TD 3: CTL, CTL* Solutions

Exercice 1

The two formulæ are equivalent in all cases but 4.

Exercice 2

 $\llbracket \mathsf{A}\mathsf{G} q \rrbracket$ contains only 5, $\mathsf{G} p = 4(34)^{\omega} + 3(43)^{\omega}$ hence $\llbracket \mathsf{E}\mathsf{F}\mathsf{G} p \rrbracket$ contains all nodes but 5 (3 or 4 are reachable from any other node). Thus $\llbracket (\mathsf{E}\mathsf{F}\mathsf{G} p) \cup (\mathsf{A}\mathsf{G} q) \rrbracket$ is the set of all paths that end in 5. This means $\llbracket \mathsf{F}\mathsf{A}((\mathsf{E}\mathsf{F}\mathsf{G} p) \cup (\mathsf{A}\mathsf{G} q)) \rrbracket$ too is the set of all paths that end in 5. On the other hand $\llbracket \mathsf{X} q \rrbracket$ is the set of paths which second node is either 4 or 5 (it cannot be 1 because no node has a transition to 1). Hence $\llbracket \varphi \rrbracket$ is the set of nodes from which all paths either end in 5 or have 4 as a second node, meaning $\llbracket \varphi \rrbracket = \{2, 3, 5\}$.

Exercice 3

- 1. Suppose $s \in \llbracket \mathsf{EG} \varphi \rrbracket$. Thus there exists a path $sv_0v_1...$ in M such that for $s \models \varphi$ and for all $n \ v_n \models \varphi$. Since S is finite there exists i < j such that $v_i = v_j$. Hence v_i belongs to a non-trivial strongly connected component in M_{φ} , and there exists a path $s \to^* v_i$ in M_{φ} . Suppose now there exists a strongly connected component C in M_{φ} and a node $t \in C$ such that there exists a path $s \to^* t$ in M_{φ} . Then there exists an infinite path in $M \ s \to^* t (\to^* t)^{\omega}$ such that all nodes along the path satisfy φ , and thus $s \models \mathsf{EG} \varphi$.
- 2. To compute $[\mathsf{EG} \varphi]$, we compute M_{φ} and its strongly connected components, and then the nodes from which one of these SCCs is reachable in M_{φ} . Each step takes linear time (for the computation of SCCs, use Tarjan's algorithm), hence the complexity is $\mathcal{O}(n)$.

Exercice 4

1.
$$\mathsf{E}((a_1 \wedge a_2) \ \mathsf{U} \ (b_1 \wedge \mathsf{E}(a_2 \ \mathsf{U} \ b_2))) \lor \mathsf{E}((a_1 \wedge a_2) \ \mathsf{U} \ (b_2 \wedge \mathsf{E}(a_1 \ \mathsf{U} \ b_1)))$$

2.

$$\bigvee_{\sigma \in S_n} \mathsf{E}(\varphi \wedge \bigwedge_{i=1\dots,n} \psi_{\sigma(i)}) \ \mathsf{U} \ (\psi'_{\sigma(1)} \wedge (\varphi \wedge \bigwedge_{i=2,\dots,n} \mathsf{E}(\psi_{\sigma(i)} \ \mathsf{U} \ (\psi'_{\sigma_2} \wedge \dots \wedge \mathsf{EG}\,\varphi)\dots)))$$

The new formula has exponential size compared to the old one.

3.
$$[b \wedge \mathsf{E}(\mathsf{X}(a \wedge (b \cup c)))] \vee [c \wedge \mathsf{E} \mathsf{X} a]$$

4. It suffices to apply the translation of question 2 to

$$\bigvee_{I \subseteq \llbracket 1,n \rrbracket} \bigwedge_{i \in I} \psi'_i \ \land \ \bigwedge_{i \notin I} \psi_i \ \land \ \varphi' \ \land \ \mathsf{E}(\mathsf{X}(\varphi \ \land \ \mathsf{E}(\bigwedge_{i \notin I} (\psi_i \ \mathsf{U} \ \psi'_i) \land \mathsf{G} \ \varphi')))$$

Again, there is an exponential blow up in the size of the formula.

5. We find $\neg \mathsf{E}(\mathsf{X} b \land \mathsf{G}(\neg a \land d)) \land \neg \mathsf{E}(\mathsf{G} c) \land \neg \mathsf{E}(c \mathsf{U} \neg d).$