Transducers Session 10: One proof done well (hopefully) Version: v0.0.10

Aliaume LOPEZ TA mail* Course page[†] Exercises page[‡]

June 24, 2024

1 First Order Logic

Exercise 1 (Some Examples). Provide first-order transductions that represent the following functions:

- 1. The function that maps a word w to its reverse.
- 2. The function that maps a word $ab^n a$ to $(ab)^n (ba)^n$, $ba^n b$ to $(ba)^n (ab)^n$, and w to w otherwise.
- 3. The function that sorts the letter in a word.

Exercise 2 (Some Non-Examples). Prove that the following functions are not representable by first-order transductions:

- 1. The function that maps w to a if w is of odd length and b otherwise.
- 2. The function that maps w to w^2 if w is of even length and w^3 otherwise.
- 3. Given a non-trivial group (G, \cdot) , the function that maps a word w to its image in G.

2 Lambda Terms

Exercise 3 (Extra Functions). Prove that the lambda-calculus becomes strictly more expressive when adding the following functions:

- 1. The trace operator trace: $(A \times B \to A \times B) \to (B \to 1 + B)$ that computes the trace of a function.
- 2. The fold operator fold: $(Q \times \Sigma \to Q) \to Q \times \Sigma^* \to Q$.

^{*}ad.lopez@uw.edu.pl

[†]https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers

⁺https://aliaumel.github.io/transducer-exercices/

3 Blind again

Exercise 4 (Pumping lemma for regular functions). Let f be a regular function. Prove that there exists $N \ge 0$ such that for all $w \in A^*$ with $|w| \ge N$, there exist $v_0, v_1 \in A^*$, $u \in A^+$, $n \ge 0$, $\alpha_0, \ldots, \alpha_n \in B^*$, $\beta_1, \ldots, \beta_n \in B^+$ such that $w = v_0 u v_1$ and

$$f(v_0 u^{X+1} v_1) = \alpha_0 \beta_1^X \alpha_1 \dots \beta_n^X \alpha_n \quad , \quad \text{for all } X \ge 0 \quad .$$

⊳ Hint1

▷ Solution 1 (Self-contained proof)

Exercise 5 (Prefixes is not blind). Our goal is to prove that the function *prefixes* is not computable by a polyblind function.

- 1. Let f_1, \dots, f_n be regular functions. Is it possible that $f_1(w)f_2(w)\cdots f_n(w)$ computes a factor of prefixes(w) with a number of hashes that tends to $+\infty$ as |w| grows?
- 2. Let f be a regular function. Is it possible that $f(w)^{|w|}$ computes a factor of **prefixes**(w) with a number of hashes that tends to $+\infty$ as |w| grows?
- 3. Using an induction on the polyblind depth and leveraging the pumping lemma of regular functions prove that the function **prefixes** is not polyblind.
- ⊳ Hint 2
- ⊳ Hint 3
- ⊳ Hint 4
- ▷ Solution 2 (Self-contained proof)

4 Cheat-Sheet

Definition 1 (Regular functions). A function $f : A^* \to B^*$ is called a regular function if there exists a two-way deterministic finite automaton with outputs (2DFT) that computes f. Such an automaton has a finite set of states Q with a distinguished initial state q_0 , a transition function function over an extended input alphabet $\Sigma = A \cup \{\vdash, \dashv\}$ to delimit the endpoints of the input word. The transition function has the following type $\delta \colon \Sigma \times Q \to Q \times \{\leftarrow, \downarrow, \rightarrow, \uparrow\}$. That is, it can read a letter, change state, move left \leftarrow , right \rightarrow , stay in place \downarrow , or exit the computation \uparrow .

The output of the automaton is guided by a production function $\lambda: Q \times \Sigma \to B^*$. That is, for every state and current letter, the automaton can produce some word in B^* .

A run of a 2DFT is a sequence of configurations (q_i, p_i) where q_i is the ith state of the computation, and p_i is the ith position of the head over an extended input word $\vdash w \dashv$. The run starts in the initial state q_0 , and the initial position $p_0 = 0$ (so on the letter \vdash). The unique run is defined inductively as one expects using the transition function δ . Note that a regular function should guarantee that the run does not go out of bounds nor loops forever.

The production of a run ho of a 2DFT is the word obtained by concatenating the outputs produced by each transition.

Definition 2 (The prefixes function). The prefixes function is defined inductively as follows prefixes(w) is the list of nonempty prefixes of w separated by hashes. For instance, prefixes(abc) = a#ab#abc.

Definition 3 (Composition by substitution). Let f be a function from Σ^* to $\{1, \ldots, k\}^*$, and g_1, \ldots, g_k be functions from $\Sigma^* \to \Gamma^*$. The composition by substitution of f by g_1, \ldots, g_k is the function

 $\mathsf{cbs}(f, g_1, \dots, g_k)(w) = \mathsf{map}(\lambda x. g_x(w))(f(w)) \quad .$

Definition 4 (Polyblind functions). The class of polyblind functions is defined as the smallest class of functions containing the regular functions and closed under composition by substitution. The polyblind depth of a function is the smallest k such that the function can be obtained by composition by substitution of nesting depth at most k.

References

[Dou23] Gaëtan Douéneau-Tabot. "Optimization of string transducers". PhD thesis. Université Paris-Cité, 2023. URL: https://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization_of_string_ transducers_v2.pdf.

A Hints

Hint 1 (Exercise 4 Idempotent transition monoid). Look at idempotent words in the transition monoid of the function f.

Hint 2 (Exercise 5 For the first). Note that $f_1(w) \dots f_n(w)$ is of linear output size.

Hint 3 (Exercise 5 For the second). Notice that if f(w) outputs a word with at least two hashes, then $f(w)^2$ cannot be a factor of prefixes(w). If it has only one hash, then $f(w)^X = (f(w)^2)^{X/2}$ and we conclude similarly for even Xs.

Hint 4 (Exercise 5 For the third). The statement is clear for regular functions. Let us now consider a function obtained by a composition by substitution. Leveraging the pumping lemma for regular functions, conclude that some factor of prefixes(w) should be computed by a function lower polyblind depth.

B Solutions

Solution 1 (Solution to Exercise 4). One version of the full proof is given by [Dou23, Proposition 2.16].

Solution 2 (Solution to Exercise 5). A complete proof of the result can be found in [Dou23, Proposition 3.14].