Transducers Session 11: Monoids (finally) Version: v0.0.10

Aliaume LOPEZ TA mail* Course page[†] Exercises page[‡]

June 24, 2024

1 Monoids and MSO

Exercise 1 (Monoids and Regularity). We say that a language is recognized by a finite monoid M if there exists a morphism $\mu: A^* \to M$ and a subset $P \subseteq M$ such that $L = \mu^{-1}(P)$.

- 1. Prove that a language is regular if and only if it is recognized by a finite monoid.
- 2. Use the above result to conclude that regular languages are closed under the following operations:
 - union,
 - intersection,
 - complement,
 - reversal,
 - concatenation
- 3. Prove that the class of regular languages is closed under radicals $\sqrt{L} := \{w \in A^* \mid ww \in L\}$.
- 4. Prove that the class of regular language is closed under Kleene star.

Exercise 2 (From MSO to Monoids). Let φ be an MISO sentence over finite words. Prove that there exists a monoid M and a function $f : A^* \to M$ and a subset $P \subseteq M$ such that $w \models \varphi$ if and only if $f(w) \in P$. Can you adapt the construction in the case of MISO formulas? \triangleright Hint 1

Exercise 3 (From Monoids to MSO). Let M be a finite monoid and $m \in M$. Construct an MSO formula $\varphi_m(x, y)$ over M^* that accepts all pairs x < y such that the factor w[x : y] evaluates to m. If the monoid is aperiodic, can you write this formula in FO?

וו נוופ דוטרוטוע וs aperiouic, can you write נדווג דטרדוט

*ad.lopez@uw.edu.pl

[†]https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers [‡]https://aliaumel.github.io/transducer-exercices/

2 Factorisation Forests

Exercise 4 (Baby Factorisation Forest). Let M be a finite monoid. Prove that there exists a constant N such that for every $w \in M^*$ with $|w| \ge N$, there exist $v_0, v_1 \in M^*$, and $u \in M^+$ such that $w = v_0 u v_1$ and u is an idempotent element of M.

Exercise 5 (First-order Factorisation Forests). Let M be a finite aperiodic monoid. Prove that there exists a constant N such that for every $w \in M^*$, one can build a factorisation of w of depth at most N, where idempotent products are replaced by constant products.

Exercise 6 (Pumping lemma for regular functions). Let f be a regular function. Prove that there exists $N \ge 0$ such that for all $w \in A^*$ with $|w| \ge N$, there exist $v_0, v_1 \in A^*, u \in A^+, n \ge 0, \alpha_0, \ldots, \alpha_n \in B^*, \beta_1, \ldots, \beta_n \in B^+$ such that $w = v_0 u v_1$ and

$$f(v_0 u^{X+1} v_1) = \alpha_0 \beta_1^X \alpha_1 \dots \beta_n^X \alpha_n \quad , \quad \text{for all } X \ge 0 \quad .$$

▷ Solution 1 (Solution)

Exercise 7 (Efficient Query Evaluation). Let $q \in \mathbb{N}$. Provide a linear-time computation of a data-structure over a word w allowing for constant-time answer to MISO queries of quantifier depth at most q.

⊳ Hint 2

A Hints

Hint 1 (Exercise 2 Use automata theory). At least for the first part, you can use the fact that φ defines a regular language. Hint 2 (Exercise 7 Use factorisation forests). Construct a factorisation forest of the monoid of MSO^q types.

B Solutions

Solution 1 (Solution to Exercise 6). Without loss of generality, we assume that $Q = Q^{\leftarrow} \cup Q^{\rightarrow}$, where states in Q^{\leftarrow} are always doing left transitions, while states in Q^{\rightarrow} are always doing right transitions. We define the transition monoid of f as follows: $M := Q \rightarrow Q$. The intended semantics is that given a state $q \in Q$, and a word u, the transition performed by u is given by the first state reached by f outside of the word u.