# Rewriting Techniques: TD 5 

## 13-12-2018

A term is linear if no variable appears more than once in it. A TRS $\mathcal{R}$ is called left-linear if for each of its rules $(l, r) \in \mathcal{R}, l$ is linear. Similarly, $\mathcal{R}$ is right-linear if for each of its rules $(l, r) \in \mathcal{R}$, $r$ is linear.

We say that a TRS is orthogonal if it is left-linear and has no (non-trivial) critical pairs.
Theorem: Every orthogonal TRS is confluent.
In the following, given a $\operatorname{TRS} \mathcal{R}$ we will denote with $\rightarrow_{\mathcal{R}}$ (or simply $\rightarrow$ when clear form the context) the rewrite relation built form it.

## Exercise 1:

Consider the TRS $\mathcal{L}$

$$
\begin{aligned}
& @(\mathrm{a}, x) \rightarrow x \\
& @(@(\mathrm{~s}, x), y) \rightarrow x \\
& @(@(@(\mathrm{p}, x), y), z) \rightarrow @(@(x, z), @(y, z))
\end{aligned}
$$

1. Is $\rightarrow$ locally confluent?
2. Define a term $\Omega$ such that for all terms $t$, @ $(\Omega, t) \rightarrow^{+} @(t, t)$. Deduce that $\rightarrow$ does not terminate (and therefore we cannot apply Newman's Lemma to prove confluency).
3 . Is $\mathcal{L}$ orthogonal? Is $\rightarrow$ confluent?

## Solution:

(1) A TRS is locally confluent if and only if all its critical pairs are joinable. Since $\mathcal{L}$ does not have any non-trivial critical pair, it is locally confluent.
(2) The last rule is the only one that is not right-linear and therefore can be used to make copies of a subterm. Moreover we notice that $@(@(\mathrm{a}, z), @(\mathrm{a}, z)) \rightarrow^{*} @(z, z)$ using the first rule. Define $\Omega=@(@(\mathrm{p}, \mathrm{a}), \mathrm{a})$. For all terms $t$ it holds

$$
@(@(@(\mathrm{p}, \mathrm{a}), \mathrm{a}), t) \rightarrow @(@(\mathrm{a}, t), @(\mathrm{a}, t)) \rightarrow @(t, @(\mathrm{a}, t)) \rightarrow @(t, t)
$$

We conclude that $\mathcal{L}$ does not terminate since

$$
@(@(@(p, a), a), @(@(p, a), a)) \rightarrow^{+} @(@(@(p, a), a), @(@(p, a), a)) .
$$

(3) Since any orthogonal TRS is confluent (see Lecture) and $\mathcal{L}$ is orthogonal, $\mathcal{L}$ is confluent.

## Exercise 2:

Are the rewrite relations of the following TRSs confluent?

- $\mathrm{a}(x, x) \rightarrow \mathrm{m}, \mathrm{r} \rightarrow \mathrm{s}(\mathrm{r}), \mathrm{a}(x, \mathrm{~s}(x)) \rightarrow \mathrm{p} ;$
- $\mathrm{a}(x, x) \rightarrow \mathrm{m}, \mathrm{r} \rightarrow \mathbf{s}(\mathrm{r}), \mathrm{s}(x) \rightarrow \mathrm{a}(x, \mathrm{~s}(x))$


## Solution:

(1) The TRS is locally confluent (no non-trivial critical pairs), yet it is not confluent. For example the term $a(r, r)$ has two distinct normal forms $m$ and $p$.

(2) First, we notice that in 4 steps we can reduce $r$ to $m$ :

$$
\mathrm{r} \rightarrow \mathrm{~s}(\mathrm{r}) \rightarrow \mathrm{a}(\mathrm{r}, \mathrm{~s}(\mathrm{r})) \rightarrow \mathrm{a}(\mathrm{~s}(\mathrm{r}), \mathrm{s}(\mathrm{r})) \rightarrow \mathrm{m}
$$

So now we know that we can replace $r$ with $m$ in any term. Let's therefore consider the term $a(r, s(r))$, i.e. the second element in the chain of reductions shown above. This element can be reduced to $a(m, s(m))$. This term cannot be reduced to $m$ since the only reduction path is the infinite sequence

$$
\mathrm{a}(\mathrm{~m}, \mathrm{~s}(\mathrm{~m})) \rightarrow \mathrm{a}(\mathrm{~m}, \mathrm{a}(\mathrm{~m}, \mathrm{~s}(\mathrm{~m}))) \rightarrow \mathrm{a}(\mathrm{~m}, \mathrm{a}(\mathrm{~m}, \mathrm{a}(\mathrm{~m}, \mathrm{~s}(\mathrm{~m})))) \rightarrow \ldots
$$

We conclude that the TRS is not confluent since from $r i$ can reach both $a(m, s(m))$ and $m$.

A labelled rewrite relation $(\rightarrow, I,>)$ is a rewrite relation $\rightarrow$ where arrows are equipped with labels from a set $I$ and $>$ is a well-founded relation on $I$. If the arrow in $s \rightarrow t$ is labelled by $\ell$, then we say that $s \xrightarrow{\ell} t$.

Let $(\rightarrow, I,>)$ be a labelled rewrite relation. The pair ( $a, b$ ) representing the diagram $\stackrel{a}{\longleftrightarrow} \xrightarrow{b}$ is called local peak (here, terms are omitted). Moreover, $(a, b)$ is called (local) critical peak whenever it represent $t \stackrel{a}{\longleftrightarrow} \stackrel{b}{\longrightarrow} t^{\prime}$ and $\left(t, t^{\prime}\right)$ is a critical pair.

Given a strict order $>$ on a set $I$, the lexicographic maximum order $>_{\text {lmo }}$ is the relation on $I^{*}$ such that $a>_{\text {lmo }} b$ if and only if $|a|>_{\text {mul }}|b|$ where $>_{\text {mul }}$ is the multiset order and $|$.$| is defined$ recursively as follows:

- $|\epsilon|=\emptyset$
- $|i a|=\{\mid i\}+(|a| /\{\mid i\})$
where $M / S$ is the multiset obtained from $M$ by removing every occurrence of every element smaller than an element of $S .>_{\text {lmo }}$ is well-founded if the same holds true for $>$. We extend (./.) to $\left(I^{*}\right)^{2}$ and we write $a / b$ for $|a| /|b|$.

Let $(\rightarrow, I,>)$ be a labelled rewrite relation. A tuple ( $a, b, b^{\prime}, a^{\prime}$ ) representing the diagram

where $a, a^{\prime}, b, b^{\prime} \in I^{*}$, is called decreasing diagram if $b \geq_{1 \text { mo }} b^{\prime} / a$ and $a \geq_{\operatorname{lmo}} a^{\prime} / b$.
Theorem: A labelled rewrite relation $(\rightarrow, I,>)$ is confluent if for all of its local peaks $(a, b)$ have a decreasing diagram $\left(a, b, b^{\prime}, a^{\prime}\right)$. A rewrite relation $\rightarrow$ is confluent if there exists $(I,>)$ such that $(\rightarrow, I,>)$ is a confluent labelled rewrite relation.

## Exercise 3:

Prove Newman's lemma using decreasing diagrams techniques.

## Solution:

Suppose $\rightarrow$ be a terminating and locally confluent rewrite relation on terms $T$. Since $\rightarrow$ is terminating, $\rightarrow^{+}$is a well-founded order. We consider the labelled rewrite relation $\left(\rightarrow, T, \rightarrow^{+}\right)$ where each arrow $s \rightarrow t$ is labelled by $s$. As such, every local peak will have the form $(s, s)$ for some $s \in T$. To prove the Lemma we just need to show that for every of such peaks there exists a decreasing diagram. Let $(s, s)$ be the local peak corresponding to $s \rightarrow t^{\prime}$ and $s \rightarrow t^{\prime \prime}$. Since $\rightarrow$ is locally confluent, it holds that there exists a term $t$ such that $t^{\prime} \rightarrow^{*} t$ and $t^{\prime \prime} \rightarrow^{*} t$. Let $b^{\prime}$ and $a^{\prime}$ be the concatenation of labels corresponding to $t^{\prime} \rightarrow^{*} t$ and $t^{\prime \prime} \rightarrow^{*} t$ respectively. It holds that $s \rightarrow^{+} \bar{t}$ for each term $\bar{t}$ in the path $t^{\prime} \rightarrow^{*} t$ and in the path $t^{\prime \prime} \rightarrow t$. As such, $\{s \mid\}\left(\rightarrow^{*}\right)_{\text {mul }}\left|b^{\prime}\right| /\{|s|\}=\emptyset$ and $\{s \mid\}\left(\rightarrow^{*}\right)_{\text {mul }}\left|a^{\prime}\right| /\{|s|\}=\emptyset$. We conclude that there exists a decreasing diagram from each local peak of $\left(\rightarrow, T, \rightarrow^{+}\right)$. By applying the Theorem above, $\rightarrow$ is therefore confluent.

## Exercise 4:

1. Let $R$ be a left and right linear TRS. For every, $(l, r) \in \mathcal{R}$, define $t \xrightarrow{(l, r)} s$ iff $t \rightarrow_{\mathcal{R}} s$ using the rule $(l, r)$. Assume given a well founded order $>$ on $\mathcal{R}$. Prove that if every critical peak of $\left(\rightarrow_{\mathcal{R}}, \mathcal{R},>\right)$ has a decreasing diagram, then $\rightarrow_{\mathcal{R}}$ is confluent.
This principle is called the rule-labelling heuristic.
2. Consider the following TRS:

$$
\begin{aligned}
\text { nat } & \rightarrow 0: \operatorname{inc}(\text { nat }) \\
\operatorname{inc}(x: y) & \rightarrow s(x): \operatorname{inc}(y) \\
\operatorname{tl}(x: y) & \rightarrow y \\
\operatorname{inc}(\mathrm{tl}(\text { nat })) & \rightarrow \operatorname{tl}(\operatorname{inc}(\text { nat }))
\end{aligned}
$$

Prove its confluence using the rule-labelling heuristic.
3. Consider the following (non-confluent) TRS $\mathcal{R}$ :

$$
\begin{aligned}
& \mathrm{a} \rightarrow \mathrm{~b} \\
& \mathrm{~b} \rightarrow \mathrm{a} \\
& \mathrm{a} \rightarrow 0 \\
& \mathrm{~b} \rightarrow 1
\end{aligned}
$$

Show that the rule-labelling heuristic cannot hold by proving that for any well-founded order $>$ on $\mathcal{R}$ there exists a critical peak with no decreasing diagrams.
4. Consider the following TRS $\mathcal{R}$ :

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{~b} \\
\mathrm{p}(\mathrm{a}) & \rightarrow \mathrm{s}(\mathrm{p}(\mathrm{a})) \\
\mathrm{p}(\mathrm{~b}) & \rightarrow \mathrm{r} \\
\mathrm{~s}(x) & \rightarrow \mathrm{m}(x, x) \\
\mathrm{m}(x, y) & \rightarrow \mathrm{r}
\end{aligned}
$$

Why the rule-labelling heuristic cannot be applied? Is it possible to find a set of labels $I$ and a well-founded order $>$ on it such that every local peak of $\left(\rightarrow_{\mathcal{R}}, I,>\right)$ has a decreasing diagram?

## Solution:

(1) If $\mathcal{R}$ is left and right linear, then for each local peak $(a, b)$ that is not a critical peak will hold that one of $(a, b, b, \epsilon),(a, b, b, a)$ or $(a, b, \epsilon, a)$ is a decreasing diagram. Indeed, all three tuples satisfy $|b| \geq_{\text {mul }}\left|b^{\prime}\right| /|a|$ and $|a| \geq_{\text {mul }}\left|a^{\prime}\right| /|b|$, so it's only sufficient to show that the labelled rewrite relation $\left(\rightarrow_{\mathcal{R}}, \mathcal{R},>\right)$ leads to one of those diagrams. This can be easily shown by considering the positions where the rewrite rules are applied. For example, consider $s \xrightarrow{(l, r)} t$ and $s \xrightarrow{\left(l^{\prime}, r^{\prime}\right)} t$ where $(l, r)$ and $\left(l^{\prime}, r^{\prime}\right)$ are applied in incomparable positions, i.e. there
exists two positions $p, p^{\prime}$ and two substitutions $\sigma, \sigma^{\prime}$ such that $p \not \leq p^{\prime}, p^{\prime} \not \leq p,\left.s\right|_{p}=l \sigma$, $\left.s\right|_{p^{\prime}}=l^{\prime} \sigma^{\prime}$ and $t=s[r \sigma]_{p}$ and $t^{\prime}=s\left[r^{\prime} \sigma^{\prime}\right]_{p^{\prime}}$. Then from $p \not \leq p^{\prime}$ and $p^{\prime} \not \leq p$ it holds that $t\left[r^{\prime} \sigma^{\prime}\right]_{p^{\prime}}=t^{\prime}[r \sigma]_{p}=s[r \sigma]_{p}\left[r^{\prime} \sigma^{\prime}\right]_{p^{\prime}}$. Therefore $\left((l, r),\left(l^{\prime}, r^{\prime}\right),\left(l^{\prime}, r^{\prime}\right),(l, r)\right)$ is a decreasing diagram for $\left((l, r),\left(l^{\prime}, r^{\prime}\right)\right)$. A similar analysis can be done for non-critical local peak resulting from two rewrite rules applied in two positions $p, p^{\prime}$ where $p<p^{\prime}$ (in this case is important to use the hypothesis of left and right linearity).
Since any non-critical local peak $(a, b)$ has a decreasing diagram, if also every critical peak of $\left(\rightarrow_{\mathcal{R}}, \mathcal{R},>\right)$ has a decreasing diagram, then by Theorem it follows that $\rightarrow_{\mathcal{R}}$ is confluent.
(2) The TRS is left and right linear. We refer to its rules as follows

$$
\begin{aligned}
& \text { nat } \rightarrow 0: \operatorname{inc}(\text { nat }) \\
& \operatorname{inc}(x: y) \rightarrow s(x): \operatorname{inc}(y) \\
& \operatorname{tl}(x: y) \rightarrow y \\
& \operatorname{inc}(\operatorname{tl}(\text { nat })) \rightarrow \operatorname{tl}(\operatorname{inc}(\text { nat }))
\end{aligned}
$$

The only critical pair arises from the term $\operatorname{tl}(\operatorname{inc}(n a t))$ and leads to the critical peak $(4,1)$. The diagram $(4,1,123,3)$ is decreasing by considering any ordering where 4 is greater than 1 , 2 and 3. For example lets consider $4>3>2>1$. It holds that $\{\mid 3\}=|3| \geq_{\text {mul }}|123| /|4|=\emptyset$ and $\{4\}\}=|4| \geq_{\text {mul }}|3| /|1|=\{\mid 3\}$.
(3) We will refer to the rules of the TRS as: $1(\mathrm{a} \rightarrow \mathrm{b}), 2(\mathrm{~b} \rightarrow \mathrm{a}), 3(\mathrm{a} \rightarrow 0), 4(\mathrm{~b} \rightarrow 1)$. The TRS is therefore represented by the following diagram.


The TRS has two critical peaks $(1,3)$ and $(2,4)$. Let's consider the first one: after doing a 1 transition we can reach the irreducible state 0 only with paths of the form $2(12)^{*} 3$. We conclude that the diagrams for the critical peak $(1,3)$ can be characterized by $\left\{\left(1,3,2(12)^{n} 3, \epsilon\right) \mid n \in \mathbb{N}\right\}$. It must therefore hold that $1>2$, otherwise for all $n$ it will not hold that $|3| \geq_{\text {mul }}\left|2(12)^{n} 3\right| /|1|$. Similarly, by considering the second critical peak, we conclude that after doing a transition 2 we can reach the irreducible state 1 only with paths of the form $1(21)^{*} 4$. Therefore, the diagrams of the critical peak $(2,4)$ can be characterized by $\left\{\left(2,4,1(21)^{n} 4, \epsilon\right) \mid n \in \mathbb{N}\right\}$. As such, it must hold that $2>1$, otherwise for all $n \in \mathbb{N}$ it will not hold that $|4| \geq_{\text {mul }}\left|1(21)^{n} 4\right| /|2|$. We conclude that it does not exists a well founded order $>$ on the TRS such that every of its critical peaks have a decreasing diagram for it.
(4) The rule-labelling heuristic requires the TRS to be right-linear, which is not the case here. In particular, the rule $\mathrm{s}(x) \rightarrow \mathrm{m}(x, x)$ can "self-duplicate". For example consider the term $\mathrm{s}(\mathrm{s}(\mathrm{r}))$. Still, it is easy to find a decreasing labelling noting that the duplicated variable has on the right-hand side less s symbols above it than on it left-hand side. Therefore, by labelling the steps first by the number of s symbols above the term and then by the rule, we can prove that any local peak has a decreasing diagram by considering the lexicographic order on these new labels.

