Rewriting Techniques: TD 1

16-11-2017

Exercise 1:
Given the following term rewriting system (TRS):

rx0—0 r+0—>2x
Oxz—0 O4+z—==x
s(z) xy = (xxy)+y z+s(y) = s(z+y)
zxs(y) = (zxy)+ex s(z)+y —s(z+vy)

Show the reduction graph of ((0 x 0) + 0) + s(0).

Solution:

((0 x 0) 4 0) + s(0)
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Exercise 2:
Given the signature ({N, List}, {0, s, ¢, :, merge, sort}) where the set of functions is typed as
follows:

0:N, s:N—= N, €:List, (:) : N x List — List,
merge : List X List — List, sort : List — List

Define a finite TRS that simulates the mergesort algorithm. If needed, you can define auxiliary
sorts and function symbols.

Solution:
We will use the additional sort B = {T, L} and the following function symbols:
even : List — List, odd : List — List, >: N X N — B, aux : N x List x List — List
We define the following TRS:
even(e) — € odd(e) — €
even(x:€) — € odd(z:€) — x:e
even(x:y:z) — yieven(z) odd(z:y:z) — z:0dd(2)

0>0—>T aux(T,z:y, z2w) — zmerge(x:y, w)
s(x)>0—>T aux(L,zy, z2w) — xmerge(y, z:w)
0>s(z)— L




merge(z,€) = x
merge(e, ) =
merge(z:y, z2w) — aux(z > z, 21y, z:w)

sort(e) — €
sort(z:€) = xie
sort(z:y:z) — merge(sort(even(x:y:z)), sort(odd(x:y:z)))

Exercise 3:
Let M = (X,Q,A) be a non-deterministic Turing machine where

o ¥ ={s0,...,5,} is a finite alphabet and sq is considered the blank symbol;

o Q@ ={qo,...,q} is a finite set of states;

e AC QXX XQ XX x{l,r} transition relation.
A configuration is an ordered triple (z,q, k) € ¥* x Q x N where = denotes the string on the tape,
q denotes the machine’s current state, and k denotes the position of the machine on the tape.

Translate M into a finite TRS such that there exists an injection f from configurations of M to
terms satisfying for each configuration ~,~'.

Solution:

For each s € ¥ we introduce the unary function symbol s. For each ¢ € @ we introduce the
unary function symbol q. Lastly, we introduce the constant r and the unary function symbol 1.

We now define the TRS:

 For each transition (g, s;,¢’,sj,r) € A we add the rewriting rule q(s;(z)) — s;(q'(z))
and if 4 = 0 we also add the rule q(r) — s;(q'(r)).

« For each transition (g, s;,¢’,s;,l) € A we add the rule 1(q(s;(z))) — 1(q'(so(s;(x))))
and for every k € [1,n] we add the rewriting rule s;(q(s;(x))) = q'(sk(s; (x))) Moreover,
ifﬁ' = % WTlals]o add 1(q(r)) — 1(q'(so(s;(x)))) and the rule sk( (r)) = 9 (sk(s;(x))),
where kK € |1, n|.

Finally, for a configuration (z,q, k) where x = s;,8;, ... 8, _, 8 Sir,, - - - Si,, the injection f is
defined as 1(Si0 (Sil ( B (q(sk(sik+1 ( -+ Sq, (I‘))))))))

Exercise 4:
Are the following TRS terminating?

L {'s(p(z)) =z, p(s(z)) =z };
2. { s(p(z)) =z, p(s(x)) = s(p(z)) };
3. { s(p()) =z, p(s(x)) = s(s(p(p(2)))) };

For each transition system, let ¢ and ¢’ be two terms with the same normal form. What is the
relationship between ¢ and t'?
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Solution:

(1) Terminates since the number of symbols is always decreasing. Use the polynomial interpre-
tation on natural numbers Pg(X) =Pp(X) = X + 1.

(2) Also terminates. Use the polynomial interpretation on natural numbers P5(X) = X + 2
and P,(X) = X2
(3) Does not terminate. Show the reduction graph of p(s(s(0))).

Let t|s and t|, be respectively the number of occurrences of the s and p in the term ¢. Two
terms ¢ and ¢’ have the same normal form if and only if ¢|s — t|, = t'|s — t/|,. Moreover, if
t|s > t|p, their normal form is s*l==*k(0), otherwise it’s ptls—*ls(0).

A polynomial interpretation on integers is the following:

e a subset A of N;
o for every symbol f of arity n, a polynomial Py € N[X7,..., X,,];
o for every a1,...,an € A, Py(aq,...,a,) € 4;

o for every ai,...,a; >aj,...,an € A, Pg(ar,...,a;,...,an) >Py(ar,...,a;, ..., a,);
Then (A, (P¢)s,>) is a well-founded monotone algebra.

Exercise 5:
Prove the termination of the following TRS

Oxx—0 r+0—x
s(x) Xy — (v xy)+y r+s(y) = s(x+y)

using the polynomial interpretation on integers:
Pp=2 P(X)=X4+1 P (X,)Y)=X+2Y P, (X,Y)=(X+Y)?

Is this polynomial interpretation suitable to prove termination of the TRS of Exercise 17

Solution:

(1) From the polynomial interpretation we get the following polynomial for the various rules of
the TRS: Pox(X) = (X +2)2, Py(a)xy(X,Y) = (X+Y+1) Ploxy)+y(X,Y) = (X+Y)2+2Y,
Poro(X) =X +4,Prig)(X,Y) =X +2(Y +1) and Py(pyy) = X +2Y + 1.

e Pyys(X) > Pg true since (X +2)%2 = X2 +4X +4 > 2;

o Po(a)xy(X,Y) > Py 1y (X, Y) truesince (X +Y +1)% = X24+2XYV +Y?4+2X +2Y +1
is greater than (X +Y)2+2Y = X2 4+ 2XY + Y2 +2Y;

o Pyio(X) > X true since X +4 > X;

. Px-i—s(y)(Xa Y) > Py(z4y) since X + 2(Y + 1) > X +2Y +1.

(2) No. For the rule s(z) +y — s(z+y). Indeed, Py(5)4y(X,Y) = Pyzyy) (X, Y) = X +2Y + 1.

Exercise 6:
Prove the termination of the following TRS by finding a polynomial interpretation on integers:

rx(y+2z) = (zxy) + (zxz)
(t4+y)+z—=a+(y+2)
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Solution:

Let P« (X,Y) and P4 (X,Y") be the two polynomial interpretation that we want to find. We can
start by showing that the polynomial interpretation for the second rule must have degree 1. Let
deg, (x) be the degree of the polynomial P, (X,Y) w.r.t. the variable X. Similarly we denote
with deg, (y) the degree of the polynomial Py (X,Y) wr.t. Y, whereas deg (x) and deg (v
are the degrees of the polynomial P, (X,Y) w.r.t. X and Y respectively. From the first rule it
must hold that deg, (xy > deg, (x) X deg (x), which implies deg, x)y = 1. Moreover it holds
deg, (x) > deg, (x) X deg, (y), which implies deg, (y = 1. Therefore, P (X,Y’) must be of the
form s9 X + 51Y + sg9. From the second rule we obtain

82(82X +s51Y + 80) + 5124 + sg > s9 X + Sl(SQY + 8512 + SO) + So

Which can be rewritten as S%X + 812 + 8gS2 > 59X + S%Z + sgs1. It follows that s; must be
greater than s;. With a similar reasoning it follows that Py (X,Y") must have degree 2.

Lets define the polynomial interpretation on N\ {0,1}, Px(X,Y) = XY and P4 (X,Y) =
2X +Y + 1. For the first rule, the left side of the rule is interpreted with X(2Y + Z + 1)
whereas the right side is 2XY + XZ + 1. It holds 2XY + XZ 4+ X > 2XY + XZ + 1 whenever
X > 1 (and for this reason we use an interpretation on N\ {0,1}). Similarly, for the second
one it holds that 4X +2Y + 72 +3 > 2X 4+ 2Y + Z + 2.

A polynomial interpretation on real numbers is the following;:

e asubset A of RY;
e a positive real number J;
o for every symbol f of arity n, a polynomial Py € R[Xq,...,X,];
o for every ai,...,a, € A, P¢(ar,...,an) € 4
o for every ai,...,a; >s5 a,...,an € A, Pr(a1,...,a;,...,an) >s5 Pylas,...,a,...,a,) where
x>5yiffx >y+9.
Then (A, (Py)y,>s) is a well-founded monotone algebra.

Exercise 7:
Consider the following two TRS:

Ry ={ 1(p(x)) = p(p(1(2))), p(s(x)) — s(s(p(x))), p(z) — a(z,z),

s(z) — a(z,0), s(z) —a(0,z) }

Ry ={ r(r(x(2))) = a(x(x), r(z)), s(a(r(z),r(x))) = r(r(x(z))) }

1. Prove that R; U Ry terminates using the following polynomial interpretation on real numbers:
§=1,Po(X)=0,P1(X) = X2 Py(X) =X +4,P,(X) =3X+5,P(X,Y) = X +Y and
P.(X) =v2X + 1.

2. Prove that in any polynomial interpretation on integers proving the termination of R; it must
hold that P5(X) is of the form X + sg and P,(X,Y’) is of the form X + Y + ag, with so > ao.

hint: look at the dominant terms of the polynomials computed from the rewrite rules.

3. Deduce that the termination of R; U Ry cannot be proved using a polynomial interpretation
of integers.
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Solution:

(1)

Pa(oa) (X) = 9X2 + 30X + 25 >1 Pypaay) (X) = 9X2 +20
Pp(s(a)) (X) = 3X + 17 > Pyrg(pray) (X) = 3
Poa)(X) = 3X +5 >1 Py (X) = 2X
Poa)(X) = X +4 > P09 (X) = X
Por)(X) =X +4>1 Py = X
Pe(e(e(e))(X) = 2V2X 43+ V2 >1 Pa(r(a) x(a)) = 2V2X +2
Pa(a(e(e) x(a)) (X) = 2V2X 4 6 >1 Pririeiay (X) = 2V2X + 3 + V2

(2) Let P, = z > 0. From the second rule of Ry, let o be the degree of P;(X) and let S be
the degree of P,(X). From Pyg(z)(X) > Pg(s(p(a))) (X) it must hold that fa > aaf. Therefore
a = 1. Similarly, from the first rule, also P,(X) is of degree one. From the third rule it must
hold that P,(X,Y") is also of degree one. So P,(X) is of the form p; X + po, Ps(X) is of the
form s1X + sg whereas P,(X,Y) is of the form a2 X + a1Y + ag. From the fourth rule it must
hold s1X + sg > a2 X + ag + a1z, which implies s; > as > 1. Similarly, from the fifth rule,
s1 > aj > 1. From the second rule s1p; X + sop1 +po > s3p1 X + s3po + s150 + so and therefore
it must hold that syp; > sfpl. Therefore s; = 1, which also implies as = a; = 1. Moreover
from s1X 4+ sg > as X + ag + a1z, it must hold sy > ag.

(3) Let a be the degree of the polynomial P,(X). From the second rule of Ry it must hold
that a® < a and therefore a = 1 and P.(X) is of the form 71 X + ry. Looking now at the first
rule, it must hold that ry(ri(r1X + ro) + 70) + 1o > 2r1 X + 279 + ag which implies r$ > 2r;
and therefore 72 > 2. Similarly, from the second rule of Ry it must hold that 2r; > r$ or
alternatively 7 < 2. Therefore 72 must be equal to 2, which requires 7; (= v/2) not to be a
natural number.

A matrix interpretation on integers is the following;:

e a positive integer d;
o for every symbol f of arity n, n matrices My ..., My, € Ndxd,
o for every symbol of arity n, a vector V; € N¢;

o a non-empty set I C {1,...,d} satisfying that for every symbol f of arity n the map
Ly (N)" — N defined as Lp(X1,...,X,) = Vi + Y My X;
i=1

is monotonic with respect to >; were X >; Y holds if and only if for every i € {1,...,d},
X[i] > Y[i] and there is j € I such that X[j] > Yj].

Then (N%, (Ly)s,>7) is a well-founded monotone algebra.

Exercise 8:
Counsider the TRS { s(a) — s(p(a)), p(b) — p(s(b)) }.

1. Prove that its termination cannot be proved by a polynomial interpretation on integers;

2. Use the following matrix interpretation to prove termination w.r.t. > oy.
0 1 11 0 1
O R S

3. Why does it fail if we take >y instead? Is there another matrix interpretation that works
with this ordering?
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Solution:

(1) From the first rule, the degree of P, must be one. The same holds for Pg, thanks to the second
rule. This implies that Py, of the form sja + sp whereas Py(p(a)) of the form sipia + si1po + so
which, since p; > 1, is sufficient to conclude that the termination of this TRS cannot be proved
by a polynomial interpretation on integers.

(2) It holds that:

A 8 S B | B I R e

S [ B R [ B R [

(3) From the second rule, [H > [é} does not hold. No, let Lg(X) = M;X + V; and

LP(X) = M,X + V,. For the first rule it will hold

Ls(La) - MsLa + V;
Ls(Lp(La)) = MsMpLa + MsVp + Vs

To make >y it must therefore hold
(Ms)1,1(La)1n + -+ (Ms)1,a(La)1,a > (Mp)1,1((Ms)1,1(La)ig + -+ + (Ms)1,a(La)1,a) + - -

which implies (M})1,1 = 0. Similarly, from the second rule, (Ms);,; = 0. This implies that no
polynomial interpretation with the ordering >} can be defined for this TRS, since for any
m >n, (m,0,...,0) >y (n,0,...,0) but Lg(m,0,...,0) =y Ls(n,0,...,0).

Exercise 9:

Let A C N and Py be respectively the domain and the interpretation, for each function symbol f,
of a polynomial interpretation of integers for a TRS (note: the TRS is therefore terminating). Take
a € A\ {0}.

1. Define 7, : T(F, X) — A as the function which maps every variable = to a and every term
of the form f(t1,...,tn) to Py(me(t1), ..., ma(ts)). Prove that m,(t) is greater or equal to the
length of every reduction starting from t.

2. Show that there exists d and k positive integers such that for every f € F' of arity n and every
a,...,a, € A\ {0} it holds P¢(ay,...,a,) < d[]., a.

3. From the previous point, pick d to be also greater or equal than a and fix ¢ > k + log,(d).
Prove that 7,(t) < 22",
Consider now any finite TRS and a function symbol f. Prove that there exists an integer k£ such
that if s — ¢ then [¢|; < k(|s|; + 1), where |.|f is the number of f.
Deduce that the TRS

{a(0,y) = s(y), a(s(2),0) = a(z,s(0)), a(s(z),s(y)) = a(z,a(s(z),y)) },

simulating the Ackermann’s function, cannot be proved terminating using a polynomial interpreta-
tion over integers.

Solution:

(1) The proof is by induction on the — relation. Let ¢ be irreducible. Then the length of
all its reductions is 0 and 7, (¢) > 0 by definition. For the inductive step, suppose t — t’ s.t.
t —t' — ... is the maximal reduction from ¢. There exists a context C, a valuation o and a
rewriting rule [ — r such that t = Clo] — C[ro] = t'. W.l.o.g. we can consider just terms of the
form lo — ro. Let P; and P, be the polynomials resulting from the polynomial interpretation,
for I and r respectively. We have that, for all Xq,..., X, Pi(X1,...,X,) > P (X1,...,X,). By
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inductive hypothesis, 7,(ro) = P,.(7,(c(X1)), ..., ma(0(Xy))) is greater or equal to the length
of every reduction starting from ro. It follow that 7,(lo) = Pi(7,(0(X1)),. .., ma(0(Xy))) >
7a(ro) + 1 and therefore m,(lo) is greater or equal to the length of every reduction starting
from lo.

(2) Let {so,...,sm} be the coefficient of the polynomial Py, let d > Y1 /s; (so d > 1)
and let £ > 1 be also greater or equal to the degree of P;y. The thesis can be rewritten as
Prar, ... an) < (300 si) [1j=y af = 320, (si [T)—; af). Moreover there exists

kl,l o ~7k1,n7k2,17 . 'akQ,na . '7km,17 ) km,n

such that Py(ar,...,an) = Y00 (si [, af"’j) and for all i € [1,m] ki1 + - + kin < k.
Moreover aq,...,a, € A\ {0}, and therefore the thesis trivially holds since for all i € [1,m]
si 15 a"ii < si[1r, a®

vlly=1"5 —="vllj=1"y"
(3) By induction of ¢. If ¢ is a variable, then |t| = 1 and 7, (t) = a < 2% < 2% <22 Ife
is of the form f(t1,...,t,) then mq(t) = Py(me(t1), ..., ma(tn)). By inductive hypothesis, since
P is monotone, m, (£) < P(22"' ... 22"}, From (2) it follows that P;(22""' ... 22"y <
dHn_l(chml)k = d22i(k26“”) — 210g2(d)227¢(k20‘ti‘) _ 210g2(d)+k21(2c“i|) < 2(10g2(d)+k)21(20|ti‘).

Since d > a > 1 and k > 1 it holds that ¢ > 1 and therefore 2(082(@+k)Z:(2%1) < gelli(2¢1%!) <
22cni(2c\ti|) . 22c\t|'

og2(d)

(4) W.l.o.g. consider s = lo and t = ro for a rewriting rule [ — r and a valuation o. The
number of occurrences of f in lo is |l|; + Zpe{pll\peX} lo(l]p)|; where |I|; only depends on
the left side of the rewriting rule. Similarly, |ro|; = |r|f + Zpe{p‘r‘pex} lo(r|p)|; where |r|f
depends only on the right side of the rewriting rule. Let V' the number of variables in r (i.e.
H{plrlp, € X}|). It holds that |ro|; < |r|f + V max,eqpir,exy(|o(r]p)|s). Since every variable
of r also occurs in [ it must hold that |ro[; < [r|y + V max,eqpu,exi(|o(llp)|s). Moreover
max,e (p1|,ex}([0(lp)]r) is trivially less or equal that all the occurrences of f in lo, therefore
[roly <|rlf+ V0ol < (|r|f +V)(llo|f +1). |r|f and V only depends on the rule itself. Let k
be greater or equal than the maximum number of occurrences of f in the right side of each
rule of the TRS plus the number of variables in the right side of each rule of the TRS. it holds
that |ro|; < k(|lo]; +1).

(5) From the above point, it holds that for all terms s and ¢ such that s — ¢, [t|s < k(|s]s + 1).
So at each step of the rewriting system, the number of s can at most increase k times (from
the previous proof, for Ackermann this should hold for & > 5). If Ackermann could be
proved terminating using a polynomial interpretation over integers then given any term ¢, the
maximum number of steps will be 7, (t) < 92°1"! , where c is fixed (and depends on the polynomial
interpretation, see proof (2)). The size of a term of the form a(m,n) is m+mn+ 3. We conclude

that there must exists k and ¢ such that for any X, Y it should hold Ack(X,Y) < k= 2T,

This cannot hold since Ack(X,Y) is not primitive recursive whereas k * 92e (Y

therefore there exists X and Y such that Ack(X,Y) >k« 2

is, and
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