Rewriting Techniques: TD 1

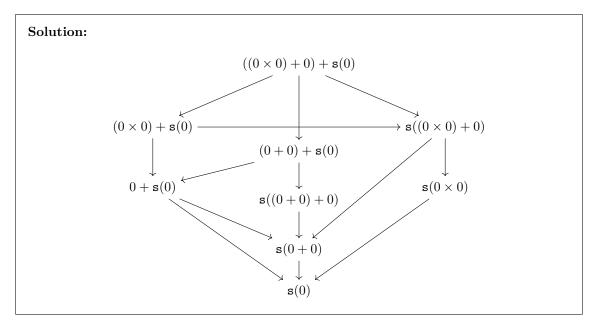
16-11-2017

Exercise 1:

Given the following term rewriting system (TRS):

$$\begin{array}{lll} x\times \mathbf{0} \to \mathbf{0} & x+\mathbf{0} \to x \\ \mathbf{0}\times x\to \mathbf{0} & \mathbf{0} + x\to x \\ \mathbf{s}(x)\times y\to (x\times y)+y & x+\mathbf{s}(y)\to \mathbf{s}(x+y) \\ x\times \mathbf{s}(y)\to (x\times y)+x & \mathbf{s}(x)+y\to \mathbf{s}(x+y) \end{array}$$

Show the reduction graph of $((0 \times 0) + 0) + s(0)$.



Exercise 2:

Given the signature ($\{\mathbb{N}, \text{List}\}$, $\{0, s, \epsilon, :, \text{merge}, \text{sort}\}$) where the set of functions is typed as follows:

$$\begin{split} \mathbf{0}: \mathbb{N}, & \quad \mathbf{s}: \mathbb{N} \to \mathbb{N}, & \quad \epsilon: \mathtt{List}, & \quad (:): \mathbb{N} \times \mathtt{List} \to \mathtt{List}, \\ & \quad \mathsf{merge}: \mathtt{List} \times \mathtt{List} \to \mathtt{List}, & \quad \mathsf{sort}: \mathtt{List} \to \mathtt{List} \end{split}$$

Define a finite TRS that simulates the *mergesort algorithm*. If needed, you can define auxiliary sorts and function symbols.

Solution: We will use the additional sort $\mathbb{B} = \{\top, \bot\}$ and the following function symbols: $\mathtt{even} : \mathtt{List} \to \mathtt{List}, \, \mathtt{odd} : \mathtt{List} \to \mathtt{List}, \, \geq : \mathbb{N} \times \mathbb{N} \to \mathbb{B}, \, \mathtt{aux} : \mathbb{N} \times \mathtt{List} \times \mathtt{List} \to \mathtt{List}$ We define the following TRS: $even(\epsilon) \rightarrow \epsilon$ $odd(\epsilon) \rightarrow \epsilon$ $even(x:\epsilon) \rightarrow \epsilon$ $odd(x:\epsilon) \rightarrow x:\epsilon$ $\mathtt{odd}(x{:}y{:}z) \to x{:}\mathtt{odd}(z)$ $even(x:y:z) \rightarrow y:even(z)$ $0 \ge 0 \to \top$ $\mathtt{aux}(\top, x:y, z:w) \to z:\mathtt{merge}(x:y, w)$ $s(x) \ge 0 \to \top$ $aux(\bot, x:y, z:w) \rightarrow x:merge(y, z:w)$ $0 \ge \mathtt{s}(x) \to \bot$ $s(x) \ge s(y) \to x \ge y$

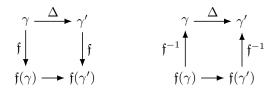
```
\begin{split} & \operatorname{merge}(x,\epsilon) \to x \\ & \operatorname{merge}(\epsilon,x) \to x \\ & \operatorname{merge}(x:y,z:w) \to \operatorname{aux}(x \geq z,x:y,z:w) \\ & \operatorname{sort}(\epsilon) \to \epsilon \\ & \operatorname{sort}(x:\epsilon) \to x:\epsilon \\ & \operatorname{sort}(x:y:z) \to \operatorname{merge}(\operatorname{sort}(\operatorname{even}(x:y:z)),\operatorname{sort}(\operatorname{odd}(x:y:z))) \end{split}
```

Exercise 3:

Let $\mathcal{M} = (\Sigma, Q, \Delta)$ be a non-deterministic Turing machine where

- $\Sigma = \{s_0, \dots, s_n\}$ is a finite alphabet and s_0 is considered the blank symbol;
- $Q = \{q_0, \dots, q_p\}$ is a finite set of states;
- $\Delta \subseteq Q \times \Sigma \times Q \times \Sigma \times \{l, r\}$ transition relation.

A configuration is an ordered triple $(x, q, k) \in \Sigma^* \times Q \times \mathbb{N}$ where x denotes the string on the tape, q denotes the machine's current state, and k denotes the position of the machine on the tape. Translate \mathcal{M} into a finite TRS such that there exists an injection \mathfrak{f} from configurations of \mathcal{M} to terms satisfying for each configuration γ, γ' .



Solution:

For each $s \in \Sigma$ we introduce the unary function symbol s. For each $q \in Q$ we introduce the unary function symbol q. Lastly, we introduce the constant r and the unary function symbol 1. We now define the TRS:

- For each transition $(q, s_i, q', s_j, r) \in \Delta$ we add the rewriting rule $q(s_i(x)) \to s_j(q'(x))$ and if i = 0 we also add the rule $q(r) \to s_j(q'(r))$.
- For each transition $(q, s_i, q', s_j, l) \in \Delta$ we add the rule $1(q(s_i(x))) \to 1(q'(s_0(s_j(x))))$ and for every $k \in [1, n]$ we add the rewriting rule $s_k(q(s_i(x))) \to q'(s_k(s_j(x)))$. Moreover, if i = 0, we also add $1(q(r)) \to 1(q'(s_0(s_j(r))))$ and the rule $s_k(q(r)) \to q'(s_k(s_j(x)))$, where $k \in [1, n]$.

Finally, for a configuration (x, q, k) where $x = s_{i_0} s_{i_1} \dots s_{i_{k-1}} s_{i_k} s_{i_{k+1}} \dots s_{i_\ell}$, the injection \mathfrak{f} is defined as $1(\mathfrak{s}_{i_0}(\mathfrak{s}_{i_1}(\dots\mathfrak{s}_{i_{k-1}}(\mathfrak{q}(\mathfrak{s}_k(\mathfrak{s}_{i_{k+1}}(\dots\mathfrak{s}_{i_\ell}(\mathfrak{p})))))))$.

Exercise 4:

Are the following TRS terminating?

1. { $s(p(x)) \rightarrow x$, $p(s(x)) \rightarrow x$ }; 2. { $s(p(x)) \rightarrow x$, $p(s(x)) \rightarrow s(p(x))$ }; 3. { $s(p(x)) \rightarrow x$, $p(s(x)) \rightarrow s(s(p(x)))$ };

For each transition system, let t and t' be two terms with the same normal form. What is the relationship between t and t'?

- (1) Terminates since the number of symbols is always decreasing. Use the polynomial interpretation on natural numbers $P_s(X) = P_p(X) = X + 1$.
- (2) Also terminates. Use the polynomial interpretation on natural numbers $P_s(X) = X + 2$ and $P_p(X) = X^2$.
- (3) Does not terminate. Show the reduction graph of p(s(s(0))).

Let $t|_{\mathtt{s}}$ and $t|_{\mathtt{p}}$ be respectively the number of occurrences of the \mathtt{s} and \mathtt{p} in the term t. Two terms t and t' have the same normal form if and only if $t|_{\mathtt{s}} - t|_{\mathtt{p}} = t'|_{\mathtt{s}} - t'|_{\mathtt{p}}$. Moreover, if $t|_{\mathtt{s}} \geq t|_{\mathtt{p}}$, their normal form is $\mathtt{s}^{t|_{\mathtt{s}} - t|_{\mathtt{p}}}(0)$, otherwise it's $\mathtt{p}^{t|_{\mathtt{p}} - t|_{\mathtt{s}}}(0)$.

A polynomial interpretation on integers is the following:

- a subset A of \mathbb{N} ;
- for every symbol f of arity n, a polynomial $P_f \in \mathbb{N}[X_1, \dots, X_n]$;
- for every $a_1, \ldots, a_n \in A$, $P_f(a_1, \ldots, a_n) \in A$;
- for every $a_1, ..., a_i > a'_i, ..., a_n \in A$, $P_f(a_1, ..., a_i, ..., a_n) > P_f(a_1, ..., a'_i, ..., a_n)$;

Then $(A, (P_f)_f, >)$ is a well-founded monotone algebra.

Exercise 5:

Prove the termination of the following TRS

$$\begin{array}{ll} \mathtt{0} \times x \to \mathtt{0} & x + \mathtt{0} \to x \\ \mathtt{s}(x) \times y \to (x \times y) + y & x + \mathtt{s}(y) \to \mathtt{s}(x + y) \end{array}$$

using the polynomial interpretation on integers:

$$P_0 = 2$$
 $P_s(X) = X + 1$ $P_+(X, Y) = X + 2Y$ $P_\times(X, Y) = (X + Y)^2$

Is this polynomial interpretation suitable to prove termination of the TRS of Exercise 1?

Solution:

- (1) From the polynomial interpretation we get the following polynomial for the various rules of the TRS: $P_{0\times x}(X)=(X+2)^2$, $P_{\mathbf{s}(x)\times y}(X,Y)=(X+Y+1)^2$, $P_{(x\times y)+y}(X,Y)=(X+Y)^2+2Y$, $P_{x+0}(X)=X+4$, $P_{x+\mathbf{s}(y)}(X,Y)=X+2(Y+1)$ and $P_{\mathbf{s}(x+y)}=X+2Y+1$.
 - $P_{0\times x}(X) > P_0$ true since $(X+2)^2 = X^2 + 4X + 4 > 2$;
 - $P_{s(x)\times y}(X,Y) > P_{(x\times y)+y}(X,Y)$ true since $(X+Y+1)^2 = X^2 + 2XY + Y^2 + 2X + 2Y + 1$ is greater than $(X+Y)^2 + 2Y = X^2 + 2XY + Y^2 + 2Y$;
 - $P_{x+0}(X) > X$ true since X + 4 > X;
 - $P_{x+s(y)}(X,Y) > P_{s(x+y)}$ since X + 2(Y+1) > X + 2Y + 1.
- (2) No. For the rule $\mathbf{s}(x) + y \to \mathbf{s}(x+y)$. Indeed, $P_{\mathbf{s}(x)+y}(X,Y) = P_{\mathbf{s}(x+y)}(X,Y) = X + 2Y + 1$.

Exercise 6:

Prove the termination of the following TRS by finding a polynomial interpretation on integers:

$$x \times (y+z) \to (x \times y) + (x \times z)$$
$$(x+y) + z \to x + (y+z)$$

Let $P_{\times}(X,Y)$ and $P_{+}(X,Y)$ be the two polynomial interpretation that we want to find. We can start by showing that the polynomial interpretation for the second rule must have degree 1. Let $\deg_{\times(X)}$ be the degree of the polynomial $P_{\times}(X,Y)$ w.r.t. the variable X. Similarly we denote with $\deg_{\times(Y)}$ the degree of the polynomial $P_{\times}(X,Y)$ w.r.t. Y, whereas $\deg_{+(X)}$ and $\deg_{+(Y)}$ are the degrees of the polynomial $P_{+}(X,Y)$ w.r.t. X and Y respectively. From the first rule it must hold that $\deg_{\times(X)} \ge \deg_{\times(X)} \times \deg_{+(X)}$, which implies $\deg_{+(X)} = 1$. Moreover it holds $\deg_{\times(X)} \ge \deg_{\times(X)} \times \deg_{+(Y)}$, which implies $\deg_{+(Y)} = 1$. Therefore, $P_{+}(X,Y)$ must be of the form $s_2X + s_1Y + s_0$. From the second rule we obtain

$$s_2(s_2X + s_1Y + s_0) + s_1Z + s_0 > s_2X + s_1(s_2Y + s_1Z + s_0) + s_0$$

Which can be rewritten as $s_2^2X + s_1Z + s_0s_2 > s_2X + s_1^2Z + s_0s_1$. It follows that s_2 must be greater than s_1 . With a similar reasoning it follows that $P_{\times}(X,Y)$ must have degree 2.

Lets define the polynomial interpretation on $\mathbb{N}\setminus\{0,1\}$, $\mathbb{P}_{\times}(X,Y)=XY$ and $\mathbb{P}_{+}(X,Y)=2X+Y+1$. For the first rule, the left side of the rule is interpreted with X(2Y+Z+1) whereas the right side is 2XY+XZ+1. It holds 2XY+XZ+X>2XY+XZ+1 whenever X>1 (and for this reason we use an interpretation on $\mathbb{N}\setminus\{0,1\}$). Similarly, for the second one it holds that 4X+2Y+Z+3>2X+2Y+Z+2.

A polynomial interpretation on real numbers is the following:

- a subset A of \mathbb{R}^+ ;
- a positive real number δ ;
- for every symbol f of arity n, a polynomial $P_f \in \mathbb{R}[X_1, \dots, X_n]$;
- for every $a_1, \ldots, a_n \in A$, $P_f(a_1, \ldots, a_n) \in A$;
- for every $a_1, \ldots, a_i >_{\delta} a'_i, \ldots, a_n \in A$, $P_f(a_1, \ldots, a_i, \ldots, a_n) >_{\delta} P_f(a_1, \ldots, a'_i, \ldots, a_n)$ where $x >_{\delta} y$ iff $x > y + \delta$.

Then $(A, (P_f)_f, >_{\delta})$ is a well-founded monotone algebra.

Exercise 7:

Consider the following two TRS:

$$R_1 = \{ \ \mathbf{l}(\mathbf{p}(x)) \rightarrow \mathbf{p}(\mathbf{p}(\mathbf{l}(x))), \ \mathbf{p}(\mathbf{s}(x)) \rightarrow \mathbf{s}(\mathbf{s}(\mathbf{p}(x))), \ \mathbf{p}(x) \rightarrow \mathbf{a}(x, x), \\ \mathbf{s}(x) \rightarrow \mathbf{a}(x, 0), \ \mathbf{s}(x) \rightarrow \mathbf{a}(0, x) \ \}$$

$$R_2 = \{ \ \mathbf{r}(\mathbf{r}(\mathbf{r}(x))) \rightarrow \mathbf{a}(\mathbf{r}(x), \mathbf{r}(x)), \ \mathbf{s}(\mathbf{a}(\mathbf{r}(x), \mathbf{r}(x))) \rightarrow \mathbf{r}(\mathbf{r}(\mathbf{r}(x))) \ \}$$

- 1. Prove that $R_1 \cup R_2$ terminates using the following polynomial interpretation on real numbers: $\delta = 1$, $P_0(X) = 0$, $P_1(X) = X^2$, $P_s(X) = X + 4$, $P_p(X) = 3X + 5$, $P_a(X, Y) = X + Y$ and $P_r(X) = \sqrt{2}X + 1$.
- 2. Prove that in any polynomial interpretation on integers proving the termination of R_1 it must hold that $P_s(X)$ is of the form $X + s_0$ and $P_a(X, Y)$ is of the form $X + Y + a_0$, with $s_0 > a_0$. hint: look at the dominant terms of the polynomials computed from the rewrite rules.
- 3. Deduce that the termination of $R_1 \cup R_2$ cannot be proved using a polynomial interpretation of integers.

(1)

$$\begin{split} \mathsf{P}_{\mathsf{1}(\mathsf{p}(x))}(X) &= 9X^2 + 30X + 25 >_1 \mathsf{P}_{\mathsf{p}(\mathsf{p}(\mathsf{1}(x)))}(X) = 9X^2 + 20 \\ \mathsf{P}_{\mathsf{p}(\mathsf{s}(x))}(X) &= 3X + 17 >_1 \mathsf{P}_{\mathsf{s}(\mathsf{s}(\mathsf{p}(x)))}(X) = 3X + 13 \\ \mathsf{P}_{\mathsf{p}(x)}(X) &= 3X + 5 >_1 \mathsf{P}_{\mathsf{a}(x,x)}(X) = 2X \\ \mathsf{P}_{\mathsf{s}(x)}(X) &= X + 4 >_1 \mathsf{P}_{\mathsf{a}(x,0)}(X) = X \\ \mathsf{P}_{\mathsf{s}(x)}(X) &= X + 4 >_1 \mathsf{P}_{\mathsf{a}(0,x)} = X \\ \mathsf{P}_{\mathsf{r}(\mathsf{r}(\mathsf{r}(x)))}(X) &= 2\sqrt{2}X + 3 + \sqrt{2} >_1 \mathsf{P}_{\mathsf{a}(\mathsf{r}(x),\mathsf{r}(x))} = 2\sqrt{2}X + 2 \\ \mathsf{P}_{\mathsf{s}(\mathsf{a}(\mathsf{r}(x),\mathsf{r}(x)))}(X) &= 2\sqrt{2}X + 6 >_1 \mathsf{P}_{\mathsf{r}(\mathsf{r}(\mathsf{r}(x)))}(X) = 2\sqrt{2}X + 3 + \sqrt{2} \end{split}$$

- (2) Let $P_0 = z \ge 0$. From the second rule of R_1 , let α be the degree of $P_s(X)$ and let β be the degree of $P_p(X)$. From $P_{ps(x)}(X) > P_{s(s(p(x)))}(X)$ it must hold that $\beta \alpha \ge \alpha \alpha \beta$. Therefore $\alpha = 1$. Similarly, from the first rule, also $P_p(X)$ is of degree one. From the third rule it must hold that $P_a(X,Y)$ is also of degree one. So $P_p(X)$ is of the form $p_1X + p_0$, $P_s(X)$ is of the form $s_1X + s_0$ whereas $P_a(X,Y)$ is of the form $a_2X + a_1Y + a_0$. From the fourth rule it must hold $s_1X + s_0 > a_2X + a_0 + a_1z$, which implies $s_1 \ge a_2 \ge 1$. Similarly, from the fifth rule, $s_1 \ge a_1 \ge 1$. From the second rule $s_1p_1X + s_0p_1 + p_0 > s_1^2p_1X + s_1^2p_0 + s_1s_0 + s_0$ and therefore it must hold that $s_1p_1 \ge s_1^2p_1$. Therefore $s_1 = 1$, which also implies $a_2 = a_1 = 1$. Moreover from $s_1X + s_0 > a_2X + a_0 + a_1z$, it must hold $s_0 > a_0$.
- (3) Let α be the degree of the polynomial $P_r(X)$. From the second rule of R_2 it must hold that $\alpha^3 \leq \alpha$ and therefore $\alpha = 1$ and $P_r(X)$ is of the form $r_1X + r_0$. Looking now at the first rule, it must hold that $r_1(r_1(r_1X + r_0) + r_0) + r_0 > 2r_1X + 2r_0 + a_0$ which implies $r_1^3 \geq 2r_1$ and therefore $r_1^2 \geq 2$. Similarly, from the second rule of R_2 it must hold that $2r_1 \geq r_1^3$ or alternatively $r_1^2 \leq 2$. Therefore r_1^2 must be equal to 2, which requires $r_1 = \sqrt{2}$ not to be a natural number.

A matrix interpretation on integers is the following:

- a positive integer d;
- for every symbol f of arity n, n matrices $M_{f,1}, \dots, M_{f,n} \in \mathbb{N}^{d \times d}$;
- for every symbol of arity n, a vector $V_f \in \mathbb{N}^d$;
- a non-empty set $I \subseteq \{1, \ldots, d\}$ satisfying that for every symbol f of arity n the map

$$L_f: (\mathbb{N}^d)^n \to \mathbb{N}^d$$
 defined as $L_f(X_1, \dots, X_n) = V_f + \sum_{i=1}^n M_{f,i} X_i$

is monotonic with respect to $>_I$ were $X>_I Y$ holds if and only if for every $i\in\{1,\ldots,d\}$, $X[i]\geq Y[i]$ and there is $j\in I$ such that X[j]>Y[j].

Then $(\mathbb{N}^d, (L_f)_f, >_I)$ is a well-founded monotone algebra.

Exercise 8:

 ${\rm Consider\ the\ TRS\ \{\ s(a) \to s(p(a)),\ p(b) \to p(s(b))\ \}}.$

- 1. Prove that its termination cannot be proved by a polynomial interpretation on integers;
- 2. Use the following matrix interpretation to prove termination w.r.t. $>_{\{1,2\}}$.

$$L_{\mathrm{s}}(X) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} X \qquad L_{\mathrm{p}}(X) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} X \qquad L_{\mathrm{a}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad L_{\mathrm{b}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

3. Why does it fail if we take $>_{\{1\}}$ instead? Is there another matrix interpretation that works with this ordering?

- (1) From the first rule, the degree of P_p must be one. The same holds for P_s , thanks to the second rule. This implies that $P_{s(a)}$ of the form $s_1a + s_0$ whereas $P_{s(p(a))}$ of the form $s_1p_1a + s_1p_0 + s_0$ which, since $p_1 \geq 1$, is sufficient to conclude that the termination of this TRS cannot be proved by a polynomial interpretation on integers.
- (2) It holds that:

$$L_{\mathbf{s}}(L_{\mathbf{a}}) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} >_{\{1,2\}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = L_{\mathbf{s}}(L_{\mathbf{p}}(L_{\mathbf{a}}))$$

$$L_{\mathbf{p}}(L_{\mathbf{b}}) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} >_{\{1,2\}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = L_{\mathbf{p}}(L_{\mathbf{s}}(L_{\mathbf{b}}))$$

(3) From the second rule, $\begin{bmatrix} 1 \\ 1 \end{bmatrix} >_{\{1\}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ does not hold. No, let $L_s(X) = M_sX + V_s$ and $L_p(X) = M_pX + V_p$. For the first rule it will hold

$$\begin{split} L_{\mathrm{s}}(L_{\mathrm{a}}) &= M_{\mathrm{s}}L_{\mathrm{a}} + V_{\mathrm{s}} \\ L_{\mathrm{s}}(L_{\mathrm{p}}(L_{\mathrm{a}})) &= M_{\mathrm{s}}M_{\mathrm{p}}L_{\mathrm{a}} + M_{\mathrm{s}}V_{\mathrm{p}} + V_{\mathrm{s}} \end{split}$$

To make $>_{\{1\}}$ it must therefore hold

$$(M_{\mathtt{s}})_{1,1}(L_{\mathtt{a}})_{1,1}+\cdots+(M_{\mathtt{s}})_{1,d}(L_{\mathtt{a}})_{1,d}>(M_{\mathtt{p}})_{1,1}((M_{\mathtt{s}})_{1,1}(L_{\mathtt{a}})_{1,1}+\cdots+(M_{\mathtt{s}})_{1,d}(L_{\mathtt{a}})_{1,d})+\ldots$$

which implies $(M_p)_{1,1}=0$. Similarly, from the second rule, $(M_s)_{1,1}=0$. This implies that no polynomial interpretation with the ordering $>_{\{1\}}$ can be defined for this TRS, since for any m>n, $(m,0,\ldots,0)>_{\{1\}}(n,0,\ldots,0)$ but $L_s(m,0,\ldots,0)=_{\{1\}}L_s(n,0,\ldots,0)$.

Exercise 9:

Let $A \subseteq \mathbb{N}$ and P_f be respectively the domain and the interpretation, for each function symbol f, of a polynomial interpretation of integers for a TRS (note: the TRS is therefore terminating). Take $a \in A \setminus \{0\}$.

- 1. Define $\pi_a: T(F,X) \to A$ as the function which maps every variable x to a and every term of the form $f(t_1,\ldots,t_n)$ to $P_f(\pi_a(t_1),\ldots,\pi_a(t_n))$. Prove that $\pi_a(t)$ is greater or equal to the length of every reduction starting from t.
- 2. Show that there exists d and k positive integers such that for every $f \in F$ of arity n and every $a_1, \ldots, a_n \in A \setminus \{0\}$ it holds $P_f(a_1, \ldots, a_n) \leq d \prod_{i=1}^n a_i^k$.
- 3. From the previous point, pick d to be also greater or equal than a and fix $c \ge k + \log_2(d)$. Prove that $\pi_a(t) \le 2^{2^{c|t|}}$.

Consider now any finite TRS and a function symbol f. Prove that there exists an integer k such that if $s \to t$ then $|t|_f \le k(|s|_f + 1)$, where $|\cdot|_f$ is the number of f.

Deduce that the TRS

$$\{ a(0,y) \rightarrow s(y), a(s(x),0) \rightarrow a(x,s(0)), a(s(x),s(y)) \rightarrow a(x,a(s(x),y)) \},$$

simulating the Ackermann's function, cannot be proved terminating using a polynomial interpretation over integers.

Solution:

(1) The proof is by induction on the \to relation. Let t be irreducible. Then the length of all its reductions is 0 and $\pi_a(t) \geq 0$ by definition. For the inductive step, suppose $t \to t'$ s.t. $t \to t' \to \ldots$ is the maximal reduction from t. There exists a context C, a valuation σ and a rewriting rule $l \to r$ such that $t = C[l\sigma] \to C[r\sigma] = t'$. W.l.o.g. we can consider just terms of the form $l\sigma \to r\sigma$. Let P_l and P_r be the polynomials resulting from the polynomial interpretation, for l and r respectively. We have that, for all $X_1, \ldots, X_n, P_l(X_1, \ldots, X_n) > P_r(X_1, \ldots, X_n)$. By

inductive hypothesis, $\pi_a(r\sigma) = P_r(\pi_a(\sigma(X_1)), \dots, \pi_a(\sigma(X_n)))$ is greater or equal to the length of every reduction starting from $r\sigma$. It follow that $\pi_a(l\sigma) = P_l(\pi_a(\sigma(X_1)), \dots, \pi_a(\sigma(X_n))) \ge \pi_a(r\sigma) + 1$ and therefore $\pi_a(l\sigma)$ is greater or equal to the length of every reduction starting from $l\sigma$.

(2) Let $\{s_0,\ldots,s_m\}$ be the coefficient of the polynomial P_f , let $d\geq \sum_{i=0}^n s_i$ (so $d\geq 1$) and let $k\geq 1$ be also greater or equal to the degree of P_f . The thesis can be rewritten as $P_f(a_1,\ldots,a_n)\leq (\sum_{i=1}^m s_i)\prod_{j=1}^n a_j^k=\sum_{i=1}^m (s_i\prod_{j=1}^n a_j^k)$. Moreover there exists

$$k_{1,1}\ldots,k_{1,n},k_{2,1},\ldots,k_{2,n},\ldots,k_{m,1},\ldots,k_{m,n}$$

such that $P_f(a_1,\ldots,a_n) = \sum_{i=1}^m (s_i \prod_{j=1}^n a_j^{k_{i,j}})$ and for all $i \in [1,m]$ $k_{i,1} + \cdots + k_{i,n} \leq k$. Moreover $a_1,\ldots,a_n \in A \setminus \{0\}$, and therefore the thesis trivially holds since for all $i \in [1,m]$ $s_i \prod_{j=1}^n a_j^{k_{i,j}} \leq s_i \prod_{j=1}^n a_j^k$.

- $(3) \text{ By induction of } t. \text{ If } t \text{ is a variable, then } |t| = 1 \text{ and } \pi_a(t) = a \leq 2^a \leq 2^{2^{\log_2(d)}} \leq 2^{2^{c|t|}}. \text{ If } t \text{ is of the form } f(t_1,\ldots,t_n) \text{ then } \pi_a(t) = \mathsf{P}_f(\pi_a(t_1),\ldots,\pi_a(t_n)). \text{ By inductive hypothesis, since } \mathsf{P}_f \text{ is monotone, } \pi_a(t) \leq \mathsf{P}_f(2^{2^{c|t_1|}},\ldots,2^{2^{c|t_n|}}). \text{ From } (2) \text{ it follows that } \mathsf{P}_f(2^{2^{c|t_1|}},\ldots,2^{2^{c|t_n|}}) \leq d \prod_{i=1}^n (2^{2^{c|t_i|}})^k = d2^{\sum_i (k2^{c|t_i|})} = 2^{\log_2(d)}2^{\sum_i (k2^{c|t_i|})} = 2^{\log_2(d)+k\sum_i (2^{c|t_i|})} \leq 2^{(\log_2(d)+k)\sum_i (2^{c|t_i|})}. \\ \text{Since } d \geq a \geq 1 \text{ and } k \geq 1 \text{ it holds that } c \geq 1 \text{ and therefore } 2^{(\log_2(d)+k)\sum_i (2^{c|t_i|})} \leq 2^{c\Pi_i(2^{c|t_i|})} \leq 2^{c\Pi_i(2^{c|t_i|})} \leq 2^{c\Pi_i(2^{c|t_i|})}.$
- (4) W.l.o.g. consider $s=l\sigma$ and $t=r\sigma$ for a rewriting rule $l\to r$ and a valuation σ . The number of occurrences of f in $l\sigma$ is $|l|_f+\sum_{p\in\{p|l|_p\in X\}}|\sigma(l|_p)|_f$ where $|l|_f$ only depends on the left side of the rewriting rule. Similarly, $|r\sigma|_f=|r|_f+\sum_{p\in\{p|r|_p\in X\}}|\sigma(r|_p)|_f$ where $|r|_f$ depends only on the right side of the rewriting rule. Let V the number of variables in r (i.e. $|\{p|r|_p\in X\}|$). It holds that $|r\sigma|_f\leq |r|_f+V\max_{p\in\{p|r|_p\in X\}}(|\sigma(r|_p)|_f)$. Since every variable of r also occurs in l it must hold that $|r\sigma|_f\leq |r|_f+V\max_{p\in\{p|l|_p\in X\}}(|\sigma(l|_p)|_f)$. Moreover $\max_{p\in\{p|l|_p\in X\}}(|\sigma(l|_p)|_f)$ is trivially less or equal that all the occurrences of f in $l\sigma$, therefore $|r\sigma|_f\leq |r|_f+V|l\sigma|_f\leq (|r|_f+V)(|l\sigma|_f+1)$. $|r|_f$ and V only depends on the rule itself. Let k be greater or equal than the maximum number of occurrences of f in the right side of each rule of the TRS plus the number of variables in the right side of each rule of the TRS. it holds that $|r\sigma|_f\leq k(|l\sigma|_f+1)$.
- (5) From the above point, it holds that for all terms s and t such that $s \to t$, $|t|_s \le k(|s|_s + 1)$. So at each step of the rewriting system, the number of s can at most increase k times (from the previous proof, for Ackermann this should hold for $k \ge 5$). If Ackermann could be proved terminating using a polynomial interpretation over integers then given any term t, the maximum number of steps will be $\pi_a(t) \le 2^{2^{c|t|}}$, where c is fixed (and depends on the polynomial interpretation, see proof (2)). The size of a term of the form a(m,n) is m+n+3. We conclude that there must exists k and c such that for any x, y it should hold $Ack(x,y) \le k*2^{2^{c(X+Y+3)}}$. This cannot hold since Ack(x,y) is not primitive recursive whereas $k*2^{2^{c(X+Y+3)}}$ is, and therefore there exists x and y such that x such th