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Well Quasi Orderings

Every infinite sequence of elements
contains an increasing pair.

What is a well-quasi-order (WQO)?
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Theory and Practice

Verification of Well-Structured-
Transition-Systems [Abd+96]

Karp-Miller Coverability [KM69]
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Verification of Well-Structured-
Transition-Systems [Abd+96]

Karp-Miller Coverability [KM69]

Graph Minor Theorem [RS04]

Polynomial time algorithm for graph
embeddability into a given surface

A beautiful compositional theory

(X∗,≤subword) [Hig52]

(Trees(X),≤subtree) [Kru72]

(Graphs(X),≤minor) [RS04]

Structural Functors

Some of these are inductive datatypes
[Lop23; Fre20], but we want more!
Also, can we avoid minimal bad sequence ar-
guments [Nas65]?
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Classes of Structures...

... as Operators

Structures as Operators
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In General

C a class of finite structures

LabelX(C) the X-labelled structures in C

A ≤X B if there exists a monotone embedding

(X,≤) WQO =⇒ (LabelX(C),≤X) is a WQO?

This talk

C is a class of finite undirected graphs

LabelX(C) is a class of X-labelled-graphs

≤X is the induced subgraph relation

Is the class of graphs a WQO-operator?
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Pouzet Conjectures
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OperatorsGraph Theory ? Model Theory

C C
+ 2 labels + finite set

of labels

Is

WQO?

Is

WQO?

First
Conjecture

Second
Conjecture

First Pouzet Conjecture: 2 = ω [Pou72]

Second Pouzet Conjecture: ω = WQO

Schmitz’s Conjecture: finite paths are the only obstruction to 2-WQO
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Finite Paths

Finite Paths are WQO but not 2-
WQO
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State of the Art

Well Quasi Ordering Graph Classes in
2024

Lozin, Razgon, Zamaraev
Well-quasi-ordering does not
imply bounded clique-width

Daligault, Rao, Thomassé

Well-Quasi-Order of Relabel Functions

Robertson, Seymour

Graph Minors. XX. Wagner’s conjecture

Petkovšek
Letter graphs and well-quasi-

order by induced subgraphs

Ding

Subgraphs and well-quasi-ordering

Brignall, Engen, Vatter
A counterexample regarding labelled well-quasi-
ordering

Dabrowski, Lozin, Paulusma
Well-Quasi-Ordering versus Clique-Width: New Re-
sults on Bigenic Classes

Dabrowski, Lozin, Paulusma
Clique-width and Well-Quasi-Ordering of Triangle-
Free Graph Classes

Atminas, Brignall, Lozin, Stacho
Minimal classes of graphs of unbounded clique-width
defined by finitely many forbidden induced subgraphs

Pouzet, Zaguia

Hereditary classes of ordered sets of width at most two

1990 1995 2000 2005 2010 2015 2020 2025

A. Lopez – Well Quasi Ordered Classes of Bounded Linear Clique-Width2024-11-04 [LaBRI]

42/94



Usual Proof Method

From Graphs To Trees

(Trees,≤) (C,⊆i)
monotone, surjective
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Usual Proof Method

From Graphs To Trees

(Trees,≤) (C,⊆i)
monotone, surjective

Nested Higman?

Kruskal?

Typical Example

m-partite cographs

Σ finite with m = |Σ|
order = Kruskal

T ∈ Trees(Σ,P(Σ× Σ)) G ∈ C

V (G) = leaves of T

(x, y) ∈ E(G) ⇐⇒ (c(x), c(y)) ∈ lca(x, y)
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Bounded Clique Width

A Logical Approach to Graph Decom-
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Bounded Clique Width

A Logical Approach to Graph Decom-
positions

Trees CMSO definable, surjectiveIntroduced by Courcelle [Cou91;
Cou94; CER93] with the idea
of generalizing regular lan-
guages to graphs.
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• Gives a finite representation of graph
classes

• Is a well-studied parameter

• Is conjectured to be tightly related to
being labelled-WQO

Conjecture [DRT10, Conjecture 5]: C is
hereditary and 2-WQO =⇒ C has bounded
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Trees CMSO definable, surjectiveIntroduced by Courcelle [Cou91;
Cou94; CER93] with the idea
of generalizing regular lan-
guages to graphs. φ∆ : consider this tree?

φdom(x) : selects vertices of the graph

φedge(x, y) : selects edges of the graph

φ∆ = ⊤, φdom(x) = ⊤, φedge(x, y) = ⊤ : builds all cliques

• Gives a finite representation of graph
classes

• Is a well-studied parameter

• Is conjectured to be tightly related to
being labelled-WQO

Conjecture [DRT10, Conjecture 5]: C is
hereditary and 2-WQO =⇒ C has bounded
clique-width

Conjecture (L.): C is labelled-wqo =⇒ C
has bounded clique-width

To simplify everything
consider linear trees,
i.e., finite words
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Bounded Linear Clique-Width
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φ(x, y) = isOdd(x) ∧ isEven(y)
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Bounded Linear Clique-Width
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Bounded Linear Clique-Width
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Bounded Linear Clique-Width
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Bounded Linear Clique-Width
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φ(1, 5) ∨ φ(5, 1) = ⊥

x y

A. Lopez – Well Quasi Ordered Classes of Bounded Linear Clique-Width2024-11-04 [LaBRI]

61/94



Bounded Linear Clique-Width
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Bounded Linear Clique-Width
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φ(x, y) = isOdd(x) ∧ isEven(y)

φ(7, 8) ∨ φ(8, 7) = ⊤

x y
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The Automata Toolbox

MSO

Automata

Regular
Languages

Monoids
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The Automata Toolbox

MSO

Automata

Regular
Languages

Monoids

isOdd(x) ∧ isEven(y)

M = (Z/2Z,+)

µ : Σ → M

logic

algebra
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}
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Bounded Linear Clique-Width
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(µ(w[1 : 1]), µ(w[1 : 2]), µ(w[2 : |w|])

= (0, 0, 0)

∈ P? ⊤

x y⊢ ⊣
0 0 0
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}

(µ(w[1 : 1]), µ(w[1 : 3]), µ(w[3 : |w|])

= (0, 1, 1)

∈ P? ⊥

x y⊢ ⊣
0 1 1
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}

(µ(w[1 : 1]), µ(w[1 : 4]), µ(w[4 : |w|])

= (0, 0, 0)

∈ P? ⊤

x y⊢ ⊣
0 0 0
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}

(µ(w[1 : 1]), µ(w[1 : 5]), µ(w[5 : |w|])

= (0, 1, 1)

∈ P? ⊥

x y⊢ ⊣
0 1 1
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}

(µ(w[1 : 1]), µ(w[1 : 6]), µ(w[6 : |w|])

= (0, 0, 0)

∈ P? ⊤

x y⊢ ⊣
0 0 0
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Bounded Linear Clique-Width
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M = (Z/2Z,+), µ(x) = 1 P ⊆ M3 = {(x, 0, y) | (x, y) ∈ Z/2Z}

(µ(w[1 : 7]), µ(w[7 : 8]), µ(w[8 : |w|])

= (0, 0, 0)

∈ P? ⊤

x y⊢ ⊣
0 0 0
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].

M = (Z/2Z,+)

a b a b a b a b a b aw :

0 + 0 = 0
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].

M = (Z/2Z,+)

a

1

b

1

a

1

b

1

a
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b

1
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1

b

1

a

1

b

1

a

1

w :

Depth 1

0 + 0 = 0
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].
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Depth 3

0 + 0 = 0

A. Lopez – Well Quasi Ordered Classes of Bounded Linear Clique-Width2024-11-04 [LaBRI]

78/94



Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].
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Depth 4
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].

M = (Z/2Z,+)

a

1

b
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b

1

0

a

1
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1

0

a

1

b
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0

0

a

1

1
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1

w :

Depth 4

0 + 0 = 0

Theorem (Simon [Sim90]): for every word w
and monoid M , there exists a factorisation of
depth f(|M |) independent of w.
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Simon’s Factorisation(s)

A Ramsey-like fundamental theorem
of semigroup theory [Sim90].

M = (Z/2Z,+)

a

1

b

1

0

a

1

b
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1

b

1

0

a

1

b

1

0

a

1

b

1

0

0

a

1

1

1

1

w :

Depth 4

0 + 0 = 0

Theorem (Simon [Sim90]): for every word w
and monoid M , there exists a factorisation of
depth f(|M |) independent of w.

Back to the trees!
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Take Away Food For Thought

If there was only one thing to remem-
ber from this talk ...

Good Orders
On Factorisations

Well-Quasi-Ordered
classes of graphs≃
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Take Away Food For Thought

If there was only one thing to remem-
ber from this talk ...

Nested Higman
Over Simon’s

Well-Quasi-Ordered
classes of graphs≃
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Take Away Food For Thought

If there was only one thing to remem-
ber from this talk ...

Gap-Embedding
[DT03]

Well-Quasi-Ordered
classes of graphs≃
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Take Away Food For Thought

If there was only one thing to remem-
ber from this talk ...

Gap-Embedding
[DT03]

Well-Quasi-Ordered
classes of graphs≃

Logic + WQO = ♡
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The Main Issue

Inserting idempotents does not affect far away positions...

... But does affect close positions!

M = ({0, 1,+∞},+), µ(ε) = 0, µ(a) = µ(b) = 1
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The Main Issue

Inserting idempotents does not affect far away positions...

... But does affect close positions!

M = ({0, 1,+∞},+), µ(ε) = 0, µ(a) = µ(b) = 1
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The Main Issue

Inserting idempotents does not affect far away positions...

... But does affect close positions!

M = ({0, 1,+∞},+), µ(ε) = 0, µ(a) = µ(b) = 1
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Conclusion / Ask Me Anything

Theorem 1: Given an MSO transduction,
one can decide if its image is labelled-
WQO, and compute a k such that
k-wqo ⇐⇒ labelled-wqo.

Theorem 2: For every class C of bounded
linear clique-width,
labelled-wqo ⇐⇒ wqo-operator.
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Conclusion / Ask Me Anything

Theorem 1: Given an MSO transduction,
one can decide if its image is labelled-
WQO, and compute a k such that
k-wqo ⇐⇒ labelled-wqo.

Theorem 2: For every class C of bounded
linear clique-width,
labelled-wqo ⇐⇒ wqo-operator.

Remark 3: Previous works of [DRT10] can
be explained in this framework, using a nice
monoid variety [Kun05].

Remark 4: No minimal bad sequence ar-
gument [Nas65], just the Gap-Embedding of
[DT03].
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Conclusion / Ask Me Anything

Theorem 1: Given an MSO transduction,
one can decide if its image is labelled-
WQO, and compute a k such that
k-wqo ⇐⇒ labelled-wqo.

Theorem 2: For every class C of bounded
linear clique-width,
labelled-wqo ⇐⇒ wqo-operator.

Remark 3: Previous works of [DRT10] can
be explained in this framework, using a nice
monoid variety [Kun05].

Remark 4: No minimal bad sequence ar-
gument [Nas65], just the Gap-Embedding of
[DT03].

New Interests: Successor-free tree representations! Monotone MSO-transductions!
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Conclusion / Ask Me Anything

Theorem 1: Given an MSO transduction,
one can decide if its image is labelled-
WQO, and compute a k such that
k-wqo ⇐⇒ labelled-wqo.

Theorem 2: For every class C of bounded
linear clique-width,
labelled-wqo ⇐⇒ wqo-operator.

Remark 3: Previous works of [DRT10] can
be explained in this framework, using a nice
monoid variety [Kun05].

Remark 4: No minimal bad sequence ar-
gument [Nas65], just the Gap-Embedding of
[DT03].

New Interests: Successor-free tree representations! Monotone MSO-transductions!

In the near future:
Clique-Width (almost written up, using [Lop23]),

Schmitz’s Conjecture (almost done for clique-width),
labelled-wqo implies ω-categorical (in progress).
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