TD 3: CTL, CTL* Solutions

Exercice 1

The two formulæ are equivalent in all cases but 4 .

Exercice 2

$\llbracket \mathrm{AG} q \rrbracket$ contains only $5, \mathrm{G} p=4(34)^{\omega}+3(43)^{\omega}$ hence $\llbracket \mathrm{EF} \mathrm{G} p \rrbracket$ contains all nodes but 5 (3 or 4 are reachable from any other node). Thus $\llbracket(E F G p) \cup(\mathrm{AGq}) \rrbracket$ is the set of all paths that end in 5 . This means $\llbracket \mathrm{FA}((\operatorname{EFG} p) \cup(\mathrm{AG} q)) \rrbracket$ too is the set of all paths that end in 5 . On the other hand $\llbracket \mathrm{X} q \rrbracket$ is the set of paths which second node is either 4 or 5 (it cannot be 1 because no node has a transition to 1). Hence $\llbracket \varphi \rrbracket$ is the set of nodes from which all paths either end in 5 or have 4 as a second node, meaning $\llbracket \varphi \rrbracket=\{2,3,5\}$.

Exercice 3

1. Suppose $s \in \llbracket \mathrm{EG} \varphi \rrbracket$. Thus there exists a path $s v_{0} v_{1} \ldots$ in M such that for $s \models \varphi$ and for all $n v_{n} \models \varphi$. Since S is finite there exists $i<j$ such that $v_{i}=v_{j}$. Hence v_{i} belongs to a non-trivial strongly connected component in M_{φ}, and there exists a path $s \rightarrow^{*} v_{i}$ in M_{φ}. Suppose now there exists a strongly connected component C in M_{φ} and a node $t \in C$ such that there exists a path $s \rightarrow^{*} t$ in M_{φ}. Then there exists an infinite path in $M s \rightarrow^{*} t\left(\rightarrow^{*} t\right)^{\omega}$ such that all nodes along the path satisfy φ, and thus $s \models \mathrm{EG} \varphi$.
2. To compute $\llbracket \mathrm{EG} \varphi \rrbracket$, we compute M_{φ} and its strongly connected components, and then the nodes from which one of these SCCs is reachable in M_{φ}. Each step takes linear time (for the computation of SCCs, use Tarjan's algorithm), hence the complexity is $\mathcal{O}(n)$.

Exercice 4

1. $\mathrm{E}\left(\left(a_{1} \wedge a_{2}\right) \mathrm{U}\left(b_{1} \wedge \mathrm{E}\left(a_{2} \cup b_{2}\right)\right)\right) \vee \mathrm{E}\left(\left(a_{1} \wedge a_{2}\right) \mathrm{U}\left(b_{2} \wedge \mathrm{E}\left(a_{1} \cup b_{1}\right)\right)\right)$
2.

$$
\bigvee_{\sigma \in S_{n}} \mathrm{E}\left(\varphi \wedge \bigwedge_{i=1 \ldots, n} \psi_{\sigma(i)}\right) \cup\left(\psi_{\sigma(1)}^{\prime} \wedge\left(\varphi \wedge \bigwedge_{i=2, \ldots, n} \mathrm{E}\left(\psi_{\sigma(i)} \cup\left(\psi_{\sigma_{2}}^{\prime} \wedge \cdots \wedge \mathrm{EG} \varphi\right) \ldots\right)\right)\right)
$$

The new formula has exponential size compared to the old one.
3. $[b \wedge \mathrm{E}(\mathrm{X}(a \wedge(b \cup c)))] \vee[c \wedge \mathrm{EX} a]$
4. It suffices to apply the translation of question 2 to

$$
\bigvee_{I \subseteq \llbracket 1, n \rrbracket} \bigwedge_{i \in I} \psi_{i}^{\prime} \wedge \bigwedge_{i \notin I} \psi_{i} \wedge \varphi^{\prime} \wedge \mathrm{E}\left(\mathrm{X}\left(\varphi \wedge \mathrm{E}\left(\bigwedge_{i \notin I}\left(\psi_{i} \cup \psi_{i}^{\prime}\right) \wedge \mathrm{G} \varphi^{\prime}\right)\right)\right)
$$

Again, there is an exponential blow up in the size of the formula.
5. We find $\neg \mathrm{E}(\mathrm{X} b \wedge \mathrm{G}(\neg a \wedge d)) \wedge \neg \mathrm{E}(\mathrm{G} c) \wedge \neg \mathrm{E}(c \mathrm{U} \neg d)$.

