
Rewriting Techniques: TD 1

16-11-2017
Exercise 1 :

Given the following term rewriting system (TRS):

𝑥 × 0 → 0 𝑥 + 0 → 𝑥

0 × 𝑥 → 0 0 + 𝑥 → 𝑥

s(𝑥) × 𝑦 → (𝑥 × 𝑦) + 𝑦 𝑥 + s(𝑦) → s(𝑥 + 𝑦)
𝑥 × s(𝑦) → (𝑥 × 𝑦) + 𝑥 s(𝑥) + 𝑦 → s(𝑥 + 𝑦)

Show the reduction graph of ((0 × 0) + 0) + s(0).

Solution:

((0 × 0) + 0) + s(0)

s((0 × 0) + 0)(0 × 0) + s(0)

(0 + 0) + s(0)

s((0 + 0) + 0)
0 + s(0)

s(0 + 0)

s(0 × 0)

s(0)

Exercise 2 :

Given the signature ({N, List}, {0, s, 𝜖, :, merge, sort}) where the set of functions is typed as
follows:

0 : N, s : N → N, 𝜖 : List, (:) : N × List → List,

merge : List × List → List, sort : List → List

Define a finite TRS that simulates the mergesort algorithm. If needed, you can define auxiliary
sorts and function symbols.

Solution:

We will use the additional sort B = {⊤, ⊥} and the following function symbols:
even : List → List, odd : List → List, ≥: N × N → B, aux : N × List × List → List

We define the following TRS:
even(𝜖) → 𝜖 odd(𝜖) → 𝜖
even(𝑥:𝜖) → 𝜖 odd(𝑥:𝜖) → 𝑥:𝜖
even(𝑥:𝑦:𝑧) → 𝑦:even(𝑧) odd(𝑥:𝑦:𝑧) → 𝑥:odd(𝑧)

0 ≥ 0 → ⊤ aux(⊤, 𝑥:𝑦, 𝑧:𝑤) → 𝑧:merge(𝑥:𝑦, 𝑤)
s(𝑥) ≥ 0 → ⊤ aux(⊥, 𝑥:𝑦, 𝑧:𝑤) → 𝑥:merge(𝑦, 𝑧:𝑤)
0 ≥ s(𝑥) → ⊥
s(𝑥) ≥ s(𝑦) → 𝑥 ≥ 𝑦
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merge(𝑥, 𝜖) → 𝑥
merge(𝜖, 𝑥) → 𝑥
merge(𝑥:𝑦, 𝑧:𝑤) → aux(𝑥 ≥ 𝑧, 𝑥:𝑦, 𝑧:𝑤)

sort(𝜖) → 𝜖
sort(𝑥:𝜖) → 𝑥:𝜖
sort(𝑥:𝑦:𝑧) → merge(sort(even(𝑥:𝑦:𝑧)), sort(odd(𝑥:𝑦:𝑧)))

Exercise 3 :

Let ℳ = (Σ, 𝑄, Δ) be a non-deterministic Turing machine where

• Σ = {𝑠0, . . . , 𝑠𝑛} is a finite alphabet and 𝑠0 is considered the blank symbol;
• 𝑄 = {𝑞0, . . . , 𝑞𝑝} is a finite set of states;
• Δ ⊆ 𝑄 × Σ × 𝑄 × Σ × {𝑙, 𝑟} transition relation.

A configuration is an ordered triple (𝑥, 𝑞, 𝑘) ∈ Σ* × 𝑄 × N where 𝑥 denotes the string on the tape,
𝑞 denotes the machine’s current state, and 𝑘 denotes the position of the machine on the tape.
Translate ℳ into a finite TRS such that there exists an injection f from configurations of ℳ to
terms satisfying for each configuration 𝛾, 𝛾′.

𝛾 𝛾′

f(𝛾) f(𝛾′)

Δ

f f

𝛾 𝛾′

f(𝛾) f(𝛾′)

Δ

f−1 f−1

Solution:

For each 𝑠 ∈ Σ we introduce the unary function symbol s. For each 𝑞 ∈ 𝑄 we introduce the
unary function symbol q. Lastly, we introduce the constant r and the unary function symbol l.
We now define the TRS:

• For each transition (𝑞, 𝑠𝑖, 𝑞′, 𝑠𝑗 , 𝑟) ∈ Δ we add the rewriting rule q(s𝑖(𝑥)) → s𝑗(q′(𝑥))
and if 𝑖 = 0 we also add the rule q(r) → s𝑗(q′(r)).

• For each transition (𝑞, 𝑠𝑖, 𝑞′, 𝑠𝑗 , 𝑙) ∈ Δ we add the rule l(q(s𝑖(𝑥))) → l(q′(s0(s𝑗(𝑥))))
and for every 𝑘 ∈ [1, 𝑛] we add the rewriting rule s𝑘(q(s𝑖(𝑥))) → q′(s𝑘(s𝑗(𝑥))). Moreover,
if 𝑖 = 0, we also add l(q(r)) → l(q′(s0(s𝑗(r)))) and the rule s𝑘(q(r)) → q′(s𝑘(s𝑗(𝑥))),
where 𝑘 ∈ [1, 𝑛].

Finally, for a configuration (𝑥, 𝑞, 𝑘) where 𝑥 = 𝑠𝑖0𝑠𝑖1 . . . 𝑠𝑖𝑘−1𝑠𝑖𝑘
𝑠𝑖𝑘+1 . . . 𝑠𝑖ℓ

, the injection f is
defined as l(s𝑖0(s𝑖1(. . . s𝑖𝑘−1(q(s𝑘(s𝑖𝑘+1(. . . s𝑖ℓ

(r)))))))).

Exercise 4 :

Are the following TRS terminating?

1. { s(p(𝑥)) → 𝑥, p(s(𝑥)) → 𝑥 };
2. { s(p(𝑥)) → 𝑥, p(s(𝑥)) → s(p(𝑥)) };
3. { s(p(𝑥)) → 𝑥, p(s(𝑥)) → s(s(p(p(𝑥)))) };

For each transition system, let 𝑡 and 𝑡′ be two terms with the same normal form. What is the
relationship between 𝑡 and 𝑡′?
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Solution:

(1) Terminates since the number of symbols is always decreasing. Use the polynomial interpre-
tation on natural numbers Ps(𝑋) = Pp(𝑋) = 𝑋 + 1.
(2) Also terminates. Use the polynomial interpretation on natural numbers Ps(𝑋) = 𝑋 + 2
and Pp(𝑋) = 𝑋2.
(3) Does not terminate. Show the reduction graph of p(s(s(0))).
Let 𝑡|s and 𝑡|p be respectively the number of occurrences of the s and p in the term 𝑡. Two
terms 𝑡 and 𝑡′ have the same normal form if and only if 𝑡|s − 𝑡|p = 𝑡′|s − 𝑡′|p. Moreover, if
𝑡|s ≥ 𝑡|p, their normal form is s𝑡|s−𝑡|p(0), otherwise it’s p𝑡|p−𝑡|s(0).

A polynomial interpretation on integers is the following:

• a subset 𝐴 of N;
• for every symbol 𝑓 of arity 𝑛, a polynomial P𝑓 ∈ N[𝑋1, . . . , 𝑋𝑛];
• for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴;
• for every 𝑎1, . . . , 𝑎𝑖 > 𝑎′

𝑖, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛) > P𝑓 (𝑎1, . . . , 𝑎′
𝑖, . . . , 𝑎𝑛);

Then (𝐴, (P𝑓 )𝑓 , >) is a well-founded monotone algebra.

Exercise 5 :

Prove the termination of the following TRS

0 × 𝑥 → 0 𝑥 + 0 → 𝑥

s(𝑥) × 𝑦 → (𝑥 × 𝑦) + 𝑦 𝑥 + s(𝑦) → s(𝑥 + 𝑦)

using the polynomial interpretation on integers:

P0 = 2 Ps(𝑋) = 𝑋 + 1 P+(𝑋, 𝑌 ) = 𝑋 + 2𝑌 P×(𝑋, 𝑌 ) = (𝑋 + 𝑌 )2

Is this polynomial interpretation suitable to prove termination of the TRS of Exercise 1?

Solution:

(1) From the polynomial interpretation we get the following polynomial for the various rules of
the TRS: P0×𝑥(𝑋) = (𝑋 +2)2, Ps(𝑥)×𝑦(𝑋, 𝑌 ) = (𝑋 +𝑌 +1)2, P(𝑥×𝑦)+𝑦(𝑋, 𝑌 ) = (𝑋 +𝑌 )2 +2𝑌 ,
P𝑥+0(𝑋) = 𝑋 + 4, P𝑥+s(𝑦)(𝑋, 𝑌 ) = 𝑋 + 2(𝑌 + 1) and Ps(𝑥+𝑦) = 𝑋 + 2𝑌 + 1.

• P0×𝑥(𝑋) > P0 true since (𝑋 + 2)2 = 𝑋2 + 4𝑋 + 4 > 2;

• Ps(𝑥)×𝑦(𝑋, 𝑌 ) > P(𝑥×𝑦)+𝑦(𝑋, 𝑌 ) true since (𝑋 +𝑌 +1)2 = 𝑋2 +2𝑋𝑌 +𝑌 2 +2𝑋 +2𝑌 +1
is greater than (𝑋 + 𝑌 )2 + 2𝑌 = 𝑋2 + 2𝑋𝑌 + 𝑌 2 + 2𝑌 ;

• P𝑥+0(𝑋) > 𝑋 true since 𝑋 + 4 > 𝑋;

• P𝑥+s(𝑦)(𝑋, 𝑌 ) > Ps(𝑥+𝑦) since 𝑋 + 2(𝑌 + 1) > 𝑋 + 2𝑌 + 1.

(2) No. For the rule s(𝑥) + 𝑦 → s(𝑥 + 𝑦). Indeed, Ps(𝑥)+𝑦(𝑋, 𝑌 ) = Ps(𝑥+𝑦)(𝑋, 𝑌 ) = 𝑋 + 2𝑌 + 1.

Exercise 6 :

Prove the termination of the following TRS by finding a polynomial interpretation on integers:

𝑥 × (𝑦 + 𝑧) → (𝑥 × 𝑦) + (𝑥 × 𝑧)
(𝑥 + 𝑦) + 𝑧 → 𝑥 + (𝑦 + 𝑧)
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Solution:

Let P×(𝑋, 𝑌 ) and P+(𝑋, 𝑌 ) be the two polynomial interpretation that we want to find. We can
start by showing that the polynomial interpretation for the second rule must have degree 1. Let
deg×(𝑋) be the degree of the polynomial P×(𝑋, 𝑌 ) w.r.t. the variable 𝑋. Similarly we denote
with deg×(𝑌 ) the degree of the polynomial P×(𝑋, 𝑌 ) w.r.t. 𝑌 , whereas deg+(𝑋) and deg+(𝑌 )
are the degrees of the polynomial P+(𝑋, 𝑌 ) w.r.t. 𝑋 and 𝑌 respectively. From the first rule it
must hold that deg×(𝑋) ≥ deg×(𝑋) × deg+(𝑋), which implies deg+(𝑋) = 1. Moreover it holds
deg×(𝑋) ≥ deg×(𝑋) × deg+(𝑌 ), which implies deg+(𝑌 ) = 1. Therefore, P+(𝑋, 𝑌 ) must be of the
form 𝑠2𝑋 + 𝑠1𝑌 + 𝑠0. From the second rule we obtain

𝑠2(𝑠2𝑋 + 𝑠1𝑌 + 𝑠0) + 𝑠1𝑍 + 𝑠0 > 𝑠2𝑋 + 𝑠1(𝑠2𝑌 + 𝑠1𝑍 + 𝑠0) + 𝑠0

Which can be rewritten as 𝑠2
2𝑋 + 𝑠1𝑍 + 𝑠0𝑠2 > 𝑠2𝑋 + 𝑠2

1𝑍 + 𝑠0𝑠1. It follows that 𝑠2 must be
greater than 𝑠1. With a similar reasoning it follows that P×(𝑋, 𝑌 ) must have degree 2.
Lets define the polynomial interpretation on N ∖ {0, 1}, P×(𝑋, 𝑌 ) = 𝑋𝑌 and P+(𝑋, 𝑌 ) =
2𝑋 + 𝑌 + 1. For the first rule, the left side of the rule is interpreted with 𝑋(2𝑌 + 𝑍 + 1)
whereas the right side is 2𝑋𝑌 + 𝑋𝑍 + 1. It holds 2𝑋𝑌 + 𝑋𝑍 + 𝑋 > 2𝑋𝑌 + 𝑋𝑍 + 1 whenever
𝑋 > 1 (and for this reason we use an interpretation on N ∖ {0, 1}). Similarly, for the second
one it holds that 4𝑋 + 2𝑌 + 𝑍 + 3 > 2𝑋 + 2𝑌 + 𝑍 + 2.

A polynomial interpretation on real numbers is the following:

• a subset 𝐴 of R+;
• a positive real number 𝛿;
• for every symbol 𝑓 of arity 𝑛, a polynomial P𝑓 ∈ R[𝑋1, . . . , 𝑋𝑛];
• for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴;
• for every 𝑎1, . . . , 𝑎𝑖 >𝛿 𝑎′

𝑖, . . . , 𝑎𝑛 ∈ 𝐴, P𝑓 (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛) >𝛿 P𝑓 (𝑎1, . . . , 𝑎′
𝑖, . . . , 𝑎𝑛) where

𝑥 >𝛿 𝑦 iff 𝑥 > 𝑦 + 𝛿.

Then (𝐴, (P𝑓 )𝑓 , >𝛿) is a well-founded monotone algebra.

Exercise 7 :

Consider the following two TRS:

𝑅1 ={ l(p(𝑥)) → p(p(l(𝑥))), p(s(𝑥)) → s(s(p(𝑥))), p(𝑥) → a(𝑥, 𝑥),
s(𝑥) → a(𝑥, 0), s(𝑥) → a(0, 𝑥) }

𝑅2 ={ r(r(r(𝑥))) → a(r(𝑥), r(𝑥)), s(a(r(𝑥), r(𝑥))) → r(r(r(𝑥))) }

1. Prove that 𝑅1 ∪ 𝑅2 terminates using the following polynomial interpretation on real numbers:
𝛿 = 1, P0(𝑋) = 0, Pl(𝑋) = 𝑋2, Ps(𝑋) = 𝑋 + 4, Pp(𝑋) = 3𝑋 + 5, Pa(𝑋, 𝑌 ) = 𝑋 + 𝑌 and
Pr(𝑋) =

√
2𝑋 + 1.

2. Prove that in any polynomial interpretation on integers proving the termination of 𝑅1 it must
hold that Ps(𝑋) is of the form 𝑋 + 𝑠0 and Pa(𝑋, 𝑌 ) is of the form 𝑋 + 𝑌 + 𝑎0, with 𝑠0 > 𝑎0.
hint: look at the dominant terms of the polynomials computed from the rewrite rules.

3. Deduce that the termination of 𝑅1 ∪ 𝑅2 cannot be proved using a polynomial interpretation
of integers.
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Solution:

(1)

Pl(p(𝑥))(𝑋) = 9𝑋2 + 30𝑋 + 25 >1 Pp(p(l(𝑥)))(𝑋) = 9𝑋2 + 20
Pp(s(𝑥))(𝑋) = 3𝑋 + 17 >1 Ps(s(p(𝑥)))(𝑋) = 3𝑋 + 13

Pp(𝑥)(𝑋) = 3𝑋 + 5 >1 Pa(𝑥,𝑥)(𝑋) = 2𝑋

Ps(𝑥)(𝑋) = 𝑋 + 4 >1 Pa(𝑥,0)(𝑋) = 𝑋

Ps(𝑥)(𝑋) = 𝑋 + 4 >1 Pa(0,𝑥) = 𝑋

Pr(r(r(𝑥)))(𝑋) = 2
√

2𝑋 + 3 +
√

2 >1 Pa(r(𝑥),r(𝑥)) = 2
√

2𝑋 + 2
Ps(a(r(𝑥),r(𝑥)))(𝑋) = 2

√
2𝑋 + 6 >1 Pr(r(r(𝑥)))(𝑋) = 2

√
2𝑋 + 3 +

√
2

(2) Let 𝑃0 = 𝑧 ≥ 0. From the second rule of 𝑅1, let 𝛼 be the degree of Ps(𝑋) and let 𝛽 be
the degree of Pp(𝑋). From Pps(𝑥)(𝑋) > Ps(s(p(𝑥)))(𝑋) it must hold that 𝛽𝛼 ≥ 𝛼𝛼𝛽. Therefore
𝛼 = 1. Similarly, from the first rule, also Pp(𝑋) is of degree one. From the third rule it must
hold that Pa(𝑋, 𝑌 ) is also of degree one. So Pp(𝑋) is of the form 𝑝1𝑋 + 𝑝0, Ps(𝑋) is of the
form 𝑠1𝑋 + 𝑠0 whereas Pa(𝑋, 𝑌 ) is of the form 𝑎2𝑋 + 𝑎1𝑌 + 𝑎0. From the fourth rule it must
hold 𝑠1𝑋 + 𝑠0 > 𝑎2𝑋 + 𝑎0 + 𝑎1𝑧, which implies 𝑠1 ≥ 𝑎2 ≥ 1. Similarly, from the fifth rule,
𝑠1 ≥ 𝑎1 ≥ 1. From the second rule 𝑠1𝑝1𝑋 + 𝑠0𝑝1 + 𝑝0 > 𝑠2

1𝑝1𝑋 + 𝑠2
1𝑝0 + 𝑠1𝑠0 + 𝑠0 and therefore

it must hold that 𝑠1𝑝1 ≥ 𝑠2
1𝑝1. Therefore 𝑠1 = 1, which also implies 𝑎2 = 𝑎1 = 1. Moreover

from 𝑠1𝑋 + 𝑠0 > 𝑎2𝑋 + 𝑎0 + 𝑎1𝑧, it must hold 𝑠0 > 𝑎0.
(3) Let 𝛼 be the degree of the polynomial Pr(𝑋). From the second rule of 𝑅2 it must hold
that 𝛼3 ≤ 𝛼 and therefore 𝛼 = 1 and Pr(𝑋) is of the form 𝑟1𝑋 + 𝑟0. Looking now at the first
rule, it must hold that 𝑟1(𝑟1(𝑟1𝑋 + 𝑟0) + 𝑟0) + 𝑟0 > 2𝑟1𝑋 + 2𝑟0 + 𝑎0 which implies 𝑟3

1 ≥ 2𝑟1
and therefore 𝑟2

1 ≥ 2. Similarly, from the second rule of 𝑅2 it must hold that 2𝑟1 ≥ 𝑟3
1 or

alternatively 𝑟2
1 ≤ 2. Therefore 𝑟2

1 must be equal to 2, which requires 𝑟1 (=
√

2) not to be a
natural number.

A matrix interpretation on integers is the following:

• a positive integer 𝑑;
• for every symbol 𝑓 of arity 𝑛, 𝑛 matrices 𝑀𝑓,1 . . . , 𝑀𝑓,𝑛 ∈ N𝑑×𝑑;
• for every symbol of arity 𝑛, a vector 𝑉𝑓 ∈ N𝑑;
• a non-empty set 𝐼 ⊆ {1, . . . , 𝑑} satisfying that for every symbol 𝑓 of arity 𝑛 the map

𝐿𝑓 : (N𝑑)𝑛 → N𝑑 defined as 𝐿𝑓 (𝑋1, . . . , 𝑋𝑛) = 𝑉𝑓 +
𝑛∑︁

𝑖=1
𝑀𝑓,𝑖𝑋𝑖

is monotonic with respect to >𝐼 were 𝑋 >𝐼 𝑌 holds if and only if for every 𝑖 ∈ {1, . . . , 𝑑},
𝑋[𝑖] ≥ 𝑌 [𝑖] and there is 𝑗 ∈ 𝐼 such that 𝑋[𝑗] > 𝑌 [𝑗].

Then (N𝑑, (𝐿𝑓 )𝑓 , >𝐼) is a well-founded monotone algebra.

Exercise 8 :

Consider the TRS { s(a) → s(p(a)), p(b) → p(s(b)) }.

1. Prove that its termination cannot be proved by a polynomial interpretation on integers;
2. Use the following matrix interpretation to prove termination w.r.t. >{1,2}.

𝐿s(𝑋) =
[︂
0 1
1 1

]︂
𝑋 𝐿p(𝑋) =

[︂
1 1
1 0

]︂
𝑋 𝐿a =

[︂
0
1

]︂
𝐿b =

[︂
1
0

]︂
3. Why does it fail if we take >{1} instead? Is there another matrix interpretation that works

with this ordering?
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Solution:

(1) From the first rule, the degree of Pp must be one. The same holds for Ps, thanks to the second
rule. This implies that Ps(a) of the form 𝑠1𝑎 + 𝑠0 whereas Ps(p(a)) of the form 𝑠1𝑝1𝑎 + 𝑠1𝑝0 + 𝑠0
which, since 𝑝1 ≥ 1, is sufficient to conclude that the termination of this TRS cannot be proved
by a polynomial interpretation on integers.
(2) It holds that:

𝐿s(𝐿a) =
[︂
0 1
1 1

]︂ [︂
0
1

]︂
=

[︂
1
1

]︂
>{1,2}

[︂
0
1

]︂
=

[︂
0 1
1 1

]︂ [︂
1
0

]︂
=

[︂
0 1
1 1

]︂ [︂
1 1
1 0

]︂ [︂
0
1

]︂
= 𝐿s(𝐿p(𝐿a))

𝐿p(𝐿b) =
[︂
1 1
1 0

]︂ [︂
1
0

]︂
=

[︂
1
1

]︂
>{1,2}

[︂
1
0

]︂
=

[︂
1 1
1 0

]︂ [︂
0
1

]︂
=

[︂
1 1
1 0

]︂ [︂
0 1
1 1

]︂ [︂
1
0

]︂
= 𝐿p(𝐿s(𝐿b))

(3) From the second rule,
[︂
1
1

]︂
>{1}

[︂
1
0

]︂
does not hold. No, let 𝐿s(𝑋) = 𝑀s𝑋 + 𝑉s and

𝐿p(𝑋) = 𝑀p𝑋 + 𝑉p. For the first rule it will hold

𝐿s(𝐿a) = 𝑀s𝐿a + 𝑉s

𝐿s(𝐿p(𝐿a)) = 𝑀s𝑀p𝐿a + 𝑀s𝑉p + 𝑉s

To make >{1} it must therefore hold

(𝑀s)1,1(𝐿a)1,1 + · · · + (𝑀s)1,𝑑(𝐿a)1,𝑑 > (𝑀p)1,1((𝑀s)1,1(𝐿a)1,1 + · · · + (𝑀s)1,𝑑(𝐿a)1,𝑑) + . . .

which implies (𝑀p)1,1 = 0. Similarly, from the second rule, (𝑀s)1,1 = 0. This implies that no
polynomial interpretation with the ordering >{1} can be defined for this TRS, since for any
𝑚 > 𝑛, (𝑚, 0, . . . , 0) >{1} (𝑛, 0, . . . , 0) but 𝐿s(𝑚, 0, . . . , 0) ={1} 𝐿s(𝑛, 0, . . . , 0).

Exercise 9 :

Let 𝐴 ⊆ N and P𝑓 be respectively the domain and the interpretation, for each function symbol 𝑓 ,
of a polynomial interpretation of integers for a TRS (note: the TRS is therefore terminating). Take
𝑎 ∈ 𝐴 ∖ {0}.

1. Define 𝜋𝑎 : 𝑇 (𝐹, 𝑋) → 𝐴 as the function which maps every variable 𝑥 to 𝑎 and every term
of the form 𝑓(𝑡1, . . . , 𝑡𝑛) to P𝑓 (𝜋𝑎(𝑡1), . . . , 𝜋𝑎(𝑡𝑛)). Prove that 𝜋𝑎(𝑡) is greater or equal to the
length of every reduction starting from 𝑡.

2. Show that there exists 𝑑 and 𝑘 positive integers such that for every 𝑓 ∈ 𝐹 of arity 𝑛 and every
𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 ∖ {0} it holds P𝑓 (𝑎1, . . . , 𝑎𝑛) ≤ 𝑑

∏︀𝑛
𝑖=1 𝑎𝑘

𝑖 .
3. From the previous point, pick 𝑑 to be also greater or equal than 𝑎 and fix 𝑐 ≥ 𝑘 + log2(𝑑).

Prove that 𝜋𝑎(𝑡) ≤ 22𝑐|𝑡| .

Consider now any finite TRS and a function symbol 𝑓 . Prove that there exists an integer 𝑘 such
that if 𝑠 → 𝑡 then |𝑡|𝑓 ≤ 𝑘(|𝑠|𝑓 + 1), where |.|𝑓 is the number of 𝑓 .
Deduce that the TRS

{ a(0, 𝑦) → s(𝑦), a(s(𝑥), 0) → a(𝑥, s(0)), a(s(𝑥), s(𝑦)) → a(𝑥, a(s(𝑥), 𝑦)) },

simulating the Ackermann’s function, cannot be proved terminating using a polynomial interpreta-
tion over integers.

Solution:

(1) The proof is by induction on the → relation. Let 𝑡 be irreducible. Then the length of
all its reductions is 0 and 𝜋𝑎(𝑡) ≥ 0 by definition. For the inductive step, suppose 𝑡 → 𝑡′ s.t.
𝑡 → 𝑡′ → . . . is the maximal reduction from 𝑡. There exists a context 𝐶, a valuation 𝜎 and a
rewriting rule 𝑙 → 𝑟 such that 𝑡 = 𝐶[𝑙𝜎] → 𝐶[𝑟𝜎] = 𝑡′. W.l.o.g. we can consider just terms of the
form 𝑙𝜎 → 𝑟𝜎. Let P𝑙 and P𝑟 be the polynomials resulting from the polynomial interpretation,
for 𝑙 and 𝑟 respectively. We have that, for all 𝑋1, . . . , 𝑋𝑛, P𝑙(𝑋1, . . . , 𝑋𝑛) > P𝑟(𝑋1, . . . , 𝑋𝑛). By
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inductive hypothesis, 𝜋𝑎(𝑟𝜎) = P𝑟(𝜋𝑎(𝜎(𝑋1)), . . . , 𝜋𝑎(𝜎(𝑋𝑛))) is greater or equal to the length
of every reduction starting from 𝑟𝜎. It follow that 𝜋𝑎(𝑙𝜎) = P𝑙(𝜋𝑎(𝜎(𝑋1)), . . . , 𝜋𝑎(𝜎(𝑋𝑛))) ≥
𝜋𝑎(𝑟𝜎) + 1 and therefore 𝜋𝑎(𝑙𝜎) is greater or equal to the length of every reduction starting
from 𝑙𝜎.
(2) Let {𝑠0, . . . , 𝑠𝑚} be the coefficient of the polynomial P𝑓 , let 𝑑 ≥

∑︀𝑛
𝑖=0 𝑠𝑖 (so 𝑑 ≥ 1)

and let 𝑘 ≥ 1 be also greater or equal to the degree of P𝑓 . The thesis can be rewritten as
P𝑓 (𝑎1, . . . , 𝑎𝑛) ≤ (

∑︀𝑚
𝑖=1 𝑠𝑖)

∏︀𝑛
𝑗=1 𝑎𝑘

𝑗 =
∑︀𝑚

𝑖=1(𝑠𝑖

∏︀𝑛
𝑗=1 𝑎𝑘

𝑗 ). Moreover there exists

𝑘1,1 . . . , 𝑘1,𝑛, 𝑘2,1, . . . , 𝑘2,𝑛, . . . , 𝑘𝑚,1, . . . , 𝑘𝑚,𝑛

such that P𝑓 (𝑎1, . . . , 𝑎𝑛) =
∑︀𝑚

𝑖=1(𝑠𝑖

∏︀𝑛
𝑗=1 𝑎

𝑘𝑖,𝑗

𝑗 ) and for all 𝑖 ∈ [1, 𝑚] 𝑘𝑖,1 + · · · + 𝑘𝑖,𝑛 ≤ 𝑘.
Moreover 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 ∖ {0}, and therefore the thesis trivially holds since for all 𝑖 ∈ [1, 𝑚]
𝑠𝑖

∏︀𝑛
𝑗=1 𝑎

𝑘𝑖,𝑗

𝑗 ≤ 𝑠𝑖

∏︀𝑛
𝑗=1 𝑎𝑘

𝑗 .

(3) By induction of 𝑡. If 𝑡 is a variable, then |𝑡| = 1 and 𝜋𝑎(𝑡) = 𝑎 ≤ 2𝑎 ≤ 22log2(𝑑) ≤ 22𝑐|𝑡| . If 𝑡
is of the form 𝑓(𝑡1, . . . , 𝑡𝑛) then 𝜋𝑎(𝑡) = P𝑓 (𝜋𝑎(𝑡1), . . . , 𝜋𝑎(𝑡𝑛)). By inductive hypothesis, since
P𝑓 is monotone, 𝜋𝑎(𝑡) ≤ P𝑓 (22𝑐|𝑡1|

, . . . , 22𝑐|𝑡𝑛|). From (2) it follows that P𝑓 (22𝑐|𝑡1|
, . . . , 22𝑐|𝑡𝑛|) ≤

𝑑
∏︀𝑛

𝑖=1(22𝑐|𝑡𝑖|)𝑘 = 𝑑2Σ𝑖(𝑘2𝑐|𝑡𝑖|) = 2log2(𝑑)2Σ𝑖(𝑘2𝑐|𝑡𝑖|) = 2log2(𝑑)+𝑘Σ𝑖(2𝑐|𝑡𝑖|) ≤ 2(log2(𝑑)+𝑘)Σ𝑖(2𝑐|𝑡𝑖|).
Since 𝑑 ≥ 𝑎 ≥ 1 and 𝑘 ≥ 1 it holds that 𝑐 ≥ 1 and therefore 2(log2(𝑑)+𝑘)Σ𝑖(2𝑐|𝑡𝑖|) ≤ 2𝑐Π𝑖(2𝑐|𝑡𝑖|) ≤
22𝑐Π𝑖(2𝑐|𝑡𝑖|) ≤ 22𝑐|𝑡| .
(4) W.l.o.g. consider 𝑠 = 𝑙𝜎 and 𝑡 = 𝑟𝜎 for a rewriting rule 𝑙 → 𝑟 and a valuation 𝜎. The
number of occurrences of 𝑓 in 𝑙𝜎 is |𝑙|𝑓 +

∑︀
𝑝∈{𝑝|𝑙|𝑝∈𝑋} |𝜎(𝑙|𝑝)|𝑓 where |𝑙|𝑓 only depends on

the left side of the rewriting rule. Similarly, |𝑟𝜎|𝑓 = |𝑟|𝑓 +
∑︀

𝑝∈{𝑝|𝑟|𝑝∈𝑋} |𝜎(𝑟|𝑝)|𝑓 where |𝑟|𝑓
depends only on the right side of the rewriting rule. Let 𝑉 the number of variables in 𝑟 (i.e.
|{𝑝|𝑟|𝑝 ∈ 𝑋}|). It holds that |𝑟𝜎|𝑓 ≤ |𝑟|𝑓 + 𝑉 max𝑝∈{𝑝|𝑟|𝑝∈𝑋}(|𝜎(𝑟|𝑝)|𝑓 ). Since every variable
of 𝑟 also occurs in 𝑙 it must hold that |𝑟𝜎|𝑓 ≤ |𝑟|𝑓 + 𝑉 max𝑝∈{𝑝|𝑙|𝑝∈𝑋}(|𝜎(𝑙|𝑝)|𝑓 ). Moreover
max𝑝∈{𝑝|𝑙|𝑝∈𝑋}(|𝜎(𝑙|𝑝)|𝑓 ) is trivially less or equal that all the occurrences of 𝑓 in 𝑙𝜎, therefore
|𝑟𝜎|𝑓 ≤ |𝑟|𝑓 + 𝑉 |𝑙𝜎|𝑓 ≤ (|𝑟|𝑓 + 𝑉 )(|𝑙𝜎|𝑓 + 1). |𝑟|𝑓 and 𝑉 only depends on the rule itself. Let 𝑘
be greater or equal than the maximum number of occurrences of 𝑓 in the right side of each
rule of the TRS plus the number of variables in the right side of each rule of the TRS. it holds
that |𝑟𝜎|𝑓 ≤ 𝑘(|𝑙𝜎|𝑓 + 1).
(5) From the above point, it holds that for all terms 𝑠 and 𝑡 such that 𝑠 → 𝑡, |𝑡|s ≤ 𝑘(|𝑠|s + 1).
So at each step of the rewriting system, the number of s can at most increase 𝑘 times (from
the previous proof, for Ackermann this should hold for 𝑘 ≥ 5). If Ackermann could be
proved terminating using a polynomial interpretation over integers then given any term 𝑡, the
maximum number of steps will be 𝜋𝑎(𝑡) ≤ 22𝑐|𝑡| , where 𝑐 is fixed (and depends on the polynomial
interpretation, see proof (2)). The size of a term of the form a(𝑚, 𝑛) is 𝑚 + 𝑛 + 3. We conclude
that there must exists 𝑘 and 𝑐 such that for any 𝑋, 𝑌 it should hold 𝐴𝑐𝑘(𝑋, 𝑌 ) ≤ 𝑘 *22𝑐(𝑋+𝑌 +3) .
This cannot hold since 𝐴𝑐𝑘(𝑋, 𝑌 ) is not primitive recursive whereas 𝑘 * 22𝑐(𝑋+𝑌 +3) is, and
therefore there exists 𝑋 and 𝑌 such that 𝐴𝑐𝑘(𝑋, 𝑌 ) > 𝑘 * 22𝑐(𝑋+𝑌 +3) .
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