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This document is the abstract of the dissertation submitted by Aliaume Lopez for the E. W.
Beth Outstanding Dissertation Prize 2024. It is organised as follows: Introduction: Details of
the thesis, a short summary of the thesis, and a quick overview of the contributions. Context:
Recalling the context of the thesis and the main challenges addressed. Contributions: A
selection of main contributions of the thesis, organized by chapters. Outlook: A discussion of
the potential impact of the thesis and future work.

1 Introduction

The thesis is titled “First Order Preservation Theorems in Finite Model Theory: Locality,
Topology, and Limit Constructions”. It has been pursued under the supervision of Jean
Goubault-Larrecq and Sylvain Schmitz at the Laboratoire Méthodes Formelles (LMF) of ENS
Paris-Saclay and the Institut de Recherche en Informatique Fondamentale (IRIF) of the Université
Paris-Cité.

This thesis is built around three published articles [Lop21; Lop22; Lop23b], and other contribu-
tions that do not fit the narrative presented here are left in the bibliography of this document
as uncited personal references. References to specific parts of the thesis have the form [Lop23a,
Block Number, page page-number]. Beware that because the first pages of the thesis are not
numbered, page numbering has a delta of 10 between the page number written on the pdf, and
the index of the page in a PDF viewer. The page number used is the one written in the PDF.

1.1 General Themes

The research presented in this thesis lies at the intersection of several fields of theoretical
computer science, such as finite model theory, database theory, graph combinatorics and topology.
These relatively abstract fields (closer to mathematics than to engineering) find applications in
computer science under the umbrella of Formal Methods. Under this methodology, abstractions
of computer systems are studied using mathematical tools in order to prove their correctness
and guarantee their safety. These applications are not marginal, and have proven to be useful
in large-scale industrial settings (Amazon, Airbus, Arm, AdaCore, European Space Agency,
and many others). Under this perspective of Formal Methods, the thesis is concerned with the
following properties of programs/systems: Termination: Does the program/system always
stop? Expressiveness: Can two systems compute different properties? Optimisation: Can
the program/system be optimised?

The object of study of the thesis is the expressiveness of first order logic, through the lens of
so-called preservation theorems, which are statements of the prototypical form “if a sentence
φ defines a positive property, then it can be rewritten without negations”. Here, the notion of
positive property and without negations are left intentionally vague, as various choices lead to
different theorems. As we will demonstrate, these theorems are of interest in computer science
and contain in essence a termination property, that we will be expressed using the mathematical
notion of compactness in topological spaces.

1.2 Short Abstract

A majority of this thesis is dedicated to the study of preservation theorems in first-order logic and
their relativisation to classes of finite structures. These theorems are classical results obtained
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in the second half of the 20th century [CK90], and are motivated by their role in connecting
the syntactic properties of first order theories and their semantic properties, the latter being
understood as properties of their collection of (potentially infinite) models. Typical questions
are of the form “which classes of models can be axiomatised by universal sentences”, or “which
classes of models can be axiomatised by positive existential sentences”, etc. In this document,
we will focus on the restricted case where the axiomatisation uses finitely many sentences, which
is equivalent as using exactly one sentence in first order logic.

Besides the theoretical interest of such questions in terms of expressiveness, these theorems
actually have practical a practical impact in computer science, where they can be used to
characterise syntactic classes of database queries for which the termination and correctness of
database algorithms are guaranteed [see, e.g. Lib11].

Studying these theorems becomes notably challenging when focussing on finite models, which
is precisely when they become relevant in computer science, because databases are usually
modelled as finite objects. As such, the study of the relativisation preservation theorems to
classes of finite structures has dual motivations. On the one hand, it contributes to the ongoing
effort of developing a Finite Model Theory, where they can play the role of classical theorems
that can be obtained in the finite by combinatorial methods, that vastly differ from the original
proofs [see the discussions of Ros95; and Ros08]. On the other hand, their relativisation (or lack
thereof) to classes of finite structures characterises termination and correctness of algorithms in
database theory [DNR08; Lib11].

There is up to this date, no clear understanding of the relativisation of preservation theorems
to classes of (finite) structures. Identifying such “well-behaved” classes (in the terminology of
Atserias, Dawar, and Grohe [ADG08]) has been an active domain of research since the 60s, with
a series of negative results [CF21; Kup21; DS21; Sto95; AG94; AG87; Tai59] interleaved with
positive ones [BC19; SAC16; SAC14; DRT10; Ros08; ADG08; ADK06; Din92]. From this non
exhaustive list of positive and negative results, the goal is to understand that the relativisation
of a given preservation theorem is a non trivial property of classes of structures, and that it
does not seem to follow (easily) predictable patterns.

Let us illustrate one of the difficulties by considering one example of a preservation theorem,
the  Loś-Tarski theorem [ Loś55; Tar54]. This theorem relativises to the class of all finite cycles,
relativises to the class of all finite paths, but does not relativise to their their union, the class
of finite cycles or finite paths [Lop23a, Example 5.1.11.]. Lacking composition properties is an
issue both for the theoretical study of such classes, and for the practical applications: slight
modifications of the class of structures can lead to a complete change in behaviour.

This thesis presents a systematic approach to investigating preservation theorems in Finite
Model Theory. The motivation is to produce tools and theorems that are able to explain when
and why some classes of structures are well-behaved with respect to preservation theorems. This
approach is based on two main ideas: first, consider only first order logic [as opposed to Ros95,
for instance], and second, interpret these theorems as topological properties of classes of finite
structures. These two ideas respectively allow to generalise the techniques based on locality (a
central tool in Finite Model Theory), and to provide a compositional theory for preservation
theorems (which was previously lacking).

Finally, the topological presentation of preservation theorems introduced in this thesis is closely
related to the notion of Noetherian Space that was used by Goubault-Larrecq [Gou07] to provide
algorithm for the verification of infinite state transition systems, fully developed in [Gou10]. In
this specific setting, a fixed point theorem is obtained that allows the inductive definition of
Noetherian topologies. This result has its own interest in the verification of infinite state systems,
but can also be interpreted as a first step towards studying preservation theorems on inductively
defined classes of structures.
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1.3 Preservation Theorems and Topology

In order to present and illustrate the main results obtained in this thesis, we will need to
introduce some technical notions that may not be familiar to the reader. The first one is the
notion of preservation theorem in the context of finite model theory, and the second one is the
notion of topological space.

What is a preservation theorem? In the thesis, a very general form of preservation theorem
is considered, which requires the introduction of morphisms given a fragment F of first order logic
[see Lop23a, Definition 3.1.1, page 30]. A map h : A→ B between two models is a morphism
for F when, for every formula ψ ∈ F, for every tuple a⃗ that satisfies ψ in A, the image of a⃗
through h satisfies ψ in B. As an example, the morphisms for the fragment of positive quantifier
free formulas are exactly the usual homomorphisms. As another example, when F = FO, the
morphisms are exactly the elementary embeddings of traditional model theory.

In this setting, the F-preservation theorem states that the following are equivalent for every first
order sentence φ [restated in Lop23a, Theorem 3.1.9, page 33]:

1. φ is preserved under F, i.e., if A |= φ, and h : A→ B is an F-morphism, then B |= φ.

2. φ is equivalent to some sentence in ∃F.

As examples of preservation theorem, the  Loś-Tarski theorem considers F to be quantifier
free formulas [ Loś55; Tar54], and the quantifier free morphisms are called embeddings. Other
examples include preservation under homomorphisms or Lyndon’s positivity theorem [Lyn59].
This synthetic presentation of preservation theorems can already be seen as some kind of
contribution, because it proposes a formal statement for a previously informal collection of
similarly shaped theorems.

How to prove relativisation? There is one key argument that is behind most of the proofs
of relativisation to classes of finite structures, and states that it is equivalent to find an equivalent
sentence in ∃F (a syntactic property) or to prove that the sentence has finitely many minimal
models (with respect to F-morphisms). This remark holds for the  Loś-Tarski theorem, as well
as for the homomorphism preservation theorem, the two examples that will be used in this
document [see Lop23a, Lemma 3.2.3, page 38].

Then, there are essentially two (non-exclusive) approaches to proving that sentences do not have
infinitely many minimal models. The first one is to leverage the combinatorial properties of the
class, the extreme example being when the class C itself is finite. The second one is to leverage
the properties of the logic, which can take the form of Ehrenfeucht–Fräıssé games or using the
Gaifman locality theorem [Gai82].

As an example of the combinatorial approach, Ding [Din92] proves that the  Loś-Tarski theorem
relativises to classes C of structures that have bounded tree-depth [restated in Lop23a, Lemma
3.3.10, page 45], without even mentioning logic.1 As an example of the logical approach, classical
locality arguments stating that a fixed sentence φ can only distinguish finitely many cycles
incidentally demonstrate that the  Loś-Tarski theorem relativises to the class of all finite cycles
[restated in Lop23a, Example 4.1.1, page 73].

Why topology? A first incentive to use topological tools to explain preservation theorems is
that their proof in the classical case rely on the so-called compactness theorem of first order
logic, which is, essentially, a topological theorem about the compactness of some space. While
this might not seem very helpful, let us also argue that compactness in topological spaces is
a notion meant to generalise finiteness, which is precisely what happens in the proof scheme
described in How to prove relativisation? Informally, in a topological space, a set is compact if

1It leverages a notion called well-quasi-orderings, that will appear later on in this document, but will never
be defined [we refer Dem+12, for a reasonably complete survey on the topic].
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it behaves as a finite set with respect to the topology. To be more precise, in a topological space
(X, τ) a set E is compact if, for every sequence (Ui)i∈I such that E ⊆

⋃
i∈I Ui, there exists a

finite subset J ⊆fin I such that E ⊆
⋃

i∈J Ui. Notice that every finite set is compact.

For instance, in a proof of relativisation of the  Loś-Tarski theorem to a hereditary class C of
finite structures, the collection of models of a given sentence φ preserved under extensions is not
going to be finite per se. However, it will behave as a finite set, because it can be described using
finitely many minimal models. Formally, this is done by considering the topology of upwards
closed subsets of C, and noticing that the collection of models of φ is compact if and only if it
has finitely many minimal models.

Another argument in favor of a topological approach is the robustness of the recently developed
of a theory of Noetherian spaces for the verification of infinite state transition systems started
by Goubault-Larrecq [Gou07; Gou10; Gou13; Gou22a; GHL22; GL23]. These generalise the
notion of well-quasi-ordering, which is a key combinatorial concept in computer science, and
implies preservation theorems. In a sense that will be made precise, the Noetherian spaces are
a logic-less form of preservation theorems [see Lop23a, Section 6.2.1, page 146]. To build a
comprehension of which classes of structures enjoy preservation theorems, it is therefore natural
to develop a theory that encompasses those obtained via Noetherian spaces.

2 Contributions

In this context, the thesis proposes the following main contributions that we group thematically.
For each theme, two results (definitions or theorems) are chosen to illustrate the approach taken
together with their outcomes. We will specifically refer to pages in the thesis [Lop23a] to allow
the reader to find more details and specific statements if needed.

2.1 Locality Based Approach [Lop23a, Chapters 4 and 5]

The first two contributions are focused on proving that a specific preservation theorem rel-
ativises, namely, the  Loś-Tarski preservation theorem. Recall that this theorem states the
equi-expresiveness of existential sentences and sentences preserved under extensions.

A first contribution is the introduction and characterization of a positive variant of the Gaifman
locality theorem [Gai82], that is at the core of most of the recent proofs of relativisation for
preservation theorems [see e.g. ADK06; ADG08; Daw10]. The rationale behind this result is
that the difficult implication of a preservation theorem is to transform a semantic property into
a syntactic one (the other direction being often a simple induction on the syntax), and that the
Gaifman locality theorem provides a first syntactic decomposition of an arbitrary sentence into
a Boolean combination of so-called basic local sentences, over which it is possible to observe
some semantic properties.

Semantically, a basic local sentence searches for a collection of disjoint neighbourhoods of the
structure, that all satisfy a given first order property. One of the main issues with the Gaifman
locality theorem is that it introduces negations of the basic local sentences, which are hard to
handle in the context of preservation theorems.

Having a better first decomposition, by removing outer negations in the Gaifman normal form
takes us closer to existential sentences. It also puts into light the fragment of existential
local sentences, that correspond to some intermediate ground between arbitrary sentences and
existential sentences [see Lop23a, Figure 4.1, page 68]. Note that similar kind of sentences were
successfully applied to automata theory by Schwentick and Barthelmann [SB99].

Positive Locality Theorem [Lop23a, Theorem 4.2.2, page 75]: existential
local sentences express the same properties as positive Boolean combination of basic
local sentences.
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This theorem has its own interest as a new variation around Gaifman locality. However, it is
distinguished because it provides an intuition on the proof schemes developed when studying
relativisation properties: half of the work is often to remove negations from a Gaifman normal
form, which precisely corresponds to building an existential local sentence. Only then, in a
second proof, one moves from an existential local sentence to a sentence of the desired fragment.

Following the ideas of considering the local behaviours of the structures, and noticing that
existential local sentences over a class C of structures correspond to existential sentences over
the local neighbourhoods of structures in C, we obtained a powerful local-to-global preservation
theorem, that subsumes results obtained in the literature [Lop23a, Theorem 5.1.5, page 121],
and fully characterises the  Loś-Tarski preservation theorem as a local property (under classical
assumptions).

Local-to-Global Theorem [Lop23a, Theorem 5.1.2, page 120]: the  Loś-Tarski
theorem relativises to a class C of structures if and only if it relativises locally to C
(under the assumption that C contains only finite structures, is hereditary, and is
closed under disjoint unions).

One measure of the importance of this result is that it provides new families of properties for
which the  Loś-Tarski theorem relativises, obtained by localising previously known properties.
This is illustrated in [Lop23a, Figure 5.2, page 122]. As a nice side effect, we recover the main
result of Atserias, Dawar, and Grohe [ADG08] by noticing that the  Loś-Tarski theorem relativises
to any finite class of structures (which is a folklore result), and noticing that the notion of
well-behaved used by Atserias, Dawar, and Grohe [ADG08] amounts to being locally finite in our
terminology [Lop23a, Exercise 5.1.4, page 121]. The importance of this result can also be seen
as a way to decouple the study of preservation theorems into a logical part (the local-to-global
theorem) and a combinatorial part (the structural behaviours of local neighbourhoods).

2.2 Topological Approach [Lop23a, Chapter 6]

During this thesis, a focus has been taken on figuring out what topological properties correspond
to preservation theorems, originally motivated by the resemblance between the relativisation
of preservation theorems and Noetherian spaces. The main motivation for this abstract study
is to find a way around the non-compositionality of preservation theorems and the complexity
of proving their relativisation. In the topological setting Noetherian spaces have proven to be
quite robust and versatile [see for instance the dedicated chapter of Gou13].

This sparked the study of triples (X, τ,B), where (X, τ) is a topological space, and B is a Boolean
subalgebra of P(X), called logically presented pre-spectral spaces (LPPS). Note that the name
pre-spectral comes from the theory of spectral spaces [DST19], also known as Priestley spaces
[GG24], that play a key role in the duality between logic (or lattices) and topological spaces,
dating back to the works of Johnstone [Joh82].

LPPS Definition [Lop23a, Definition 6.1.11, page 143]: a logically presented
pre-spectral space is a triple (X, τ,B), where τ captures the open properties of the
space, B captures the definable properties of the space, in such a way that: definable
properties generate the open properties, and properties that are simultaneously open
and definable are compact.

This definition is distinguished because it provides a new way to think about preservation
theorems in terms of topological compactness, in a way that connects them more clearly to
Noetherian spaces, but also to more exotic spaces, such as spectral spaces. Furthermore, it
abstracts the considered logic(s) as a Boolean subalgebra of the class of structures considered,
opening the door to the study of non-FO based preservation theorems, without any change in
definitions.

The main results of this approach are that lpps characterises a relatively large class of relativi-
sation of preservation theorems [Lop23a, Theorem 6.1.12, page 143]. And that this abstract
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definition actually allows to compose preservation theorems to obtain new preservation theo-
rems from known ones in a systematic fashion. The archetypal example of such composition
theorem is the composition by substitution theorem restated below.

Substitution Theorem [Lop23a, Theorem 6.3.44, page 169]: Let (X, τ,B)
be an lpps, and and (C,≤) be a class of coloured structures that is well-quasi-
ordering. Then the class of structures obtained by colouring elements of C by
elements of X is an lpps.

This result is distinguished because it encompasses many results at once, and it is connected
to conjectures by Pouzet. It for instance states that if (X, τ,B) is an lpps, then so are the
words over X, similarly for the trees over X, which are analogues of the well-known Higman and
Kruskal theorems in well-quasi-order (wqo) theory [Hig52; Kru72]. Furthermore, it provides a
positive answer to the “lpps-variant” of a conjecture by Pouzet, asking whether “∞-wqo” (that
is, being wqo for any colouring with finitely many colours) implies “wqo-wqo” (that is, being
wqo when coloured by any wqo).

2.3 Logic-free Preservation Theorems [Lop23a, Chapters 7 and 8]

One of the main drawbacks of the approach of preservation theorems by topological means is that
they do not interact well with inductive definitions. This may seem odd, as we have seen that
words and trees, both inductively defined constructions, preserve lpps. However, it should become
less surprising in the light of the fact that these constructions preserve well-quasi-orderings is
already non-trivial [Hig52; Kru72]. In order to understand inductively defined construction,
this thesis focused on a logic-less variant of lpps, that is, considering that the logic is powerful
enough express every subset. These are precisely the Noetherian spaces, for which the study
of inductively defined constructors is highly non-trivial.

Let us take a moment to discuss on the dual vision of words and trees, respectively as (first-order
definable) classes of finite structures, with potential unary predicates on their nodes, and as an
inductive construction guided by the equations X∗ := 1 +X ×X∗ and T (X) := 1 +X × T (X)∗.
The notions of subword and subtrees are easily expressed in terms of embedding of relational
structures, and are not the orderings that would arise naturally from the inductive constructions
(in a categorical sense). Surprisingly, the proofs that these order relations yields well-quasi-
orderings are highly non-trivial and do rely on the inductive constructions of words and trees
[Hig52; Kru72].

The main contribution is the introduction of topology expanders as “well-behaved topology
constructors.” This definition is distinguished because it is an abstraction that captures all
the examples and non-examples of limit constructions in Noetherian spaces that I know of.2

Furthermore, the interesting part of the definition is side-stepping from the study of inductive
construction of spaces, to inductive constructions of a topology over a given (fixed) space. This
change of perspective is what makes the definition sound, and gives such a flexibility to the
theory.

Topology Expander Definition [Lop23a, Definition 7.2.17, page 189]: Given
a set X, a topology expander is a map F from topologies over X to topologies over X,
that is increasing, preserves Noetherian topologies, and is compatible with restriction
to subsets.

Topology expanders have proven to be of interest by the two following theorems, that respectively
validate their use to construct limits of spaces, and that these limits can be used to construct
Noetherian topologies over inductively defined spaces in a way that generalises all previously
known constructions.

2Note that every well-quasi-ordering is a Noetherian space, but the converse is not true. In particular,
topology expanders will allow to construct inductively the subword and subtree relations.
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Noetherian Limit Theorem [Lop23a, Theorem 7.2.33, page 197]: Least
fixed points of topology expanders are Noetherian topologies.

Noetherian Inductive Theorem [Lop23a, Theorem 8.2.33, page 227]: For
every inductive constructorG of Noetherian spaces, there exists a canonical divisibility
topology over the least fixed point of G, that is Noetherian, and generalises strictly
previous results on well-quasi-orderings.

Note that in the statement of this last theorem, we took the time to compare our approach to a
previous attempt at devising generic fixed point theorems for well-quasi-orderings by Hasegawa
[Has02]. These two theorems effectively close the discussion on inductive definition of Noetherian
spaces: they allow to recover all theorems in the literature, even for non-inductive constructors
(using the limit theorem in those cases), with shorter, simpler and generic proofs. As a side
effect, we obtain that previously defined topologies, that contained a part of tweaking3 were in
fact “canonical” instances of the divisibility topology.

3 Outlook

The results provided in this thesis pave the way to several interesting research directions. While
the focus on preservation theorems is well-motivated, applications to computer science would
typically require some kind of effectiveness. Similarly, the qualitative results (compactness)
often have quantitative counterparts (ordinal invariants) that are not studied here. A typical
motivation for such effective and quantitative theories would be the verification of database
transition systems, by analogy with Well-Structured Transition Systems based on well-quasi-
orderings or Noetherian spaces [Abd+96; Gou10]. Furthermore, this thesis focuses on general
methods for obtaining relativisation of preservation theorems. However, another approach could
be to devise algorithms that, given a representation of a class C of structures, decide whether
they are suitable for a preservation theorem. This could take the form of results like Daligault,
Rao, and Thomassé [DRT10], where the property of being well-quasi-ordered for the extension
relation is proven to be decidable.4

In a more theoretical research direction, the Inductive Noetherian Theorem calls for a similar
Inductive LPPS Theorem. The latter could provide another viewpoint on the (finite) Homomor-
phism Preservation Theorem of Rossman [Ros08]. Indeed, this result is an outlier by its nature
(most preservation theorems do not relativise to all finite structures) and its proof that develops
an ad-hoc saturation property using existential types. Casting this result in the form of a limit
property would provide a better understanding of its combinatorial nature, and potentially allow
to devise variations of this result. Note that for now, the only variations and improvements
known are obtained by either using the theorem as a black box [NO12; BC19], or by the author
himself using deep results from circuit complexity [Ros16].

Finally, the characterization of the  Loś-Tarski theorem as a local property is unsatisfactory for
classes where local behaviours are as complex as global ones. For instance, the class of all cliques
is as complex as the class of local neighbourhoods of cliques, as the two are in fact equal. This
begs for better decompositions of classes of structures, and a local-to-global theorem adapted to
these decompositions. Inspiration can be found in the ongoing effort to characterize efficient
query answering on classes of structures by combining locality with the notion of flip (reversing
edges and non-edges in a graph): for instance, the flip of a clique is an independent set, for
which locality based technique work amazingly well [see e.g. Gaj+23].

3When choosing a topology for a space, there is a trade-off between adding a lot of expressiveness (open
subsets) and proving that the topology is Noetherian (not too many open subsets). In general, there is not one
topology that is Noetherian and contains as many opens as possible: it is always possible to add some new open
subsets, and remain Noetherian.

4In this paper, the decision problem is not solved for a fixed class of structures, but could probably be adapted
to this case. Furthermore, they focus on graphs, but this could be generalised to relational structures in a
straightforward way.
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[Dem+12] Stéphane Demeri, Alain Finkel, Jean Goubault-Larrecq, Sylvain Schmitz, and
Philippe Schnoebelen. “Algorithmic Aspects of WQO Theory (MPRI course)”.
Master Parisien de Recherche en Informatique, 2012.
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