Accurate Approximate Diagnosability of Stochastic Systems

Nathalie Bertrand¹, Serge Haddad², Engel Lefaucheux^{1,2}

1 Inria, France 2 LSV, ENS Cachan & CNRS & Inria, France

GdT Vasco-Mexico, March 9th 2016

(9)

Ínnía -

LTS: Labelled transition system.

Diagnoser: must tell whether a fault \mathbf{f} occurred, based on observations.

Convergence hypothesis: no infinite sequence of unobservable events.

LTS: Labelled transition system.

Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.

A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$.

LTS: Labelled transition system.

Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.

A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$. **X** ac is surely faulty as $\mathcal{P}^{-1}(ac) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{a} f_2 \xrightarrow{c} f_3\}.$

LTS: Labelled transition system.

Diagnoser: must tell whether a fault **f** occurred, based on observations. *Convergence hypothesis*: no infinite sequence of unobservable events.

A run $\rho = q_0 \xrightarrow{u} q_1 \xrightarrow{c} q_2$ has an observation sequence $\mathcal{P}(\rho) = c$. **X** ac is surely faulty as $\mathcal{P}^{-1}(ac) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{a} f_2 \xrightarrow{c} f_3\}$. ? b is ambiguous as $\mathcal{P}^{-1}(b) = \{q_0 \xrightarrow{f} f_1 \xrightarrow{b} f_1, q_0 \xrightarrow{u} q_1 \xrightarrow{b} q_1\}$.

Diagnosis Problems

Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

Diagnosis Problems

Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?

Diagnosis Problems

Diagnoser requirements:

- **Soundness:** if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?

A sound but not reactive diagnoser : claiming a fault when a occurs.

[TT05] Thorsley and Teneketzis

Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

bⁿ ambiguous but...

[TT05] Thorsley and Teneketzis

Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

bⁿ ambiguous but...

 $\lim_{n\to\infty}\mathbb{P}(\mathbf{f}b^n)=0$

[TT05] Thorsley and Teneketzis

Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

bⁿ ambiguous but...

 $\lim_{n\to\infty}\mathbb{P}(\mathbf{f}b^n)=0$

How to adapt soundness and reactivity?

[TT05] Thorsley and Teneketzis Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

Exact Diagnosis

An exact diagnoser fulfills

Soundness: if a fault is claimed, a fault happened.

[BHL14]

[BHL14] Bertrand, Haddad, Lefaucheux

Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14. Accurate Approximate Diagnosability of Stochastic Systems March 9th 2016 – GdT Vasco-Mexico - 5

Exact Diagnosis

An exact diagnoser fulfills

- **Soundness**: if a fault is claimed, a fault happened.
- ▶ Reactivity: the diagnoser will provide information almost surely.

Exactly diagnosable.

[BHL14] Bertrand, Haddad, Lefaucheux

Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14. Accurate Approximate Diagnosability of Stochastic Systems March 9th 2016 – GdT Vasco-Mexico - 5

Exact Diagnosis

[BHL14]

An exact diagnoser fulfills

- **Soundness**: if a fault is claimed, a fault happened.
- ▶ Reactivity: the diagnoser will provide information almost surely.

Exactly diagnosable.

Exact diagnosability is PSPACE-complete.

Also studied : exact prediction and prediagnosis. [BHL14] Bertrand, Haddad, Lefaucheux

Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14. Accurate Approximate Diagnosability of Stochastic Systems March 9th 2016 – GdT Vasco-Mexico - 5

Not exactly diagnosable

Not exactly diagnosable

However a high proportion of *b* implies a highly probable faulty run.

Not exactly diagnosable

However a high proportion of b implies a highly probable faulty run.

Relaxed Soundness: if a fault is claimed the probability of error is small.

Outline

Specification of Approximate Diagnosis

AA-diagnosis is Easy

Other Approximate Diagnoses are Hard

Outline

Specification of Approximate Diagnosis

AA-diagnosis is Easy

Other Approximate Diagnoses are Hard

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 8

Given an observation sequence $\sigma \in \Sigma_{o}^{*}$,

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

Given an observation sequence $\sigma \in \Sigma_{o}^{*}$,

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

CorP(a) = 3/4,

Given an observation sequence $\sigma \in \Sigma_{o}^{*}$,

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

CorP(a) = 3/4, CorP(ab) = 1/2,

Given an observation sequence $\sigma \in \Sigma_{o}^{*}$,

$$\operatorname{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \operatorname{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

CorP(a) = 3/4, CorP(ab) = 1/2, CorP(abb) = 1/4, CorP(abbb) = 1/10.

Given $\varepsilon \geq 0$, an ε -diagnoser fulfills

Soundness: If a fault is claimed after an observation sequence σ, then CorP(σ) ≤ ε.

Given $\varepsilon \geq 0$, an ε -diagnoser fulfills

- Soundness: If a fault is claimed after an observation sequence σ, then CorP(σ) ≤ ε.
- Reactivity: Given a faulty run ρ , the measure of undetected runs extending ρ converges to 0.

Given $\varepsilon \geq 0$, an ε -diagnoser fulfills

- Soundness: If a fault is claimed after an observation sequence σ, then CorP(σ) ≤ ε.
- Reactivity: Given a faulty run ρ, the measure of undetected runs extending ρ converges to 0.

A uniform ε -diagnoser ensures for reactivity a uniform convergence over the faulty runs.

Given $\varepsilon \geq 0$, an ε -diagnoser fulfills

- Soundness: If a fault is claimed after an observation sequence σ, then CorP(σ) ≤ ε.
- Reactivity: Given a faulty run ρ , the measure of undetected runs extending ρ converges to 0.

A uniform ε -diagnoser ensures for reactivity a uniform convergence over the faulty runs.

0-diagnosers correspond to exact diagnosers.

Approximate Diagnosis Problems

	Reactivity	
Accuracy	arepsilon-diagnosability	uniform $arepsilon$ -diagnosability
	Given $\varepsilon > 0$, does there exist	Given $\varepsilon >$ 0, does there exist
	an $arepsilon$ -diagnoser?	a uniform ε -diagnoser?
	AA-diagnosability	uniform AA-diagnosability
	For all $\varepsilon > 0$, does there exist	For all $\varepsilon >$ 0, does there exist
	an $arepsilon$ -diagnoser?	a uniform $arepsilon$ -diagnoser?

AA-diagnosability allows to select ε depending on external requirements.

• AA-diagnosable

Let $\rho = q_0 \xrightarrow{\mathbf{f}} q_f \cdots q_f$. Let ρ_f extending ρ .

Almost surely, when $|\rho_f| \rightarrow \infty$, ρ_f has more b's than a's.

• AA-diagnosable

Let $\rho = q_0 \xrightarrow{f} q_f \cdots q_f$. Let ρ_f extending ρ . Almost surely, when $|\rho_f| \to \infty$, ρ_f has more b's than a's. Let ρ_c the correct run with $\mathcal{P}(\rho_f) = \mathcal{P}(\rho_c)$. Almost surely, when $|\rho_c| \to \infty$, ρ_c has less b's than a's.

• AA-diagnosable

Let $\rho = q_0 \xrightarrow{f} q_f \cdots q_f$. Let ρ_f extending ρ . Almost surely, when $|\rho_f| \to \infty$, ρ_f has more b's than a's. Let ρ_c the correct run with $\mathcal{P}(\rho_f) = \mathcal{P}(\rho_c)$. Almost surely, when $|\rho_c| \to \infty$, ρ_c has less b's than a's.

Not uniformly AA-diagnosable

Let $\varepsilon = \frac{1}{2}$, $\alpha > 0$ and ρ be the faulty run with $\mathcal{P}(\rho) = a^n$.

• AA-diagnosable

Let $\rho = q_0 \xrightarrow{f} q_f \cdots q_f$. Let ρ_f extending ρ . Almost surely, when $|\rho_f| \to \infty$, ρ_f has more *b*'s than *a*'s. Let ρ_c the correct run with $\mathcal{P}(\rho_f) = \mathcal{P}(\rho_c)$. Almost surely, when $|\rho_c| \to \infty$, ρ_c has less *b*'s than *a*'s.

Not uniformly AA-diagnosable

Let $\varepsilon = \frac{1}{2}$, $\alpha > 0$ and ρ be the faulty run with $\mathcal{P}(\rho) = a^n$. Then for all ρ_f extending ρ with $|\rho_f| \le n + |\rho|$, $\operatorname{CorP}(\mathcal{P}(\rho)) \ge \frac{1}{2}$.

• AA-diagnosable

Let $\rho = q_0 \xrightarrow{f} q_f \cdots q_f$. Let ρ_f extending ρ . Almost surely, when $|\rho_f| \to \infty$, ρ_f has more *b*'s than *a*'s. Let ρ_c the correct run with $\mathcal{P}(\rho_f) = \mathcal{P}(\rho_c)$. Almost surely, when $|\rho_c| \to \infty$, ρ_c has less *b*'s than *a*'s.

Not uniformly AA-diagnosable

Let $\varepsilon = \frac{1}{2}$, $\alpha > 0$ and ρ be the faulty run with $\mathcal{P}(\rho) = a^n$. Then for all ρ_f extending ρ with $|\rho_f| \le n + |\rho|$, $\operatorname{CorP}(\mathcal{P}(\rho)) \ge \frac{1}{2}$. $\mathbb{P}(\rho_f|\rho \le \rho_f \land |\rho_f| = k + |\rho| \land \operatorname{CorP}(\mathcal{P}(\rho_f)) \le \varepsilon) \le \alpha \mathbb{P}(\rho)$ implies $k \ge n$.

Establishing relations between the Specifications

Complexity of the Problems

	Simple	Uniform
ε -diagnosability	undecidable	undecidable
AA-diagnosability	PTIME	undecidable

Outline

Specification of Approximate Diagnosis

AA-diagnosis is Easy

Other Approximate Diagnoses are Hard

A Simple Case

Initial fault pLTS. Initially, an unobservable split towards two subpLTS:

- ▶ a *correct* event *u* leads to a *correct* subpLTS;
- ► a *faulty* event **f** leads to an *arbitrary* subpLTS.

A Simple Case

Initial fault pLTS. Initially, an unobservable split towards two subpLTS:

- a correct event u leads to a correct subpLTS;
- ▶ a *faulty* event **f** leads to an *arbitrary* subpLTS.

- an initial state, q₀;
- an arbitrary pLTS with states $\{q_f, q'_f\}$;
- a correct pLTS with state q_c.

Solving AA-diagnosability for Initial-Fault pLTS

• Transform the correct and arbitrary subpLTS in *labelled Markov chains* by merging the unobservable transitions.

Solving AA-diagnosability for Initial-Fault pLTS

• Transform the correct and arbitrary subpLTS in *labelled Markov chains* by merging the unobservable transitions.

• $\mathbb{P}^{M}(E)$ = measure of infinite runs of M with observation in E. *Distance 1 problem*: $\exists E$ (measurable) $\subseteq \Sigma_{o}^{\omega}, \mathbb{P}^{M_{c}}(E) - \mathbb{P}^{M_{f}}(E) = 1$? • Illustration: $E = \{\sigma \mid \limsup_{n \to \infty} \frac{|\sigma_{\downarrow n}|_{b}}{|\sigma_{\downarrow n}|_{a}} > 1\}$

[CK14] Chen and Kiefer On the Total Variation Distance of Labelled Markov Chains, CSL-LICS'14. Accurate Approximate Diagnosability of Stochastic Systems March 9th 2016 – GdT Vasco-Mexico - 17

Solving AA-diagnosability for Initial-Fault pLTS

• Transform the correct and arbitrary subpLTS in *labelled Markov chains* by merging the unobservable transitions.

• $\mathbb{P}^{M}(E)$ = measure of infinite runs of M with observation in E. *Distance 1 problem*: $\exists E$ (measurable) $\subseteq \Sigma_{o}^{\omega}, \mathbb{P}^{M_{c}}(E) - \mathbb{P}^{M_{f}}(E) = 1$? • Illustration: $E = \{\sigma \mid \limsup_{n \to \infty} \frac{|\sigma_{\downarrow n}|_{b}}{|\sigma_{\downarrow n}|_{a}} > 1\}$

The distance 1 problem is decidable in PTIME.

[CK14] Chen and Kiefer

On the Total Variation Distance of Labelled Markov Chains, CSL-LICS'14.

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 17

• Identifying relevant pairs of states by reachability analysis in the synchronised self-product.

• Identifying relevant pairs of states by reachability analysis in the synchronised self-product.

• Checking distance 1 for all relevant pairs.

• Identifying relevant pairs of states by reachability analysis in the synchronised self-product.

• Checking distance 1 for all relevant pairs.

AA-diagnosability is decidable in PTIME.

• Identifying relevant pairs of states by reachability analysis in the synchronised self-product.

• Checking distance 1 for all relevant pairs.

AA-diagnosability is decidable in PTIME.

However an ε -diagnoser may need infinite memory.

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 18

Outline

Specification of Approximate Diagnosis

AA-diagnosis is Easy

Other Approximate Diagnoses are Hard

The Emptiness Problem for Probabilistic Automata (PA)

 $\mathbb{P}(b) = 0, \mathbb{P}(baa) = \frac{1}{4}, \mathbb{P}(baaa) = \frac{7}{8}$

The Emptiness Problem for Probabilistic Automata (PA)

 $\mathbb{P}(b) = 0, \mathbb{P}(baa) = \frac{1}{4}, \mathbb{P}(baaa) = \frac{7}{8}$

Emptiness problem: Given a PA \mathcal{A} , $\exists w \in \Sigma^*, \mathbb{P}_{\mathcal{A}}(w) > \frac{1}{2}$?

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 20

The Emptiness Problem for Probabilistic Automata (PA)

$$\mathbb{P}(b) = 0, \mathbb{P}(baa) = \frac{1}{4}, \mathbb{P}(baaa) = \frac{7}{8}$$

Emptiness problem: Given a PA \mathcal{A} , $\exists w \in \Sigma^*, \mathbb{P}_{\mathcal{A}}(w) > \frac{1}{2}$?

The emptiness problem for PA is undecidable even when for all w, $\frac{1}{4} \leq \mathbb{P}_{\mathcal{A}}(w) \leq \frac{3}{4}.$

[P71] Paz, Introduction to Probabilistic Automata, Academic Press 1971.

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 20

If $\exists w \in \Sigma_o^*, \mathbb{P}_{\mathcal{A}}(w) > 1/2$ then $\lim_{n \to \infty} \operatorname{CorP}((w \sharp)^n \flat) = 1$.

Accurate Approximate Diagnosability of Stochastic Systems

March 9th 2016 - GdT Vasco-Mexico - 21

Conclusion

Contributions

- Investigation of semantical issues
- Complexity of the notions of approximate diagnosis
 - ► A PTIME algorithm for AA-diagnosability
 - Undecidability of other approximate diagnosability

Conclusion

Contributions

- Investigation of semantical issues
- Complexity of the notions of approximate diagnosis
 - ► A PTIME algorithm for AA-diagnosability
 - Undecidability of other approximate diagnosability

Future work

- Approximate prediction and prediagnosis
- Diagnosis of infinite state stochastic systems