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This document is the abstract of the dissertation submitted by Aliaume Lopez for the Ackermann
Award 2024. It is organised as follows:

• Introduction: This first part describes formally the thesis, provides a short abstract that mo-
tivates and situates the research in a broader context, and ends with a discussion on the defin-
itions and motivations around the methodologies used in the thesis.

• Contributions: In this second part, we describe main contributions of the thesis in three
main themes: locality, topology, and fixed points.

• Outlook: This document ends with a discussion on the potential impacts and future works
that could be pursued.

A link to the full dissertation is provided below:
https://www.irif.fr/~alopez/ressources/these/defense/
2023-09-12-defense-manuscript.pdf

1 Introduction
The thesis is titled “First Order Preservation Theorems in FiniteModel Theory: Locality, Topology, and Limit
Constructions.” It has been pursued under the supervision of Jean Goubault-Larrecq and Sylvain Schmitz at
theLaboratoireMéthodes Formelles (LMF)ofENSParis-Saclay and the Institut deRecherche en Informatique
Fondamentale (IRIF) of the Université Paris-Cité.

This thesis is built around three published articles [Lop21; Lop22; Lop23b], and other contributions that do
not fit the narrative presented here are left in the bibliography of this document as uncited personal references.
References to specific parts of the thesis have the form [Lop23a, Block Number, page page-number]. Beware
that because the first pages of the thesis are not numbered, page numbering has a delta of 10 between the page
numberwritten on the pdf, and the index of the page in a PDF viewer. The page number used is the onewritten
in the PDF.

1.1 General Themes
The research pursued during my Ph.D. lies at the intersection of several fields of theoretical computer science,
such as finite model theory, database theory, graph combinatorics and topology. These relatively abstract fields
(closer tomathematics than to engineering) find applications in computer scienceunder theumbrella ofFormal
Methods. Under this methodology, abstractions of computer systems are studied using mathematical tools
in order to prove their correctness and guarantee their safety. These applications are not marginal, and have
proven to be useful in large-scale industrial settings (Amazon, Airbus, Arm, AdaCore, European SpaceAgency,
andmany others). Under this perspective of Formal Methods, the thesis is concerned with the following prop-
erties of programs/systems: Termination: Does the program/system always stop? Expressiveness: Can two
systems compute different properties? Optimisation: Can the program/system be optimised?

The object of study of the thesis is the expressiveness of first order logic, through the lens of so-called preserva-
tion theorems, which are statements of the prototypical form “if a sentence φ defines a positive property, then
it can be rewritten without negations”. Here, the notion of positive property and without negations are left in-
tentionally vague, as various choices lead to different theorems. As we will demonstrate, these theorems are of
interest in computer science and contain in essence a termination property, that we argue can be modelled by
the mathematical notion of compactness in topological spaces.
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1.2 Short Abstract
Amajority of this thesis is dedicated to the study of preservation theorems in first-order logic and their relativ-
isation to classes of finite structures. These theorems are classical results obtained in the second half of the
20th century [CK90], and are motivated by their role in connecting the syntactic properties of first order the-
ories and their semantic properties, the latter being understood as properties of their collection of (potentially
infinite) models. Typical questions are of the form “which classes of models can be axiomatised by universal
sentences”, or “which classes of models can be axiomatised by positive existential sentences”, etc. In this doc-
ument, we will focus on the restricted case where the axiomatisation uses finitely many sentences, which is
equivalent as using exactly one sentence in first order logic.

Besides the theoretical interest of such questions in terms of expressiveness, these theorems actually have prac-
tical a practical impact in computer science, where they can be used to characterise syntactic classes of database
queries for which the termination and correctness of database algorithms are guaranteed [see, e.g. Lib11].

Studying these theorems becomes notably challengingwhen focussing on finitemodels, which is unfortunately
alsowhen such theoremsbecome relevant in computer science, as databases are usuallymodelled asfinite objects.
As such, the study of the relativisation preservation theorems to classes of finite structures has dualmotivations.
On the one hand, it contributes to the ongoing effort of developing aFiniteModel Theory, where they can play
the role of classical theorems that can be obtained in the finite by combinatorialmethods, that vastly differ from
the original proofs [see the discussions of Ros95; and Ros08]. On the other hand, their relativisation (or lack
thereof) to classes of finite structures characterises termination and correctness of algorithms in database theory
[DNR08; Lib11].

There is up to this date, no clear understanding of the relativisation of preservation theorems to classes of
(finite) structures. Identifying such “well-behaved” classes (in the terminology of Atserias, Dawar and Grohe
[ADG08]) has been an active domain of research since the 60s, with a series of negative results [Tai59; AG87;
AG94; Sto95; DS21; CF21; Kup21] interleaved with positive ones [Din92; ADK06; ADG08; Ros08; DRT10;
SAC14; SAC16; BC19].1 From this non exhaustive list of positive and negative results, the goal is to understand
that the relativisation of a given preservation theorem is a non trivial property of classes of structures, and that
it does not seem to follow (easily) predictable patterns.2

Let us illustrate one of the difficulties by considering one example of a preservation theorem, the Łoś-Tarski
theorem [Łoś55; Tar54]. This theorem relativises to the class of all finite cycles, relativises to the class of all finite
paths, but does not relativise to their their union, the class of finite cycles or finite paths [Lop23a, Example 5.1.11].
Lacking composition properties is an issue both for the theoretical study of such classes, and for the practical
applications: slight modifications of the class of structures can lead to a complete change in behaviour.

This thesis presents a systematic approach to investigating preservation theorems in FiniteModel Theory. The
motivation is to produce tools and theorems that are able to explainwhen andwhy some classes of structures are
well-behaved with respect to preservation theorems. This approach is based on two main ideas: first, consider
only first order logic [as opposed to Ros95, for instance], and second, interpret these theorems as topological
properties of classes of finite structures. These two ideas respectively allow to generalise the techniques based
on locality (a central tool in Finite Model Theory), and to provide a compositional theory for preservation
theorems (which was previously lacking).

Finally, the topological presentation of preservation theorems introduced in this thesis is closely related to the
notion of Noetherian Space that was used by Goubault-Larrecq [Gou07] to provide algorithm for the veri-
fication of infinite state transition systems, fully developed in [Gou10]. In this specific setting, a fixed point
theorem is obtained that allows the inductive definition of Noetherian topologies. This result has its own in-
terest in the verification of infinite state systems, but can also be interpreted as a first step towards studying
preservation theorems on inductively defined classes of structures.

1It seems there is a controversy on theusage of such a sequence of references in a document. In this particular case, the precise statements
(that are positive instances and negative instances of preservation theorems) are not as relevant as their sheer number, and the diversity of
authors involved.

2Note that the result of [ADK06] cited here as a positive statement, which was later on strengthened in [Daw10], has recently been
refuted by [DE24]. This should be taken as evidence of the intrinsic complexity of such statements in the context of finite model theory.
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1.3 Preservation Theorems and Topology
In order to present and illustrate the main results obtained in this thesis, we will need to introduce some tech-
nical notions that may not be familiar to the reader. The first one is the notion of preservation theorem in the
context of finite model theory, and the second one is the notion of topological space.

What is a preservation theorem? In the thesis, a very general form of preservation theorem is considered,
which requires the introduction of morphisms given a fragment F of first order logic [see Lop23a, Definition
3.1.1, page 30]. A map h : A → B between two models is a morphism for F when, for every formula ψ ∈ F,
for every tuple a⃗ that satisfiesψ inA, the image of a⃗ through h satisfiesψ inB. As an example, themorphisms
for the fragment of positive quantifier free formulas are exactly the usual homomorphisms. As another example,
when F = FO, the morphisms are exactly the elementary embeddings of traditional model theory.

In this setting, the F-preservation theorem states that the following are equivalent for every first order sentence
φ [restated in Lop23a, Theorem 3.1.9, page 33]:

1. φ is preserved under F, i.e., ifA |= φ, and h : A→ B is an F-morphism, thenB |= φ.

2. φ is equivalent to some sentence in ∃F.
As examples of preservation theorem, the Łoś-Tarski theorem considersF to be quantifier free formulas [Łoś55;
Tar54], and the quantifier free morphisms are called embeddings. Other examples include preservation under
homomorphisms or Lyndon’s positivity theorem [Lyn59]. This synthetic presentation of preservation theor-
ems can already be seen as some kind of contribution, because it proposes a formal statement for a previously
informal collection of similarly shaped theorems.

How to prove relativisation? There is one key argument that is behindmost of the proofs of relativisation
to classes of finite structures, and states that it is equivalent to find an equivalent sentence in ∃F (a syntactic
property) or to prove that the sentence has finitely many minimal models (with respect to F-morphisms). This
remark holds for the Łoś-Tarski theorem, as well as for the homomorphism preservation theorem, the two
examples that will be used in this document [see Lop23a, Lemma 3.2.3, page 38].

Then, there are essentially two (non-exclusive) approaches toproving that sentences donothave infinitelymany
minimalmodels. The first one is to leverage the combinatorial properties of the class, the extreme example being
when the class C itself is finite. The second one is to leverage the properties of the logic, which can take the form
of Ehrenfeucht–Fraïssé games or using the Gaifman locality theorem [Gai82].

As an example of the combinatorial approach, Ding [Din92] proves that the Łoś-Tarski theorem relativises
to classes C of structures that have bounded tree-depth [restated in Lop23a, Lemma 3.3.10, page 45], without
even mentioning logic.3 As an example of the logical approach, classical locality arguments stating that a fixed
sentence φ can only distinguish finitely many cycles incidentally demonstrate that the Łoś-Tarski theorem re-
lativises to the class of all finite cycles [restated in Lop23a, Example 4.1.1, page 73].

Why topology? A first incentive to use topological tools to explain preservation theorems is that their proof
in the classical case rely on the so-called compactness theorem of first order logic, which is, essentially, a topo-
logical theorem about the compactness of some space. While this might not seem very helpful, let us also argue
that compactness in topological spaces is a notionmeant to generalise finiteness, which is precisely what happens
in the proof scheme described in How to prove relativisation? Informally, in a topological space, a set is com-
pact if it behaves as a finite set with respect to the topology. To be more precise, in a topological space (X, τ)
a setE is compact if, for every sequence (Ui)i∈I such thatE ⊆

∪
i∈I Ui, there exists a finite subset J ⊆fin I

such thatE ⊆
∪

i∈J Ui. Notice that every finite set is compact.

For instance, in a proof of relativisation of the Łoś-Tarski theorem to a hereditary classC of finite structures, the
collection of models of a given sentence φ preserved under extensions is not going to be finite per se. However,
it will behave as a finite set, because it can be described using finitely many minimal models. Formally, this is

3It leverages a notion calledwell-quasi-orderings, that will appear later on in this document, but will never be defined [we referDem+12,
for a reasonably complete survey on the topic].
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done by considering the topology of upwards closed subsets of C, and noticing that the collection of models of
φ is compact if and only if it has finitely many minimal models.

Another argument in favor of a topological approach is the robustness of the recently developed of a theory of
Noetherian spaces for the verification of infinite state transition systems started by Goubault-Larrecq [in the
sequence of papers Gou07; Gou10; Gou13; Gou22a; GHL22; GL23]. These generalise the notion ofwell-quasi-
ordering, which is a key combinatorial concept in computer science, and implies preservation theorems. In a
sense that will bemade precise, theNoetherian spaces are a logic-less form of preservation theorems [see Lop23a,
Section 6.2.1, page 146]. To build a comprehension of which classes of structures enjoy preservation theorems,
it is therefore natural to develop a theory that encompasses those obtained via Noetherian spaces.

2 Contributions
In this context, the thesis proposes the following main contributions that we group thematically. For each
theme, two results (definitions or theorems) are chosen to illustrate the approach taken together with their
outcomes. We will specifically refer to pages in the thesis [Lop23a] to allow the reader to find more details and
specific statements if needed.

2.1 Locality Based Approach [Lop23a, Chapters 4 and 5]
The first two contributions are focused on proving that a specific preservation theorem relativises, namely, the
Łoś-Tarski preservation theorem. Recall that this theorem states the equi-expresiveness of existential sentences
and sentences preserved under extensions. The results mentioned in this part of the document were published
in LICS’22 [Lop22], and although they are also presented in the first chapters of the thesis, these are not chro-
nologically the first results obtained during this Ph.D.

The first contribution that I want to highlight in this section is the introduction and characterization of a
positive variant of the Gaifman locality theorem [Gai82]. The original locality theorem is at the core ofmost of
the recent proofs of relativisation for preservation theorems [see e.g. ADK06; ADG08; Daw10]. The rationale
behind this result is that the difficult implication of a preservation theorem is to transform a semantic property
into a syntactic one (the other direction being often a simple induction on the syntax), and that the Gaifman
locality theorem provides a first syntactic decomposition of an arbitrary sentence into a Boolean combination
of so-called basic local sentences, over which it is possible to observe some semantic properties.

While it is not the goal of this document to formalise Gaifman locality theorem, we can give an intuition of
the decomposition. Informally, a basic local sentence searches for a collection of disjoint neighbourhoods of
the structure, that all satisfy a given first order property. One of the main issues with the Gaifman locality
theorem is that it introduces negations of the basic local sentences, which are hard to handle in the context of
preservation theorems.

In practice, proofs of relativisation of preservation theorems often (implicitly) rely on a step that consists in
removing these outer negations from the Gaifman normal form of a sentence. As a consequence, it would be
highly beneficial to develop a better suited decomposition, in the form of a positiveGaifman normal form, that
is syntactically closer to the targeted fragment of existential sentences. This search for a positiveGaifmannormal
form will also put into light the fragment of existential local sentences, that correspond to some intermediate
groundbetween arbitrary sentences and existential sentences [seeLop23a, Figure 4.1, page 68]. Note that similar
kind of sentences were successfully applied to automata theory by Schwentick and Barthelmann [SB99].

Positive Locality Theorem [Lop23a, Theorem 4.2.2, page 75]: existential local sentences
express the same properties as positive Boolean combination of basic local sentences.

This theorem has its own interest as a new variation around Gaifman locality. However, it is distinguished
because it provides an intuition on the proof schemes developed when studying relativisation properties: half
of thework is often to remove negations fromaGaifmannormal form,which precisely corresponds to building
an existential local sentence. Only then, in a second proof, one moves from an existential local sentence to a
sentence of the desired fragment.
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Following the ideas of considering the local behaviours of the structures, and noticing that existential local sen-
tences over a class C of structures correspond to existential sentences over the local neighbourhoods of structures
in C, we obtained a powerful local-to-global preservation theorem, that subsumes results obtained in the lit-
erature [Lop23a, Theorem 5.1.5, page 121], and fully characterises the Łoś-Tarski preservation theorem as a local
property (under classical assumptions).

Local-to-Global Theorem [Lop23a, Theorem 5.1.2, page 120]: the Łoś-Tarski theorem re-
lativises to a class C of structures if and only if it relativises locally to C (under the assumption that
C contains only finite structures, is hereditary, and is closed under disjoint unions).

One measure of the importance of this result is that it provides new families of properties for which the Łoś-
Tarski theorem relativises, obtained by localising previously known properties. This is illustrated in [Lop23a,
Figure 5.2, page 122]. As a nice side effect, we recover the main result of Atserias, Dawar and Grohe [ADG08]
by noticing that the Łoś-Tarski theorem relativises to any finite class of structures (which is a folklore result),
and noticing that the notion of well-behaved used by Atserias, Dawar and Grohe [ADG08] amounts to being
locally finite in our terminology [Lop23a, Exercise 5.1.4, page 121]. The importance of this result can also be
seen as a way to decouple the study of preservation theorems into a logical part (the local-to-global theorem)
and a combinatorial part (the structural behaviours of local neighbourhoods).

2.2 Topological Approach [Lop23a, Chapter 6]
During this thesis, a focus has been taken on figuring outwhat topological properties correspond to preservation
theorems, originally motivated by the resemblance between the relativisation of preservation theorems andNo-
etherian spaces. The main motivation for this abstract study is to find a way around the non-compositionality
of preservation theorems and the complexity of proving their relativisation. In the topological setting Noeth-
erian spaces have proven to be quite robust and versatile [see for instance the dedicated chapter of Gou13].

Chronologically, the results presented in this section are the first results obtained during the Ph.D., and were
published in CSL’21 [Lop21]. The initial goal was to introduce a variant ofNoetherian spaces taking into ac-
count a notion of definability in a given logic (in this case, first order logic). This sparked the study of triples
(X, τ,B), where (X, τ) is a topological space, and B is a Boolean subalgebra of P(X), called logically presen-
ted pre-spectral spaces (LPPS). Note that the name pre-spectral comes from the theory of spectral spaces , also
known as Priestley spaces [we redirect the reader to the recent books of DST19; GG24], that play a key role in
the duality between logic (or lattices) and topological spaces, dating back to the works of Johnstone [Joh82].

LPPS Definition [Lop23a, Definition 6.1.11, page 143]: a logically presented pre-spectral
space is a triple (X, τ,B), where τ captures the open properties of the space, B captures the defin-
able properties of the space, in such a way that: definable properties generate the open properties,
and properties that are simultaneously open and definable are compact.

This definition is distinguished because it provides a new way to think about preservation theorems in terms
of topological compactness, in a way that connects them more clearly to Noetherian spaces, but also to more
exotic spaces, such as spectral spaces. Furthermore, it abstracts the considered logic(s) as a Boolean subalgebra
of the class of structures considered, opening the door to the study of non-FO based preservation theorems,
without any change in definitions.

The main results of this approach are that lpps characterises a relatively large class of relativisation of preserva-
tion theorems [Lop23a, Theorem6.1.12, page 143]. And that this abstract definition actually allows to compose
preservation theorems to obtain new preservation theorems from known ones in a systematic fashion. The ar-
chetypal example of such composition theorem is the composition by substitution theorem restated below.

Substitution Theorem [Lop23a, Theorem 6.3.44, page 169]: Let (X, τ,B) be an lpps, and
and (C,≤) be a class structures that is well-quasi-ordered when adding finitely many unary
predicates. Then the class of structures obtained by colouring elements of C by elements ofX is
an lpps.

I selected this theoremas an illustration of the power of the topological approach, because its abstract statement
actually covers many useful composition theorems. For instance, it is well-known that the set of finite words
over a finite alphabet is a well-quasi-ordering [Hig52], and therefore that words over finite structures taken in
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a class that is an lpps is also an lpps. This is a non-trivial result, especially in the light of the previous locality
based approach: in such classes of structures (that are quasi-ordered), local neighbourhoods are not particularly
interesting as every two points are neighbours. The same reasoning can be applied to trees of finite structures,
leveraging Kruskal’s theorem [Kru72]. In a sense, this theorem provides a generalisation of the Higman and
Kruskal theorems to the context of preservation theorems.

Furthermore, this kind of composition-by-substitution provides a positive answer to the lpps analogue of conjec-
ture by Pouzet regarding well-quasi-orderings. This conjecture asks whether it is the same for a class of finite
graphs to be a well-quasi-ordering with respect to the induced subgraph relation when coloured by any finite
set of colours, and to be a well-quasi-ordering with respect to the induced subgraph relation when coloured by
any well-quasi-ordering.

2.3 Logic-free Preservation Theorems [Lop23a, Chapters 7 and 8]
One of the main drawbacks of the approach of preservation theorems by topological means is that they do not
interact well with inductive definitions. This may seem odd, as we have seen that words and trees, both induct-
ively defined constructions, preserve lpps. However, it should become less surprising in the light of the fact that
these constructions preservewell-quasi-orderings is already non-trivial [Hig52; Kru72]. In order to understand
inductively defined construction, this thesis focused on a logic-less variant of lpps, that is, considering that the
logic is powerful enough express every subset. These are precisely the Noetherian spaces, for which the study
of inductively defined constructors is highly non-trivial.

Let us take amoment todiscuss on thedual visionofwords and trees, respectively as (first-order definable) classes
of finite structures, with potential unary predicates on their nodes, and as an inductive construction guided by
the equationsX∗ := 1 + X × X∗ and T (X) := 1 + X × T (X)∗. The notions of subword and subtrees
are easily expressed in terms of embedding of relational structures, and are not the orderings that would arise
naturally from the inductive constructions (in a categorical sense). Surprisingly, the proofs that these order
relations yields well-quasi-orderings are highly non-trivial and do rely on the inductive constructions of words
and trees via the so-calledminimal bad sequence argument of Nash-Williams [Nas65].

Themain contribution is the introduction of topology expanders as “well-behaved topology constructors.” This
definition is distinguished because it is an abstraction that captures all the examples and non-examples of limit
constructions in Noetherian spaces that I know of.4 Furthermore, the interesting part of the definition is side-
stepping from the study of inductive construction of spaces, to inductive constructions of a topology over a
given (fixed) space. This change of perspective is what makes the definition sound, and gives such a flexibility
to the theory.

Topology Expander Definition [Lop23a, Definition 7.2.17, page 189]: Given a set X , a
topology expander is a map F from topologies over X to topologies over X , that is increasing,
preserves Noetherian topologies, and is compatible with restriction to subsets.

We argue that topology expanders are of deep interest, as witnessed by the following two theorems that are the
main results of this part of the thesis. They respectively validate the use of topology expanders to construct lim-
its of spaces, and demonstrate that these limits can be used to construct Noetherian topologies over inductively
defined spaces in a way that generalises all previously known constructions.

Noetherian Limit Theorem [Lop23a, Theorem 7.2.33, page 197]: Least fixed points of
topology expanders are Noetherian topologies.

Noetherian Inductive Theorem [Lop23a, Theorem 8.2.33, page 227]: For every inductive
constructorGofNoetherian spaces, there exists a canonicaldivisibility topologyover the least fixed
point ofG, that isNoetherian, and generalises strictly previous results on well-quasi-orderings.

Note that in the statement of this last theorem,we took the time to compare our approach to aprevious attempt
at devising generic fixed point theorems for well-quasi-orderings by Hasegawa [Has02]. These two theorems
effectively close the discussion on inductive definition ofNoetherian spaces: they allow to recover all theorems

4Note that every well-quasi-ordering is aNoetherian space, but the converse is not true. In particular, topology expanders will allow to
construct inductively the subword and subtree relations.
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in the literature, even for non-inductive constructors (using the limit theorem in those cases), with shorter,
simpler and generic proofs.

Let us conclude this section by mentioning a particularly interesting side effect of our approach. When one
designs a topology for a given space, there is a trade-off between adding a lot of expressiveness to the topology
(open subsets) and proving that the topology is Noetherian (not too many open subsets). In general, there
is not one topology that is Noetherian and contains as many opens as possible: for some spaces, it is always
possible to add some new open subsets, and remain Noetherian. As a consequence, topologies introduced in
the literature often seem ad-hoc. While topological expanders do not solve this issue per se, they provide a
systematic way to constructNoetherian topologies (via the divisibility topology), avoiding ad-hoc constructions.
In addition to the two theorems stated above, we also proved that previously defined topologies, that contained
some part of tweaking were in fact “canonical” instances of the divisibility topology.

3 Outlook
The results provided in this thesis pave the way to several interesting research directions. While the focus on
preservation theorems is well-motivated, applications to computer science would typically require some kind
of effectiveness. Similarly, the qualitative results (compactness) often have quantitative counterparts (ordinal
invariants) that are not studied here. A typical motivation for such effective and quantitative theories would be
the verification ofdatabase transition systems, by analogywithWell-Structured Transition Systems based onwell-
quasi-orderings orNoetherian spaces [Abd+96;Gou10]. Furthermore, this thesis focuses on general methods for
obtaining relativisation of preservation theorems. However, another approach could be to devise algorithms
that, given a representationof a classC of structures, decidewhether they are suitable for a preservation theorem.
This line of research seemspromising, as showby recent results on the decidability of being “labelled-well-quasi-
orderded” for classes of bounded linear clique-width [DRT10; Lop24b].

In a more theoretical research direction, the Inductive Noetherian Theorem calls for a similar Inductive LPPS
Theorem. The latter could provide another viewpoint on the (finite)Homomorphism Preservation Theorem of
Rossman [Ros08]. Indeed, this result is an outlier by its nature (most preservation theorems do not relativise
to all finite structures) and its proof that develops an ad-hoc saturation property using existential types. Casting
this result in the formof a limit propertywouldprovide a better understanding of its combinatorial nature, and
potentially allow to devise variations of this result. Note that for now, the only variations and improvements
known are obtained by either using the theorem as a black box [NO12; BC19], or by the author himself using
deep results from circuit complexity [Ros16].

Finally, the characterization of the Łoś-Tarski theorem as a local property could be extended to classes where
local behaviours are as complex as the global ones. Inspiration can be found in the ongoing effort to characterize
efficient query answering on classes of structures by combining locality with the notion of flip (reversing edges
and non-edges in a graph): for instance, the flip of a clique is an independent set, for which locality based
technique work amazingly well [see e.g. Gaj+23].
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