Transducers
Session 10: One proof done well (hopefully)
Version: v0.0.10

Aliaume LOPEZ
TAmail* Course page’ Exercises page*

June 24, 2024

1 First Order Logic

Exercise 1 (Some Examples). Provide first-order transductions that represent the following functions:
1. The function that maps a word w to its reverse.
2. The function that maps a word ab™a to (ab)™(ba)™, ba™b to (ba)™(ab)™, and w to w otherwise.
3. The function that sorts the letter in a word.
Exercise 2 (Some Non-Examples). Prove that the following functions are not representable by first-order transductions:
1. The function that maps w to a if w is of odd length and b otherwise.
2. The function that maps w to w? if w is of even length and w? otherwise.

3. Given a non-trivial group (G, -), the function that maps a word w to its image in G.

2 Lambda Terms

Exercise 3 (Extra Functions). Prove that the lambda-calculus becomes strictly more expressive when adding the following
functions:

1. The trace operator trace: (A x B — A x B) — (B — 1 + B) that computes the trace of a function.
2. Thefold operator fold: (Q x X — Q) = Q x X* — Q.

*ad.lopez@uw.edu.pl
thttps://www.mimuw. edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers
*https://aliaumel.github.io/transducer-exercices/

mailto:ad.lopez@uw.edu.pl
https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers
https://aliaumel.github.io/transducer-exercices/
ad.lopez@uw.edu.pl
https://www.mimuw.edu.pl/~bojan/2023-2024/przeksztalcenia-automatowe-transducers
https://aliaumel.github.io/transducer-exercices/

June 24, 2024 Transducers

3 Blind again

Exercise 4 (Pumping lemma for regular functions). Let f be a regular function. Prove that there exists N' > 0 such that
forallw € A* with |w| > N, there exist vg,v1 € A*, uw € AT,n > 0,a9,...,a, € B* B1,..., 58, € Bt such
that w = vouwvy and

f(vouX'Hvl) = aoﬁlxoq . ..5504” , forall X >0

> Hint 1
> Solution 1 (Self-contained proof)

Exercise 5 (Prefixes is not blind). Our goal is to prove that the function prefizes is not computable by a polyblind
function.

I Let f1,- -, fn be regular functions. Is it possible that f1 (w) fa(w) - - - fr(w) computes a factor of prefixes(w)
with a number of hashes that tends to +-o0o as |w| grows?

2. Let f be aregular function. Is it possible that f(w)!*! computes a factor of prefixes(w) with a number of hashes
that tends to 400 as |w| grows?

3. Using an induction on the polyblind depth and leveraging the pumping lemma of regular functions prove that the
function prefixes is not polyblind.

> Hint 2
> Hint 3
> Hint 4
> Solution 2 (Self-contained proof)

4 Cheat-Sheet

Definition 1 (Regular functions). A function f : A* — B* is called a regular function if there exists a two-way de-
terministic finite automaton with outputs (2BFT] that computes f. Such an automaton has a finite set of states @ with a
distinguished initial state g, a transition function function over an extended input alphabet ¥ = A U {I-, 4} to delimit the
endpoints of the input word. The transition function has the following type d: ¥ x @ — @ x {«,], —, 1} Thatis, it
can read a letter, change state, move left «—, right —, stay in place . or exit the computation 1

The output of the automaton is guided by a production function A: @ x ¥ — B*. That s, for every state and current
letter, the automaton can produce some word in B*.

Arun of a 2DFT is a sequence of configurations (g;, p;) where g; is the ith state of the computation, and p; is the ith
position of the head over an extended input word = w . The run starts in the initial state go, and the initial position pg = 0
(so on the letter F). The unique run is defined inductively as one expects using the transition function 8. Note that a regular
function should guarantee that the run does not go out of bounds nor loops forever.

The production of a run p of a 2DF T is the word obtained by concatenating the outputs produced by each transition.

Definition 2 (The prefixes function). The prefixes function is defined inductively as follows prefixes(w) is the list of non-
empty prefixes of w separated by hashes. For instance, prefixes(abc) = a#fabitabc.

Definition 3 (Composition by substitution). Let f be a function from X* to {1, ..., k}* and g1, . . ., gx be functions
from * — I'*. The composition by substitution of f by g1, .. ., gk is the function

Definition 4 (Polyblind functions). The class of polyblind functions is defined as the smallest class of functions containing
the regular functions and closed under composition by substitution. The polyblind depth of a function is the smallest k& such
that the function can be obtained by composition by substitution of nesting depth at most k.

commit: fd78eb70bc885a88953acBbfbI4edc7b055aad15 2

June 24, 2024 Transducers

References

[Dou23] Gaétan Douéneau-Tabot. “Optimization of string transducers”. PhD thesis. Université Paris-Cité, 2023. URL:
https://gdoueneau . github . io/pages/DOUENEAU - TABOT _Optimization_of _string_
transducers_v2.pdf.

commit: fd78eb70bc885a88953acBbfb34edc7b055aad15 3

https://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization_of_string_transducers_v2.pdf
https://gdoueneau.github.io/pages/DOUENEAU-TABOT_Optimization_of_string_transducers_v2.pdf

June 24, 2024 Transducers

A Hints

Hint 1 (Exercise 4 I[dempotent transition monoid). Look at idempotent words in the transition monoid of the function f.
Hint 2 (Exercise 5 For the first). Note that f1(w) ... f(w) is of linear output size.

Hint 3 (Exercise 5 For the second). Notice thatif f(w) outputs a word with at least two hashes, then f (w)? cannot be a
factor of prefixes(w). If it has only one hash, then f(w)X = (f(w)?)*/? and we conclude similarly for even Xs.

Hint 4 (Exercise 5 For the third). The statement is clear for regular functions. Let us now consider a function obtained
by a composition by substitution. Leveraging the pumping lemma for regular functions, conclude that some factor of
prefixes(w) should be computed by a function lower polyblind depth.

commit: fd78eb70bc885a88953acBbfbI4edc7b055aad15 4

June 24, 2024 Transducers

B Solutions

Solution 1 (Solution to Exercise 4). One version of the full proof is given by [Dou23, Proposition 2.161.

Solution 2 (Solution to Exercise 5). A complete proof of the result can be found in [Dou23, Proposition 3.141.

commit: fd78eb70bc885a88353acbbfbI4edc7b055aad15 S

	First Order Logic
	Lambda Terms
	Blind again
	Cheat-Sheet
	Hints
	Solutions

