Transducers
 Session 11: Monoids (finally)
 Version: v0.0.10

Aliaume LOPEZ
TA mail* Course page $^{\dagger} \quad$ Exercises page ${ }^{\ddagger}$
June 24, 2024

1 Monoids and MSO

Exercise 1 (Monoids and Regularity). We say that a language is recognized by a finite monoid M if there exists a morphism $\mu: A^{*} \rightarrow M$ and a subset $P \subseteq M$ such that $L=\mu^{-1}(P)$.

1. Prove that a language is regular if and only if it is recognized by a finite monoid.
2. Use the above result to conclude that regular languages are closed under the following operations:

- union,
- intersection,
- complement,
- reversal,
- concatenation

3. Prove that the class of regular languages is closed under radicals $\sqrt{L}:=\left\{w \in A^{*} \mid w w \in L\right\}$.
4. Prove that the class of regular language is closed under Kleene star.

Exercise 2 (From MSO to Monoids). Let φ be an $\mathbb{M S O}$ sentence over finite words. Prove that there exists a monoid M and a function $f: A^{*} \rightarrow M$ and a subset $P \subseteq M$ such that $w \vDash \varphi$ if and only if $f(w) \in P$.

Can you adapt the construction in the case of $\mathbb{M S O}$ formulas?
\triangleright Hint 1
Exercise 3 (From Monoids to MSO). Let M be a finite monoid and $m \in M$. Construct an $\mathbb{M S O}$ formula $\varphi_{m}(x, y)$ over M^{*} that accepts all pairs $x<y$ such that the factor $w[x: y]$ evaluates to m.

If the monoid is aperiodic, can you write this formula in $\mathbb{F O O}$?

[^0]
2 Factorisation Forests

Exercise 4 (Baby Factorisation Forest). Let M be a finite monoid. Prove that there exists a constant N such that for every $w \in M^{*}$ with $|w| \geq N$, there exist $v_{0}, v_{1} \in M^{*}$, and $u \in M^{+}$such that $w=v_{0} u v_{1}$ and u is an idempotent element of M.

Exercise 5 (First-order Factorisation Forests). Let M be a finite aperiodic monoid. Prove that there exists a constant N such that for every $w \in M^{*}$, one can build a factorisation of w of depth at most N, where idempotent products are replaced by constant products.

Exercise 6 (Pumping lemma for regular functions). Let f be a regular function. Prove that there exists $N \geq 0$ such that for all $w \in A^{*}$ with $|w| \geq N$, there exist $v_{0}, v_{1} \in A^{*}, u \in A^{+}, n \geq 0, \alpha_{0}, \ldots, \alpha_{n} \in B^{*}, \beta_{1}, \ldots, \beta_{n} \in B^{+}$such that $w=v_{0} u v_{1}$ and

$$
f\left(v_{0} u^{X+1} v_{1}\right)=\alpha_{0} \beta_{1}^{X} \alpha_{1} \ldots \beta_{n}^{X} \alpha_{n} \quad, \quad \text { for all } X \geq 0
$$

\triangleright Solution 1 (Solution)
Exercise 7 (Efficient Query Evaluation). Let $q \in \mathbb{N}$. Provide a linear-time computation of a data-structure over a word w allowing for constant-time answer to $\mathbb{M S O}$ queries of quantifier depth at most q.
\triangleright Hint 2

A Hints

Hint 1 (Exercise 2 Use automata theory). At least for the first part, you can use the fact that φ defines a regular language.
Hint 2 (Exercise 7 Use factorisation forests). Construct a factorisation forest of the monoid of $\mathbb{M S O}^{q}$ types.

B Solutions

Solution 1 (Solution to Exercise 6). Without loss of generality, we assume that $Q=Q^{\leftarrow} \cup Q^{\rightarrow}$, where states in Q^{\leftarrow} are always doing left transitions, while states in Q^{\rightarrow} are always doing right transitions. We define the transition monoid of f as follows: $M:=Q \rightarrow Q$. The intended semantics is that given a state $q \in Q$, and a word u, the transition performed by u is given by the first state reached by f outside of the word u.

[^0]: *ad.lopez@uw.edu.pl
 ${ }^{\dagger}$ https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers
 ${ }^{\ddagger}$ https://aliaumel.github.io/transducer-exercices/

