Corretion of the Transducer Homework 1

Exercise 2.1 (Entimity)

the Zip function is not continuous.

 $2i\rho((ab)^*) \cap \alpha^* + b^* = \alpha^* + b^*$

not regular < regular + most regular

Exercise 2.2 (Flip-Flop)

Let M= (Q, S, A, 90) lor a flip flop marchine.

Assume without loss of generality flood Q = 10,136

define the machine

M:= (Q:, 5:, A:, 9:) as follows for 15:5k.

· Q: = {0,1}

...A;(q,a):= q

... 5; (q,a) := [q.if. 5a is the identity mps.

Ti(9') if La is the constant map equal to q'

Now the parallel composition

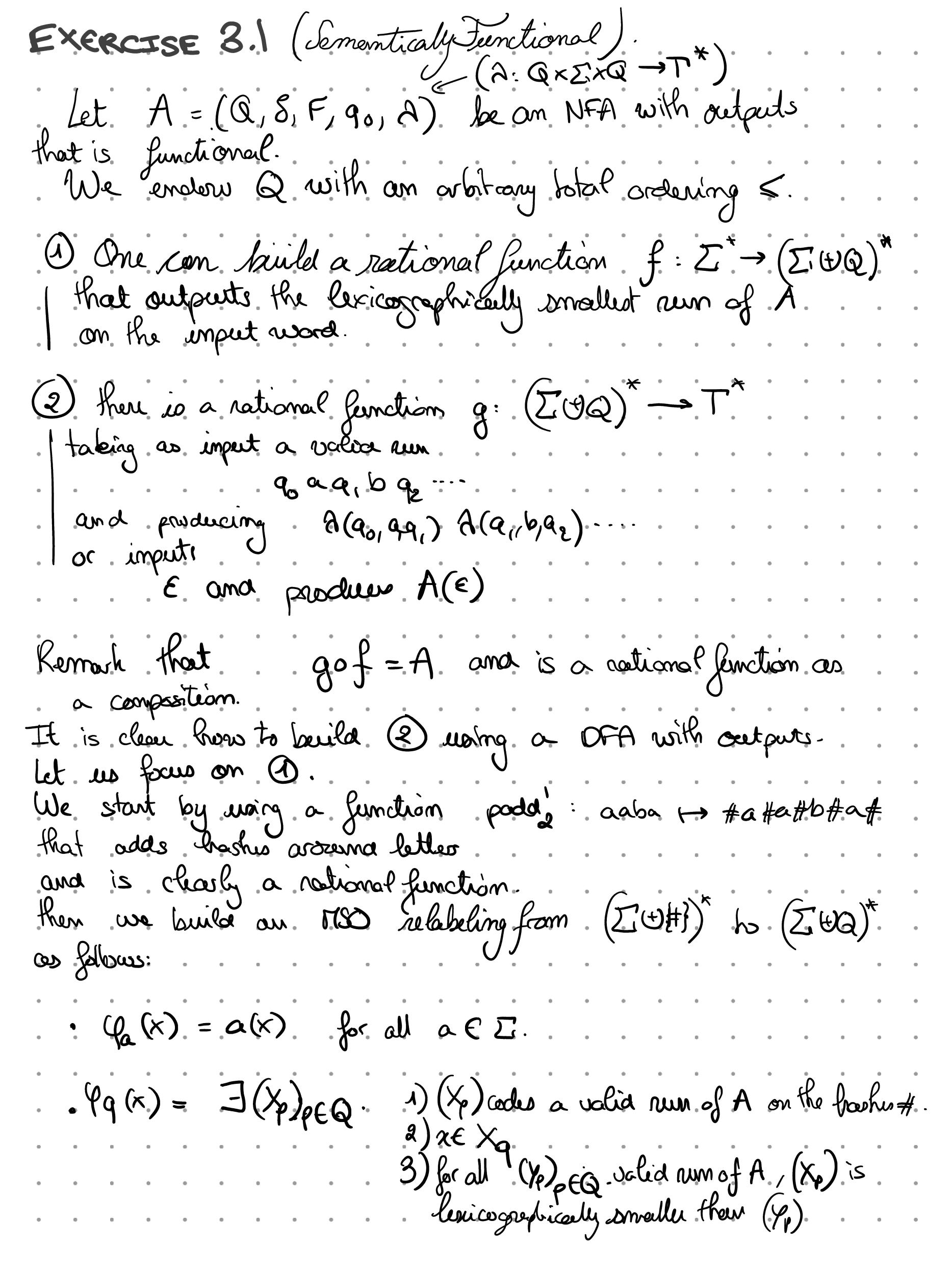
TI II M2 II... II Mk: $\Sigma^* \rightarrow (T \times 10)^{3k}$ can be obtained by composing the machines sequetally with

suitable projections. the homomorphism:

A: IXQ -s T allows to obtain

+ we Z', M(w) = 20 (M/1-11/4). (w).

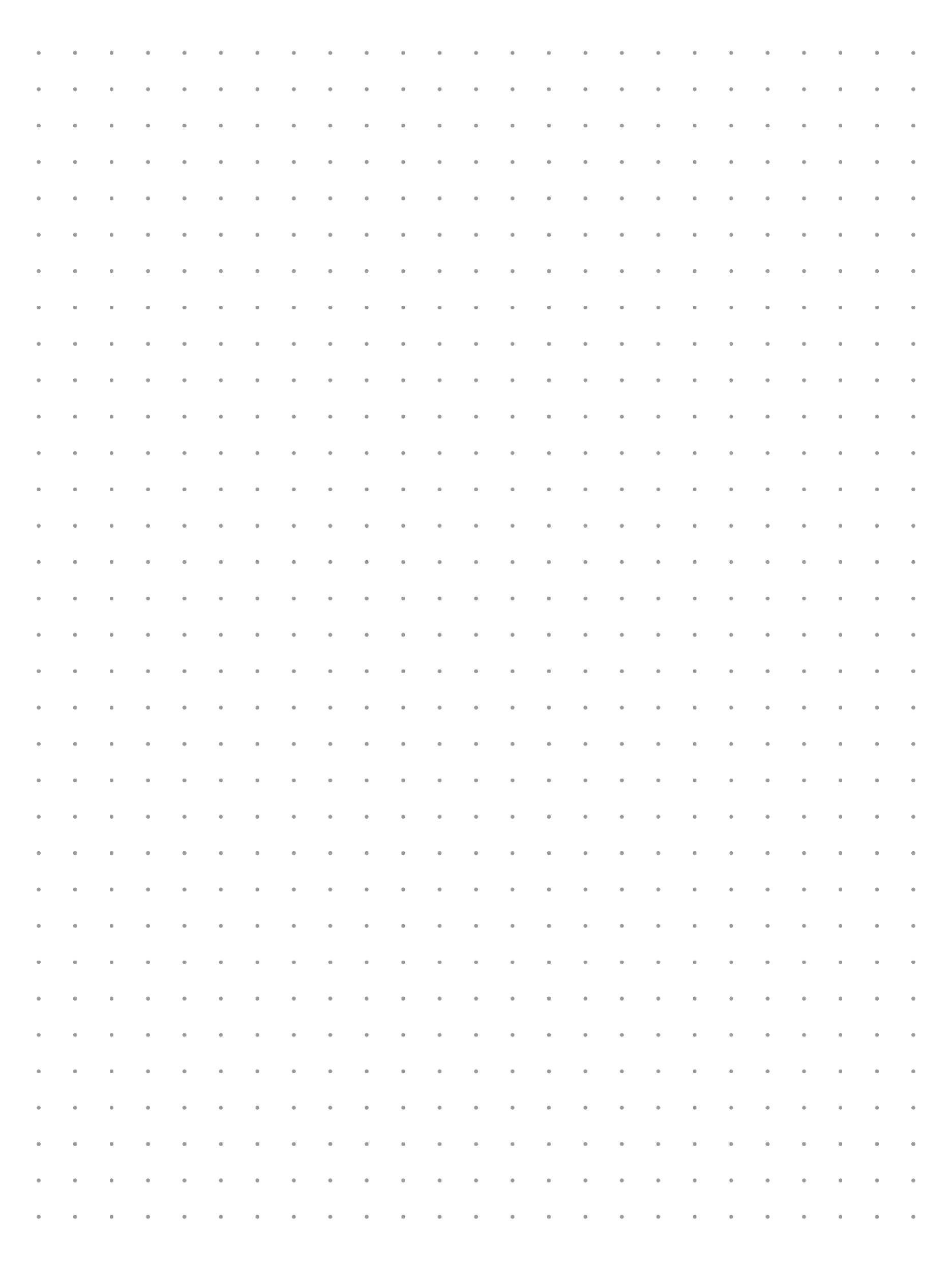
the letter is using fet compositions. Note that merging the homomorphism we can obtain the compositions.	. by		
compositions. La TlogelQ1			
Let us prove that this bound I is light. Let $\mathcal{R} = (\Sigma, 5, A, 9)$ we fix a \mathbb{R}	•		
$\mathcal{R} = (\Sigma, \delta, A, \varphi) \text{we fix a } \Sigma.$	• •		
$ \cdot \int_{\mathbf{a}} (\mathbf{q}) = \mathbf{a} \qquad \cdot \mathbf{q}_0 = \mathbf{a} $			
$\frac{1}{2} \lambda_{\alpha}(q) = q$			
① R has Σ states: ② R connect be near by less them Σ'	ised State	2.3 .	
3) the composition of k binary flip flops is computable to a 2k states flip flop-	<u>.</u> .		
(1) is obvious	• •		
(2) Assume by contradiction that there exists $M=(O', S', \lambda', q_0')$ with $ O' < \Sigma $. then: $\Delta a : O \rightarrow \Sigma$ is not surjective let $b \in \Sigma \setminus \lambda' = O'$	ralis	ng X	
then: Aa: Q -> L is not surjective. Let b \(\mathbb{Z} \ \approx \approx \(\alpha' \) (a').			
but $M'(ba) = A'(q_0) \cdot A'(S(q_0)b)$			
implies $\mathcal{R}(ba) = ab$ implies $b \in \mathcal{A}_a(Q')$ which is a	• •		
b.E. Za (Q') which is al	g Surg		


3) let M, Mk be brimany flip flop machines with states Qi, transitions Fi, productions A; and imitial state 90
and initial state 90.
mote that M2: Z7 -> Z,
$M_2: \Sigma_1^* \to \Sigma_2^*$
$M_k: (Z^{k-1})^* \to T^*$
let us define $OC = (Q, A, E, Q_0)$ via
Q = Q, x ··· × Qk of size 2k.
. $\lambda: \Sigma \times Q \to T$ $(a,(a_1,,a_k)) \mapsto \lambda_k (\lambda_{k-1}(,a_{k-1}),a_k)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$5: \sum_{(x,(q_1,\dots,q_k))} Q$ $(x,(q_1,\dots,q_k)) \mapsto (S_1(x,q_1), S_2(A_1(x,q_1), q_2), \dots$
. We claim that $\forall w \in \Sigma^{+}$, $M(w) = M_{0} \cdots \circ M_{n}(w)$.
and leave the proof as an exercise.
With (1) + (2) + (3) we conclude that R land by less than Tog2 it binary flep flop machines (OFO)
<u>CQFO</u>

Exercise 2.3 (Décide injectivity).
Let f be a rational function from I to T* We construet the language Ly are the alphabet
$\Delta := T \oplus \Sigma \times \{(\underline{1}, \underline{1}, \underline{1}, (\underline{2}, \underline{2})\}$
Words in of the form
w (2 now (2 n) 2 such that
and (independently) well-bracketed for (,), without nesting: so (a (b)) a is forbidden.
2) the (,), parentheses enclose factors of w that are produced by f on the run our the neard written on top of the (1)4 parentheses-
3) similar to 2) but for (2), parentheses-
Conditions 1), 2) and 3) are regular. 1) become there is no meeting.
for f into an NFA that ignores (2,)2 letters and replaces
$\frac{a}{a}$ \frac{a}

Now Let \cap the (2 word and the (, word) = \neq if f is injective
Cheching if the true words are equal is not doable by a CTG But we can update our definition so that one position of each top word is scheded/distringuished. and use a purhasim automata to valuebate that the two scheded letters are distrinct and appear at the same moment in both words.
The construction of the automotos is done in polynomial time and deciding emptiness is done in polynomial time too. Hence deciding injectivity of national functions is in PIITIE.
Det M be a Meety machine. There exists a computable K such that 11 is K-windowed (3) M is windowed.
Det M be a Meely machine and $K \in \mathbb{N}$. One can build a meely machine $W(M,K)$ that is K -windowed and such that $W(M,K) \equiv M$ if M is $(X$ -windowed $W(M,K) \equiv M$ if M is $(X$ -windowed
Using a and a we can decide if a mealy machine is windowed by computing K (O) and checking the equivalence between M and W(MK).
Let us nour prove Oand 2.

2006 of a. let 06 = (G, 8, A, 90) we write.
(M,°) for the monoid generated by (&: Q) Q) a E Z.
we write \mathcal{E}_{w} for the function $q \mapsto \mathcal{E}^{*}(q, v)$.
· recall that In is idempotent iff In In In.
· Claim: there exists a computable mo such that for all word w (1201 > 70) we can write $w = w_1 w_2 w_3 w_3 w_4 h$ S_{av_2} idempotent
proof sketch: use Ramsey
· Let us assume that o't is K-windowed for some KEN
by definition $ \begin{cases} \forall u, w, v \in \mathcal{I}, & A(5^*(q_0, uv), a) = A(5^*(q_0, uv), a) \\ v > K \end{aligned} $ $ \forall a \in \mathcal{I} $
Now let up prove that It is mo-windowed. let u, w EZ* and hot>mo. a EZ
use have $v = v_1 v_2 v_3$, $ v_1 v_3 < m_0$ and δ_{v_2} idempotent in particular $\forall m \in \mathbb{N}$.
$5^*(90, uv_1v_2^mv_3) = 5 5 5 5 5 u (90) $ (and similarly for wf).
But wring (*) with a large enough nEW so that n/v2/>K.
$\Delta(\mathcal{S}^*(q_0, uv_1v_2^nv_3), \alpha) = \lambda(\mathcal{S}^*(q_0, uv_1v_2^nv_3), \alpha)$
$\lambda(\delta^*(q_0, \mu \sigma), \alpha) \cdot \lambda(\delta^*(q_0, \psi \sigma), \alpha)$


Proof of @ let et = (Q, 8, 2, 90) and KENS. we write W(M,K) = (Q18/2, qo) with $Q' := \sum_{i=1}^{K} q_{0}' := \mathcal{E}$ $\delta(u,a) := suff x of ua of size <math>\leq K$. $\lambda'(\mu,\alpha):=\lambda(\delta^*(q_0,\mu),\alpha)$ We claim that if M is K-windowed then $N \equiv W(M,K)$. we prove this claim by showing $\forall \omega \in \Sigma^{\dagger}$, $A(\delta^{*}(q_{0}, \omega), \alpha) = A'(\delta'^{*}(q_{0}, \omega), \alpha)$ $\forall \alpha \in \Sigma^{\dagger}$ which is done by noticing that if $\omega = \omega, \omega_{c}$ $|\omega_{c}| = |\kappa|$ $\delta''(s''(q_0', w)) = w_2$ $\lambda'(s''(q_0', w), a) = \lambda(s'(q_0, w_2), a)$ $\lambda''(s''(q_0', w), a) = \lambda(s''(q_0, w_2), a)$ for words w of size 100 (100, w), a less than K a similar argument holds.

	0 W) ;	•	.1)). `(S .	M&	، ز	af	nable	· cus	, į	n . C	Car	۵.	•		٠	•	•		•
•			•	2)	•	M&		ول	hme	lle.	too	ა ა	•	•	•		•	•	•	•	•
																				•		
																				jue li		
•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	
•							žE	•		Jj	<. i	· /•	V 3≤0	· {·	. j	\in	×9 1	\ j	€ }	4.	•	•
•				•	•		•	^		1:	:	ė>	\ \a_{1}	· •	ک- ∈		· ,	•	•	(sta	n'd	•
								•														
•	۰		•	٠	•		•	•			٠	•	٠	۰	٠	•			•	•	•	111

Place note that terming an NFA ento a OFA may require an exponential blowers in the number of states. Hence any polymormial time solution" to the above problem.

was not plausible.

