𝑏) that is not a critical peak
will hold that one of (𝑎, 𝑏, 𝑏, 𝜖), (𝑎, 𝑏, 𝑏, 𝑎) or (𝑎, 𝑏, 𝜖, 𝑎) is a decreasing diagram. Indeed, all
three tuples satisfy |𝑏| ≥mul |𝑏′|/|𝑎| and |𝑎| ≥mul |𝑎′|/|𝑏|, so it’s only sufficient to show that
the labelled rewrite relation (→ℛ,ℛ, >) leads to one of those diagrams. This can be easily
shown by considering the positions where the rewrite rules are applied. For example, consider
𝑠

(𝑙,𝑟)−→ 𝑡 and 𝑠
(𝑙′,𝑟′)−→ 𝑡 where (𝑙, 𝑟) and (𝑙′, 𝑟′) are applied in incomparable positions, i.e. there
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exists two positions 𝑝, 𝑝′ and two substitutions 𝜎, 𝜎′ such that 𝑝 ̸≤ 𝑝′, 𝑝′ ̸≤ 𝑝, 𝑠|𝑝 = 𝑙𝜎,
𝑠|𝑝′ = 𝑙′𝜎′ and 𝑡 = 𝑠[𝑟𝜎]𝑝 and 𝑡′ = 𝑠[𝑟′𝜎′]𝑝′ . Then from 𝑝 ̸≤ 𝑝′ and 𝑝′ ̸≤ 𝑝 it holds that
𝑡[𝑟′𝜎′]𝑝′ = 𝑡′[𝑟𝜎]𝑝 = 𝑠[𝑟𝜎]𝑝[𝑟′𝜎′]𝑝′ . Therefore ((𝑙, 𝑟), (𝑙′, 𝑟′), (𝑙′, 𝑟′), (𝑙, 𝑟)) is a decreasing diagram
for ((𝑙, 𝑟), (𝑙′, 𝑟′)). A similar analysis can be done for non-critical local peak resulting from two
rewrite rules applied in two positions 𝑝, 𝑝′ where 𝑝 < 𝑝′ (in this case is important to use the
hypothesis of left and right linearity).
Since any non-critical local peak (𝑎, 𝑏) has a decreasing diagram, if also every critical peak of
(→ℛ,ℛ, >) has a decreasing diagram, then by Theorem it follows that →ℛ is confluent.
(2) The TRS is left and right linear. We refer to its rules as follows

1 : nat→ 0 : inc(nat)
2 : inc(𝑥 : 𝑦)→ 𝑠(𝑥) : inc(𝑦)
3 : tl(𝑥 : 𝑦)→ 𝑦

4 : inc(tl(nat))→ tl(inc(nat))

The only critical pair arises from the term tl(inc(nat)) and leads to the critical peak (4, 1).
The diagram (4, 1, 123, 3) is decreasing by considering any ordering where 4 is greater than 1,
2 and 3. For example lets consider 4 > 3 > 2 > 1. It holds that {|3|} = |3| ≥mul |123|/|4| = ∅
and {|4|} = |4| ≥mul |3|/|1| = {|3|}.
(3) We will refer to the rules of the TRS as: 1 (a→ b), 2 (b→ a), 3 (a→ 0), 4 (b→ 1). The
TRS is therefore represented by the following diagram.

a b0 1

1

2

3 4

The TRS has two critical peaks (1, 3) and (2, 4). Let’s consider the first one: after doing a 1
transition we can reach the irreducible state 0 only with paths of the form 2(12)*3. We conclude
that the diagrams for the critical peak (1, 3) can be characterized by {(1, 3, 2(12)𝑛3, 𝜖) | 𝑛 ∈ N}.
It must therefore hold that 1 > 2, otherwise for all 𝑛 it will not hold that |3| ≥mul |2(12)𝑛3|/|1|.
Similarly, by considering the second critical peak, we conclude that after doing a transition
2 we can reach the irreducible state 1 only with paths of the form 1(21)*4. Therefore, the
diagrams of the critical peak (2, 4) can be characterized by {(2, 4, 1(21)𝑛4, 𝜖) | 𝑛 ∈ N}. As such,
it must hold that 2 > 1, otherwise for all 𝑛 ∈ N it will not hold that |4| ≥mul |1(21)𝑛4|/|2|.
We conclude that it does not exists a well founded order > on the TRS such that every of its
critical peaks have a decreasing diagram for it.
(4) The rule-labelling heuristic requires the TRS to be right-linear, which is not the case here.
In particular, the rule s(𝑥) → m(𝑥, 𝑥) can “self-duplicate”. For example consider the term
s(s(r)). Still, it is easy to find a decreasing labelling noting that the duplicated variable has
on the right-hand side less s symbols above it than on it left-hand side. Therefore, by labelling
the steps first by the number of s symbols above the term and then by the rule, we can prove
that any local peak has a decreasing diagram by considering the lexicographic order on these
new labels.
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