Transducers
 Session 10: One proof done well (hopefully) Version: v0.0.10

Aliaume LOPEZ
TA mail* Course page ${ }^{\dagger}$ Exercises page ${ }^{\ddagger}$
June 24, 2024

1 First Order Logic

Exercise 1 (Some Examples). Provide first-order transductions that represent the following functions:

1. The function that maps a word w to its reverse.
2. The function that maps a word $a b^{n} a$ to $(a b)^{n}(b a)^{n}, b a^{n} b$ to $(b a)^{n}(a b)^{n}$, and w to w otherwise.
3. The function that sorts the letter in a word.

Exercise $\mathbf{2}$ (Some Non-Examples). Prove that the following functions are not representable by first-order transductions:

1. The function that maps w to a if w is of odd length and b otherwise.
2. The function that maps w to w^{2} if w is of even length and w^{3} otherwise.
3. Given a non-trivial group (G, \cdot), the function that maps a word w to its image in G.

2 Lambda Terms

Exercise 3 (Extra Functions). Prove that the lambda-calculus becomes strictly more expressive when adding the following functions:

1. The trace operator trace : $(A \times B \rightarrow A \times B) \rightarrow(B \rightarrow 1+B)$ that computes the trace of a function.
2. The fold operator fold: $(Q \times \Sigma \rightarrow Q) \rightarrow Q \times \Sigma^{*} \rightarrow Q$.
[^0]
3 Blind again

Exercise 4 (Pumping lemma for regular functions). Let f be a regular function. Prove that there exists $N \geq 0$ such that for all $w \in A^{*}$ with $|w| \geq N$, there exist $v_{0}, v_{1} \in A^{*}, u \in A^{+}, n \geq 0, \alpha_{0}, \ldots, \alpha_{n} \in B^{*}, \beta_{1}, \ldots, \beta_{n} \in B^{+}$such that $w=v_{0} u v_{1}$ and

$$
f\left(v_{0} u^{X+1} v_{1}\right)=\alpha_{0} \beta_{1}^{X} \alpha_{1} \ldots \beta_{n}^{X} \alpha_{n} \quad, \quad \text { for all } X \geq 0
$$

\triangleright Hint 1
\triangleright Solution 1 (Self-contained proof)
Exercise 5 (Prefixes is not blind). Our goal is to prove that the function prefixes is not computable by a polyblind function.

1. Let f_{1}, \cdots, f_{n} be regular functions. Is it possible that $f_{1}(w) f_{2}(w) \cdots f_{n}(w)$ computes a factor of $\operatorname{prefixes}(w)$ with a number of hashes that tends to $+\infty$ as $|w|$ grows?
2. Let f be a regular function. Is it possible that $f(w)^{|w|}$ computes a factor of prefixes (w) with a number of hashes that tends to $+\infty$ as $|w|$ grows?
3. Using an induction on the polyblind depth and leveraging the pumping lemma of regular functions prove that the function prefixes is not polyblind.
\triangle Hint 2
\square Hint 3
\square Hint 4
\triangleright Solution 2 (Self-contained proof)

4 Cheat-Sheet

Definition 1 (Regular functions). A function $f: A^{*} \rightarrow B^{*}$ is called a regular function if there exists a two-way deterministic finite automaton with outputs (2DFT) that computes f. Such an automaton has a finite set of states Q with a distinguished initial state q_{0}, a transition function function over an extended input alphabet $\Sigma=A \cup\{\vdash, \dashv\}$ to delimit the endpoints of the input word. The transition function has the following type $\delta: \Sigma \times Q \rightarrow Q \times\{\leftarrow, \downarrow, \rightarrow, \uparrow\}$. That is, it can read a letter, change state, move left \leftarrow, right \rightarrow, stay in place \downarrow, or exit the computation \uparrow.

The output of the automaton is guided by a production function $\lambda: Q \times \Sigma \rightarrow B^{*}$. That is, for every state and current letter, the automaton can produce some word in B^{*}.

A run of a 2DFT is a sequence of configurations $\left(q_{i}, p_{i}\right)$ where q_{i} is the ith state of the computation, and p_{i} is the ith position of the head over an extended input word $\vdash w \dashv$. The run starts in the initial state q_{0}, and the initial position $p_{0}=0$ (so on the letter \vdash). The unique run is defined inductively as one expects using the transition function δ. Note that a regular function should guarantee that the run does not go out of bounds nor loops forever.

The production of a run ρ of a 2DFT is the word obtained by concatenating the outputs produced by each transition.
Definition 2 (The prefixes function). The prefixes function is defined inductively as follows prefixes (w) is the list of nonempty prefixes of w separated by hashes. For instance, prefixes $(a b c)=a \# a b \# a b c$.

Definition 3 (Composition by substitution). Let f be a function from Σ^{*} to $\{1, \ldots, k\}^{*}$, and g_{1}, \ldots, g_{k} be functions from $\Sigma^{*} \rightarrow \Gamma^{*}$. The composition by substitution of f by g_{1}, \ldots, g_{k} is the function

$$
\operatorname{cbs}\left(f, g_{1}, \ldots, g_{k}\right)(w)=\operatorname{map}\left(\lambda x \cdot g_{x}(w)\right)(f(w))
$$

Definition 4 (Polyblind functions). The class of polyblind functions is defined as the smallest class of functions containing the regular functions and closed under composition by substitution. The polyblind depth of a function is the smallest k such that the function can be obtained by composition by substitution of nesting depth at most k.

References

[Dou23] Gaëtan Douéneau-Tabot. "Optimization of string transducers". PhD thesis. Université Paris-Cité, 2023. URL: https://gdoueneau. github.io/pages / DOUENEAU-TABOT_Optimization_of _string _ transducers_v2.pdf.

A Hints

Hint 1 (Exercise 4 Idempotent transition monoid). Look at idempotent words in the transition monoid of the function f.
Hint 2 (Exercise 5 For the first). Note that $f_{1}(w) \ldots f_{n}(w)$ is of linear output size.
Hint 3 (Exercise 5 For the second]. Notice that if $f(w)$ outputs a word with at least two hashes, then $f(w)^{2}$ cannot be a factor of prefixes (w). If it has only one hash, then $f(w)^{X}=\left(f(w)^{2}\right)^{X / 2}$ and we conclude similarly for even X s.

Hint 4 (Exercise 5 For the third). The statement is clear for regular functions. Let us now consider a function obtained by a composition by substitution. Leveraging the pumping lemma for regular functions, conclude that some factor of prefixes (w) should be computed by a function lower polyblind depth.

B Solutions

Solution 1 (Solution to Exercise 4]. One version of the full proof is given by [Dou23, Proposition 2.16].
Solution 2 [Solution to Exercise 5). A complete proof of the result can be found in [Dou23, Proposition 3.14].

[^0]: *ad.lopez@uw.edu.pl
 ${ }^{\dagger}$ https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers
 ${ }^{\ddagger}$ https://aliaumel.github.io/transducer-exercices/

