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Abstract—We study the 5G-AKA authentication protocol de-
scribed in the 5G mobile communication standards. This version
of AKA tries to achieve a better privacy than the 3G and 4G
versions through the use of asymmetric randomized encryption.
Nonetheless, we show that except for the IMSI-catcher attack,
all known attacks against 5G-AKA privacy still apply.

Next, we modify the 5G-AKA protocol to prevent these
attacks, while satisfying 5G-AKA efficiency constraints as much
as possible. We then formally prove that our protocol is σ-
unlinkable. This is a new security notion, which allows for a
fine-grained quantification of a protocol privacy. Our security
proof is carried out in the Bana-Comon indistinguishability logic.
We also prove mutual authentication as a secondary result.

Index Terms—AKA, Unlinkability, Privacy, Formal Methods.

I. INTRODUCTION

Mobile communication technologies are widely used for
voice, text and Internet access. These technologies allow a
subscriber’s device, typically a mobile phone, to connect
wirelessly to an antenna, and from there to its service provider.
The two most recent generations of mobile communication
standards, the 3G and 4G standards, have been designed by
the 3GPP consortium. The fifth generation (5G) of mobile
communication standards is being finalized, and drafts are
now available [1]. These standards describe protocols that
aim at providing security guarantees to the subscribers and
service providers. One of the most important such protocol
is the Authentication and Key Agreement (AKA) protocol,
which allows a subscriber and its service provider to establish
a shared secret key in an authenticated fashion. There are
different variants of the AKA protocol, one for each generation.

In the 3G and 4G-AKA protocols, the subscriber and its
service provider share a long term secret key. The subscriber
stores this key in a cryptographic chip, the Universal Sub-
scriber Identity Module (USIM), which also performs all the
cryptographic computations. Because of the USIM limited
computational power, the protocols only use symmetric key
cryptography without any pseudo-random number generation
on the subscriber side. Therefore the subscriber does not use a
random challenge to prevent replay attacks, but instead relies
on a sequence number SQN. Since the sequence number has
to be tracked by the subscriber and its service provider, the
AKA protocols are stateful.

Because a user could be easily tracked through its mobile
phone, it is important that the AKA protocols provide privacy
guarantees. The 3G and 4G-AKA protocols try to do that using

temporary identities. While this provides some privacy against
a passive adversary, this is not enough against an active
adversary. Indeed, these protocols allow an antenna to ask for
a user permanent identity when it does not know its temporary
identity (this naturally happens in roaming situations). This
mechanism is abused by IMSI-catchers [2] to collect the
permanent identities of all mobile devices in range.

The IMSI-catcher attack is not the only known attack against
the privacy of the AKA protocols. In [3], the authors show how
an attacker can obtain the least significant bits of a subscriber’s
sequence number, which allows the attacker to monitor the
user’s activity. The authors of [4] describe a linkability attack
against the 3G-AKA protocol. This attack is similar to the
attack on the French e-passport [5], and relies on the fact
that 3G-AKA protocol uses different error messages if the
authentication failed because of a bad Mac or because a de-
synchronization occurred.

The 5G standards include changes to the AKA protocol to
improve its privacy guarantees. In 5G-AKA, a user never sends
its permanent identity in plain-text. Instead, it encrypts it using
a randomized asymmetric encryption with its service provider
public key. While this prevents the IMSI-catcher attack, this is
not sufficient to get unlinkability. Indeed, the attacks from [3],
[4] against the 3G and 4G-AKA protocols still apply. Moreover,
the authors of [6] proposed an attack against a variant of the
AKA protocol introduced in [4], which uses the fact that an
encrypted identity can be replayed. It turns out that their attack
also applies to 5G-AKA.

a) Objectives: Our goal is to improve the privacy of
5G-AKA while satisfying its design and efficiency constraints.
In particular, our protocol should be as efficient as the 5G-AKA
protocol, have a similar communication complexity and rely
on the same cryptographic primitives. Moreover, we want
formal guarantees on the privacy provided by our protocol.

b) Formal Methods: Formal methods are the best way to
get a strong confidence in the security provided by a protocol.
They have been successfully applied to prove the security of
crucial protocols, such as Signal [7] and TLS [8], [9]. There
exist several approaches to formally prove a protocol security.

In the symbolic or Dolev-Yao (DY) model, protocols are
modeled as members of a formal process algebra [10]. In
this model, the attacker controls the network: he reads all
messages and he can forge new messages using capabilities
granted to him through a fixed set of rules. While security in



this model can be automated (e.g. [11]–[14]), it offers limited
guarantees: we only prove security against an attacker that has
the designated capabilities.

The computational model is more realistic. The attacker
also controls the network, but is not limited by a fixed set
of rules. Instead, the attacker is any Probabilistic Polynomial-
time Turing Machine (PPTM for short). Security proofs in this
model are typically sequences of game transformations [15]
between a game stating the protocol security and crypto-
graphic hypotheses. This model offers strong security guar-
antees, but proof automation is much harder. For instance,
CRYPTOVERIF [16] cannot prove the security of stateful
cryptographic protocols (such as the AKA protocols).

There is a third model, the Bana-Comon (BC) model [17],
[18]. In this model, messages are terms and the security prop-
erty is a first-order formula. Instead of granting the attacker
capabilities through rules, as in the symbolic approach, we
state what the adversary cannot do. This model has several
advantages. First, since security in the BC model entails
computational security, it offers strong security guarantees.
Then, there is no ambiguity: the adversary can do anything
which is not explicitly forbidden. Finally, this approach is
well-suited to model stateful protocols.

c) Related Work: There are several formal analysis of
AKA protocols in the symbolic models. In [12], the authors
use the DEEPSEC tool to prove unlinkability of the protocol
for three sessions. In [4] and [19], the authors use PROVERIF
to prove unlinkability of AKA variants for, respectively, three
sessions and an unbounded number of sessions. In these three
works, the authors abstracted away several key features of the
protocol. Because DEEPSEC and PROVERIF do not support the
xor operator, they replaced it with a symmetric encryption.
Moreover, sequence numbers are modeled by nonces in [4]
and [12]. While [19] models the sequence number update, they
assume it is always incremented by one, which is incorrect.
Finally, none of these works modeled the re-synchronization
or the temporary identity mechanisms. Because of these inac-
curacies in their models, they all miss attacks.

In [20], the authors use the TAMARIN prover to analyse
multiple properties of 5G-AKA. For each property, they either
find a proof, or exhibit an attack. To our knowledge, this is the
most precise symbolic analysis of an AKA protocol. For exam-
ple, they correctly model the xor and the re-synchronization
mechanisms, and they represent sequence numbers as integers
(which makes their model stateful). Still, they decided not to
include the temporary identity mechanism. Using this model,
they successfully rediscover the linkability attack from [4].

We are aware of two analysis of AKA protocols in the
computational model. In [6], the authors present a significantly
modified version of AKA, called PRIV-AKA, and claim it is
unlinkable. However, we discovered a linkability attack against
the protocol, which falsifies the authors claim. In [21], the
authors study the 4G-AKA protocol without its first message.
They show that this reduced protocol satisfies a form of
anonymity (which is weaker than unlinkability). Because they
consider a weak privacy property for a reduced protocol, they

fail to capture the linkability attacks from the literature.
To summarize, there is currently no computational security

proof of a complete version of an AKA protocol.
d) Contributions: Our contributions are:

• We study the privacy of the 5G-AKA protocol described
in the 3GPP draft [1]. Thanks to the introduction of
asymmetric encryption, the 5G version of AKA is not
vulnerable to the IMSI-catcher attack. However, we show
that the linkability attacks from [3], [4], [6] against older
versions of AKA still apply to 5G-AKA.

• We present a new linkability attack against PRIV-AKA,
a significantly modified version of the AKA protocol
introduced and claimed unlinkable in [6]. This attack
exploits the fact that, in PRIV-AKA, a message can be
delayed to yield a state update later in the execution of
the protocol, where it can be detected.

• We propose the AKA+ protocol, which is a modified
version of 5G-AKA with better privacy guarantees and
satisfying the same design and efficiency constraints.

• We introduce a new privacy property, called σ-
unlinkability, inspired from [22] and Vaudenay’s Pri-
vacy [23]. Our property is parametric and allows us to
have a fine-grained quantification of a protocol privacy.

• We formally prove that AKA+ satisfies the σ-unlinkability
property in the computational model. Our proof is carried
out in the BC model, and holds for any number of agents
and sessions that are not related to the security parameter.
We also show that AKA+ provides mutual authentication.
e) Outline: In Section II and III we describe the 5G-AKA

protocol and the known linkability attacks against it. We
present the AKA+ protocol in Section IV, and we define the σ-
unlinkability property in Section V. Finally, we show how we
model the AKA+ protocol using the BC logic in Section VI,
and we state and sketch the proofs of the mutual authentication
and σ-unlinkability of AKA+ in Section VII. The full proofs
are in Appendix.

II. THE 5G-AKA PROTOCOL

We present the 5G-AKA protocol described in the 3GPP
standards [1]. This is a three-party authentication protocol
between:
• The User Equipment (UE). This is the subscriber’s physi-

cal device using the mobile communication network (e.g.
a mobile phone). Each UE contains a cryptographic chip,
the Universal Subscriber Identity Module (USIM), which
stores the user confidential material (such as secret keys).

• The Home Network (HN), which is the subscriber’s ser-
vice provider. It maintains a database with the necessary
data to authenticate its subscribers.

• The Serving Network (SN). It controls the base station
(the antenna) the UE is communicating with through a
wireless channel.

If the HN has a base station nearby the UE, then the HN and
the SN are the same entity. But this is not always the case (e.g.
in roaming situations). When no base station from the user’s
HN are in range, the UE uses another network’s base station.



The UE and its corresponding HN share some confidential
key material and the Subscription Permanent Identifier (SUPI),
which uniquely identifies the UE. The SN does not have access
to the secret key material. It follows that all cryptographic
computations are performed by the HN, and sent to the
SN through a secure channel. The SN also forwards all the
information it gets from the UE to the HN. But the UE
permanent identity is not kept hidden from the SN: after a
successful authentication, the HN sends the SUPI to the SN.
This is not technically needed, but is done for legal reasons.
Indeed, the SN needs to know whom it is serving to be able
to answer to Lawful Interception requests.

Therefore, privacy requires to trust both the HN and the
SN. Since, in addition, they communicate through a secure
channel, we decided to model them as a single entity and we
include the SN inside the HN. A description of the protocol
with three distinct parties can be found in [20].

A. Description of the Protocol

The 5G standard proposes two authentication protocols,
EAP-AKA′ and 5G-AKA. Since their differences are not rel-
evant for privacy, we only describe the 5G-AKA protocol.

a) Cryptographic Primitives: As in the 3G and 4G vari-
ants, the 5G-AKA protocol uses several keyed cryptographic
one-way functions: f1, f2, f5, f1,∗ and f5,∗. These functions are
used both for integrity and confidentiality, and take as input a
long term secret key k (which is different for each subscriber).

A major novelty in 5G-AKA is the introduction of an asym-
metric randomized encryption {·}ne

pk. Here pk is the public
key, and ne is the encryption randomness. Previous versions
of AKA did not use asymmetric encryption because the USIM,
which is a cryptographic micro-processor, had no randomness
generation capabilities. The asymmetric encryption is used to
conceal the identity of the UE, by sending {SUPI}ne

pk instead
of transmitting the SUPI in clear (as in 3G and 4G-AKA).

b) Temporary Identities: After a successful run of the
protocol, the HN may issue a temporary identity, a Globally
Unique Temporary Identity (GUTI), to the UE. Each GUTI can
be used in at most one session to replace the encrypted identity
{SUPI}ne

pk. It is renewed after each use. Using a GUTI allows
to avoid one asymmetric encryption. This saves a pseudo-
random number generation and the expensive computation of
an asymmetric encryption.

c) Sequence Numbers: The 5G-AKA protocol prevents
replay attacks using a sequence number SQN instead of a
random challenge. This sequence number is included in the
messages, incremented after each successful run of the pro-
tocol, and must be tracked and updated by the UE and the
HN. As it may get de-synchronized (e.g. because a message
is lost), there are two versions of it: the UE sequence number
SQNU, and the HN sequence number SQNN.

d) State: The UE and HN share the UE identity SUPI, a
long-term symmetric secret key k, a sequence number SQNU

and the HN public key pkN. The UE also stores in GUTI the
value of the last temporary identity assigned to it (if there is
one). Finally, the HN stores the secret key skN corresponding

UE

SUPI, GUTI, k, pkN, SQNU

HN

SUPI, GUTI, k, skN, SQNN

GUTI or {SUPI}ne
pkN

if GUTI was used: GUTI ← UnSet〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
Input x:
nR, SQNR ← π1(x), π2(x)⊕ f5k (nR)
bmac ← f1k (〈SQNR , nR〉) = π3(x)
bSQN ← range(SQNU, SQNR)

SQNN ← SQNN + 1

SQNU ← SQNR
f2k (nR)

bmac ∧ bSQN

“Auth-Failure”
¬bmac

〈
SQNU ⊕ f5,∗k (nR) , f1,∗k (〈SQNU , nR〉)

〉
Input y:
SQN∗R ← π1(y)⊕ f5,∗k (n)
if f1,∗k (〈SQN∗R , n〉) = π2(y) then SQNN ← SQN∗R + 1

bmac ∧ ¬bSQN

Conventions: ← is used for assignments, and has a lower
priority than the equality comparison operator =.

Fig. 1. The 5G-AKA Protocol

to pkN, its version SQNN of every UE’s sequence number and
a mapping between the GUTIs and the SUPIs.

e) Authentication Protocol: The 5G-AKA protocol is
represented in Fig. 1. We now describe an honest execution
of the protocol. The UE initiates the protocol by identifying
itself to the HN, which it can do in two different ways:

• It can send a temporary identity GUTI, if one was assigned
to it. After sending the GUTI, the UE sets it to UnSet to
ensure that it will not be used more than once. Otherwise,
it would allow an adversary to link sessions together.

• It can send its concealed permanent identity {SUPI}ne
pkN

,
using the HN public key pkN and a fresh randomness ne.

Upon reception of an identifying message, the HN retrieves the
permanent identity SUPI: if it received a temporary identity
GUTI, this is done through a database look-up; and if a
concealed permanent identity was used, it uses skN to decrypt
it. It can then recover SQNN and the key k associated to
the identity SUPI from its memory. The HN then generates
a fresh nonce n. It masks the sequence number SQNN by
xoring it with f5k(n), and mac the message by computing
f1k(〈SQNN , n〉) (we use 〈. . . 〉 for tuples). It then sends the
message 〈n , SQNN ⊕ f5k(n) , f1k(〈SQNN , n〉)〉.



When receiving this message, the UE computes f5k(n).
With it, it unmasks SQNN and checks the authenticity of the
message by re-computing f1k(〈SQNN , n〉) and verifying that
it is equal to the third component of the message. It also
checks whether SQNN and SQNU are in range1. If both checks
succeed, the UE sets SQNU to SQNN, which prevents this
message from being accepted again. It then sends f2k(n) to
prove to HN the knowledge of k. If the authenticity check fails,
an “Auth-Failure” message is sent. Finally, if the authenticity
check succeeds but the range check fails, UE starts the re-
synchronization sub-protocol, which we describe below.

f) Re-synchronization: The re-synchronization protocol
allows the HN to obtain the current value of SQNU. First,
the UE masks SQNU by xoring it with f5,∗k (n), mac the
message using f1,∗k (〈SQNU , n〉) and sends the pair 〈SQNU ⊕
f5,∗k (n) , f1,∗k (〈SQNU , n〉)〉. When receiving this message, the
HN unmasks SQNU and checks the mac. If the authentication
test is successful, HN sets the value of SQNN to SQNU + 1.
This ensures that HN first message in the next session of the
protocol is in the correct range.

g) GUTI Assignment: There is a final component of the
protocol which is not described in Fig. 1 (as it is not used in
the privacy attacks we present later). After a successful run of
the protocol, the HN generates a new temporary identity GUTI
and links it to the UE’s permanent identity in its database.
Then, it sends the masked fresh GUTI to the UE.

III. UNLINKABILITY ATTACKS AGAINST 5G-AKA

We present in this section several attacks against AKA that
appeared in the literature. All these attacks but one (the IMSI-
catcher attack) carry over to 5G-AKA. Moreover, several fixes
of the 3G and 4G versions of AKA have been proposed. We
discuss the two most relevant fixes, the first by Arapinis et
al. [4], and the second by Fouque et al. [6].

None of these fixes are satisfactory. The modified AKA
protocol given in [4] has been shown flawed in [6]. The authors
of [6] then propose their own protocol, called PRIV-AKA, and
claim it is unlinkable (they only provide a proof sketch).
While analyzing the PRIV-AKA protocol, we discovered an
attack allowing to permanently de-synchronize the UE and the
HN. Since a de-synchronized UE can be easily tracked (after
being de-synchronized, the UE rejects all further messages),
our attack is also an unlinkability attack. This is in direct
contradiction with the security property claimed in [6]. This
is a novel attack that never appeared in the literature.

A. IMSI-Catcher Attack

All the older versions of AKA (4G and earlier) are vulnerable
to the IMSI-catcher attack [2]. This attack simply relies on
the fact that, in these versions of AKA, the permanent identity
(called the International Mobile Subscriber Identity or IMSI in
the 4G specifications) is not encrypted but sent in plain-text.
Moreover, even if a temporary identity is used (a Temporary
Mobile Subscriber Identity or TMSI), an attacker can simply

1The specification is loose here: it only requires that SQNU < SQNN ≤
SQNU + C, where C is some constant chosen by the HN.

UE Attacker
TMSI or IMSI

“Permanent-ID-Request”
If TMSI received

IMSI

Fig. 2. An IMSI-Catcher Attack

UEIMSIt HN
tauth ≡

〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
f2k (n)

UEIMSI′ Attacker
tauth

“Auth-Failure”
If IMSI′ 6= IMSIt

〈
SQNU ⊕ f5,∗k (nR) , f1,∗k (〈SQNU , nR〉)

〉If IMSI′ = IMSIt

Fig. 3. The Failure Message Attack by [4]

send a Permanent-ID-Request message to obtain the UE’s
permanent identity. The attack is depicted in Fig. 2.

This necessitates an active attacker with its own base station.
At the time, this required specialized hardware, and was
believed to be too expensive. This is no longer the case, and
can be done for a few hundreds dollars (see [24]).

B. The Failure Message Attack

In [4], Arapinis et al. propose to use an asymmetric encryp-
tion to protect against the IMSI-catcher attack: each UE carries
the public-key of its corresponding HN, and uses it to encrypt
its permanent identity. This is basically the solution that was
adopted by 3GPP for the 5G version of AKA. Interestingly,
they show that this is not enough to ensure privacy, and give
a linkability attack that does not rely on the identification
message sent by UE. While their attack is against the 3G-AKA
protocol, it is applicable to the 5G-AKA protocol.

a) The Attack: The attack is depicted in Fig. 3, and works
in two phases. First, the adversary eavesdrops a successful run
of the protocol between the HN and the target UE with identity
IMSIt, and stores the authentication message tauth sent by HN.
In a second phase, the attacker A tries to determine whether a
UE with identity IMSI′ is the initial UE (i.e. whether IMSI′ =
IMSIt). To do this, A initiates a new session of the protocol and
replays the message tauth. If IMSI′ 6= IMSIt, then the mac test
fails, and UEIMSI′ answers “Auth-Failure”. If IMSI′ = IMSIt,
then the mac test succeeds but the range test fails, and UEIMSI′

sends a re-synchronization message.



UEIMSIt HN{IMSIt}ne
pkN

UEIMSI′ HN{IMSI′}n′e
pkN

/
{IMSIt}ne

pkN

tauth ≡
〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
Failure Message

If IMSI′ 6= IMSIt

f2k (nR)
If IMSI′ = IMSIt

Fig. 4. The Encrypted IMSI Replay Attack by [6]

The adversary can distinguish between the two messages,
and therefore knows if it is interacting with the original or a
different UE. Moreover, the second phase of the attack can
be repeated every time the adversary wants to check for the
presence of the tracked user IMSIt in its vicinity.

b) Proposed Fix: To protect against the failure message
attack, the authors of [4] propose that the UE encrypts both er-
ror messages using the public key pkN of the HN, making them
indistinguishable. To the adversary, there is no distinctions
between an authentication and a de-synchronization failure.
The fixed AKA protocol, without the identifying message
{IMSI}ne

pkN
, was formally checked in the symbolic model using

the PROVERIF tool. Because this message was omitted in the
model, an attack was missed. We present this attack next.

C. The Encrypted IMSI Replay Attack

In [6], Fouque et al. give an attack against the fixed AKA
proposed by Arapinis et al. in [4]. Their attack, described in
Fig. 4, uses the fact the identifying message {IMSIt}ne

pkN
in the

proposed AKA protocol by Arapinis et al. can be replayed.
In a first phase, the attacker A eavesdrops and stores the

identifying message {IMSIt}ne
pkN

of an honest session between
the user UEIMSIt it wants to track and the HN. Then, every
time A wants to determine whether some user UEIMSI′ is
the tracked user UEIMSIt , it intercepts the identifying message
{IMSI′}n′e

pkN
sent by UEIMSI′ , and replaces it with the stored

message {IMSIt}ne
pkN

. Finally, A lets the protocol continue
without further tampering. We have two possible outcomes:
• If IMSI′ 6= IMSIt then the message tauth sent by HN is

mac-ed using the wrong key, and the UE rejects the
message. Hence the attacker observes a failure message.

• If IMSI′ = IMSIt then tauth is accepted by UEIMSI′ , and
the attacker observes a success message.

Therefore the attacker can deduce whether it is interacting with
UEIMSIt or not, which breaks unlinkability.

D. Attack Against The PRIV-AKA Protocol

The authors of [6] then propose the PRIV-AKA protocol,
which is a significantly modified version of AKA. The authors

claim that their protocol achieves authentication and client
unlinkability. But we discovered a de-synchronization attack:
it is possible to permanently de-synchronize the UE and the
HN. Our attack uses the fact that in PRIV-AKA, the HN
sequence number is incremented only upon reception of the
confirmation message from the UE. Therefore, by intercepting
the last message from the UE, we can prevent the HN from
incrementing its sequence number. We now describe the attack.

We run a session of the protocol, but we intercept the
last message and store it for later use. Note that the HN’s
session is not closed. At that point, the UE and the HN are
de-synchronized by one. We re-synchronize them by running
a full session of the protocol. We then re-iterate the steps
described above: we run a session of the protocol, prevent
the last message from arriving at the HN, and then run a
full session of the protocol to re-synchronize the HN and the
UE. Now the UE and the HN are synchronized, and we have
two stored messages, one for each uncompleted session. We
then send the two messages to the corresponding HN sessions,
which accept them and increment the sequence number. In the
end, it is incremented by two.

The problem is that the UE and the HN cannot recover
from a de-synchronization by two. We believe that this was
missed by the authors of [6]2. Remark that this attack is also
an unlinkability attack. To attack some user UEIMSI’s privacy,
we permanently de-synchronize it. Then each time UEIMSI tries
to run the PRIV-AKA protocol, it will abort, which allows the
adversary to track it.

Remark 1. Our attack requires that the HN does not close the
first session when we execute the second session. At the end
of the attack, before sending the two stored messages, there
are two HN sessions simultaneously opened for the same UE.
If the HN closes any un-finished sessions when starting a new
session with the same UE, our attack does not work.

But this make another unlinkability attack possible. Indeed,
closing a session because of some later session between the
HN and the same UE reveals a link between the two sessions.
We describe the attack. First, we start a session i between
a user UEA and the HN, but we intercept and store the last
message tA from the user. Then, we let the HN run a full
session with some user UEX. Finally, we complete the initial
session i by sending the stored message tA to the HN. Here,
we have two cases. If X = A, then the HN closed the first
session when it completed the second. Hence it rejects tA. If
X 6= A, then the first session is still opened, and it accepts tA.

Closing a session may leak information to the adversary.
Protocols which aim at providing unlinkability must explicit
when sessions can safely be closed. By default, we assume a
session stays open. In a real implementation, a timeout tied to
the session (and not the user identity) could be used to avoid
keeping sessions opened forever.

2“the two sequence numbers may become desynchronized by one step [...].
Further desynchronization is prevented [...]” (p. 266 [6])



E. Sequence Numbers and Unlinkability

We conjecture that it is not possible to achieve functionality
(i.e. honest sessions eventually succeed), authentication and
unlinkability at the same time when using a sequence number
based protocol with no random number generation capabilities
in the UE side. We briefly explain our intuition.

In any sequence number based protocol, the agents may
become de-synchronized because they cannot know if their
last message has been received. Furthermore, the attacker can
cause de-synchronization by blocking messages. The problem
is that we have contradictory requirements. On the one hand, to
ensure authentication, an agent must reject a replayed message.
On the other hand, in order to guarantee unlinkability, an
honest agent has to behave the same way when receiving a
message from a synchronized agent or from a de-synchronized
agent. Since functionality requires that a message from a
synchronized agent is accepted, it follows that a message
from a de-synchronized agent must be accepted. Intuitively,
it seems to us that an honest agent cannot distinguish between
a protocol message which is being replayed and an honest
protocol message from a de-synchronized agent. It follows
that a replayed message should be both rejected and accepted,
which is a contradiction.

This is only a conjecture. We do not have a formal state-
ment, or a proof. Actually, it is unclear how to formally
define the set of protocols that rely on sequence numbers to
achieve authentication. Note however that all requirements can
be satisfied simultaneously if we allow both parties to generate
random challenges in each session (in AKA, only HN uses a
random challenge). Examples of challenge based unlinkable
authentication protocols can be found in [25].

IV. THE AKA+ PROTOCOL

We now describe our principal contribution, which is the
design of the AKA+ protocol. This is a fixed version of the
5G-AKA protocol offering some form of privacy against an
active attacker. First, we explicit the efficiency and design
constraints. We then describe the AKA+ protocol, and explain
how we designed this protocol from 5G-AKA by fixing all
the previously described attacks. As we mentioned before, we
think unlinkability cannot be achieved under these constraints.
Nonetheless, our protocol satisfies some weaker notion of un-
linkability that we call σ-unlinkability. This is a new security
property that we introduce. Finally, we will show a subtle
attack, and explain how we fine-tuned AKA+ to prevent it.

A. Efficiency and Design Constraints

We now explicit the protocol design constraints. These
constraints are necessary for an efficient, in-expensive to
implement and backward compatible protocol. Observe that,
in a mobile setting, it is very important to avoid expensive
computations as they quickly drain the UE’s battery.

a) Communication Complexity: In 5G-AKA, authentica-
tion is achieved using only three messages: two messages are
sent by the UE, and one by the HN. We want our protocol
to have a similar communication complexity. While we did

not manage to use only three messages in all scenarios, our
protocol achieves authentication in less than four messages.

b) Cryptographic primitives: We recall that all crypto-
graphic primitives are computed in the USIM, where they
are implemented in hardware. It follows that using more
primitives in the UE would make the USIM more voluminous
and expensive. Hence we restrict AKA+ to the cryptographic
primitives used in 5G-AKA: we use only symmetric keyed
one-way functions and asymmetric encryption. Notice that
the USIM cannot do asymmetric decryption. As in 5G-AKA,
we use some in-expensive functions, e.g. xor, pairs, by-one
increments and boolean tests. We believe that relying on
the same cryptographic primitives helps ensuring backward
compatibility, and would simplify the protocol deployment.

c) Random Number Generation: In 5G-AKA, the UE
generates at most one nonce per session, which is used to
randomize the asymmetric encryption. Moreover, if the UE
was assigned a GUTI in the previous session then there is no
random number generation. Remark that when the UE and the
HN are de-synchronized, the authentication fails and the UE
sends a re-synchronization message. Since the session fails, no
fresh GUTI is assigned to the UE. Hence, the next session of
the protocol has to conceal the SUPI using {SUPI}ne

pkN
, which

requires a random number generation. Therefore, we constrain
our protocol to use at most one random number generation by
the UE per session, and only if no GUTI has been assigned or
if the UE and the HN have been de-synchronized.

d) Summary: We summarize the constraints for AKA+:
• It must use at most four messages per sessions.
• The UE may use only keyed one-way functions and

asymmetric encryption. The HN may use these functions,
plus asymmetric decryption.

• The UE may generate at most one random number per
session, and only if no GUTI is available, or if re-
synchronization with the HN is necessary.

B. Key Ideas

In this section, we present the two key ideas used in the
design of the AKA+ protocol.

a) Postponed Re-Synchronization Message: We recall
that whenever the UE and the HN are de-synchronized, the au-
thentication fails and the UE sends a re-synchronization mes-
sage. The problem is that this message can be distinguished
from a mac failure message, which allows the attack presented
in Section III-B. Since the session fails, no GUTI is assigned
to the UE, and the next session will use the asymmetric
encryption to conceal the SUPI. The first key idea is to piggy-
back on the randomized encryption of the next session to send
a concealed re-synchronization message. More precisely, we
replace the message {SUPI}ne

pkN
by {〈SUPI , SQNU〉}ne

pkN
. This

has several advantages:
• We can remove the re-synchronization message that lead

to the unlinkability attack presented in Section III-B. In
AKA+, whenever the mac check or the range check fails,
the same failure message is sent.
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• This does not require more random number generation
by the UE, since a random number is already being
generated to conceal the SUPI in the next session.

The 3GPP technical specification (see [1], Annex C) requires
that the asymmetric encryption used in the 5G-AKA protocol
is the ECIES encryption scheme, which is an hybrid encryp-
tion scheme. Hybrid encryption schemes use a randomized
asymmetric encryption to conceal a temporary key. This
key is then used to encrypt the message using a symmetric
encryption, which is in-expensive. Hence encrypting the pair
〈SUPI , SQNU〉 is almost as fast as encrypting only SUPI, and
requires the UE to generate the same amount of randomness.

b) HN Challenge Before Identification: To prevent the
Encrypted IMSI Replay Attack of Section III-C, we add a
random challenge n from the HN. The UE initiates the protocol
by requesting a challenge without identifying itself. When
requested, the HN generates and sends a fresh challenge n to
the UE, which includes it in its response by mac-ing it with
the SUPI using a symmetric one-way function Mac1 with key
kID

m . The UE response is now:〈
{〈SUPI , SQNU〉}ne

pkN
, Mac1kID

m
(〈{〈SUPI , SQNU〉}ne

pkN
, n〉)

〉
This challenge is only needed when the encrypted permanent
identity is used. If the UE uses a temporary identity GUTI, then
we do not need to use a random challenge. Indeed, temporary
identities can only be used once before being discarded, and
are therefore not subject to replay attacks. By consequence we
split the protocol in two sub-protocols:

• The SUPI sub-protocol uses a random challenge from the
HN, encrypts the permanent identity and allows to re-
synchronize the UE and the HN.

• The GUTI sub-protocol is initiated by the UE using a
temporary identity.

In the SUPI sub-protocol, the UE’s answer includes the chal-
lenge. We use this to save one message: the last confirmation
step from the UE is not needed, and is removed. The resulting
sub-protocol has four messages. Observe that the GUTI sub-
protocol is faster, since it uses only three messages.

C. Architecture and States

Instead of a monolithic protocol, we have three sub-
protocols: the SUPI and GUTI sub-protocols, which handle
authentication; and the ASSIGN-GUTI sub-protocol, which is
run after authentication has been achieved and assigns a
fresh temporary identity to the UE. A full session of the

AKA+ protocol comprises a session of the SUPI or GUTI sub-
protocols, followed by a session of the ASSIGN-GUTI sub-
protocol. This is graphically depicted in Fig. 5.

Since the GUTI sub-protocol uses only three messages and
does not require the UE to generate a random number or
compute an asymmetric encryption, it is faster than the SUPI
sub-protocol. By consequence, the UE should always use the
GUTI sub-protocol if it has a temporary identity available.

The HN runs concurrently an arbitrary number of sessions,
but a subscriber cannot run more than one session at the
same time. Of course, sessions from different subscribers may
be concurrently running. We associate a unique integer, the
session number, to every session, and we use HN(j) and
UEID(j) to refer to the j-th session of, respectively, the HN
and the UE with identity ID.

a) One-Way Functions: We separate functions that are
used only for confidentiality from functions that are also used
for integrity. We have two confidentiality functions f and f r,
which use the key k, and five integrity functions Mac1– Mac5,
which use the key km. We require that f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

This is a new assumption, which requires that these func-
tions are simultaneously computationally indistinguishable
from random functions.

Definition 1 (Jointly PRF Functions). Let H1(·, ·), . . . ,Hn(·, ·)
be a finite family of keyed hash functions from {0, 1}∗×{0, 1}η
to {0, 1}η . The functions H1, . . . ,Hn are Jointly Pseudo
Random Functions if, for any PPTM adversary A with access
to oracles Of1 , . . . ,Ofn :

|Pr(k : AOH1(·,k),...,OHn(·,k)(1η) = 1)−
Pr(g1, . . . , gn : AOg1(·),...,Ogn(·)(1η) = 1)|

is negligible, where:
• k is drawn uniformly in {0, 1}η .
• g1, . . . , gn are drawn uniformly in the set of all functions

from {0, 1}∗ to {0, 1}η .

Observe that if H1, . . . ,Hn are jointly PRF then, in partic-
ular, every individual Hi is a PRF.

Remark 2. While this is a non-usual assumption, it is simple
to build a set of functions H1, . . . ,Hn which are jointly
PRF from a single PRF H . For example, let tag1, . . . , tagn
be non-ambiguous tags, and let Hi(m, k) = H(tagi(m), k).
Then, H1, . . . ,Hn are jointly PRF whenever H is a PRF (see
Appendix I-B).

b) UE Persistent State: Each UEID with identity ID has
a state stateID

U persistent across sessions. It contains the fol-
lowing immutable values: the permanent identity SUPI = ID,
the confidentiality key kID, the integrity key kID

m and the HN’s
public key pkN. The states also contain mutable values: the
sequence number SQNU, the temporary identity GUTIU and the
boolean valid-gutiU. We have valid-gutiU = false whenever no
valid temporary identity is assigned to the UE. Finally, there
are mutable values that are not persistent across sessions. E.g.
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Input nR: b-authU ← nR〈
{〈SUPI , SQNU〉}
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pkN

, Mac1kID
m
(〈{〈SUPI , SQNU〉}

ne
pkN

, nR〉)
〉

SQNU ← SQNU + 1 Input y:
〈IDR , SQNR〉 ← dec(π1(y), skN)

bID
Mac ← π2(y) = Mac1kID

m
(〈π1(y) , nj〉)

∧ IDR = ID

bID
Inc ← bID

Mac ∧ SQNR ≥ SQNID
N

if bID
Mac then b-authjN, e-authjN ← ID

if bID
Inc then SQNID

N ← SQNR + 1

sessionID
N ← nj

GUTIID
N ← GUTIj

Mac2kID
m
(〈nj , SQNR + 1〉)

bMac

Input z:
bok ← z = Mac2kID

m
(〈b-authU , SQNU〉)

e-authU ← if bok then b-authU else fail

Fig. 6. The SUPI Sub-Protocol of the AKA+ Protocol

b-authU stores HN’s random challenge, and e-authU stores
HN’s random challenge when the authentication is successful.

c) HN Persistent State: The HN state stateN contains the
secret key skN corresponding to the public key pkN. Also, for
every subscriber with identity ID, it stores the keys kID and
kID

m , the permanent identity SUPI = ID, the HN version of the
sequence number SQNID

N and the temporary identity GUTIID
N . It

stores in sessionID
N the random challenge of the last session

that was either a successful SUPI session which modified
the sequence number, or a GUTI session which authenticated
ID. This is used to detect and prevent some subtle attacks,
which we present later. Finally, every session HN(j) stores in
b-authjN the identity claimed by the UE, and in e-authjN the
identity of the UE it authenticated.

D. The SUPI, GUTI and ASSIGN-GUTI Sub-Protocols

We describe honest executions of the three sub-protocols
of the AKA+ protocol. An honest execution is an execution
where the adversary dutifully forwards the messages without
tampering. Each execution is between a UE and HN(j).

a) The SUPI Sub-Protocol: This protocol uses the UE’s
permanent identity, re-synchronizes the UE and the HN and is
expensive to run. The protocol is sketched in Fig. 6.

The UE initiates the protocol by requesting a challenge
from the network. When asked, HN(j) sends a fresh random
challenge nj . After receiving nj , the UE stores it in b-authU,

and answers with the encryption of its permanent identity
together with the current value of its sequence number, using
the HN public key pkN. It also includes the mac of this
encryption and of the challenge, which yields the message:〈
{〈SUPI , SQNU〉}ne

pkN
, Mac1kID

m
(〈{〈SUPI , SQNU〉}ne

pkN
, nj〉)

〉
Then the UE increments its sequence number by one. When
it gets this message, the HN retrieves the pair 〈SUPI , SQNU〉
by decrypting the encryption using its secret key skN. For
every identity ID, it checks if SUPI = ID and if the mac is
correct. If this is the case, HN authenticated ID, and it stores
ID in b-authjN and e-authjN. After having authenticated ID,
HN checks whether the sequence number SQNU it received is
greater than or equal to SQNID

N . If this holds, it sets SQNID
N to

SQNU +1, stores nj in sessionID
N , generates a fresh temporary

identity GUTIj and stores it into GUTIID
N . This additional check

ensures that the HN sequence number is always increasing,
which is a crucial property of the protocol.

If the HN authenticated ID, it sends a confirmation message
Mac2kID

m
(〈nj , SQNU +1〉) to the UE. This message is sent even

if the received sequence number SQNU is smaller than SQNID
N .

When receiving the confirmation message, if the mac is valid
then the UE authenticated the HN, and it stores in e-authU

the initial random challenge (which it keeps in b-authU). If
the mac test fails, it stores in e-authU the special value fail.

b) The GUTI Sub-Protocol: This protocol uses the UE’s
temporary identity, requires synchronization to succeed and is
inexpensive. The protocol is sketched in Fig. 7.

When valid-gutiU is true, the UE can initiate the protocol
by sending its temporary identity GUTIU. The UE then sets
valid-gutiU to false to guarantee that this temporary identity
is not used again. When receiving a temporary identity x, HN
looks if there is an ID such that GUTIID

N is equal to x and is
not UnSet. If the temporary identity belongs to ID, it sets
GUTIID

N to UnSet and stores ID in b-authjN. Then it generates
a random challenge nj , stores it in sessionID

N , and sends it to
the UE, together with the xor of the sequence number SQNID

N

with fkID (nj), and a mac:〈
nj , SQNID

N ⊕ fkID (nj) , Mac3kID
m

(〈nj , SQNID
N , GUTIID

N 〉)
〉

When it receives this message, the UE retrieves the challenge
nj at the beginning of the message, computes fkID (nj) and uses
this value to unconceal the sequence number SQNID

N . It then
computes Mac3kID

m
(〈nj , SQNID

N , GUTIU〉) and compares it to the
mac received from the network. If the macs are not equal, or
if the range check range(SQNU, SQNID

N ) fails, it puts fail into
b-authU and e-authU to record that the authentication was
not successful. If both tests succeed, it stores in b-authU and
e-authU the random challenge, increments SQNU by one and
sends the confirmation message Mac4kID

m
(nj). When receiving

this message, the HN verifies that the mac is correct. If this is
the case then the HN authenticated the UE, and stores ID into
e-authID

N . Then, HN checks whether sessionID
N is still equal

to the challenge nj stored in it at the beginning of the session.
If this is true, the HN increments SQNID

N by one, generates a
fresh temporary identity GUTIj and stores it into GUTIID

N .
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bID ← GUTIID

N = x ∧ GUTIID
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b-authjN ← ID
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m
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N , GUTIID
N 〉)
〉 bID

Input y:
nR, SQNR ← π1(y), π2(y)⊕ fkID (nR)

bacc ← π3(y) = Mac3kID
m
(〈nR , SQNR , GUTIU〉))

∧ range(SQNU, SQNR)

if bacc then b-authU, e-authU ← nR
SQNU ← SQNU + 1

if ¬bacc then b-authU, e-authU ← fail

Mac4kID
m
(nR)

bacc

Input z:

bID
Mac ← (b-authjN = ID) ∧ (z = Mac4kID

m
(nj))

bID
Inc ← bID

Mac ∧ sessionID
N = nj

if bID
Mac then e-authjN ← ID

if bID
Inc then SQNID

N ← SQNID
N + 1

GUTIID
N ← GUTIj

Fig. 7. The GUTI Sub-Protocol of the AKA+ Protocol

c) The ASSIGN-GUTI Sub-Protocol: The ASSIGN-GUTI
sub-protocol is run after a successful authentication, regardless
of the authentication sub-protocol used. It assigns a fresh
temporary identity to the UE to allow the next AKA+ session
to run the faster GUTI sub-protocol. It is depicted in Fig. 8.

The HN conceals the temporary identity GUTIj generated
by the authentication sub-protocol by xoring it with f r

kID (nj),
and macs it. When receiving this message, UE unconceals the
temporary identity GUTIID

N by xoring its first component with
f r
kID

m
(e-authU) (since e-authU contains the HN’s challenge after

authentication). Then UE checks that the mac is correct and
that the authentication was successful. If it is the case, it stores
GUTIID

N in GUTIU and sets valid-gutiU to true.

V. UNLINKABILITY

We now define the unlinkability property we use, which is
inspired from [22] and Vaudenay’s privacy [23].

a) Definition: The property is defined by a game in
which an adversary tries to link together some subscriber’s ses-

UE

stateID
U

HN(j)

stateN

〈GUTIj ⊕ f r
kID (nj) , Mac5kID

m
(
〈

GUTIj , nj
〉
)〉

e-authID
N = ID

Input x:
GUTIR ← π1(x)⊕ f r

kID
m
(e-authU)

bacc ←
(
π2(x) = Mac5kID

m
(〈GUTIR , e-authU〉)

)
∧ (e-authU 6= fail)

GUTIU ← if bacc then GUTIR else UnSet
valid-gutiU ← bacc

Fig. 8. The ASSIGN-GUTI Sub-Protocol of the AKA+ Protocol

sions. The adversary is a PPTM which interacts, through ora-
cles, with N different subscribers with identities ID1, . . . , IDN ,
and with the HN. The adversary cannot use a subscriber’s
permanent identity to refer to it, as it may not know it. Instead,
we associate a virtual handler vh to any subscriber currently
running a session of the protocol. We maintain a list lfree of all
subscribers that are ready to start a session. We now describe
the oracles Ob:
• StartSession(): starts a new HN session and returns

its session number j.
• SendHN(m, j) (resp. SendUE(m, vh)): sends the mes-

sage m to HN(j) (resp. the UE associated with vh), and
returns HN(j) (resp. vh) answer.

• ResultHN(j) (resp. ResultUE(vh)): returns true if
HN(j) (resp. the UE associated with vh) has made a
successful authentication.

• DrawUE(IDi0 , IDi1): checks that IDi0 and IDi1 are both
in lfree. If that is the case, returns a new virtual handler
pointing to IDib , depending on an internal secret bit b.
Then, it removes IDi0 and IDi1 from lfree.

• FreeUE(vh): makes the virtual handler vh no longer
valid, and adds back to lfree the two identities that were
removed when the virtual handler was created.

We recall that a function is negligible if and only if it is
asymptotically smaller than the inverse of any polynomial. An
adversary A interacting with Ob is winning the q-unlinkability
game if: A makes less than q calls to the oracles; and it
can guess the value of the internal bit b with a probability
better than 1/2 by a non-negligible margin, i.e. if the following
quantity is non negligible in η:∣∣2×Pr

(
b : AOb(1η) = b

)
− 1
∣∣

Finally, a protocol is q-unlinkable if and only if there are no
winning adversaries against the q-unlinkability game.

b) Corruption: In [22], [23], the adversary is allowed to
corrupt some tags using a Corrupt oracle. Several classes of
adversary are defined by restricting its access to the corruption
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oracle. A strong adversary has unrestricted access, a destruc-
tive adversary can no longer use a tag after corrupting it (it is
destroyed), a forward adversary can only follow a Corrupt
call by further Corrupt calls, and finally a weak adversary
cannot use Corrupt at all. A protocol is C unlinkable if no
adversary in C can win the unlinkability game. Clearly, we
have the following relations:

strong ⇒ destructive ⇒ forward ⇒ weak

The 5G-AKA protocol does not provide forward secrecy:
indeed, obtaining the long-term secret of a UE allows to
decrypt all its past messages. By consequence, the best we can
hope for is weak unlinkability. Since such adversaries cannot
call Corrupt, we removed the oracle from our definition.

c) Wide Adversary: Note that the adversary knows if
the protocol was successful or not using the ResultUE
and ResultHN oracles (such an adversary is called wide in
Vaudenay’s terminology [23]). Indeed, in an authenticated key
agreement protocol, this information is always available to the
adversary: if the key exchange succeeds then it is followed by
another protocol using the newly established key; while if it
fails then either a new key-exchange session is initiated, or
no message is sent. Hence the adversary knows if the key
exchange was successful by passive monitoring.

A. σ-Unlinkability

In accord with our conjecture in Section III-E, the AKA+

protocol is not unlinkable. Indeed, an adversary A can
easily win the linkability game. First, A ensures that IDA
and IDB have a valid temporary identity assigned: A calls
DrawUE(IDA, IDA) to obtain a virtual handler for IDA, and
runs a SUPI and ASSIGN-GUTI sessions between IDA and the
HN with no interruptions. This assigns a temporary identity to
IDA. We use the same procedure for IDB.

Then, A executes the attack described in Fig. 9. It starts
a GUTI session with IDA, and intercepts the last message. At
that point, IDA no longer has a temporary identity, while IDB
still does. Then, it calls DrawUE(IDA, IDB), which returns a
virtual handler vh to IDA or IDB. The attacker then start a

A

A

B

B

A

A

B

C

B

C

B

C

∼

Fig. 10. Two indistinguishable executions. Square (resp. round) nodes are
executions of the SUPI (resp. GUTI) sub-protocol. Each time the SUPI sub-
protocol is used, we can change the subscriber’s identity.

new GUTI session with vh. If vh is a handler for IDA, the
UE returns NoGuti. If vh aliases IDB, the UE returns the
temporary identity GUTIA. The adversary A can distinguish
between these two cases, and therefore wins the game.

a) σ-unlinkability: To prevent this, we want to forbid
DrawUE to be called on de-synchronized subscribers. We do
this by modifying the state of the user chosen by DrawUE.
We let σ be an update on the state of the subscribers. We
then define the oracle DrawUEσ(IDi0 , IDi1): it checks that
IDA and IDB are both free, then applies the update σ to
IDib ’s state, and returns a new virtual handler pointing to
IDib . The (q, σ)-unlinkability game is the q-unlinkability game
in which we replace DrawUE with DrawUEσ . A protocol is
(q, σ)-unlinkable if and only if there is no winning adversary
against the (q, σ)-unlinkability game. Finally, a protocol is σ-
unlinkable if it is (q, σ)-unlinkable for any q.

b) Application to AKA+: The privacy guarantees given
by the σ-unlinkability depend on the choice of σ. The idea is
to choose a σ that allows to establish privacy in some scenarios
of the standard unlinkability game3.

We illustrate this on the AKA+ protocol. Let σul =
valid-gutiU 7→ false be the function that makes the UE’s
temporary identity not valid. This simulates the fact that the
GUTI has been used and is no longer available. If the UE’s
temporary identity is not valid, then it can only run the SUPI
sub-protocol. Hence, if the AKA+ protocol is σul-unlinkable,
then no adversary can distinguish between a normal execution
and an execution where we change the identity of a subscriber
each time it runs the SUPI sub-protocol. We give in Fig. 10 an
example of such a scenario. We now state our main result:

Theorem 1. The AKA+ protocol is σul-unlinkable for an
arbitrary number of agents and sessions when the asymmetric
encryption {_}_

_ is IND-CCA1 secure and f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

This result is shown later in the paper. Still, the intuition
is that no adversary can distinguish between two sessions
of the SUPI protocol. Moreover, the SUPI protocol has two
important properties. First, it re-synchronizes the user with
the HN, which prevents the attacker from using any prior de-
synchronization. Second, the AKA+ protocol is designed in
such a way that no message sent by the UE before a successful
SUPI session can modify the HN’s state after the SUPI session.

3Remark that when σ is the empty state update, the σ-unlinkability and
unlinkability properties coincide.
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Therefore, any time the SUPI protocol is run, we get a “clean
slate” and we can change the subscriber’s identity. Note that
we have a trade-off between efficiency and privacy: the SUPI
protocol is more expensive to run, but provides more privacy.

B. A Subtle Attack

We now explain what is the role of sessionID
N , and how it

prevents a subtle attack against the σul-unlinkability of AKA+.
We let AKA+

no-inc be the AKA+ protocol where we modify the
GUTI sub-protocol we described in Fig. 7: in the state update
of the HN’s last input, we remove the check sessionID

N = nj

(i.e. bID
Inc = bID

Mac). The attack is described in Fig. 11.
First, we run a session of the GUTI sub-protocol between

UEIDA and the HN, but we do not forward the last message tauth
to the HN. We then call DrawUEσul(IDA, IDB), which returns
a virtual handler vh to IDA or IDB. We run a full session using
the SUPI sub-protocol with vh, and then send the message
tauth to the HN. We can check that, because we removed the
condition sessionID

N = nj from bID
Inc, this message causes the

HN to increment SQNIDA
N by one. At that point, UEIDA is de-

synchronized but UEIDB is synchronized. Finally, we run a
session of the GUTI sub-protocol. The session has two possible
outcomes: if vh aliases to A then it fails, while if vh aliases
to B, it succeeds. This leads to an attack.

When we removed the condition sessionID
N = nj , we broke

the “clean slate” property of the SUPI sub-protocol: we can
use a message from a session that started before the SUPI
session to modify the state after the SUPI session. sessionID

N

allows to detect whether another session has been executed
since the current session started, and to prevent the update of
the sequence number when this is the case.

VI. MODELING IN THE BANA-COMON LOGIC

We prove Theorem 1 using the Bana-Comon model intro-
duced in [18]. This is a first order logic, in which protocol
messages are represented by terms using special function
symbols for the adversary’s inputs. It has only one predicate,
∼, which represents computational indistinguishability. To use
this model, we first build a set of axioms Ax specifying

what the adversary cannot do. This set of axiom comprises
computationally valid properties, cryptographic hypotheses
and implementation assumptions. Then, given a protocol and
a security property, we compute a formula φ expressing the
protocol security. Finally, we show that the security property
φ can be deduced from the axioms Ax. If this is the case, this
entails computational security.

A. Syntax and Semantics

We quickly recall the syntax and semantics of the logic.
a) Terms: Terms are built using function symbols in F ,

names in N (representing random samplings) and variables
in X . The set F of function symbols contains a countable
set of adversarial function symbols G, which represent the
adversary inputs, and protocol function symbols. The protocol
function symbols are the functions used in the protocol, e.g.
the pair 〈_ , _〉, the i-th projection πi, encryption {_}_

_, decryp-
tion dec(_, _), if_then_else_, true, false, equality eq(_, _),
integer greater or equal geq(_, _) and length len(_).

b) Formulas: For every integer n, we have one predicate
symbol ∼n of arity 2n, which represents equivalence between
two vectors of terms of length n. We use an infix notation for
∼n, and omit n when not relevant. Formulas are built using
the usual Boolean connectives and first-order quantifiers.

c) Semantics: We use the classical semantics of first-
order logic. Given an interpretation domain, we interpret
terms, function symbols and predicates as, respectively, ele-
ments, functions and relations of this domain.

We focus on a particular class of models, called the compu-
tational models (see [18] for a formal definition). In a compu-
tational modelMc, terms are interpreted in the set of PPTMs
equipped with a working tape and two random tapes ρ1, ρ2.
The tape ρ1 is used for the protocol random values, while ρ2
is for the adversary’s random samplings. The adversary cannot
access directly the random tape ρ1, although it may obtain part
of ρ1 through the protocol messages. A key feature is to let the
interpretation of an adversarial function g be any PPTM, which
soundly models an attacker arbitrary probabilistic polynomial
time computation. Moreover, the predicates ∼n are interpreted
using computational indistinguishability ≈. Two families of
distributions of bit-string sequences (mη)η and (m′η)η , in-
dexed by η, are indistinguishable iff for every PPTM A with
random tape ρ2, the following quantity is negligible in η:∣∣Pr(ρ1, ρ2 : A(mη(ρ1, ρ2), ρ2) = 1) −

Pr(ρ1, ρ2 : A(m′η(ρ1, ρ2), ρ2) = 1)
∣∣

B. Modeling of the AKA+ Protocol States and Messages

We now use the Bana-Comon logic to model the σul-
unlinkability of the AKA+ protocol. We consider a setting with
N identities ID1, . . . , IDN , and we let Sid be the set of all
identities. To improve readability, protocol descriptions often
omit some details. For example, in Section IV we sometimes
omitted the description of the error messages. The failure
message attack of [4] demonstrates that such details may be
crucial for security. An advantage of the Bana-Comon model



is that it requires us to fully formalize the protocol, and to
make all assumptions explicit.

a) Symbolic State: For every identity ID ∈ Sid, we
use several variables to represent UEID’s state. E.g., SQNID

U

and GUTIID
U store, respectively, UEID’s sequence number and

temporary identity. Similarly, we have variables for HN’s state,
e.g. SQNID

N . We let Svar be the set of variables used in AKA+:

⋃
j∈N,A∈{U,N}

ID∈Sid

{
SQNID

A , GUTIID
A , e-authID

U , b-authID
U , e-authjN

b-authjN, s-valid-gutiID
U , valid-gutiID

U , sessionID
N

}

A symbolic state σ is a mapping from Svar to terms. Intuitively,
σ(x) is a term representing (the distribution of) the value of x.

Example 1. To avoid confusion with the semantic equality =,
we use ≡ to denote syntactic equality. Then, we can express
the fact that GUTIID

U is unset in a symbolic state σ by having
σ(GUTIID

U ) ≡ UnSet. Also, given a state σ, we can state that σ′

is the state σ in which we incremented SQNID
U by having σ′(x)

be the term σ(SQNID
U ) + 1 if x is SQNID

U , and σ(x) otherwise.

b) Symbolic Traces: We explain how to express (q, σul)-
unlinkability in the BC model. In the (q, σul)-unlinkability
game, the adversary chooses dynamically which oracle it
wants to call. This is not convenient to use in proofs, as we do
not know statically the i-th action of the adversary. We prefer
an alternative point-of-view, in which the trace of oracle calls
is fixed (w.l.o.g., as shown later in Proposition 1). Then, there
are no winning adversaries against the σul-unlinkability game
with a fixed trace of oracle calls if the adversary’s interactions
with the oracles when b = 0 are indistinguishable from the
interactions with the oracles when b = 1.

We use the following action identifiers to represent symbolic
calls to the oracle of the (q, σul)-unlinkability game:

• NSID(j) represents a call to DrawUEσul(ID, _) when b = 0
or DrawUEσul(_, ID) when b = 1.

• PUID(j, i) (resp. TUID(j, i)) is the i-th user message in the
session UEID(j) of the SUPI (resp. GUTI) sub-protocol.

• FUID(j) is the only user message in the session UEID(j)
of the ASSIGN-GUTI sub-protocol.

• PN(j, i) (resp. TN(j, i)) is the i-th network message in
the session HN(j) of the SUPI (resp. GUTI) sub-protocol.

• FN(j) is the only network message in the session HN(j)
of the ASSIGN-GUTI sub-protocol.

The remaining oracle calls either have no outputs and do not
modify the state (e.g. StartSession), or can be simulated
using the oracles above. E.g., since the HN sends an error
message whenever the protocol is not successful, the output
of ResultHN can be deduced from the protocol messages.

A symbolic trace τ is a finite sequence of action identifiers.
We associate, to any execution of the (q, σul)-unlinkability
game with a fixed trace of oracle calls, a pair of symbolic
traces (τl, τr), which corresponds to the adversary’s interac-
tions with the oracles when b is, respectively, 0 and 1. We let
Rul be the set of such pairs of traces.

Example 2. We give the symbolic traces corresponding to the
honest execution of AKA+ between UEID(i) and HN(j). If the
SUPI protocol is used, we have the trace τ i,jSUPI(ID):

PUID(i, 0), PN(j, 0), PUID(i, 1), PN(j, 1), PUID(i, 2), FN(j), FUID(i)

And if the GUTI sub-protocol is used, the trace τ i,jGUTI(ID):

TUID(i, 0), TN(j, 0), TUID(i, 1), TN(j, 1), FN(j), FUID(i)

Which such notations, the left trace τl of the attack described
in Fig. 11, in which the adversary only interacts with A, is:

TUA(0, 0), TN(0, 0), TUA(0, 1), τ
1,1
SUPI(A), TN(0, 1), τ2,2GUTI(A)

Similarly, we can give the right trace τr in which the adversary
interacts with A and B:

TUA(0, 0), TN(0, 0), TUA(0, 1), τ
0,1
SUPI(B), TN(0, 1), τ1,2GUTI(B)

c) Symbolic Messages: We define, for every action iden-
tifier ai, the term representing the output observed by the
adversary when ai is executed. Since the protocol is stateful,
this term is a function of the prefix trace of actions executed
since the beginning. We define by mutual induction, for any
symbolic trace τ = τ0,ai whose last action is ai:
• The term tτ representing the last message observed

during the execution of τ .
• The symbolic state στ representing the state after the

execution of τ .
• The frame φτ representing the sequence of all messages

observed during the execution of τ .
Some syntactic sugar: we let σin

τ = στ0 be the symbolic state
before the execution of the last action; and φin

τ = φτ0 be the
sequence of all messages observed during the execution of τ ,
except for the last message.

The frame φτ is simply the frame φin
τ extended with tτ , i.e.

φτ ≡ φin
τ , tτ . Moreover the initial frame contains only pkN,

i.e. φε ≡ pkN. When executing an action ai, only a subset of
the symbolic state is modified. For example, if the adversary
interacts with UEID then the state of the HN and of all the
other users is unchanged. Therefore instead of defining στ ,
we define the symbolic state update σup

τ , which is a partial
function from Svar to terms. Then στ is the function:

στ (x) ≡

{
σin
τ (x) if x 6∈ dom(σup

τ )

σup
τ (x) if x ∈ dom(σup

τ )

where dom gives the domain of a function. Now, for every
action ai, we define tτ and σup

τ using φin
τ and σin

τ . As an
example, we describe the second message and state update
of the session UEID(j) for the SUPI sub-protocol, which
corresponds to the action PUID(j, 1). We recall the relevant
part of Fig. 6:

UE

Input nR: b-authU ← nR〈
{〈ID , SQNU〉}

ne
pkN

, Mac1km
(〈{〈ID , SQNU〉}

ne
pkN

, nR〉)
〉

SQNU ← SQNU + 1



First, we need a term representing the value inputted by UEID

from the network. As we have an active adversary, this value
can be anything that the adversary can compute using the
knowledge it accumulated since the beginning of the protocol.
The knowledge of the adversary, or the frame, is the sequence
of all messages observed during the execution of τ , except for
the last message. This is exactly φin

τ . Finally, we use a special
function symbol g ∈ G to represent the arbitrary polynomial
time computation done by the adversary. This yields the term
g(φin

τ ), which symbolically represents the input.
We now need to build a term representing the asymmetric

encryption of the pair containing the UE’s permanent identity
ID and its sequence number. The permanent identity ID is
simply represented using a constant function symbol ID (we
omit the parenthesis ()). UEID’s sequence number is stored in
the variable SQNID

U . To retrieve its value, we just do a look-up
in the symbolic state σin

τ , which yields σin
τ (SQNID

U ). Finally, we
use the asymmetric encryption function symbol to build the
term tenc

τ ≡ {〈ID , σin
τ (SQNID

U )〉}nje
pkN

. Notice that the encryption
is randomized using a nonce nje, and that the freshness of
the randomness is guaranteed by indexing the nonce with the
session number j. Finally, we can give tτ and σup

τ :

tτ ≡
〈
tenc
τ , Mac1

kID
m
(〈tenc

τ , g(φin
τ )〉)

〉
σup
τ ≡

 SQNID
U 7→ suc(σin

τ (SQNID
U )) e-authID

U 7→ fail
b-authID

U 7→ g(φin
τ ) GUTIID

U 7→ UnSet
valid-gutiID

U 7→ false

Remark that we omitted some state updates in the description
of the protocol in Fig. 6. For example, UEID temporary identity
GUTIID

U is reset when starting the SUPI sub-protocol. In the BC
model, these details are made explicit.

The description of tτ and σup
τ for the other actions can

be found in Fig. 12 and Fig. 13. Observe that we describe
one more message for the SUPI and GUTI protocols than in
Section IV . This is because we add one message (PUID(j, 2)
for SUPI and TN(j, 1) for GUTI) for proof purposes, to simulate
the ResultUE and ResultHN oracles. Also, notice that
in the GUTI protocol, when HN receives a GUTI that is not
assigned to anybody, it sends a decoy message to a special
dummy identity IDdum.

The following soundness theorem states that security in the
BC model implies computationally security:

Proposition 1. The AKA+ protocol is σul-unlinkable in any
computational model satisfying the axioms Ax if, for every
(τl, τr) ∈ Rul, we can derive φτl ∼ φτr using Ax.

The proof of this result is basically the proof that Fixed
Trace Privacy implies Bounded Session Privacy in [26]. We
omit the details.

C. Axioms

Using Proposition 1, we know that to prove Theorem 1 we
need to derive φτl ∼ φτr , for every (τl, τr) ∈ Rul, using a
set of inference rules Ax. Moreover, we need the axioms Ax
to be valid in any computational model where the asymmetric
encryption {_}_

_ is IND-CCA1 secure and f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

Case ai = PUID(j, 0). tτ ≡ Request_Challenge

Case ai = PN(j, 0). tτ ≡ nj

Case ai = PUID(j, 1). Let tenc
τ ≡ {〈ID , σin

τ (SQNID
U )〉}nje

pkN
, then:

tτ ≡
〈
tenc
τ , Mac1kID

m
(〈tenc
τ , g(φin

τ )〉)
〉

σup
τ ≡

 SQNID
U 7→ suc(σin

τ (SQNID
U )) e-authID

U 7→ fail
b-authID

U 7→ g(φin
τ ) GUTIID

U 7→ UnSet
valid-gutiID

U 7→ false

Case ai = PN(j, 1). Let tdec ≡ dec(π1(g(φin
τ )), skN), and let:

acceptIDi
τ ≡ eq(π2(g(φin

τ )),Mac1
kIDi

m
(〈π1(g(φin

τ )) , nj〉))

∧ eq(π1(tdec), IDi)

inc-acceptIDi
τ ≡ acceptIDi

τ ∧ geq(π2(tdec), σ
in
τ (SQN

IDi
N ))

tτ ≡ if acceptID1
τ then Mac2

kID1
m

(〈nj , suc(π2(tdec))〉)

else if acceptID2
τ then Mac2

kID2
m

(〈nj , suc(π2(tdec))〉)
· · ·

else UnknownId

σup
τ ≡



sessionIDi
N 7→ if inc-acceptIDi

τ then nj else σin
τ (sessionIDi

N )

GUTI
IDi
N 7→ if inc-acceptID

τ then GUTIj else σin
τ (GUTI

IDi
N )

SQN
IDi
N 7→ if inc-acceptIDi

τ then suc(π2(tdec)) else σin
τ (SQN

IDi
N )

b-authjN, e-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = PUID(j, 2).

acceptID
τ ≡ eq(g(φin

τ ),Mac2kID
m
(〈σin

τ (b-authID
U ) , σin

τ (SQNID
U )〉))

tτ ≡ if acceptID
τ then ok else error

σup
τ ≡ e-authID

U 7→ if acceptID
τ then σin

τ (b-authID
U ) else fail

Fig. 12. The Symbolic Terms and State Updates for the SUPI Sub-Protocol.

Remark that the AKA+ protocol described in Section IV
is under-specified. E.g., we never specified how the 〈_ , _〉
function should be implemented. Instead of giving a complex
specification of the protocol, we are going to put requirements
on AKA+ implementations through the set of axioms Ax. Then,
if we can derive φτl ∼ φτr using Ax for every (τl, τr) ∈
Rul, we know that any implementation of AKA+ satisfying
the axioms Ax is secure.

Our axioms are of two kinds. First, we have structural ax-
ioms, which are properties that are valid in any computational
model. For example, we have axioms stating that ∼ is an
equivalence relation. Second, we have implementation axioms,
which reflect implementation assumptions on the protocol
functions. For example, we can declare that different identity
symbols are never equal by having an axiom eq(ID1, ID2) ∼
false for every ID1 6≡ ID2. For space reasons, we only describe
a few of them here (the full set of axioms Ax is given in
Appendix I).

a) Equality Axioms: If eq(s, t) ∼ true holds in any
computational model then we know that the interpretations
of s and t are always equal except for a negligible number
of samplings. Let s .

= t be a shorthand for eq(s, t) ∼ true.



Case ai = NSID(j). σ
up
τ ≡ valid-gutiID

U 7→ false
Case ai = TUID(j, 0).

tτ ≡ if σin
τ (valid-gutiID

U ) then σin
τ (GUTIID

U ) else NoGuti

σup
τ ≡

{
valid-gutiID

U 7→ false e-authID
U 7→ fail

s-valid-gutiID
U 7→ σin

τ (valid-gutiID
U ) b-authID

U 7→ fail

Case ai = TN(j, 0). Let tIDi
⊕ ≡ σin

τ (SQN
IDi
N )⊕ fkIDi (nj), then:

msgIDi
τ ≡ 〈nj , tIDi

⊕ , Mac3
kIDi

m
(〈nj , σin

τ (SQN
IDi
N ) , σin

τ (GUTI
IDi
N )〉)〉

acceptIDi
τ ≡ eq(σin

τ (GUTI
IDi
N ), g(φin

τ )) ∧ ¬eq(σin
τ (GUTI

IDi
N ),UnSet)

tτ ≡ if acceptID1
τ then msgID1

τ

else if acceptID2
τ then msgID2

τ
· · ·

else msgIDdum
τ

σup
τ ≡



GUTI
IDi
N 7→ if acceptIDi

τ then UnSet else σin
τ (GUTI

IDi
N )

sessionIDi
N 7→ if acceptIDi

τ then nj else σin
τ (sessionIDi

N )

b-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = TUID(j, 1). Let tSQN ≡ π2(g(φin
τ ))⊕ fkID (π1(g(φin

τ ))), then:

acceptID
τ ≡ eq(π3(g(φin

τ )),Mac3kID
m
(〈π1(g(φin

τ )) , tSQN , σ
in
τ (GUTIID

U )〉))

∧ σin
τ (s-valid-gutiID

U ) ∧ range(σin
τ (SQNID

U ), tSQN)

tτ ≡ if acceptID
τ then Mac4kID

m
(π1(g(φ

in
τ ))) else error

σup
τ ≡

{
b-authID

U , e-authID
U 7→ if acceptID

τ then π1(g(φin
τ )) else fail

SQNID
U 7→ if acceptID

τ then suc(σin
τ (SQNID

U )) else σin
τ (SQNID

U )

Case ai = TN(j, 1).

acceptIDi
τ ≡ eq(g(φin

τ ),Mac4
kIDi

m
(nj)) ∧ eq(σin

τ (b-authjN), IDi)

inc-acceptIDi
τ ≡ acceptIDi

τ ∧ eq(σin
τ (sessionIDi

N ), nj)

tτ ≡ if
∨
i acceptIDi

τ then ok else error

σup
τ ≡



SQN
IDi
N 7→ if inc-acceptIDi

τ then suc(σin
τ (SQN

IDi
N ))

else σin
τ (SQN

IDi
N )

GUTI
IDi
N 7→ if inc-acceptIDi

τ then GUTIj else σin
τ (GUTI

IDi
N )

e-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = FN(j).

msgIDi
τ ≡ 〈GUTIj ⊕ f r

kIDi (n
j) , Mac5

kIDi
m

(〈GUTIj , nj〉)〉

tτ ≡ if eq(σin
τ (e-authjN), ID1) then msgID1

τ

else if eq(σin
τ (e-authjN), ID2) then msgID2

τ
· · ·

else UnknownId

Case ai = FUID(j). Let tGUTI ≡ π1(g(φin
τ ))⊕ f r

kID (σin
τ (e-authID

U )), then:

acceptID
τ ≡ eq(π2(g(φin

τ )),Mac5kID
m
(〈tGUTI , σ

in
τ (e-authID

U )〉))

∧ ¬eq(σin
τ (e-authID

U ), fail) ∧ ¬eq(σin
τ (e-authID

U ),⊥)
tτ ≡ if acceptID

τ then ok else error

σup
τ ≡

{
valid-gutiID

U 7→ acceptID
τ

GUTIID
U 7→ if acceptID

τ then tGUTI else UnSet

Fig. 13. The Symbolic Terms and State Updates for NSID(j) and the GUTI
and ASSIGN-GUTI Sub-Protocols.

We use .
= to specify functional correctness properties of the

protocol function symbols. For example, the following rules
state that the i-th projection of a pair is the i-th element of
the pair, and that the decryption with the correct key of a
cipher-text is equal to the message in plain-text:

πi(〈x1 , x2〉)
.
= xi for i ∈ {1, 2} dec({x}zpk(y), sk(y)) .= x

b) Structural Axioms: Structural axioms are axioms
which are valid in any computational model, e.g.:

~u1, ~v1 ∼ ~u2, ~v2
f(~u1), ~v1 ∼ f(~u2), ~v2

FA
~u, t ∼ ~v s

.
= t

~u, s ∼ ~v R

The axiom FA states that to show that two function applica-
tions are indistinguishable, it is sufficient to show that their
arguments are indistinguishable. The axiom R states that if
s
.
= t holds then we can safely replace s by t.

c) Cryptographic Assumptions: We now explain how
cryptographic assumptions are translated into axioms. We
illustrate this on the unforgeability property of the functions
Mac1– Mac5. Recall that UEID uses the same secret key kID

m
for these five functions. Therefore, instead of the standard
PRF assumption, we assume that these functions are jointly
PRF, i.e. Mac1– Mac5 are simultaneously computationally
indistinguishable from random functions.

It is well-known that if H is a PRF then H is unforgeable
against an adversary with oracle access to H(·, km). Similarly,
we can show that if H,H1, . . . ,Hl are jointly PRF, then no
adversary can forge a mac of H(·, km), even if it has oracle
access to H(·, km), H1(·, km), . . . ,Hl(·, km). We translate this
property as follows: let s,m be ground terms where km appears
only in subterms of the form Mac _

km
(_), then for every 1 ≤

j ≤ 5, if S is the set of subterms of s,m of the form Macjkm
(_)

then we have an instance of EUF-MACj :

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u) (EUF-MACj)

where u = v denotes the term eq(u, v). Basically, if s
is a valid Mac then s must have been honestly generated.
Similarly, we can build a set of axioms reflecting the fact
that some functions are jointly collision-resistant. Indeed, if
H,H1, . . . ,Hl are jointly PRF, then no adversary can build
a collision for H(·, km), even if it has oracle access to
H(·, km), H1(·, km), . . . ,Hl(·, km). This translates as follows:
let m1,m2 be ground terms, if km appears only in subterms
of the form Mac _

km
(_) then we have an instance of CRj :

Macjkm
(m1) = Macjkm

(m2)→ m1 = m2
(CRj)

These axioms are sound (the proof is given in Appendix I-B).

Proposition 2. For every 1 ≤ j ≤ 5, the EUF-MACj and
CRj axioms are valid in any computational model where the
(Maci)i functions are interpreted as jointly PRF functions.

VII. SECURITY PROOFS

We now state the authentication and σul-unlinkability lem-
mas. For space reasons, we only sketch the proofs (the full
proofs are given in Appendix III and IV).



A. Mutual Authentication of the AKA+ Protocol

Authentication is modeled by a correspondence prop-
erty [27] of the form “in any execution, if event A occurs, then
event B occurred”. This can be translated in the BC logic.

a) Authentication of the User by the Network: AKA+

guarantees authentication of the user by the network if in any
execution, if HN(j) believes it authenticated UEID, then UEID

stated earlier that it had initiated the protocol with HN(j).
We recall that e-authjN stores the identity of the UE authen-

ticated by HN(j), and that UEID stores in b-authID
U the random

challenge it received. Moreover, the session HN(j) is uniquely
identified by its random challenge nj . Therefore, authentica-
tion of the user by the network is modeled by stating that, for
any symbolic trace τ ∈ dom(Rul), if σin

τ (e-authjN) = ID then
there exists some prefix τ ′ of τ such that σin

τ ′(b-authID
U ) = nj .

Let � be the prefix ordering on symbolic traces, then:

Lemma 1. For every τ ∈ dom(Rul), ID ∈ Sid and j ∈ N,
there is derivation using Ax of:

σin
τ (e-authjN) = ID →

∨
τ ′�τ σ

in
τ ′(b-authID

U ) = nj

The key ingredients to show this lemma are necessary
conditions for a message to be accepted by the network.
Basically, a message can be accepted only if it was honestly
generated by a subscriber. These necessary conditions rely on
the unforgeability and collision-resistance of (Macj)1≤j≤5.

b) Necessary Acceptance Conditions: Using the
EUF-MACj and CRj axioms, we can find necessary conditions
for a message to be accepted by a user. We illustrate this on
the HN’s second message in the SUPI sub-protocol. We depict
a part of the execution between session UEID(i) and session
HN(j) below:

UEID(i) HN(j)

PN(j, 0)
nj

PUID(i, 1)

〈
{〈ID , SQNU〉}

nie
pkN

, Mac1km
(〈{〈ID , SQNU〉}

nie
pkN

, nj〉)
〉

PN(j, 1)

We then prove that if a message is accepted by HN(j) as
coming from UEID, then the first component of this message
must have been honestly generated by a session of UEID.
Moreover, we know that this session received the challenge nj .

Lemma 2. Let ID ∈ Sid and τ ∈ dom(Rul) be a trace ending
with PN(j, 1). There is a derivation using Ax of:

acceptID
τ →

∨
τ1=_,PUID(_,1)�τ

(
π1(g(φin

τ )) = tenc
τ1 ∧ g(φin

τ1) = nj
)

Proof sktech. Let tdec be the term dec(π1(g(φin
τ )), skN). Then

HN(j) accepts the last message iff the following test succeeds:

π2(g(φin
τ )) = Mac1kID

m
(〈π1(g(φin

τ )) , nj〉) ∧ π1(tdec) = ID

By applying EUF-MAC1 to the underlined part above, we know
that if the test holds then π2(g(φin

τ )) is equal to one of the
honest Mac1kID

m
subterms of π2(g(φin(τ))), which are the terms:(

Mac1kID
m

(〈tenc
τ1 , g(φin

τ1)〉)
)
τ1=_,PUID(_,1)≺τ

(1)(
Mac1kID

m
(〈π1(g(φin

τ1)) , nj1〉)
)
τ1=_,PN(j1,1)≺τ

(2)

Where ≺ is the strict version of �. We know that PN(j, 1)
cannot appear twice in τ . Hence for every τ1 = _, PN(j1, 1) ≺
τ , we know that j1 6= j. Using the fact that two distinct nonces
are never equal except for a negligible number of samplings,
we can derive that eq(nj1 ,nj) = false. Using an axiom stating
that the pair is injective and the CR1 axiom, we can show that
π2(g(φin

τ )) cannot by equal to one of the terms in (2).
Finally, for every τ1 = _, PUID(_, 1) ≺ τ , using the CR1 and

the pair injectivity axioms we can derive that:

Mac1kID
m

(〈π1(g(φin
τ )) , nj〉) = Mac1kID

m
(〈tenc

τ1 , g(φin
τ1)〉)

→ π1(g(φin
τ )) = tenc

τ1 ∧ nj = g(φin
τ1)

We prove a similar lemma for TN(j, 1). The proof of
Lemma 1 is straightforward using these two properties.

c) Authentication of the Network by the User: The AKA+

protocol also provides authentication of the network by the
user. That is, in any execution, if UEID believes it authenticated
session HN(j) then HN(j) stated that it had initiated the
protocol with UEID. Formally:

Lemma 3. For every τ ∈ dom(Rul), ID ∈ Sid and j ∈ N,
there is derivation using Ax of:

σin
τ (e-authID

U ) = nj →
∨
τ ′�τ σ

in
τ ′(b-authjN) = ID

This is shown using the same techniques than for Lemma 1.

B. σ-Unlinkability of the AKA+ Protocol

Lemma 2 gives a necessary condition for a message to be
accepted by PN(j, 1) as coming from ID. We can actually go
further, and show that a message is accepted by PN(j, 1) as
coming from ID if and only if it was honestly generated by a
session of UEID which received the challenge nj .

Lemma 4. Let ID ∈ Sid and τ ∈ dom(Rul) be a trace ending
with PN(j, 1). There is a derivation using Ax of:

acceptID
τ ↔

∨
τ1=_,PUID(_,1)�τ

(
g(φin

τ ) = tτ1 ∧ g(φin
τ1) = nj

)
We prove similar lemmas for most actions of the AKA+

protocol. Basically, these lemmas state that a message is
accepted if and only if it is part of an honest execution of
the protocol between UEID and HN. This allow us to replace
each acceptance conditional acceptID

τ by a disjunction over all
possible honest partial transcripts of the protocol.

We now state the σul-unlinkability lemma:

Lemma 5. For every (τl, τr) ∈ Rul, there is a derivation using
Ax of the formula φτl ∼ φτr .



The full proof is long and technical. It is shown by induction
over τ . Let (τl, τr) ∈ Rul, we assume by induction that there
is a derivation of φin

τl
∼ φin

τr . We want to build a derivation of
φin
τl
, tτl ∼ φin

τr , tτr using the inference rules in Ax.
First, we rewrite tτl using the acceptance characterization

lemmas such as Lemma 4. This replaces each acceptID
τl

by a
case disjunction over all honest executions on the left side.
Similarly, we rewrite tτr as a case disjunction over honest
executions on the right side. Our goal is then to find a
matching between left and right transcripts such that matched
transcripts are indistinguishable. If a left and right transcript
correspond to the same trace of oracle calls, this is easy.
But since the left and right traces of oracle calls may differ,
this is not always possible. E.g., some left transcript may
not have a corresponding right transcript. When this happens,
we have two possibilities: instead of a one-to-one match we
build a many-to-one match, e.g. matching a left transcript
to several right transcripts; or we show that some transcripts
always result in a failure of the protocol. Showing the latter
is complicated, as it requires to precisely track the possible
values of SQNID

U and SQNID
N across multiple sessions of the

protocol to prove that some transcripts always yield a de-
synchronization between UEID and HN.

VIII. CONCLUSION

We studied the privacy provided by the 5G-AKA authenti-
cation protocol. While this protocol is not vulnerable to IMSI
catchers, we showed that several privacy attacks from the liter-
ature apply to it. We also discovered a novel desynchronization
attack against PRIV-AKA, a modified version of AKA, even
though it had been claimed secure.

We then proposed the AKA+ protocol. This is a fixed version
of 5G-AKA, which is both efficient and has improved privacy
guarantees. To study AKA+’s privacy, we defined the σ-
unlinkability property. This is a new parametric privacy prop-
erty, which requires the prover to establish privacy only for
a subset of the standard unlinkability game scenarios. Finally,
we formally proved that AKA+ provides mutual authentication
and σul-unlinkability for any number of agents and sessions.
Our proof is carried out in the Bana-Comon model, which is
well-suited to the formal analysis of stateful protocols.
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APPENDIX I
AXIOMS

In this section, we define the set of axioms Ax. We split our set of axioms in three parts, Ax = Axstruct∪Aximpl∪Axcrypto, where
Axstruct is the set of structural axioms, Aximpl is the set of implementation axioms and Axcrypto is the set of cryptographic axioms.

Definitions: We give some definitions used to define the cryptographic axioms.

Definition 2. For any subset S of F ,N and X , we let T (S) be the set of terms built upon S.

Definition 3. A position is a word in N∗. The value of a term t at a position p, denoted by (t)|p, is the partial function defined
inductively as follows:

(t)|ε = t

(f(u0, . . . , un−1))|i.p =

{
(ui)|p if i < n

undefined otherwise

We say that a position in valid is t if (t)|p is defined. The set of positions pos(t) of a term is the set of positions which are
valid in t. Moreover, given two position p, p′, we have p ≤ p′ if and only if p is a prefix of p′.

Definition 4. A context D[]~x (sometimes written D when there is no confusion) is a term in T (F ,N , {[]y | y ∈ ~x}) where ~x
are distinct special variables called holes.

For all contexts D[]~x, C0, . . . , Cn−1 with |~x| = n, we let D[(Ci)i<n] be the context D[]~x in which we substitute, for every
0 ≤ i < n, all occurrences of the hole []xi by Ci.

A one-holed context is a context with one hole (in which case we write D[] where [] is the only variable).

Definition 5. Given a term t, we let st(t) be the set of subterms of t. We extend this to sequences of terms by having
st(u1, . . . , un) = st(u1) ∪ · · · ∪ st(un).

Definition 6. For every terms b, t, we let [b]t be the term if b then t else ⊥.

Definition 7. Let s, ~u be ground terms and C~x,· be a context with one distinguished hole variable ·, and we require that the
hole variable · appears exactly once in C~x,·. Then we let s vC~x,· ~u holds whenever s appears in ~u only in subterms of the
form C[~w, s]. Formally:

∀u ∈ ~u,∀p ∈ pos(u), u|p ≡ s→ ∃~w ∈ T (F ,N ),∃q ∈ pos(u) s.t. q ≤ p ∧ u|q ≡ C[~w, s]

Given n contexts C1, . . . , Cn, we let s vC1,...,Cn ~u if and only if for all 1 ≤ i ≤ n, s vCi ~u.

Example 3. For example, n vpk(·),sk(·) ~u states that the nonce n appears only in terms of the form pk(n) or sk(n) in ~u.
Similarly, sk(n) vdec(_,·) ~u states that the secret key sk(n) appears only in decryption position in ~u.

A. CCA1 Axioms

a) The CCA1s Axioms: To prove that the AKA+ protocol is σul-unlinkable, we need the encryption scheme to be
IND-CCA1 secure. We define first set of axioms CCA1s:

Definition 8. We let CCA1s be the set of axioms:

len(s)
.
= len(t)

~u, {s}ne
pk(n) ∼ ~u, {t}

ne
pk(n)

CCA1s when

{
fresh(ne; ~u, s, t)

n vpk(·),sk(·) ~u, s, t ∧ sk(n) vdec(_,·) ~u, s, t

This set of axioms CCA1s is very similar to the one used in [18]. The only difference is that in [18], the length equality
requirement is not a premise of the axiom. Instead, if the length are not equal they return a error message. We found our
version of the axiom simpler to use.

We have the following soundness property:

Proposition 3. The CCA1s axioms are valid in any computational model where ({_}_
_,dec(_, _),pk(_), sk(_)) is interpreted

as a IND-CCA1 secure encryption scheme.

Proof. The proof is by contradiction, and is sketched below:
We assume that there is a computational model Mc where the encryption scheme is IND-CCA1 secure, and such that there

is an instance ~u, {s}ne
pk(n) ∼ ~v, {t}ne

pk(n) of the axioms CCA1s which is not valid. We deduce that there exists an attacker A
that can distinguish between the left and right terms, i.e. the following quantity is non-negligible:∣∣∣Pr

(
~w

$← [[~u, {s}ne
pk(n)]]Mc : A(1η, ~w) = 1

)
−Pr

(
~w

$← [[~u, {t}ne
pk(n)]]Mc : A(1η, ~w) = 1

)∣∣∣ (3)



Where $← denotes a uniform random sampling. Using A, we can build an adversary B with a non-negligible advantage against
the IND-CCA1 game. First, B samples a vector of bit-strings ~us, ss, ts from [[~u, s, t]]Mc , querying the decryption oracle whenever
B needs to compute a subterm of the from dec(_, sk(n)). Remark that the syntactic side-conditions:

n vpk(·),sk(·) ~u, s, t sk(n) vdec(_,·) ~u, s, t

guarantee that this is always possible. Afterward, B queries the left-or-right oracle with (ss, ts) to get a value a. Here, we
need the side-condition fresh(ne; ~u, s, t) to guarantee that the random value ne has not been sampled by B. Indeed, the value
ne is sampled by the challenger, and is not available to B. If the challenger internal bit b is 0 then ~us, a has been sampled
from [[~u, {s}ne

pk(n)]]Mc , and if the challenger internal bit is 1 then ~us, a has been sampled from [[~u, {t}ne
pk(n)]]Mc :

~us, a
$←

{
[[~u, {s}ne

pk(n)]]Mc
if b = 0

[[~u, {t}ne
pk(n)]]Mc

if b = 1

Then B returns A(~us, a). It is easy to check that the advantage of B against the IND-CCA1 game is exactly the advantage of
A against ~u, {s}ne

pk(n) ∼ ~v, {t}
ne
pk(n) This advantage is the quantity in Equation 3, which we assumed non-negligible. Hence B

is a winning adversary against the IND-CCA1 game. Contradiction.

b) The CCA1 Axioms: We now define the set of axioms CCA1, which is more convenient to use than CCA1s:

Definition 9. We let CCA1 be the set of axioms:

~u ∼ ~v len(s)
.
= len(t)

~u, {s}ne
pk(n), len(s) ∼ ~v, {t}n′e

pk(n′), len(s)
CCA1 when


fresh(ne,n′e; ~u,~v, s, t)

~u ≡ pk(n), _ ∧ ~v ≡ pk(n′), _
n vpk(·),sk(·) ~u, s ∧ sk(n) vdec(_,·) ~u, s

n′ vpk(·),sk(·) ~v, t ∧ sk(n′) vdec(_,·) ~v, t

We now state the following soundness theorem:

Proposition 4. The CCA1 axioms are valid in any computational model where ({_}_
_,dec(_, _),pk(_), sk(_)) is interpreted

as a IND-CCA1 secure encryption scheme.

Proof. The proof relies on the transitivity axiom Trans and the CCA1s axioms, which are valid are valid in any computational
model where ({_}_

_,dec(_, _),pk(_), sk(_)) is interpreted as a IND-CCA1 secure encryption scheme using Proposition 3.

len(s) = len(0len(s))

~u, {s}ne
pk(n) ∼ ~u, {0

len(s)}ne
pk(n)

CCA1s
~u, {0len(s)}ne

pk(n) ∼ ~v, {0
len(t)}ne

pk(n)

len(t) = len(0len(t))

~v, {0len(t)}ne
pk(n) ∼ ~v, {t}

n′e
pk(n′)

CCA1s

~u, {s}ne
pk(n) ∼ ~v, {t}

n′e
pk(n′)

Trans

And:
~u, len(s) ∼ ~v, len(s)

~u, len(s),ne ∼ ~v, len(s),ne
Fresh

~u, len(s),pk(n),ne ∼ ~v, len(s),pk(n),ne
Dup

len(s) = len(t)

~u, len(s),pk(n),ne ∼ ~v, len(t),pk(n),ne
R

~u, {0len(s)}ne
pk(n) ∼ ~v, {0

len(t)}ne
pk(n)

FA3

B. PRF-MAC Axioms

Definition 10 (PRF Function [28], [29]). Let H(·, ·) : {0, 1}∗ × {0, 1}η → {0, 1}η be a keyed hash functions. The function H
is a Pseudo Random Function if, for any PPTM adversary A with access to an oracle Of :

|Pr(k : AOH(·,k)(1η) = 1)−Pr(g : AOg(·)(1η) = 1)|

is negligible. Where

• k is drawn uniformly in {0, 1}η .
• g is drawn uniformly in the set of all functions from {0, 1}∗ to {0, 1}η .



The authors of [26] already gave axioms for this property (and proved soundness). We recall their axiom schema below,
using our notations:

~u, if
∨
i∈I eq(m,mi) then 0 else H(m, k)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

when


fresh(n; ~u,m)

k vH(_,·) ~u,m

{mi | i ∈ I} = {u | H(u, k) ∈ st(~u,m)}
∀u, v. if H(u, v) ∈ st(~u,m) then v ≡ k

We simplify this axiom schema by dropping the last syntactical requirement. Indeed, it is not necessary to require that every
occurrence of H in ~u,m uses the key k. We prove that this is valid.

Proposition 5. The following set of axioms is valid in any computational model where the H is interpreted as a PRF function:

~u, if
∨
i∈I eq(m,mi) then 0 else H(m, k)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

when


fresh(n; ~u,m)

k vH(_,·) ~u,m

{mi | i ∈ I} = {u | H(u, k) ∈ st(~u,m)}
Proof. We consider an instance of the axiom schema:

~u, if
∨
i∈I eq(m,mi) then 0 else H(m, k)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

Let ~h ≡ (H(mi, k))i∈I and ~v[], b[] be contexts such that ~v[~h] ≡ ~u and b[~h] ≡
∨
i∈I eq(m,mi) and such that k 6∈ st(~v, b). Let

Mc
0 be a computational model and A be an adversary. We need to show that:

Pr

(
A
([[

~v[~h], [b[~h]]H(m, k)
]]
Mc

0

)
= 1

)
≈ Pr

(
A
([[

~v[~h], [b[~h]]n
]]
Mc

0

)
= 1

)
LetMc be an extension ofMc

0 where we added two function symbols g, g′ which are interpreted as random functions. Then
we know that it is sufficient to show that:

Pr

(
A
([[

~v[~h], [b[~h]]H(m, k)
]]
Mc

)
= 1

)
≈ Pr

(
A
([[

~v[~h], [b[~h]]n
]]
Mc

)
= 1

)
(4)

Let ~r ≡ (g(mi))i∈I . It is straightforward to check that, thanks to the PRF assumption of H , we have:

Pr

(
A
([[

~v[~h], [b[~h]]H(m, k)
]]
Mc

)
= 1

)
≈ Pr

(
A
([[

~v[~r ], [b[~r ]]g(m)
]]
Mc

)
= 1

)
Moreover, using the fact that the subterm g(m) is guarded by b[~r ], we know that, except for a negligible number of samplings,
m is never queried to the random function g except once, in [b[~r ]]g(m). It follows that we can safely replace the last call to
g(m) by a call to g′(m), which yields:

Pr

(
A
([[

~v[~r ], [b[~r ]]g(m)
]]
Mc

)
= 1

)
≈ Pr

(
A
([[

~v[~r ], [b[~r ]]g′(m)
]]
Mc

)
= 1

)
Now, using again the PRF property of H , we know that:

Pr

(
A
([[

~v[~r ], [b[~r ]]g′(m)
]]
Mc

)
= 1

)
≈ Pr

(
A
([[

~v[~h], [b[~h]]g′(m)
]]
Mc

)
= 1

)
Finally, since g′ appears only once in ~v[~h], [b[~h]]g′(m), we can replace g′(m) by a fresh nonce. Hence:

Pr

(
A
([[

~v[~h], [b[~h]]g′(m)
]]
Mc

)
= 1

)
≈ Pr

(
A
([[

~v[~h], [b[~h]]n
]]
Mc

)
= 1

)
This concludes the proof of (4).

This can be extended to have a finite family of functions being jointly PRF. A finite family of functions H1(·, k), . . . ,Hn(·, k)
are jointly PRF if they are jointly computationally indistinguishable from random functions. Formally:

Definition 11 (Jointly PRF Functions). Let H1(·, ·), . . . ,Hn(·, ·) be a finite family of keyed hash functions such that for every
1 ≤ i ≤ n, Hi(·, ·) : {0, 1}∗ × {0, 1}η → {0, 1}η . The functions H1, . . . ,Hn are Jointly Pseudo Random Functions if, for any
PPTM adversary A with access to oracles Of1 , . . . ,Ofn :

|Pr(k : AOH1(·,k),...,OHn(·,k)(1η) = 1)−Pr(g1, . . . , gn : AOg1(·),...,Ogn(·)(1η) = 1)|



is negligible. Where

• k is drawn uniformly in {0, 1}η .
• g1, . . . , gn are drawn uniformly in the set of all functions from {0, 1}∗ to {0, 1}η .

Remark 3. It is easy to build a family H1, . . . ,Hn of jointly pseudo random functions from a pseudo random function H(·, ·).
First, let (tagi(·))1≤i≤n be a set of tagging functions. We require that these functions are unambiguous, i.e. for all bit-strings u, v
and i 6= j we must have tagi(u) 6= tagj(v). Then for every 1 ≤ i ≤ n, we let Hi(x, y) = H(tagi(x), y). It is straightforward
to show that if H is a PRF then H1, . . . ,Hn are jointly PRF.

Now, we translate this property for f and f r (resp. Mac1– Mac5) in the logic.

Definition 12. We let set-macjkm
(u) be the set of Macj terms under key km in u:

set-macjkm
(u) = {m | Macjkm

(m) ∈ st(u)}

Definition 13. For every 1 ≤ j ≤ 5, we let PRF-MACj be the set of axioms:

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

PRF-MACj

when


fresh(n; ~u,m)

km vMac_
·(_) ~u,m

{mi | i ∈ I} = set-macjkm
(~u,m)

Definition 14. Let g ∈ {f, f r}. We let set-prfgk(u) be the set of g terms under key k in u:

set-prfgk(u) = {m | gk(m) ∈ st(u)}

Definition 15. For every g ∈ {f, f r}, we let PRF-g be the set of axioms:

~u, if
∨
i∈I eq(m,mi) then 0 else gk(m)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

PRF-g
when


fresh(n; ~u,m)

k vf·(_),f r
· (_) ~u,m

{mi | i ∈ I} = set-prfgk(~u,m)

Proposition 6. The (PRF-MACj) (resp. PRF-f and PRF-f r) axiom schemes are valid in any computational model where the
(Macj) (resp. f and f r) function symbols are interpreted as jointly PRF functions.

Proof. This is an extension of the axiom schema given in Proposition 5. The soundness proof follows the same step, by
replacing every call Hj(_, k) with a call to a random function gi(_), where (gi)1≤i≤n are independent random functions. We
omit the details.

Remark 4. If we have a valid instance of PRF-MACj :

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

PRF-MACj

then using transitivity we know that:

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m)

∼ ~u, if
∨
i∈I eq(m,mi) then 0 else n

PRF-MACj

~u, if
∨
i∈I eq(m,mi) then 0 else n ∼ ~v

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m) ∼ ~v
Trans

Therefore the following axiom schema is admissible using PRF-MACj + Trans:

~u, if
∨
i∈I eq(m,mi) then 0 else n ∼ ~v

~u, if
∨
i∈I eq(m,mi) then 0 else Macjkm

(m) ∼ ~v
when


fresh(n; ~u,m)

km vMac_
·(_) ~u,m

{mi | i ∈ I} = set-macjkm
(~u,m)

We will prefer the axiom schema above over the axiom schema given in Definition 13. By a notation abuse, we refer also to
the axiom above as PRF-MACj . The same remark applies to PRF-f and PRF-f r.



C. EUF-MAC Axioms

a) The SIMP-EUF-MAC Axioms:

Definition 16. We let set-mackm(u) be the set of Mac terms under key km in u:

set-mackm(u) = {m | Mackm(m) ∈ st(u)}

Definition 17. A function Mac is EUF-MAC secure if for every PPTM A, the following quantity is negligible in η:

Pr
(

km ← {0, 1}η : (m,σ)← AOMac(km)(1η),m not queried to OMac(km) and σ = Mackm
(m)

)
This can be modeled using the following axioms:

Definition 18. We let SIMP-EUF-MAC be the set of axioms:

s = Mackm(m)→
∨
u∈S s = Mackm(u) when

{
km vMac·(_) s,m

S = set-mackm(s,m)
(SIMP-EUF-MAC)

Proposition 7. The SIMP-EUF-MAC axioms are valid in any computational model where the Mac function is interpreted as
an EUF-MAC secure function.

The proof is similar to the proof of Proposition 3. We omit the details.
b) The EUF-MAC Axioms: It is well-know that if a function H is a PRF then H is EUF-MAC secure. We give here the

counterpart of this result for a family of functions H,H1, . . . ,Hl which are jointly PRF.
If H,H1, . . . ,Hl which are jointly PRF, then no adversary can forge a mac of H(·, km), even if the adversary has oracle

access to H(·, km), H1(·, km), . . . ,Hl(·, km). First, we define what it means for a function to be EUF-MAC secure with a key
jointly used by other functions:

Definition 19. A function H is EUF-MAC secure with a key jointly used by H1, . . . ,Hl if for every PPTM A, the following
quantity is negligible in η:

Pr
(
km ← {0, 1}η : (m,σ)← AOH(·,km),OH1(·,km),...,OHl(·,km)(1η),m not queried to OH(·,km) and σ = H(m, km)

)
Proposition 8. If H,H1, . . . ,Hl are jointly PRF then H is EUF-MAC secure with a key jointly used by H1, . . . ,Hl.

Proof. The proof is almost the same than the proof showing that if a function H is a PRF then H is EUF-MAC secure, and is
by reduction. If H is not EUF-MAC secure with a key jointly used by H1, . . . ,Hl then there exists an adversary A winning
the corresponding game with a non-negligible probability. It is simple to build from A an adversary B against the joint PRF
property of H,H1, . . . ,Hl.

First, B runs the adversary A, forwarding and logging its the oracle calls. Eventually, A returns a pair (m,σ). Then, B
queries the first oracle on m, which returns a value σ′. Finally, B returns 1 if and only if A never queried the first oracle on
m and σ′ = σ. Then:
• If B is interacting with the oracles OH(·,km),OH1(·,km), . . . ,OHl(·,km), its probability of returning 1 is exactly the advantage

of A against the EUF-MAC game with key jointly used.
• If B is interacting with the oracles Og(·),Og1(·), . . . ,Ogl(·) where g, g1, . . . , gl are random functions, then its probability

of returning 1 is the probability of having g(m) = σ knowing that m was never queried to g. Since g is a random function,
this is less than 1/2η .

Since A has a non-negligible advantage against the EUF-MAC game with key jointly used, we deduce that B has a non-negligible
advantage against the joint PRF-fgame.

We translate this cryptographic property in the logic to obtain the sets of axioms (EUF-MACj)1≤j≤5.

Definition 20. We let EUF-MACj be the set of axioms:

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u) when

{
km vMac_

·(_) s,m

S = set-macjkm
(s,m)

(EUF-MACj)

Proposition 9. The EUF-MACj axioms are valid in any computational model where the Macj function is interpreted as a
EUF-MAC secure function with a key jointly used by the interpretations of (Maci)1≤i≤5,i6=j .

Remark that it is easy to prove Proposition 2 using Proposition 8 and Proposition 9.

Proof of Proposition 9. The proof is straightforward and has the same structure than the proof of Proposition 3.



We assume that there is a computational model Mc where the Macj function is interpreted as a EUF-MAC secure function
with a key jointly used by the interpretations of (Maci)1≤i≤5,i6=j . Moreover, we assume that there is an instance:

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u)

of the EUF-MACj which is not valid in Mc, and such that:

km vMac_
·(_) s,m S = set-macjkm

(s,m)

Therefore we know that the following quantity is not negligible in η:

Pr
(
ρ1, ρ2 : [[s = Macjkm

(m)]]ηρ1,ρ2 ∧ ¬[[
∨
u∈S s = Macjkm

(u)]]ηρ1,ρ2

)
Or equivalently the following quantity is not negligible in η:

Pr
(
ρ1, ρ2 : [[s]]ηρ1,ρ2 = [[Macjkm

(m)]]ηρ1,ρ2 ∧
∧
u∈S [[s]]ηρ1,ρ2 6= [[Macjkm

(u)]]ηρ1,ρ2

)
(5)

Using Mc we can build a adversary A against the EUF-MAC game with key jointly used. The adversary A simply samples
two values as, aMac from [[s]]ηρ1,ρ2 and [[Macjkm

(m)]]ηρ1,ρ2 by sampling a value from all the subterms of s and m in a bottom-up
fashion. The adversary calls the (OMaci)1≤i≤5 whenever he need to sample a value from a subterm of the form Macikm

(_).
Remark that the side-condition km vMac_

·(_) s,m ensures that this is always possible. Then A returns as, aMac. One can check
that the advantage of A against the EUF-MAC game with key jointly used by (Maci)1≤i≤5,i6=j is exactly the quantity in 5. It
follows that A has a non-negligible probability of winning the game. Contradiction.

D. CR Axioms

We recall the definition of Collision-Resistance:

Definition 21. A function H is CR secure if for every PPTM A, the following quantity is negligible in η:

Pr
(
km ← {0, 1}η : (m1,m2)← AOH(·,km)(1η),m1 6= m2 and H(m1, km) = H(m2, km)

)
As for unforgeability, we generalize this to allow the key km to be jointly used by others functions. Formally:

Definition 22. A function H is CR secure with a key jointly used by H1, . . . ,Hl if for every PPTM A, the following quantity
is negligible in η:

Pr
(
km ← {0, 1}η : (m1,m2)← AOH(·,km),OH1(·,km),...,OHl(·,km)(1η),m1 6= m2 and H(m1, km) = H(m2, km)

)
It is well-known that a EUF-MAC secure function is also CR secure. Similarly we have that:

Proposition 10. If H is EUF-MAC secure with a key jointly used by H1, . . . ,Hl then H is CR secure with a key jointly used
by H1, . . . ,Hl.

Proof. We can easily build an adversary B against the EUF-MAC game with a key jointly from any adversary A against the
CR game with a key jointly such that A and B have the same advantage against their respective games. The result follows.

We translate this game in the logic as follows:

Definition 23. We let CRj be the set of axioms:

Macjkm
(m1) = Macjkm

(m2)→ m1 = m2
when km vMac_

·(_) m1,m2 (CRj)

Proposition 11. The CRj axioms are valid in any computational model where the Macj function is interpreted as a CR secure
function with a key jointly used by the interpretations of (Maci)1≤i≤5,i6=j .

Proof. The proof works exactly like the proof of Proposition 3 and Proposition 9. We omit the details.

E. Cryptographic Axioms

Definition 24. We let Axcrypto be the set of cryptographic axioms:

Axcrypto = CCA1 ∪
(

PRF-MACj
)
1≤j≤5 ∪ PRF-f ∪ PRF-f r ∪

(
EUF-MACj

)
1≤j≤5 ∪

(
CRj
)
1≤j≤5

Proposition 12. The axioms in Axcrypto are valid in any computational model where the asymmetric encryption {_}_
_ is

IND-CCA1 secure and f and f r (resp. Mac1– Mac5) satisfy jointly the PRF-fassumption.

Proof. This is a direct consequence of the Propositions 4, 6, 9 and 11.



~v ∼ ~u
~u ∼ ~v Sym

~u ∼ ~u Refl ~u ∼ ~w ~w ∼ ~v
~u ∼ ~v Trans

(xπ(i))i≤n ∼ (yπ(i))i≤n

(xi)i≤n ∼ (yi)i≤n
Perm

~u, t ∼ ~v, t′

~u, t, t ∼ ~v, t′, t′
Dup

~u, t ∼ ~v, t′

~u ∼ ~v Restr ~x, ~y ∼ ~x′, ~y′

f(~x), ~y ∼ f(~x′), ~y′
FA

~u, s ∼ ~v s
.
= t

~u, t ∼ ~v R
~u ∼ ~v

~u,n ∼ ~v,n Fresh when n 6∈ st(~u,~v)

~u,n ∼ ~v
~u, t⊕ n ∼ ~v ⊕-indep when n 6∈ st(~u, t)

~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i

~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v′i)i
CS

Conventions: π is a permutation of {1, . . . , n} and f ∈ F .

Fig. 14. The Structural Axioms Axstruct.

F. Structural and Implementation Axioms

We present the structural axioms Axstruct, which are given in Fig. 14. All these axioms have been introduced in the
literature (e.g. see [18], [26]). Still, we informally describe them: the axioms Sym,Refl and Trans states that computational
indistinguishability is an equivalence relation; the Perm axiom is used to change the order of the terms using a permutation
π on both side of ∼; Dup is used to remove duplicate; Restr allows to strengthen the goal; FA states that to show that two
function applications are indistinguishable, it is sufficient to show that their arguments are indistinguishable; the axiom R allow
to rewrite any occurrence of s into t if we can show that s = t; Fresh allows to remove a random sampling appearing if it is
not used; ⊕-indep is the optimistic sampling rule (see [30]); and finally, CS states that to show that two if_then_else_ are
indistinguishable, it is sufficient to show that their then branches and else branches are indistinguishable, when giving the
value of the branching conditional to the adversary.

We then have the following soundness result:

Proposition 13. The axioms in Axstruct are valid in any computational model.

Proof. The soundness proofs can be found in [18], [26].

We can now define the set of axioms Ax:

Definition 25. We let Ax be the set inference rules:

Ax = Axstruct ∪ Aximpl ∪ Axcrypto

Definition 26. We let Simp denote a sequence of applications of R,FA and Dup, i.e.:

~s ∼ ~t
~u ∼ ~v Simp when ~s ∼ ~t

~u ∼ ~v (R+ FA + Dup)∗

Implementation Axioms: We describe the implementation axioms Aximpl given in Fig. 15. The set of implementation
axioms is the union of the following sets of axioms:
• The set Axite of equalities satisfied by the if_then_else_ function symbols.
• The set Axeq of axioms satisfied by the equality function symbol eq(_, _). This includes functional properties of projections

and decryption, equality properties such as reflexivity and dis-equalities.
• The set Axlen of axioms satisfied by the length function len(_).
• The set Axinj of injectivity axioms.
• The set AxSQN of axioms satisfied by the range((, _), _) function on sequence numbers.

G. P-EUF-MACs Axioms

We can refine the unforgeability axioms EUF-MACj using a finite partition of the outcomes.

Definition 27. A finite family of conditionals (bi)i∈I is a valid CS partition if:(∨
i bi ∧

∧
i6=j bi 6= bj

)
.
= true

We can have a more precise axiom, by considering a valid CS partition (bi)i∈I and applying the EUF-MACj axiom once
for each element of the partition.



Definition 28. We let P-EUF-MACjs be the set of axioms:

s = Macjkm
(m)→

∨
i∈I bi ∧

∨
u∈Si s = Macjkm

(u) when



km vMac_
·(_) s,m

(bi)i∈I is a valid CS partition
There exists (si,mi)i∈I s.t. for every i ∈ I

[bi]si
.
= [bi]s ∧ [bi]mi

.
= [bi]m

Si = set-macjkm
(si,mi)

(P-EUF-MACjs)

Proposition 14. The P-EUF-MACjs axioms are logical consequences of the axioms Ax.

Proof. The proof is pretty straightforward:

s = Macjkm
(m) →

∨
i∈I

(
bi ∧ s = Macjkm

(m)
)

(Since (bi)i∈I is a valid CS partition)

→
∨
i∈I

(
bi ∧ si = Macjkm

(mi)
)

→
∨
i∈I

bi ∧
∨
u∈Si

si = Macjkm
(u) (Using EUF-MACj for every i ∈ I)

→
∨
i∈I

bi ∧
∨
u∈Si

s = Macjkm
(u)

H. P-EUF-MAC Axioms

We can further refine the unforgeability axioms, by noticing that macs appearing only in boolean conditionals can be ignored.

Definition 29. For every term u, we let strict-st(u) be the set of subterms of u appearing outside a conditional:

strict-st(if b then u else v) = {strict-st(if b then u else v)} ∪ strict-st(u) ∪ strict-st(v)

strict-st(f(~u)) = {f(~u)} ∪
⋃
u∈~u

strict-st(u) when f 6= if_then_else_

Definition 30. We let strict-set-macjkm
(u) be the set of mac-ed terms under key km and tag j in u appearing outside a

conditional:
strict-set-macjkm

(u) = {m | Macjkm
(m) ∈ strict-st(u)}

Definition 31. We let P-EUF-MACj be the set of axioms:

s = Macjkm
(m)→

∨
i∈I bi ∧

∨
u∈Si s = Macjkm

(u) when



km vMac_
·(_) s,m

(bi)i∈I is a valid CS partition
There exists (si,mi)i∈I s.t. for every i ∈ I

[bi]si
.
= [bi]s ∧ [bi]mi

.
= [bi]m

Si = strict-set-macjkm
(si,mi)

(P-EUF-MACj)

Proposition 15. The P-EUF-MACj axioms are logical consequences of the axioms Ax.

Proof. First, we are going to show that the following axioms are consequences of the axioms Ax:

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u) when

{
km vMac_

·(_) s,m

S ≡ strict-set-macjkm
(s,m)

(6)

Assuming the axioms above are valid, it is easy to conclude by repeating the proof of Proposition 14, but using the axiom
above instead of EUF-MACj .

To show that the axioms in (6) are valid, we are going to pull out all conditionals using the properties of the if_then_else_
function symbols. This yields a term of the form C[~β � (~e)] where ~e themselves of the form s′ = Macjkm

(u′). We then apply
the EUF-MACj axioms to every e ∈ ~e. Finally, we rewrite back the conditionals.

To be able to do this last step, we need, when we pull out the conditionals, to remember which conditional appeared where.
We do this by replacing a conditional b with either trueb or falseb, where the b lower-script is a label that we attach to the
term.



This motivates the following definition: for every boolean term b, we let Valb = {trueb, falseb}. We extend this to vector
of conditionals by having Valu0,...,ul = Valu0

× · · · × Valul . Basically, for every vector of conditionals ~β, choosing a vector
of terms ~ν ∈ Val~β correspond to choosing a valuation of ~β.

We can start showing the validity of (6). Let ~β be the set of conditionals appearing in s,m, and C be an if-context such
that: (

s = Macjkm
(m)

)
↔
(
C

[
~β �
(
s[~ν/~β] = Macjkm

(m[~ν/~β])
)
~ν∈Val~β

])
where t[~u/~v] denotes the substitution of every occurrence of ~v by ~u in t. Then:

s = Macjkm
(m) →

(
C

[
~β �
(
s[~ν/~β] = Macjkm

(m[~ν/~β])
)
~ν∈Val~β

])
For every ~ν ∈ Val~β , let S~ν = set-macjkm

(s[~ν/~β],m[~ν/~β]). By applying EUF-MACj

→

C
~β �( ∨

u∈S~ν

s[~ν/~β] = Macjkm
(u)

)
~ν∈Val~β




Since any conditional of s[~ν/~β] or m[~ν/~β] is of the form truex or falsex for some label x, we know that:

S~ν = set-macjkm
(s[~ν/~β],m[~ν/~β]) = strict-set-macjkm

(s[~ν/~β],m[~ν/~β])

Moreover, we can check that:

strict-set-macjkm
(s[~ν/~β],m[~ν/~β]) =

(
strict-set-macjkm

(s,m)
)

[~ν/~β]

Let S = strict-set-macjkm
(s,m). Hence:C

~β �( ∨
u∈S~ν

s[~ν/~β] = Macjkm
(u)

)
~ν∈Val~β


 →

C
~β �

 ∨
u∈S[~ν/~β]

s[~ν/~β] = Macjkm
(u)


~ν∈Val~β




→

C
~β �((∨

u∈S
s = Macjkm

(u)

)
[~ν/~β]

)
~ν∈Val~β


→

∨
u∈S

s = Macjkm
(u)

This concludes this proof.

I. Additional Axioms

We present additional axioms, and show that they are logical consequences of the axioms Ax.
An if-context is a context build using only the if_then_else_ function symbol, and hole variables. We also require that no

if_then_else_ function symbol appears in a conditional position of another if_then_else_ function symbol. Moreover, we split
the hole variables in two disjoint sets: the set ~x of hole variables appearing in a conditional position, and the set ~y of variables
appearing in leave position. Formally:

Definition 32. For all distinct variables ~x, ~y, an if-context D[]~x�~y is a context in T (if _ then _ else _, {[]z | z ∈ ~x∪ ~y}) such
that for all position p, D|p ≡ if b then u else v implies:

• b ∈ {[]z | z ∈ ~x}
• u, v 6∈ {[]z | z ∈ ~x}

Definition 33. For every nonces n0, . . . ,nl, for every ground terms ~u, we let fresh(n0, . . . ,nl; ~u) holds if and only if for every
0 ≤ i ≤ l, ni 6∈ st(~u).



a) The indep-branch Axioms: This is useful to define the indep-branch axiom. Let ~u, ~b be ground terms, C an if-context
and n, (ni)i∈I nonces. If n, (ni)i∈I are distinct and such that fresh(n, (ni)i∈I ; ~u,~b, C[]). Then the following inference rule is
an instance of the indep-branch axiom:

~u,C
[
~b � (ni)i∈I

]
∼ ~u,n

indep-branch

Proposition 16. The indep-branch axioms are a consequence of the Ax axioms.

Proof. TO prove this, we first introduce the if-context C on the right to match the shape of the left side. We then split the
proof using CS, and conclude by applying Fresh. This yields the derivation:

∀i ∈ I, ~u,~b,ni ∼ ~u,~b,n
Fresh

~u,C
[
~b � (ni)i∈I

]
∼ ~u,C

[
~b � (n)i∈I

] CS∗

~u,C
[
~b � (ni)i∈I

]
∼ ~u,n

R

b) Function Application Under Context: It is often convenient to apply the FA axiom under an if-context C. Formally,
let ~v,~b, (ui,j)i∈I,1≤j≤n, (u′i,j)i∈I,1≤j≤n be terms and C an if-context. Then the following inference rule is an instance of the
FAc axiom:

~v,
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n

∼ ~v′,
(
C
[
~b′ � (u′i,j)i∈I

])
1≤j≤n

~v, C
[
~b � (f((ui,j)1≤j≤n))i∈I

]
∼ ~v′, C

[
~b′ �

(
f((u′i,j)1≤j≤n)

)
i∈I

] FAc

Proposition 17. The FAc axioms are a consequence of the Ax axioms.

Proof. First, we pull the f function outside of the if-context C using the homomorphism properties if if_then_else_. Finally
we apply the FA axiom. This yields the derivation:

~v,
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n

∼ ~v′,
(
C
[
~b′ � (u′i,j)i∈I

])
1≤j≤n

~v, f
(
C
[
~b � (ui,j)i∈I

])
1≤j≤n

∼ ~v′, f
(
C
[
~b′ � (u′i,j)i∈I

])
1≤j≤n

FA

~v, C
[
~b � (f((ui,j)1≤j≤n))i∈I

]
∼ ~v′, C

[
~b′ �

(
f((u′i,j)1≤j≤n)

)
i∈I

] R
c) Program Constants:

Definition 34. We define the set Scst to be the set of program constant, with includes the set of agent names Sid and the
constants UnknownId and fail:

Scst := Sid ∪ {⊥,UnknownId, fail, 0, 1}

Proposition 18. For every term u, v we have, the following axiom is a consequence of the axioms Ax:

len(u)
.
= len(v) len(u) 6 .= 0

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= false when


ne 6≡ n′e
fresh(ne,n′e;u, v)

n vpk(·),sk(·) u, v ∧ sk(n) vdec(_,·) u, v

Proof. We give directly the derivation:

pk(n), {u}ne
pk(n), len(v) ∼ pk(n), {u}ne

pk(n), len(v)
Refl

len(v) .= len(v)
Refl

len(v) .= len(1len(v))

pk(n), {u}ne
pk(n), {v}

n′e
pk(n) ∼ pk(n), {u}ne

pk(n), {1
len(v)}n′e

pk(n)

CCA1

{u}ne
pk(n), {v}

n′e
pk(n) ∼ {u}

ne
pk(n), {1

len(v)}n′e
pk(n)

Restr

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= eq({u}ne

pk(n), {1
len(v)}n′e

pk(n))
FA

eq({u}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false

eq({u}ne
pk(n), {v}

n′e
pk(n))

.
= false

Trans



To show eq({u}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false, we apply again transitivity:

eq({u}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= eq({0len(u)}ne

pk(n), {1
len(v)}n′e

pk(n)) eq({0len(u)}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false

eq({u}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false

Trans

Now, we give the derivation of the left premise:

pk(n), {1len(v)}n′e
pk(n), len(u) ∼ pk(n), {1len(v)}n′e

pk(n), len(u)
Refl len(u)

.
= len(u)

Refl

len(u)
.
= len(0len(u))

pk(n), {u}ne
pk(n){1

len(v)}n′e
pk(n) ∼ pk(n), {0len(u)}ne

pk(n){1
len(v)}n′e

pk(n)

CCA1

{u}ne
pk(n){1

len(v)}n′e
pk(n) ∼ {0

len(u)}ne
pk(n){1

len(v)}n′e
pk(n)

Restr

eq({u}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= eq({0len(u)}ne

pk(n), {1
len(v)}n′e

pk(n))
FA

And finally we prove the right premise eq({0len(u)}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false:

eq(0, 1)
.
= false

EQConst
len(0) 6 .= 0 len(u) 6 .= 0

eq(0len(u), 1len(v))
.
= false

l-neq

eq({0len(u)}ne
pk(n), {1

len(v)}n′e
pk(n))

.
= false

EQInj({·}_
_) +R



• The set Axite of equality axioms related to the if_then_else_ function symbol:

f(~u, if b then x else y,~v)
.
= if b then f(~u, x,~v) else f(~u, y,~v) for any f ∈ Fs

if (if b then a else c) then x else y .
= if b then (if a then x else y) else (if c then x else y) if true then x else y .

= x

if false then x else y .
= y if b then x else x .

= x if b then (if b then x else y) else z .
= if b then x else z

if b then x else (if b then y else z) .
= if b then x else z

if b then (if a then x else y) else z .
= if a then (if b then x else z) else (if b then y else z)

if b then x else (if a then y else z) .
= if a then (if b then x else y) else (if b then x else z)

• The set Axeq of equality and disequality axiom:

πi(〈x1 , x2〉)
.
= xi for i ∈ {1, 2} πi(〈x1 , x2 , x3〉)

.
= xi for i ∈ {1, 2, 3} dec({x}zpk(y), sk(y))

.
= x

eq(x, x)
.
= true eq(A,B)

.
= false

6=-Const for every A,B ∈ Scst
s.t. A 6 .= B eq(t,n)

.
= false

EQIndep
if n 6∈ st(t)

• The set Axlen of length axioms:

len(u)
.
= len(s) len(v)

.
= len(t)

len(〈u , v〉) .
= len(〈s , t〉) len(ID1)

.
= len(ID2) for every ID, ID′ ∈ Sid

len(suc(sqn-initID
U ))

.
= len(sqn-initID

U ) len(sqn-initID1

U )
.
= len(sqn-initID2

U ) len(0x)
.
= x len(1x)

.
= x

len(x) 6 .= 0 when x ∈ Scst

len(u) 6 .= 0

len(〈u , v〉) 6 .= 0

len(v) 6 .= 0

len(〈u , v〉) 6 .= 0

A 6 .= B len(A) 6 .= 0 x 6 .= 0

Ax 6 .= By
l-neq

• The set Axinj of injectivity axioms:

¬eq(u, s) ∧ eq(〈u , v〉 , 〈s , t〉) .
= false

EQInj(〈· , _〉)
¬eq(v, t) ∧ eq(〈u , v〉 , 〈s , t〉) .

= false
EQInj(〈_ , ·〉)

¬eq(u, v) ∧ eq({u}ne
pk(n), {v}

n′e
pk(n′))

.
= false

EQInj({·}_
_)

• The set AxSQN of sequence number axioms:

range(u, v)
.
= eq(u, v) suc(u)

.
= u+ 1 sqn-initID

N ≤ sqn-initID
U

SQN-ini

φ[~u]
.
= true when ~u are ground terms

and Th(Z, 0,+,−,=,≤) |= φ[~x ]

Fig. 15. The Set of Axiom Aximpl = Axite ∪ Axeq ∪ Axlen ∪ Axinj ∪ AxSQN .



APPENDIX II
PROTOCOL

A. Symbolic Protocol

In this section we formally define the symbolic traces of the AKA+ protocol, as well as some functions and properties of
these traces.

We recall that Sid = {ID1, . . . , IDN} is the set of identities used in the protocol. We split these identities between base
identities, which are used by the normal protocol, and copies of the base identities, which we use to express the σul-unlinkability
of the protocol. We have B base identities A1, . . . ,AB , and we let Sbid be the set of base identities. Then, for every base
identity Ai, we have C copies Ai = Ai,1, . . . ,Ai,C of Ai. In total we use N = B × C distinct identities, and ID1, . . . , IDN is
an arbitrary enumeration of all the identities.

a) Valid Symbolic Trace: We recall that an symbolic trace is a sequence of action identifiers, which symbolically represents
calls from the adversary to the oracles. Remark that some sequence of action identifiers do not correspond to a valid execution
of the protocol. E.g., since the session UEID(j) cannot execute both the SUPI and the GUTI protocols, a valid symbolic trace
cannot contain both PUID(j, _) and TUID(j, _). Similarly, the HN’s second message in the SUPI protocol cannot be sent before
the first message, hence PN(j, 1) cannot appear before PN(j, 0) in τ . Formally:

Definition 35. Let (QID
U )ID∈Sid and (QjN)j∈N be the automatas given in Fig. 16. A symbolic trace τ = ai0, . . . ,ain is a valid

symbolic trace iff τ is an inter-leaving of the words wID1 , . . . , wIDN , w
0
N, . . . , w

l
N, . . . where:

• for every 1 ≤ j ≤ N , wjID is a run of QIDj
U .

• for every j ∈ N, wjN is a run of QjN.
• for every j ∈ N and 1 ≤ i ≤ n, if aii is a state of QjN then there exists i0 < i such that aii0 is a state of Qj−1N

Furthermore, τ is said to be basic if for all 1 ≤ j ≤ N , if wjID 6= ε then IDj is a base identity (i.e. IDj ∈ {A1, . . . ,AB}).

Since we only informally describe the AKA+ protocol, we cannot formally prove that every τ ∈ dom(Rul), τ is a valid
symbolic trace. Instead, we put as an assumption that any implementation of the AKA+ protocol must ensures that messages
are processed as described in QID

U and QjN.

Assumption 1. For every τ ∈ dom(Rul), τ is a valid symbolic trace

b) Modeling Unlinkability: Given a symbolic trace τ ∈ dom(Rul), there is a particular and unique symbolic trace τ
which is the “most anonymised trace” corresponding to τ . Intuitively, τ is the trace τ where we changed a user identity every
time we could (i.e. every time NSID(_) appears). This is useful to prove that the 5G-AKA protocol is σul-unlinkable, as it
reduces the number of cases we have to consider: we only need to show that we can derive φτ ∼ φτ for every τ ∈ dom(Rul).

Definition 36. Given an identity Ab,c where c < C, we let fresh-id(Ab,c) = Ab,c+1, and given a base identity Ab,1 we let
copies-id(Ab,1) = {Ab,1 | 1 ≤ i ≤ C}.

Definition 37. We define some functions on symbolic traces:
• We let h be the function that, given a symbolic trace τ , returns the last action in τ (or ε is τ is empty):

h(τ) =

{
ain if τ = ai0, . . . ,ain and n ≥ 0

ε if τ = ε

• Given a symbolic trace τ , we let ≺τ be the restriction of ≺ to the set of strict prefixes of τ , i.e. τ2 ≺τ τ1 iff τ2 ≺ τ1 and
τ1 ≺ τ .

• We extend ≺τ to symbolic actions as follows: we have ai ≺τ τ1 (resp. τ1 ≺τ ai) iff there exists τ2 such that h(τ2) = ai
and τ2 ≺τ τ1 (resp. τ1 ≺τ τ2).

Definition 38. Given a symbolic trace τ with less than C actions NSID(_) for every ID, we define the symbolic trace τ where
each time we encounter a action NSID(j), we replace all subsequent action with agent ID by action with agent fresh-id(ID):

τ =

{
NSν ID(j), τ0[ν ID/ID] when τ = NSID(j), τ0 and ν ID = fresh-id(ID)

ai, τ0 when τ = ai, τ0 and ai 6∈ {NSID(j) | ID ∈ Sid, j ∈ N}

One can easily check that Rul(τ, τ). Besides, remark that for every (τl, τr) ∈ Rul we have τl = τr. Moreover, ∼ is a
transitive relation. Therefore, instead of proving that for every Rul(τl, τr) the formula στl ∼ στr can be derived using Ax, it
is sufficient to show that for every τ ∈ dom(Rul), we can derive στ ∼ στ using Ax. Formally:

Proposition 19. The 5G-AKA protocol is σul-unlinkable in any computational model satisfying some axioms Ax if for every
τ ∈ dom(Rul), there is a derivation using Ax of φτ ∼ φτ .



Transition System QID
U :

E≤j−1
ID

PUID(j, 0) PUID(j, 1) PUID(j, 2)

FUID(j)

E≤j−1
ID

TUID(j, 0) TUID(j, 1)

E≤j−1
ID

NSID(j)

Transition System QjN:

PN(j, 0) PN(j, 1)

FN(j)

TN(j, 0) TN(j, 1)

Convention: where E≤jID = {PUID(j0, i), TUID(j0, i), FUID(j0), NSID(j0) | j0 ≤ j}, the initial states of QID
U are PUID(0, 1) and

TUID(0, 0), and the initial states of QjN are PN(j, 0) and TN(j, 0). Every state of QID
U or QjN is final.

Fig. 16. The transition systems used to define valid symbolic traces.

Proof. Assume that for every τ ∈ dom(Rul), we can derive using Ax the formula φτ ∼ φτ . Then, using Proposition 1 we
know that 5G-AKA protocol is σul-unlinkable in any computational model satisfying axioms Ax if for every (τl, τr) ∈ Rul,
we can derive φτl ∼ φτr . If AKA+ is σul-unlinkable with N identities then it is σul-unlinkable with N ′ identities if N ′ ≤ N .
Therefore, w.l.o.g. we can always assume that we have more identities than actions NSID(_) in τ . Hence τ is well-defined,
and we know that (τl, τl) ∈ Rul and (τr, τr) ∈ Rul. By hypothesis, we have derivations of φτl ∼ φτl and φτr ∼ φτr . Since
τl = τr, and using the transitivity and symmetry axioms Trans and Sym, we get a derivation of φτl ∼ φτr . This concludes
this proof.

Proposition 20. If τ is a valid basic symbolic trace with less than C actions NS then τ is a valid symbolic trace.

Proof. The proof is straightforward by induction over τ .

Definition 39. Given a basic trace τ and a basic identity ID = Ai,0, we let ντ (ID) be the identity Ai,l where l is the number
of occurrences of NSID(_) in τ .

Definition 40. Let τ be a symbolic trace of actions ai0, . . . ,ain. Then for all 0 ≤ i < n, sucτ (aii) = aii+1.

Definition 41. We define the partial session function:

sessionN(ai) = j when ai = X(j, _), X ∈ {PN, TN, FN}

Definition 42. We let session-startedj(τ) be true if and only if there exists ai ∈ τ s.t. session(ai) = j.

B. The AKA+ Protocol

To show that the AKA+ protocol is σul-unlinkable, we need to know, for every identity ID ∈ Sid, if there was a successful
SUPI session since the last NSID(_). To do this, we extend the set of variables Svar by adding a phantom variable syncID

U for
every ID ∈ Sid. We also extend the symbolic state updates of NSID(_) and PUID(j, 2) as follows:

• For ai = NSID(j):

σup
τ ≡

{
valid-gutiID

U 7→ false
syncID

U 7→ false

• For ai = PUID(j, 2):

σup
τ ≡

{
e-authID

U 7→ if acceptID
τ then σin

τ (b-authID
U ) else fail

syncID
U 7→ σin

τ (syncID
U ) ∨ acceptID

τ

Remark that the variable syncID
U is read only to update its value. It is not used in the actual protocol. By consequence, the

AKA+ protocol is σul-unlinkable if and only if the extended AKA+ protocol is σul-unlinkable.
We now give the definition of the initial symbolic state σε, which we omitted in the body:



Definition 43. The symbolic state σε is the function from Svar to terms defined by having, for every ID ∈ Sid and j ∈ N:

σε(SQNID
U ) ≡ sqn-initID

U σε(SQNID
N ) ≡ sqn-initID

N σε(GUTIID
X ) ≡ UnSet σε(e-authID

U ) ≡ fail σε(b-authID
U ) ≡ fail

σε(e-authjN) ≡ fail σε(b-authjN) ≡ fail σε(s-valid-gutiID
U ) ≡ false σε(valid-gutiID

U ) ≡ false

σε(sessionID
N ) ≡ false σε(syncID) ≡ false

C. Invariants and Necessary Acceptance Conditions

a) Notations: From now on, the set of axioms Ax is fixed, and we stop specify the set of axioms used: we say that we
have a derivation of a formula φ to mean that φ can be deduced from Ax. Furthermore, we say that φ holds when there is a
derivation of φ.

Moreover, we abuse notations and write u = v instead of u .
= v. We can always disambiguate using the context: if we expect

a term, then u = v stands for the term eq(u, v), whereas if a formula is expected then u = v stands for eq(u, v) ∼ true. We
extends this to any boolean term: if b is a boolean term then we say that b holds if we can show that b ∼ true holds. For
example, στ (SQNID

U ) ≥ στ (SQNID
N ) holds if we can show that geq(στ (SQNID

U ), στ (SQNID
N )) ∼ true.

b) Properties: We now start to state and prove properties of the AKA+ protocol.

Proposition 21. For every valid symbolic trace τ , for every ID1, ID2 ∈ Sid, we have a derivation of:

len(σin
τ (SQNID1

U )) = len(σin
τ (SQNID2

U ))

Proof. It is easy to show by induction over τ that for every ID ∈ Sid, there exists an if-context C, terms ~b and integers (ki)i
such that:

σin
τ (SQNID

U ) = C[~b � (sucki(sqn-initID
U ))i)]

Therefore, let C1, C2, ~b1,~b2 and (k1i )i, (k
2
j )j be such that:

σin
τ (SQNID1

U ) = C1[~b1 � (suck
1
i (sqn-initID1

U ))i)] σin
τ (SQNID2

U )) = C2[~b2 � (suck
2
j (sqn-initID2

U ))j)]

Moreover, it is trivial to show using the axioms in Axlen that for every i, i′, j, j′:

len(suck
1
i (sqn-initID1

U )) = len(suck
1
i′ (sqn-initID1

U )) = len(suck
2
j (sqn-initID2

U )) = len(suck
2
j′ (sqn-initID2

U ))

It is then easy, using R, to get a derivation of:

len(σin
τ (SQNID1

U )) = len(σin
τ (SQNID2

U ))

The following proposition states that nN appears only in the HN public key pk(nN) and secret key sk(nN), and that for
every ID ∈ Sid, the keys kID and kID

m appear only in key position in Mac1– Mac5. These properties will be useful to apply the
cryptographic axioms later.

Proposition 22 (Invariant (INV-KEY)). For all valid symbolic trace τ , we have:

nN vpk(·),sk(·) φτ ∧ sk(nN) vdec(_,·) φτ

∀1 ≤ i ≤ N, kIDi
m vMac_

·(_) φτ

∀1 ≤ i ≤ N, kIDi vf·(_),f r
· (_) φτ

Proof. The proof is straightforward by induction on τ .

Proposition 23. For every valid symbolic trace τ , for every τ2 ≺τ τi and identity ID ∈ Sid, we have:στ2(GUTIID
U ) = UnSet ∧

∧
τ1=_,FUID(j1)
τ2≺τ τ1≺τ τi

¬acceptID
τ1

→ σin
τi(GUTIID

U ) = UnSet

Proof. The proof is straightforward by induction on τi.

We now state several simple properties of our system.

Proposition 24. Let τ = _,ai be a valid symbolic trace, then:
1) (A1) If ¬session-startedj(τ) then nj 6∈ st(φτ ).



2) (A2) For all τ0 = _, PUID(j0, 2) � τ and τ1 = _, PUID(j1, 2) � τ , if τ0 6= τ1 then:

σin
τ0(SQNID

U ) 6= σin
τ1(SQNID

U )

3) (A3) For every τ0 = _, PUID(j0, 2), τ1 = _, PUID(j1, 1) such that τ1 ≺τ τ0, if j0 6= j1 then:

σin
τ0(SQNID

U ) 6= suc(σin
τ1(SQNID

U ))

4) (A4) For all ID0 6= ID1,(
σin
τ (GUTIID0

N ) 6= UnSet ∧ σin
τ (GUTIID1

N ) 6= UnSet
)
→ σin

τ (GUTIID0
N ) 6= σin

τ (GUTIID1
N )

5) (A5) , (A6) , (A7) If h(τ) = PN(j, 1), TN(j, 0) or TN(j, 1), then for every ID0 6= ID1,(
¬acceptID0

τ

)
∨
(
¬acceptID1

τ

)
6) (A8) For every ID ∈ Sid, j ∈ N, σin

τ (e-authID
U ) = nj → σin

τ (b-authID
U ) = nj .

Proof. All these properties are simple to show:

(A1) is trivial by induction over τ .
•• (A2) and (A3) both follow from the fact that if τ = _, PUID(j, 1) then στ (SQNID

U ) ≡ suc(σin
τ (SQNID

U )), and therefore
στ (SQNID

U ) > σin
τ (SQNID

U ).
• (A5) and (A7) follow easily from the unforgeability axioms EUF-MAC.
• To prove (A4), we first observe that for every ID ∈ Sid, we initially have σε(GUTIID

N ) ≡ UnSet, and that the only value
we store in GUTIID

N are UnSet or GUTIi for some i ∈ N. Therefore it is easy to show that for every τn ≺ τ :

σin
τn(GUTIID

N ) 6= UnSet→
∨
i∈N

σin
τn(GUTIID

N ) = GUTIi

Moreover, we can only store GUTIi in GUTIID
N at PN(i, 1) or TN(i, 1), and by validity τ cannot contain both PN(i, 1) and

TN(i, 1). We conclude observing that we cannot have acceptID0
τn

and acceptID1
τn

if τn = _, PN(i, 1) or _, TN(i, 1) using
(A5) and (A7). The result follows.

• (A6) is a consequence of (A4).
• (A8) follows from the fact that whenever a new session of the protocol is started, we reset both b-authID

U and e-authID
U .

Then e-authID
U is either set to fail or to b-authID

U .

We can now state and prove our first acceptance necessary conditions.

Lemma 6. Let τ = _,ai be a valid symbolic trace, then:
1) (Acc1) If ai = PN(j, 1), then for every ID we have:

acceptID
τ →

∨
τ0=_,PUID(j0,1)≺τ

(
π1(g(φin

τ )) = {
〈

ID , σin
τ0(SQNID

U )
〉
}nj0e

pkN
∧ g(φin

τ0) = nj
)

2) (Acc2) If ai = PUID(j, 2). Let τ1 = _, PUID(j, 1) ≺ τ . Then:

τ :

PUID(j, 1)

τ1

PN(j0, 1)

τ0

PUID(j, 2)

τ

acceptID
τ →

∨
τ0=_,PN(j0,1)
τ1≺τ τ0

acceptID
τ0
∧ g(φin

τ1) = nj0 ∧ π1(g(φin
τ0)) = {〈ID , σin

τ1(SQNID
U )〉}nje

pkN

3) (Acc3) If ai = TUID(j, 1) then:

acceptID
τ →

∨
τ0=_,TN(j0,0)

τ0≺τ

(
acceptID

τ0
∧ π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N )

)

4) (Acc4) If ai = TN(j, 1) then:

acceptID
τ →

∨
τ0=_,TUID(_,1)≺τ

acceptID
τ0
∧ π1(g(φin

τ0)) = nj



D. Proof of Lemma 6

Proof of (Acc1): Let ai = PN(j, 1) and km ≡ kim. Recall that:

acceptID
τ ≡

(
eq(π1(dec(π1(g(φin

τ )), skN)), ID)

∧ eq(π2(g(φin
τ )),Mac1km

(〈π1(g(φin
τ )) , nj〉))

)
We apply the EUF-MAC1 axiom (invariant (INV-KEY) guarantees that the syntactic side-conditions hold):

acceptID
τ → π2(g(φin

τ )) = Mac1km
(〈π1(g(φin

τ )) , nj〉)

→


∨

τ0=_,PUID(j0,1)≺τ

π2(g(φin
τ )) = Mac1km

(〈{
〈

ID , σin
τ0(SQNID

U )
〉
}nj0e

pkN
, g(φin

τ0)〉)

∨
∨

τ0=_,PN(j0,1)≺τ

π2(g(φin
τ )) = Mac1km

(〈π1(g(φin
τ0)) , nj0〉)


From the validity of τ we know that j0 6= j. Hence using the axiom Fresh, we get that nj0 6= nj . Using the right injectivity
of the pair (axiom EQInj(〈_ , ·〉)), we know that:

〈π1(g(φin
τ )) , nj〉 6= 〈π1(g(φin

τ0)) , nj0〉

From the collision-resistance of Mac (axiom CR1), we have:

Mac1km
(〈π1(g(φin

τ )) , nj〉) = Mac1km
(〈π1(g(φin

τ0)) , nj0〉)→ 〈π1(g(φin
τ )) , nj〉 = 〈π1(g(φin

τ0)) , nj0〉

Therefore:

π2(g(φin
τ )) = Mac1km

(〈π1(g(φin
τ )) , nj〉) → ¬

 ∨
τ0=_,PN(j0,1)≺τ

π2(g(φin
τ )) = Mac1km

(〈π1(g(φin
τ0)) , nj0〉)

 (7)

From which it follows that:

acceptID
τ →

∨
τ0=_ PUID(j0,1)≺τ

π2(g(φin
τ )) = Mac1km

(〈{
〈

ID , σin
τ0(SQNID

U )
〉
}nj0e

pkN
, g(φin

τ0)〉)

To conclude, we use CR1, EQInj(〈_ , ·〉) and EQInj(〈· , _〉) to show that for all τ0 = _, PUID(j0, 1) ≺ τ :(
π2(g(φin

τ )) = Mac1km
(〈π1(g(φin

τ )) , nj〉)

∧ π2(g(φin
τ )) = Mac1km

(〈{
〈

ID , σin
τ0(SQNID

U )
〉
}nj0e

pkN
, g(φin

τ0)〉)

)
→

(
π1(g(φin

τ )) = {
〈

ID , σin
τ0(SQNID

U )
〉
}nj0e

pkN

∧ nj = g(φin
τ0)

)
This, together with 7, concludes the proof.

Proof of (Acc2):

τ :

PUID(j, 1)

τ1

PN(j0, 1)

τ0

PUID(j, 2)

τ

If ai = PUID(j, 2). Let km be the Mac key corresponding to ID, i.e. km ≡ kID
m . Recall that:

acceptID
τ ≡ g(φin

τ ) = Mac2km
(
〈
σin
τ (b-authID

U ) , σin
τ (SQNID

U )
〉
)

a) Part 1: We are going to apply the P-EUF-MAC2 axiom. We let:

S = {τ0 | τ0 = _, PN(j0, 1) ≺ τ}

and for all S0 ⊆ S we let:
bS0 =

( ∧
τ0∈S0

acceptID
τ0

)
∧
( ∧
τ0∈S0

¬acceptID
τ0

)
Then (bS0)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every τ0 = _, PN(j0, 1) ≺ τ ,
if τ0 ∈ S0 then we can rewrite [bS0

]tτ0 into a term [bS0
]tS0
τ0 by removing the branch corresponding to acceptID

τ0
. Therefore:

Mac2km
(〈nj0 , suc(π2(dec(π1(g(φin

τ0)), skN)))〉) ∈ set-mac2km
(tS0
τ0 ) if and only if τ0 ∈ S0



Hence by applying the P-EUF-MAC2 axiom we get that:

acceptID
τ →

∨
S0⊆S

bS0
∧

∨
τ0∈S0

g(φin
τ ) = Mac2km

(〈nj0 , suc(π2(dec(π1(g(φin
τ0)), skN)))〉)

∨
∨

τ0=_,PUID(j0,2)≺τ

g(φin
τ ) = Mac2km

(
〈
σin
τ0(b-authID

U ) , σin
τ0(SQNID

U )
〉
)


We have:(

g(φin
τ ) = Mac2km

(
〈
σin
τ (b-authID

U ) , σin
τ (SQNID

U )
〉
)

∧ g(φin
τ ) = Mac2km

(
〈
σin
τ0(b-authID

U ) , σin
τ0(SQNID

U )
〉
)

)
→

〈
σin
τ (b-authID

U ) , σin
τ (SQNID

U )
〉

=
〈
σin
τ0(b-authID

U ) , σin
τ0(SQNID

U )
〉

(CR2)

→ σin
τ (SQNID

U ) = σin
τ0(SQNID

U ) (EQInj(〈_ , ·〉))
→ false (P9)

Moreover, remark that for S0 = ∅, we have:( ∨
τ0∈S0

g(φin
τ ) = Mac2km

(〈nj , suc(π2(dec(π1(g(φin
τ0)), skN)))〉)

)
= false

Putting everything together, we get that:

acceptID
τ →

∨
S0⊆S
S0 6=∅

(
bS0 ∧

∨
τ0∈S0

g(φin
τ ) = Mac2km

(〈nj , suc(π2(dec(π1(g(φin
τ0)), skN)))〉)

)

→
∨
S0⊆S
S0 6=∅

∨
τ0∈S0

acceptID
τ0
∧ g(φin

τ ) = Mac2km
(〈nj , suc(π2(dec(π1(g(φin

τ0)), skN)))〉)

→
∨

τ0=_,PN(j0,1)
τ0≺τ

acceptID
τ0
∧ g(φin

τ ) = Mac2km
(〈nj , suc(π2(dec(π1(g(φin

τ0)), skN)))〉)

→
∨

τ0=_,PN(j0,1)
τ0≺τ

acceptID
τ0
∧
〈
σin
τ (b-authID

U ) , σin
τ (SQNID

U )
〉

=
〈
nj , suc(π2(dec(π1(g(φin

τ0)), skN)))
〉

(CR2)

→
∨

τ0=_,PN(j0,1)
τ0≺τ

acceptID
τ0
∧ σin

τ (b-authID
U ) = nj

∧ σin
τ (SQNID

U ) = suc(π2(dec(π1(g(φin
τ0)), skN)))

(EQInj(〈_ , ·〉) and EQInj(〈· , _〉))

b) Part 2: It only remains to show that we can restrict ourselves to the τ0 such that τ1 ≺τ τ0. Using (Acc1) we know
that:

acceptID
τ0
→

∨
τ′=_,PUID(j′,1)

τ′≺τ τ0

(
π1(g(φin

τ0)) = {
〈

ID , σin
τ ′(SQNID

U )
〉
}nj
′

e
pkN
∧ g(φin

τ ′) = nj0
)

Let τ ′ = _, PUID(j′, 1) such that τ ′ ≺τ τ0. We now show that if j′ 6= j then the tests fail, which proves the impossibility of
replaying an old message here. Assume j′ 6= j, then:

σin
τ (SQNID

U ) = suc(π2(dec(π1(g(φin
τ0)), skN))) ∧ π1(g(φin

τ0)) = {
〈

ID , σin
τ ′(SQNID

U )
〉
}nj
′

e
pkN

→ σin
τ (SQNID

U ) = suc(σin
τ ′(SQNID

U ))

→ false (P9b)

We deduce that:

acceptID
τ →

∨
τ0=_,PN(j0,1)
τ1≺τ τ0

acceptID
τ0
∧ g(φin

τ1) = nj0 ∧ π1(g(φin
τ0)) = {〈ID , σin

τ1(SQNID
U )〉}nje

pkN



Proof of (Acc3): Let ai = TUID(j, 1) and k be the f key corresponding to ID. We know that:

acceptID
τ → π3(g(φin

τ )) = Mac3km
(〈π1(g(φin

τ )) , π2(g(φin
τ ))⊕ fk(π1(g(φin

τ ))) , σin
τ (GUTIID

U )〉)

We are going to apply the P-EUF-MAC3 axiom. We let S = SN ∪ SU, where:

SN = {τ0 | τ0 = _, TN(j0, 1) ≺ τ} SU = {τ0 | τ0 = _, TUID(j0, 1) ≺ τ}

and for all S0 ⊆ S we let:

bS0 =
( ∧
τ0∈S0

acceptID
τ0

)
∧
( ∧
τ0∈S0

¬acceptID
τ0

)
Then (bS0

)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every τ0 = _, TN(j0, 1) ≺ τ ,
if τ0 ∈ S then we can rewrite [bS0 ]tτ0 into a term [bS0 ]tS0

τ0 by removing the branch corresponding to acceptID
τ0

. Therefore:

Mac3km
(〈nj0 , σin

τ0(SQNID
N ) , σin

τ0(GUTIID
N )〉) ∈ set-mac3km

(tS0
τ0 ) if and only if τ0 ∈ S0

Similarly for every τ0 = _, TUID(j0, 1) ≺ τ , if τ0 ∈ S then we can rewrite [bS0 ]tτ0 as follows:

[bS0
]tτ0 =

{
[bS0 ]Mac4km

(π1(g(φin
τ0))) if τ0 ∈ S0

[bS0
]error if τ0 ∈ S0

Hence by applying the P-EUF-MAC4 axiom we get that:

acceptID
τ →

∨
S0⊆S

(
bS0
∧

∨
τ0∈S0∩SN

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ0(SQNID

N ) , σin
τ0(GUTIID

N )〉)

)

By CR3, EQInj(〈_ , ·〉) and EQInj(〈· , _〉) we have:(
π3(g(φin

τ )) = Mac3km
(
〈
π1(g(φin

τ )) , π2(g(φin
τ ))⊕ fk(π1(g(φin

τ ))) , σin
τ (GUTIID

U )
〉
)

∧ π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ0(SQNID

N ) , σin
τ0(GUTIID

N )〉)

)
→

π1(g(φin
τ )) = nj0 ∧ π2(g(φin

τ ))⊕ fk(π1(g(φin
τ ))) = σin

τ0(SQNID
N ) ∧ σin

τ (GUTIID
U ) = σin

τ0(GUTIID
N )

Using the idempotence of the ⊕ we know that:(
π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ ))⊕ fk(π1(g(φin

τ ))) = σin
τ0(SQNID

N )
)
→ π2(g(φin

τ )) = σin
τ0(SQNID

N )⊕ fk(nj0)

Moreover, remark that if S0 ∩ SN = ∅, we have:

∨
S0⊆S

(
bS0 ∧

∨
τ0∈S0∩SN

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ0(SQNID

N ) , σin
τ0(GUTIID

N )〉)

)
= false

Putting everything together, we get that:

acceptID
τ →

∨
S0⊆S

S0∩SN 6=∅

(
bS0 ∧

∨
τ0∈S0∩SN

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ0(SQNID

N ) , σin
τ0(GUTIID

N )〉)

)

→
∨
S0⊆S

S0∩SN 6=∅

∨
τ0∈S0∩SN

acceptID
τ0
∧ π3(g(φin

τ )) = Mac3km
(〈nj0 , σin

τ0(SQNID
N ) , σin

τ0(GUTIID
N )〉)

→
∨

τ0=_,TN(j0,0)≺τ

acceptID
τ0
∧ π3(g(φin

τ )) = Mac3km
(〈nj0 , σin

τ0(SQNID
N ) , σin

τ0(GUTIID
N )〉)

→
∨

τ0=_,TN(j0,0)≺τ

acceptID
τ0
∧ π1(g(φin

τ )) = nj0
∧ π2(g(φin

τ )) = σin
τ0(SQNID

N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N )



Proof of (Acc4): We are going to apply the P-EUF-MAC4 axiom. We let S = {τ0 | τ0 = _, TUID(j0, 1) ≺ τ}, and for all
S0 ⊆ S we let :

bS0 =
( ∧
τ0∈S0

acceptID
τ0

)
∧
( ∧
τ0∈S0

¬acceptID
τ0

)
Then (bS0

)S0⊆S is a valid CS partition. It is straightforward to check that for every S0 ⊆ S, for every τ0 = _, TUID(j0, 1) ≺ τ :

[bS0
]tτ0 =

{
[bS0

]Mac4km
(π1(g(φin

τ0))) if τ0 ∈ S0

[bS0 ]error if τ0 ∈ S0

Hence by applying the P-EUF-MAC4 axiom we get that:

g(φin
τ ) = Mac4km

(nj)→
∨
S0⊆S

bS0
∧


∨

τ0∈S0

g(φin
τ ) = Mac4km

(π1(g(φin
τ0)))

∨
∨

τ0=_,TN(j0,1)≺τ

g(φin
τ ) = Mac4km

(nj0)


Applying the CR4 axiom we get that:

g(φin
τ ) = Mac4km

(nj0) ∧ g(φin
τ ) = Mac4km

(nj)→ nj0 = nj (CR4)
→ false (EQIndep)

Moreover, remark that for S0 = ∅, we have:

¬
(
bS0
∧
∨
τ0∈S0

g(φin
τ ) = Mac4km

(π1(g(φin
τ0)))

)
Putting everything together, we get that:

g(φin
τ ) = Mac4km

(nj)→
∨
S0⊆S
S0 6=∅

(
bS0 ∧

∨
τ0∈S0

g(φin
τ ) = Mac4km

(π1(g(φin
τ0)))

)
Let S0 ⊆ S with S0 6= ∅, and let τ0 ∈ S0. Using the CR4 axiom we know that:

g(φin
τ ) = Mac4km

(nj) ∧ g(φin
τ ) = Mac4km

(π1(g(φin
τ0))) → π1(g(φin

τ0)) = nj

Therefore:

g(φin
τ ) = Mac4km

(nj)→
∨
S0⊆S
S0 6=∅

(
bS0 ∧

∨
τ0∈S0

g(φin
τ ) = Mac4km

(π1(g(φin
τ0)))

)
→

∨
S0⊆S
S0 6=∅

(
bS0
∧
∨

τ0∈S0

π1(g(φin
τ0)) = nj

)
And using the fact that bS0

→ acceptID
τ0

:

g(φin
τ ) = Mac4km

(nj)→
∨

τ0=_,TUID(_,1)≺τ

acceptτ0 ∧ π1(g(φin
τ0)) = nj

We conclude by observing that acceptID
τ → g(φin

τ ) = Mac4km
(nj).

E. Authentication of the User by the Network

We now prove that the AKA+ protocol provides authentication of the user the network. Remark that the lemma below
subsumes Lemma 1.

Lemma 7. For all valid symbolic trace τ , φin
τ guarantees authentication of the user by the network:

∀ID ∈ Sid, j ∈ N, σin
τ (e-authjN) = ID →

∨
τ ′�τ

σin
τ ′(b-authID

U ) = nj

Moreover, if τ = _, TN(j, 1) then:

acceptID
τ →

∨
τ0=_,TUID(_,1)≺τ

στ0(b-authID
U ) = nj



Proof. We prove this by induction on τ . First, for τ = ε we have that for every ID σin
τ (e-authjN) = ⊥ 6= ID. Therefore the

property holds.
Let τ = τ0,ai. Observe that for all j0, if σup

τ (e-authj0N ) = ⊥ and if the authentication property holds for φin
τ0 :

∀ID ∈ Sid, σin
τ0(e-authj0N ) = ID →

∨
τ ′�τ0

σin
τ ′(b-authID

U ) = nj0

then it holds for τ . Therefore we only need to show that authentication holds for ai = PN(j, 1) with j0 = j, and for ai = TN(j, 1)
with j0 = j.

• Case ai = PN(j, 1): Let ID ∈ Sid. Using EQConst, we know that σin
τ (e-authj0N ) = ID → acceptID

τ is true. Using (Acc1)
of Proposition 24, we deduce that:

σin
τ (e-authjN) = ID →

∨
τ0=_,PUID(j0,1)≺τ

g(φin
τ0) = nj (8)

By validity of τ , we know there exists τ2 such that τ2 = _, PN(j, 0) ≺ τ . Let τ0 ≺τ τ2. We have ¬session-startedj(ai0),
therefore using invariant (A1) we get that nj 6∈ st(φin

τ0). It follows from axiom EQIndep that ¬g(φin
τ0) = nj . Hence:∨

τ0=_,PUID(j0,1)≺τ

g(φin
τ0) = nj ↔

∨
τ0=_,PUID(j0,1)
τ2≺τ τ0≺τ

g(φin
τ0) = nj (9)

Let τ0 be such that τ2 ≺τ τ0 ≺ τ and τ0 = _, PUID(j0, 1). Since σup
τ0 (b-authID

U ) = g(φin
τ0), we know that στ0(b-authID

U ) =
g(φin

τ0). Hence:

g(φin
τ0) = nj → στ0(b-authID

U ) = nj

Which shows that: ∨
τ0=_,PUID(j0,1)
τ2≺τ τ0≺τ

g(φin
τ0) = nj →

∨
τ0=_,PUID(j0,1)
τ2≺τ τ0≺τ

στ0(b-authID
U ) = nj (10)

Since {τ0 | τ0 = _, PUID(j0, 1) ∧ τ2 ≺τ τ0 ≺ τ} is a subset of {τ1 | τ1 ≺ τ}, we have:∨
τ0=_,PUID(j0,1)
τ2≺τ τ0≺τ

στ0(b-authID
U ) = nj →

∨
τ0≺τ

στ0(b-authID
U ) = nj

→
∨
τ0�τ

σin
τ0(b-authID

U ) = nj (11)

We conclude the proof using 8, 9, 10 and 11.
• Case ai = TN(j, 1): Using (Acc4), we know that:

acceptID
τ →

∨
τ0=_,TUID(_,1)≺τ

acceptτ0 ∧ π1(g(φin
τ0)) = nj

Moreover, for every τ0 = _, TUID(_, 1) ≺ τ , we have:

acceptID
τ0
∧ π1(g(φin

τ0)) = nj → στ0(b-authID
U ) = nj

Hence:

acceptID
τ →

∨
τ0=_,TUID(_,1)≺τ

acceptτ0 ∧ π1(g(φin
τ0)) = nj

→
∨

τ0=_,TUID(_,1)≺τ

στ0(b-authID
U ) = nj

→
∨
τ0�τ

σin
τ0(b-authID

U ) = nj



F. Authentication of the Network by the User

We now prove that the AKA+ protocols provides authentication of the network by the user. We actually prove the stronger
result that for any valid symbolic trace τ , if the authentication of UEID succeeded at instant τ (i.e. σin

τ (e-authID
U ) is not fail or

⊥), then there exists some j ∈ N such that UEID authenticated the session HN(j0.

Lemma 8. For all valid symbolic trace τ , φin
τ guarantees authentication of the network by the user. For all ID ∈ Sid and

j ∈ N, we define the formulas:

suc-authτ (ID) ≡ σin
τ (e-authID

U ) 6= fail ∧ σin
τ (e-authID

U ) 6= ⊥
authτ (ID, j) ≡ σin

τ (b-authjN) = ID ∧ nj = σin
τ (e-authID

U )

Then we have:
∀ID ∈ Sid, suc-authτ (ID) →

∨
j∈N authτ (ID, j)

Proof. We prove this by induction on τ . First, for τ = ε we have that for every j, σin
τ (e-authjN) = ⊥. Therefore the property

holds. Let τ = τ0,ai, assume that:

∀ID ∈ Sid, suc-authτ0(ID) →
∨
j∈N authτ0(ID, j)

If for every j0 we have:
σup
τ (b-authj0N ) = ⊥ ∀ID ∈ Sid, σ

up
τ (e-authID

U ) = ⊥ (12)

then we have authentication of the network by the user at τ . Therefore we only need to show that authentication holds for τ
in the cases where ai is equal to PN(j, 0), PN(j, 1), PUID(j, 2), TN(j, 0) or TUID(j, 1).
• Case ai = PN(j, 0). we are going to show that for all ID ∈ Sid, j0 ∈ N, we have:

(suc-authτ (ID) ∧ authτ (ID, j0)) ↔ (suc-authτ0(ID) ∧ authτ0(ID, j0)) (13)

which implies the wanted result. Let ID ∈ Sid, j0 ∈ N.
– In the case j0 6= j, using the validity of τ , we know that PN(j, 1) 6≺ τ . This implies that σin

τ (b-authjN) = ⊥ 6= ID, which
in turn implies that ¬authτ (ID, j). By a similar reasoning, we get that PN(j, 1) 6∈ τ0, therefore σin

τ0(b-authjN) 6= ID,
and by consequence ¬authτ0(ID, j). This concludes the proof of the validity of (13).

– In the case j0 = j, since σin
τ (b-authjN) = ⊥ 6= ID we know that authτ (ID, j) = false. Similarly authτ0(ID, j) = false.

Therefore (13) holds for j0 = j.
• Case ai = PN(j, 1). Here also we are going to show that (13) holds for all j0. Let ID ∈ Sid, j0 ∈ N.

– If j0 6= j, we have σup
τ (b-authj0N ) = ⊥ and σup

τ (e-authID
U ) = ⊥. It follows that (13) holds.

– If j0 = j, using the validity of τ we know that σin
τ0(b-authjN) ≡ ⊥. From EQConst it follows that σin

τ0(b-authjN) 6= ID,
and therefore authτ0(ID, j) = false.
To conclude this case, we only need to show that (suc-authτ (ID) ∧ authτ (ID, j)) = false.
First, assume that there never was a call to PUID(_, 2), i.e. PUID(_, 2) 6≺ τ1. Then σin

τ (e-authID
U ) ≡ ⊥, and therefore

suc-authτ (ID) = false.
Otherwise, let τ0 = _, PUID(j0, 2) be the latest call to PUID(_, 2), i.e. τ0 6≺τ PUID(_, 2). By validity of τ , we know
that there exists τ2 such that τ2 = _, PUID(j0, 1). We know that σin

τ (e-authID
U ) ≡ σup

τ0 (e-authID
U ). Hence:

suc-authτ (ID) → σup
τ0 (e-authID

U ) 6= fail (by definition of suc-authτ (ID))
→ acceptID

τ0
(by definition of σup

τ0 (e-authID
U ))

→ acceptID
τ0
∧

∨
τ1=_,PN(j1,1)
τ2≺τ τ1≺τ τ0

(
g(φin

τ2) = nj1
)

(by (Acc2))

→
∨

τ1=_,PN(j1,1)
τ2≺τ τ1≺τ τ0

(
σup
τ0 (e-authID

U ) = nj1
)

→
∨

τ1=_,PN(j1,1)
τ2≺τ τ1≺τ τ0

(
σin
τ (e-authID

U ) = nj1
)

(since σin
τ (e-authID

U ) ≡ σup
τ0 (e-authID

U ))

Since τ0 ≺ τ we know that for every τ1 = _, PN(j1, 1) ∈ {τ1 | τ2 ≺ τ1 ≺τ τ0}, j1 6= j, and therefore using EQIndep
we know that (nj1 = nj)↔ false. Therefore:

suc-authτ (ID) ∧ authτ (ID, j) →
∨

τ1=_,PN(j1,1)
τ2≺τ τ1≺τ0

(
σin
τ (e-authID

U ) = nj1 ∧ nj1 6= nj ∧ authτ (ID, j)
)



And by definition of authτ (ID, j):

→
∨

τ1=_,PN(j1,1)
τ2≺τ τ1≺τ0

(
σin
τ (e-authID

U ) = nj1 ∧ nj1 6= nj ∧ σin
τ (e-authID

U ) = nj
)

→ false

• Case ai = PUID(j, 2). For all ID0 6= ID and for all j0 ∈ N, it is trivial that:

(suc-authτ (ID0) ∧ authτ (ID0, j0)) ↔ (suc-authτ0(ID0) ∧ authτ0(ID0, j0))

Therefore we only need to show that:

suc-authτ (ID) →
∨
j∈N authτ (ID, j)

First, we observe that:

suc-authτ (ID) → acceptID
τ

→
∨

τ0=_,PN(j0,1)

τ1=_,PUID(j,1)
τ1≺τ τ0

(
acceptID

τ0
∧ g(φin

τ1) = nj0 ∧
π1(g(φin

τ0)) = {〈ID , σin
τ1(SQNID

U )〉}nje
pkN

)
(by (Acc2))

Let τ0 = _, PN(j0, 1), τ1 = _, PUID(j, 1) such that τ1 ≺τ τ0. Let τ2 = _, PN(j0, 1), by validity of τ we know that τ2 ≺τ τ0.
Moreover, if τ1 ≺τ τ2 then by (A1) we have nj0 6∈ st(φin

τ1), and therefore using EQIndep we obtain that g(φin
τ1) 6= nj0 .

Hence:

suc-authτ (ID) →
∨

τ0=_,PN(j0,1)

τ1=_,PUID(j,1)
τ2=_,PN(j0,0)
τ2≺τ τ1≺τ τ0

(
acceptID

τ ∧ acceptID
τ0
∧ g(φin

τ1) = nj0 ∧
π1(g(φin

τ0)) = {〈ID , σin
τ1(SQNID

U )〉}nje
pkN

)

Moreover, we know that:

acceptID
τ0
→ σup

τ0 (b-authj0N ) = ID acceptID
τ → στ1(e-authID

U ) = σup
τ1 (b-authID

U )

We represent graphically all the information we have below:

τ :

τ2 = _, PN(j0, 0) τ1 = _, PUID(j, 1) τ0 = _, PN(j0, 1) τ = _, PUID(j, 2)

nj0

σup
τ1 (b-authID

U ) =g(φin
τ1)

=nj0

σup
τ0 (b-authj0N ) = ID

σup
τ1 (e-authID

U ) =σup
τ1 (b-authID

U )

=nj0

It follows that: (
acceptID

τ ∧ acceptID
τ0
∧ g(φin

τ1) = nj0 ∧
π1(g(φin

τ0)) = {〈ID , σin
τ1(SQNID

U )〉}nje
pkN

)
→ authτ (ID, j0)

Hence:
suc-authτ (ID) →

∨
τ0=_,PN(j0,1)

τ1=_,PUID(j,1)
τ2=_,PN(j0,0)
τ2≺τ τ1≺τ τ0

authτ (ID, j0) →
∨
j0∈N

authτ (ID, j0)

• Case ai = TN(j, 0). For all ID ∈ Sid and for all j0 ∈ N such that j0 6= j we have:

suc-authτ (ID) ≡ suc-authτ0(ID) authτ (ID, j0) ≡ authτ0(ID, j0)

Hence:
(suc-authτ (ID) ∧ authτ (ID, j0)) ↔ (suc-authτ0(ID) ∧ authτ0(ID, j0))



It only remains the case j0 = j. We know that σin
τ0(b-authjN) ≡ ⊥, therefore suc-authτ0(ID, j) = false, which in turn

implies that:
(suc-authτ0(ID) ∧ authτ0(ID, j)) = false

Moreover:
authτ (ID, j) → nj = σin

τ (e-authID
U ) → nj = σin

τ (e-authID
U )

Using (A1) it is easy to show that nj 6∈ st(σin
τ (e-authID

U )), therefore we have ¬authτ (ID, j). This concludes this case.
• Case ai = TUID(j, 1). For all ID0 6= ID and for all j0 ∈ N, it is trivial that:

(suc-authτ (ID0) ∧ authτ (ID0, j0)) ↔ (suc-authτ0(ID0) ∧ authτ0(ID0, j0))

Therefore we only need to show that:

suc-authτ (ID) →
∨
i∈N authτ (ID, i)

Let k ≡ kID. We observe that:

suc-authτ (ID) → σin
τ (e-authID

U ) 6= fail
→ acceptID

τ

→
∨

τ0=_,TN(j0,0)≺τ

acceptID
τ0
∧ π1(g(φin

τ )) = nj0 ∧
π2(g(φin

τ )) = σin
τ0(SQNID

N )⊕ fk(nj0)
(by (Acc3))

Let τ0 = TN(j0, 0) such that τ0 ≺τ τ . Then:(
π1(g(φin

τ )) = nj0 ∧ acceptID
τ

)
→ σin

τ (e-authID
U ) = nj0

Moreover using (A7) we know that acceptID
τ0
→ σin

τ0(b-authjN) = ID. Using the validity of τ , we can easily show that for
all τ0 ≺τ τ ′ we have σup

τ ′ (b-authjN) ≡ ⊥. We deduce that acceptID
τ0
→ σin

τ0(b-authjN) = ID. Hence:

suc-authτ (ID) →
∨

τ0=_,TN(j0,0)≺τ

authτ (ID, j0) →
∨
τ0≺τ

authτ (ID, j0)

G. Proof of Lemma 3

We give the proof of Lemma 3, which relies on Lemma 8.

Proof. Let τ be a valid symbolic trace. First, observe that σin
τ (e-authID

U ) = nj implies that σin
τ (e-authID

U ) 6= fail and that
σin
τ (e-authID

U ) 6= ⊥. Using the remark above and Lemma 8 we get that:

σin
τ (e-authID

U ) = nj → σin
τ (e-authID

U ) 6= fail ∧ σin
τ (e-authID

U ) 6= ⊥
→ suc-authτ (ID)

→
∨
j∈N

authτ (ID, j) (By Lemma 8)

→ σin
τ (b-authjN) = ID (Since (nj = σin

τ (e-authID
U ) ∧ nj

′
= σin

τ (e-authID
U )) = false if j 6= j′.)

→
∨
τ ′�τ

σin
τ ′(b-authjN) = ID

H. Injective Authentication of the Network by the User

We actually can show that the authentication of the network by the user is injective.

Lemma 9. For all valid symbolic trace τ , φin
τ guarantees injective authentication of the network by the user. For all ID ∈ Sid

and j ∈ N, we define the formula:

inj-authτ (ID, j) ≡ authτ (ID, j) ∧
∧
i 6=j ¬authτ (ID, i)

Then we have:
∀ID ∈ Sid, suc-authτ (ID) →

∨
j∈N inj-authτ (ID, j)



Proof. First, we show that for ID ∈ Sid and i0, i1 ∈ N with i0 6= i1:

suc-authτ (ID)→ (¬authτ (ID, i0) ∨ ¬authτ (ID, i1)) (14)

Indeed:

suc-authτ (ID) ∧ authτ (ID, i0) ∧ authτ (ID, i1)

→ suc-authτ (ID) ∧ σin
τ (ni0N ) = σin

τ (e-authID
U ) ∧ σin

τ (ni1N ) = σin
τ (e-authID

U )

→ suc-authτ (ID) ∧


ni0 = σin

τ (e-authID
U ) ∧ ni1 = σin

τ (e-authID
U ) if PN(i0, 0) ∈ τ and PN(i1, 0) ∈ τ

ni0 = σin
τ (e-authID

U ) ∧ ⊥ = σin
τ (e-authID

U ) if PN(i0, 0) ∈ τ and PN(i1, 0) 6∈ τ
⊥ = σin

τ (e-authID
U ) ∧ ni1 = σin

τ (e-authID
U ) if PN(i0, 0) 6∈ τ and PN(i1, 0) ∈ τ

⊥ = σin
τ (e-authID

U ) ∧ ⊥ = σin
τ (e-authID

U ) if PN(i0, 0) 6∈ τ and PN(i1, 0) 6∈ τ

Using EQIndep, we know that ni1 6= ni0 . Therefore:(
suc-authτ (ID) ∧ ni0 = σin

τ (e-authID
U ) ∧ ni1 = σin

τ (e-authID
U )
)
→ false

Since suc-authτ (ID)→ σin
τ (e-authID

U ) 6= ⊥, we know that:(
suc-authτ (ID) ∧ ⊥ = σin

τ (e-authID
U )
)
→ false

And therefore: (
suc-authτ (ID) ∧ ni0 = σin

τ (e-authID
U ) ∧ ⊥ = σin

τ (e-authID
U )
)
→ false(

suc-authτ (ID) ∧ ⊥ = σin
τ (e-authID

U ) ∧ ni1 = σin
τ (e-authID

U )
)
→ false(

suc-authτ (ID) ∧ ⊥ = σin
τ (e-authID

U ) ∧ ⊥ = σin
τ (e-authID

U )
)
→ false

This concludes the proof of (14). From Lemma 8 we know that:

∀ID ∈ Sid, suc-authτ (ID) →
∨
j∈N authτ (ID, j)

Moreover, using (14) we have that for every ID ∈ Sid, j ∈ N:

suc-authτ (ID) ∧ authτ (ID, j) →
∨
i 6=j ¬authτ (ID, i)

We deduce that:
∀ID ∈ Sid, suc-authτ (ID) →

∨
j∈N inj-authτ (ID, j)

Proposition 25. For every valid symbolic trace τ , for every jo ∈ N:

inj-authτ (ID, j0) ↔ nj0 = σin
τ (e-authID

U )

Proof. To do this we show both directions. The first direction is trivial:

inj-authτ (ID, j0) → authτ (ID, j0) →
(
nj0 = σin

τ (e-authID
U )
)

We now prove the converse direction: (
nj0 = σin

τ (e-authID
U )
)
→ suc-authτ (ID) (Using EQIndep)

→
∨
j1∈N

inj-authτ (ID, j1) (Lemma 9)

We conclude by observing that for every j1 6= j0,(
nj0 = σin

τ (e-authID
U )
)
∧ inj-authτ (ID, j1) →

(
nj0 = σin

τ (e-authID
U )
)
∧ authτ (ID, j1)

→
(
nj0 = σin

τ (e-authID
U )
)
∧
(
nj1 = σin

τ (e-authID
U )
)

→ false (Using EQIndep)



APPENDIX III
ACCEPTANCE CHARACTERIZATIONS

In this section, we prove necessary and sufficient conditions for a message to be accepted by the user or the network.
This section is organized as follow: we start by showing some properties of the AKA+ protocol, which we then use to show
a first set of acceptance characterizations; then, using these, we show that the temporary identity GUTIID

U is concealed until
the subscriber starts of session of the GUTI sub-protocol; finally, using the GUTI concealment property, we show stronger
acceptance characterizations.

A. First Characterizations

Proposition 26. For every valid symbolic trace τ = _,ai and identity ID we have:
• (B1) For every τ0 � τ1 � τ , στ0(SQNID

X ) ≤ στ1(SQNID
X ).

• (B2) If ai = FUID(j) then for every and j0 ∈ N, if FN(j0) ≺τ NSID(_) then:

στ (e-authj0N ) 6= UnknownId→ ¬inj-authτ (ID, j0)

Proof. Let τ = _,ai be valid symbolic trace and ID ∈ Sid. We prove (B1) and (B2):
• (B1). This is straightforward by induction over τ1.
• (B2). Let τx = _, FN(j0) ≺ τ . We do a case disjunction on the protocol used by the user for authentication:

– If there exists τ1 = _, TUID(j, 1) ≺ τ . We know that there exists τn ≺ τx with τn = _, PN(j0, 1) or _, TN(j0, 1).
Assume that τn = _, PN(j0, 1). We know that inj-authτ (ID, j0)→ acceptID

τ1
, and by applying (Acc3):

inj-authτ (ID, j0) →
∨

τ2=_,TN(j2,0)
τ2≺τ1

στ1(e-authID
U ) = nj2

→ στ1(e-authID
U ) 6= nj0 (Since for every τ2 = _, TN(j2, 0) ≺ τ1, j2 6= j0)

→ false

Which is what we wanted.
Now, assume that τn = _, TN(j0, 1). Observe that στn(e-authj0N ) 6= fail and that στ (e-authj0N ) = στn(e-authj0N ).
Moreover, it is straightforward to check that for every valid symbolic trace τ ′:(

inj-authτ ′(ID, j0) ∧ στ ′(e-authj0N ) 6= UnknownId ∧ στ ′(e-authj0N ) 6= fail
)
→ στ ′(e-authj0N ) = στ ′(b-authj0N )

Hence we deduce that:(
inj-authτ (ID, j0) ∧ στ (e-authj0N ) 6= UnknownId

)
→ στ (e-authj0N ) = στ (b-authj0N )

Since inj-authτ (ID, j0)→ στ (b-authj0N ) = ID, we get that:(
inj-authτ (ID, j0) ∧ στ (e-authj0N ) 6= UnknownId

)
→ στ (e-authj0N ) = ID

Moreover, στ (e-authj0N ) = ID → acceptID
τn

. Using (Acc4) on τn:

acceptID
τn
→

∨
τi=_,TUID(ji,1)≺τn

acceptID
τi
∧ π1(g(φin

τi)) = nj0

Let τ0 = TN(j0, 0) and τi = _, TUID(ji, 1) ≺ τn. Observe that τi 6= τ1. Using (Acc3), we can check that:

acceptID
τi
∧ π1(g(φin

τi)) = nj0 → range(σin
τi(SQNID

U ), σin
τ0(SQNID

N ))

Recall that inj-authτ (ID, j0) → acceptID
τ1

. Moreover, inj-authτ (ID, j0) → π1(g(φin
τ1)) = nj0 . Hence using (Acc3)

again we get:
acceptID

τ1
∧ π1(g(φin

τ1)) = nj0 → range(σin
τ1(SQNID

U ), σin
τ0(SQNID

N ))

Putting everything together:(
inj-authτ (ID, j0) ∧ στ (e-authj0N ) 6= UnknownId

)
→

(
σin
τi(SQNID

U ) = σin
τ0(SQNID

N )

∧ σin
τ1(SQNID

U ) = σin
τ0(SQNID

N )

)
→ σin

τ1(SQNID
U ) = σin

τi(SQNID
U )



Finally, acceptID
τi
→ σin

τi(SQNID
U ) < στi(SQNID

U ), and using (B1) we know that στi(SQNID
U ) ≤ σin

τ1(SQNID
U ). We deduce

that: (
inj-authτ (ID, j0) ∧ στ (e-authj0N ) 6= UnknownId

)
→ σin

τ1(SQNID
U ) = σin

τi(SQNID
U ) < σin

τ1(SQNID
U )

→ false

This concludes this case. We summarize graphically this proof below:

τ :

TN(j0, 0)

τ0

TUID(ji, 1)

τi

TN(j0, 1)

τn

FN(j0)

τx

NSID(_) TUID(j, 1)

τ1

σin
τ0(SQNID

N )

σin
τi(SQNID

U ) στi(SQNID
U ) σin

τ1(SQNID
U )

=

=

< ≤

– If there exists τ1 = _, PUID(j, 2) ≺ τ . Let τ3 = _, PUID(j, 1) ≺ τ1, we know that τx ≺ τ3. Remark that
inj-authτ (ID, j0)→ acceptID

τ1
, and using (Acc2) we easily get that:

acceptID
τ1
→

∨
τ2=_,PN(j2,1)
τ3≺τ2≺τ1

σin
τ1(e-authID

U ) = nj2

Since no ID action occurred between τ1 and τ , we have σin
τ1(e-authID

U ) = στ (e-authID
U ). Moreover, inj-authτ (ID, j0)→

στ (e-authID
U ) = nj0 . Finally, for every τ2 = _, PN(j2, 1) such that τ3 ≺ τ2 ≺ τ1, since τx ≺ τ3 we know that j2 6= j0.

It follows that:
inj-authτ (ID, j0)→

(∨
τ2=_,PN(j2,1)
τ3≺τ2≺τ1

nj0 = nj2
)
→ false

This concludes this case.

We now prove a first acceptance characterization:

Lemma 10. For every valid symbolic trace τ = _,ai and identity ID we have:
• (Equ1) If ai = FUID(j). For every τ1 = _, FN(j0) ≺ τ , we let:

fu-trn:τ1
u:τ ≡

(
inj-authτ (ID, j0) ∧ σin

τ (e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ )) = GUTIj0 ⊕ f r

k(nj0) ∧ π2(g(φin
τ )) = Mac5km

(〈GUTIj0 , nj0〉)

)
Then:

acceptID
τ ↔

∨
τ1=_,FN(j0)≺τ
τ1 6≺τ NSID(_)

fu-trn:τ1
u:τ

Proof. Using Lemma 9 we know that:

suc-authτ (ID) →
∨
j0∈N

inj-authτ (ID, j0)

Let k ≡ kID and km ≡ kID
m . Since:

acceptID
τ ≡ suc-authτ (ID) ∧ π2(g(φin

τ )) = Mac5km
(〈π1(g(φin

τ ))⊕ f r
k(σin

τ (e-authID
U )) , σin

τ (e-authID
U )〉)︸ ︷︷ ︸

EQMac

And since inj-authτ (ID, j0) → suc-authτ (ID) we have:

acceptID
τ ↔

∨
j0∈N

inj-authτ (ID, j0) ∧ EQMac

↔
∨
j0∈N

inj-authτ (ID, j0) ∧ π2(g(φin
τ )) = Mac5km

(〈π1(g(φin
τ ))⊕ f r

k(nj0) , nj0〉)



Using the P-EUF-MAC5 and CR5 axioms, it is easy to show that for every j0 ∈ N:

π2(g(φin
τ )) = Mac5km

(〈π1(g(φin
τ ))⊕ f r

k(nj0) , nj0〉) →


(

π1(g(φin
τ ))⊕ f r

k(nj0) = GUTIj0

∧σin
τ (e-authj0N ) 6= UnknownId

)
if FN(j0) ∈ τ

false otherwise

Hence:

acceptID
τ ↔

∨
τ0=_,FN(j0)≺τ

(
inj-authτ (ID, j0) ∧ σin

τ (e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ )) = GUTIj0 ⊕ f r

k(nj0) ∧ π2(g(φin
τ )) = Mac5km

(〈GUTIj0 , nj0〉)

)
By (B2):

acceptID
τ ↔

∨
τ0=_,FN(j0)≺τ
τ0 6≺τ NSID(_)

(
inj-authτ (ID, j0) ∧ σin

τ (e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ )) = GUTIj0 ⊕ f r

k(nj0) ∧ π2(g(φin
τ )) = Mac5km

(〈GUTIj0 , nj0〉)

)

Which concludes this proof.

We show the following additional properties:

Proposition 27. For every valid symbolic trace τ = _,ai and identity ID we have:
• (B3) στ (valid-gutiID

U ) → στ (GUTIID
U ) 6= UnSet.

• (B4) For every τ2 ≺τ τ1:

στ2(SQNID
N ) < σin

τ1(SQNID
N ) →

∨
τ2≺τ τx≺τ τ1

τx=_,TN(jx,0),_,TN(jx,1) or _,PN(jx,1)

σin
τ1(sessionID

N ) = njx

• (B5) στ (SQNID
N ) ≤ στ (SQNID

U ).
• (B6) For every τ0 ≺τ τ1 such that τ0 = _, NSID(_) or ε, and such that τ0 6≺τ NSID(_), we have:

στ1(syncID
U ) → στ1(SQNID

N ) > στ0(SQNID
U )

• (B7) If for all τ ′ � τ such that τ ′ 6≺τ NSID(_) we have τ ′ 6= _, FUID(_), then:

σ(valid-gutiID
U ) → false

Proof. We give the proof of the properties (B3) to (B7).
• (B3). We show this by induction over τ . If τ = ε, we know from Definition 43 that σε(valid-gutiID

U ) ≡ false and
σε(GUTIID

X ) ≡ UnSet. Therefore the property holds. Let τ = τ0,ai, assume by induction that the property holds for τ0.
If ai is different from TUID(j, 0), PUID(j, 1) and FU(j) then σup

τ (valid-gutiID
U ) ≡ σup

τ (GUTIID
U ) ≡ ⊥, in which case we

conclude immediately by induction hypothesis. We have three cases remaining:
– If ai = TUID(j, 0) or ai = PUID(j, 1) then σup

τ (GUTIID
U ) ≡ false. Therefore the property holds.

– If ai = FU(j), using (Equ1) we can check that:

acceptID
τ →

∨
τ1=_,FN(j0)≺τ
τ1 6≺τ NSID(_)

(
στ (GUTIID

U ) = GUTIj0
)
→ στ (GUTIID

U ) 6= UnSet

We conclude by observing that σε(valid-guti ID
U ) ≡ acceptID

τ .
• (B4). We prove this directly. Intuitively, this holds because if στ2(SQNID

N ) < σin
τ1(SQNID

N ) then we know that SQNID
N was

updated between τ2 and τ1. Moreover, if such an update occurs at τx = _, PN(jx, 1) or TN(jx, 1) then sessionID
N has to

be equal to njx after the update. Finally, the fact that sessionID
N is equal to njx for some τx between τ2 and τ1 with

τx = _, TN(jx, 0), _, TN(jx, 1) or _, PN(jx, 1) is an invariant of the protocol. Now we give the formal proof.
First, we remark that SQNID

N is updated only at PN(_, 1) and TN(_, 1). Moreover, each update either left SQNID
N unchanged

or increments it by one. Finally, it is updated at τx ≺ τ if and only if inc-acceptID
τx

holds. If follows that:

στ2(SQNID
N ) < σin

τ1(SQNID
N ) →

∨
τ2≺τ τx≺τ τ1

τx=,_,TN(jx,1) or _,PN(jx,1)

inc-acceptID
τx

We know that for every τ2 ≺τ τx ≺τ τ1, if:
– τx =, _, TN(jx, 1) then inc-acceptID

τx
↔ στx(sessionID

N ) = njx .



– τx = _, PN(jx, 1) then since inc-acceptID
τx
≡ inc-acceptID

τx
∧ σin

τx(sessionID
N ) = njx , we know that inc-acceptID

τx
→

σin
τx(sessionID

N ) = njx . Besides, since sessionID
N is not updated at PN(jx, 1) we deduce that inc-acceptID

τx
→

στx(sessionID
N ) = njx .

Hence:
στ2(SQNID

N ) < σin
τ1(SQNID

N ) →
∨

τ2≺τ τx�τ1
τx=,_,TN(jx,1) or _,PN(jx,1)

στx(sessionID
N ) = njx (15)

Let τ2 ≺τ τx ≺τ τ1 such that τx =, _, TN(jx, 1) or _, PN(jx, 1). Now, we prove by induction over τ ′ such that τx � τ ′ ≺ τ1
that:

στx(sessionID
N ) = njx →

∨
τx�τn�τ′

τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

στ ′(sessionID
N ) = njn

For τ ′ = τx this is obvious. For the inductive case, we do a disjunction over the final action of τ ′. If sessionID
N is not

updated then we conclude by induction, otherwise we are in one of the following case:
– If τ ′ = _, TN(j′, 0) then we do a case disjunction on acceptID

τ ′ :

¬acceptID
τ ′ → στ ′(sessionID

N ) = σin
τ ′(sessionID

N ) (16)

Hence:

¬acceptID
τ ′ ∧ στx(sessionID

N ) = njx →
∨

τx�τn≺τ′
τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

σin
τ ′(sessionID

N ) = njn (by induction hypothesis)

→
∨

τx�τn≺τ′
τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

στ ′(sessionID
N ) = njn (Using (16))

→
∨

τx�τn�τ′
τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

στ ′(sessionID
N ) = njn (Relaxing the condition τn ≺ τ ′)

Moreover,
acceptID

τ ′ →
(
στ ′(sessionID

N ) = nj
′
)
→

∨
τx�τn�τ′

τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

στ ′(sessionID
N ) = njn

This concludes this case.
– If τn = _, PN(jn, 1) then the proof is the same than in the previous case, but doing a case disjunction over inc-acceptID

τ ′ .
Let τ0′ be such that τ1 = τ0

′, _. By applying the induction hypothesis to τ0′, we get:

στx(sessionID
N ) = njx →

∨
τx�τn�τ0

′
τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

στ0′(sessionID
N ) = njn →

∨
τx�τn≺τ1

τn=_,TN(jn,0),_,TN(jn,1) or _,PN(jn,1)

σin
τ1(sessionID

N ) = njn

We conclude using (15) and the property above.
• (B5). We prove this by induction over τ . For τ = ε, from Definition 43 we know that σε(SQNID

U ) ≡ sqn-initID
U and

σε(SQNID
N ) ≡ sqn-initID

N . Using the axiom SQN-ini, we know that sqn-initID
N ≤ sqn-initID

U .
For the inductive case, we let τ = τ0,ai and assume that the property holds for τ0. We have three cases:

– If when executing the action ai the value SQNID
N is not updated. Using (B1) we know that στ (SQNID

U ) ≥ στ0(SQNID
U ),

and we conclude by applying the induction hypothesis.
– If ai = PN(j, 1), then we do a case disjunction on inc-acceptID

τ . If it is true then:

inc-acceptID
τ →

∨
τ0=_,PUID(j0,1)≺τ

στ (SQNID
N ) = σin

τ0(SQNID
U ) (Using (Acc1))

→
∨

τ0=_,PUID(j0,1)≺τ

στ (SQNID
N ) = σin

τ0(SQNID
U ) ∧ σin

τ0(SQNID
U ) ≤ στ (SQNID

U ) (Using (B1))

→ στ (SQNID
N ) ≤ στ (SQNID

U )

If inc-acceptID
τ is false then ¬inc-acceptID

τ → στ (SQNID
N ) = σin

τ (SQNID
N ), and we conclude by applying the induction

hypothesis.



– If ai = TN(j, 1), then we do a case disjunction on inc-acceptID
τ . First we handle the case where it is true. Let

τ2 = _, TN(j, 0) ≺ τ . We know that inc-acceptID
τ → σin

τ (sessionID
N ) = nj . Moreover:

σin
τ (sessionID

N ) = nj →
∧

τ2≺τ1≺τ
τ1=_,TN(jx,0),_,TN(jx,1) or _,PN(jx,1)

σin
τ (sessionID

N ) 6= njx

→ στ2(SQNID
N ) ≤ σin

τ (SQNID
N ) (Using the contrapositive of (B4))

→ στ2(SQNID
N ) = σin

τ (SQNID
N ) (Using (B1))

We know that inc-acceptID
τ → acceptID

τ . Moreover, using (Acc3) and (Acc4), we can check that:

acceptID
τ →

∨
τ1=_,TUID(_,1)
τ2≺τ1≺τ

σin
τ1(SQNID

U ) = σin
τ2(SQNID

N )

Moreover, acceptID
τ → σin

τ1(SQNID
U ) < στ1(SQNID

U ), and using (B1) we know that στ1(SQNID
U ) ≤ στ (SQNID

U ). Finally,
inc-acceptID

τ → στ (SQNID
N ) = σin

τ (SQNID
N ) + 1. Putting everything together:

inc-acceptID
τ → στ (SQNID

N ) ≤ στ (SQNID
U )

Which is what we wanted. We summarize graphically this proof below:

τ :

TN(j, 0)

τ2

TUID(_, 1)

τ1

TN(j, 1)

τ

σin
τ2(SQNID

N )

σin
τ1(SQNID

U ) στ1(SQNID
U )

σin
τ (SQNID

N ) στ (SQNID
N )

στ (SQNID
U )

= +1

=

+1 ≤

If inc-acceptID
τ is false then ¬inc-acceptID

τ → στ (SQNID
N ) = σin

τ (SQNID
N ), and we conclude by applying the induction

hypothesis.
• (B6). First, observe that:

στ1(syncID
U )→

∨
τn=_,PUID(j,2)
τ0≺τn≺τ1

acceptID
τn

(17)

Let τn = _, PUID(j, 2) such that τ0 ≺ τn ≺ τ1. Let τi = _, PUID(j, 1) such that τi ≺ τn. We know that τi ≺ τ0. We apply
(Acc2):

acceptID
τn
→

∨
τx=_,PN(jx,1)
τi≺τx≺τn

acceptID
τx
∧ g(φin

τi) = njx ∧ π1(g(φin
τx)) = {〈ID , σin

τi(SQNID
U )〉}nje

pkN
(18)

Let τx = _, PN(jx, 1) such that τi ≺ τx ≺ τn. Using (B1), we get that στ0(SQNID
U ) ≤ σin

τi(SQNID
U ) and that στx(SQNID

N ) ≤
στ1(SQNID

N ). There are two cases, depending on whether we have inc-acceptID
τx

.
– We know that inc-acceptID

τx
→ στx(SQNID

N ) = σin
τi(SQNID

U ) + 1 > σin
τi(SQNID

U ). Putting everything together, we get that:

acceptID
τn
∧ inc-acceptID

τx
→ στ0(SQNID

U ) < στ1(SQNID
N ) (19)

– We know that:

acceptID
τx
∧ ¬inc-acceptID

τx
∧ π1(g(φin

τx)) = {〈ID , σin
τi(SQNID

U )〉}nje
pkN
→ σin

τi(SQNID
U ) < σin

τx(SQNID
N )

Moreover, ¬inc-acceptID
τx
→ σin

τx(SQNID
N ) = στx(SQNID

N ). We recall that στ0(SQNID
U ) ≤ σin

τi(SQNID
U ) and that

στx(SQNID
N ) ≤ στ1(SQNID

N ). Therefore:

acceptID
τx
∧ ¬inc-acceptID

τx
∧ π1(g(φin

τx)) = {〈ID , σin
τi(SQNID

U )〉}nje
pkN
→ στ0(SQNID

U ) < στ1(SQNID
N ) (20)

Using (18), (19) and (20) we get that acceptID
τn
→ στ0(SQNID

U ) < στ1(SQNID
N ). We summarize this graphically below:



τ :

NSID(_)
or ε

τ0

PUID(j, 1)

τi

PN(jx, 1)

τx

PUID(j, 2)

τn τ1

στ0(SQNID
U ) σin

τi(SQNID
U )

στx(SQNID
N ) στ1(SQNID

N )

≤
<

≤

Since this is true for all τn = _, PUID(j, 2) such that τ0 ≺ τn ≺ τ1, we deduce from (17) that

στ1(syncID
U )→ στ0(SQNID

U ) < στ1(SQNID
N )

Which concludes this proof.
• (B7). Let τNS = ε or NSID(_) be such that τNS � τ and τNS 6≺τ NSID(_). We show by induction over τ ′ with τNS � τ ′ � τ

that στ ′(valid-gutiID
U ) ≡ false.

For τ ′ = τNS, this is true using from Definition 43 if if τNS = ε, and from the protocol term definitions if τNS = NSID(_).
The inductive case is straightforward.

We can now state the following acceptance characterization properties.

Lemma 11. For every valid symbolic trace τ = _,ai and identity ID we have:

• (Equ2) If ai = PUID(j, 2). Let τ2 = _PUID(j, 1) such that τ2 ≺ τ . Also let:

supi-tr n:τ1
u:τ2,τ ≡

 g(φin
τ ) = Mac2kID

m
(〈nj1 , suc(σin

τ2(SQNID
U ))〉) ∧ g(φin

τ2) = nj1

∧ π1(g(φin
τ1)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN


Then:

acceptID
τ ↔

∨
τ1=_,PN(j1,1)
τ2≺τ τ1

supi-tr n:τ1
u:τ2,τ

• (Equ3) If ai = PN(j, 1). Then:

acceptID
τ ↔

∨
τ1=_,PUID(j1,1)

τ1≺τ

 g(φin
τ1) = nj ∧ π1(g(φin

τ )) = {〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

∧ π2(g(φin
τ )) = Mac1kID

m
(〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉)


↔

∨
τ1=_,PUID(j1,1)

τ1≺τ

(
g(φin

τ1) = nj ∧ g(φin
τ ) = tτ1

)
• (Equ4) If ai = TUID(j, 1). For every τ1 = _, TN(j0, 0) such that τ1 ≺ τ , we let:

c-tr n:τ1
u:τ ≡

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ1(SQNID

N ) , σin
τ (GUTIID

U )〉) ∧ σin
τ (s-valid-gutiID

U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N )) ∧ g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )


Then: (

c-tr n:τ1
u:τ → acceptID

τ1

)
τ1=_,TN(j0,0)

τ1≺τ
acceptID

τ ↔
∨

τ1=_,TN(j0,0)
τ1≺τ

c-tr n:τ1
u:τ

• (Equ5) If ai = TN(j, 1). Let τ1 = _, TN(j, 0) such that τ1 ≺ τ , and let ID ∈ Sid. Then:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)

τ1≺τ τi

c-tr n:τ1
u:τi ∧ g(φin

τ ) = Mac4kID
m

(nj)



B. Proof of Lemma 11
Proof of (Equ2): Using (Acc2) we know that:

acceptID
τ ↔

∨
τ1=_,PN(j1,1)
τ2≺τ τ1

acceptID
τ ∧ g(φin

τ2) = nj1 ∧ π1(g(φin
τ1)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN

↔
∨

τ1=_,PN(j1,1)
τ2≺τ τ1

 g(φin
τ ) = Mac2kID

m
(〈nj1 , σin

τ (SQNID
U )〉) ∧ g(φin

τ2) = nj1

∧ π1(g(φin
τ1)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN


Since σin

τ (SQNID
U ) ≡ suc(σin

τ2(SQNID
U )):

↔
∨

τ1=_,PN(j1,1)
τ2≺τ τ1

 g(φin
τ ) = Mac2kID

m
(〈nj1 , suc(σin

τ2(SQNID
U ))〉) ∧ g(φin

τ2) = nj1

∧ π1(g(φin
τ1)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN


↔

∨
τ1=_,PN(j1,1)
τ2≺τ τ1

supi-tr n:τ1
u:τ2,τ

Proof of (Equ3): Using (Acc1) it is easy to check that:

acceptID
τ ↔

∨
τ1=_,PUID(j1,1)≺τ

 g(φin
τ1) = nj. . . . . . . . . . . . ∧ π1(g(φin

τ )) = {〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

:::::::::::::::::::::::::::::

∧ π2(g(φin
τ )) = Mac1kID

m
(〈π1(g(φin

τ ))
::::::::

, nj. . .〉)


Which can be rewritten as follows (we identify above, using waves and dots, which equalities are used, and which terms are
rewritten):

↔
∨

τ1=_,PUID(j1,1)≺τ

 g(φin
τ1) = nj ∧ π1(g(φin

τ )) = {〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

∧ π2(g(φin
τ )) = Mac1kID

m
(〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉)


First, observe that:

{〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

= π1(tτ1) Mac1kID
m

(〈{〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

, g(φin
τ1)〉) == π2(tτ1)

We conclude easily using the injectivity of the pair.
Proof of (Equ4): Using (Acc3) we know that:

acceptID
τ ↔

∨
τ1=_,TN(j0,0)

τ1≺τ

(
acceptID

τ ∧ acceptID
τ1
∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )

)

Inlining the definition of acceptID
τ1

:

↔
∨

τ1=_,TN(j0,0)
τ1≺τ

(
acceptID

τ ∧ g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ σin

τ1(GUTIID
N ) 6= UnSet ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )

)

Inlining the definition of acceptID
τ :

↔
∨

τ1=_,TN(j0,0)
τ1≺τ


π3(g(φin

τ )) = Mac3km
(〈π1(g(φin

τ )) , π2(g(φin
τ ))⊕ fk(π1(g(φin

τ ))) , σin
τ (GUTIID

U )〉)
∧ σin

τ (s-valid-gutiID
U ) ∧ range(σin

τ (SQNID
U ), π2(g(φin

τ ))⊕ fk(π1(g(φin
τ ))))

g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ σin

τ1(GUTIID
N ) 6= UnSet ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )


We rewrite π1(g(φin

τ )) into nj0 :

↔
∨

τ1=_,TN(j0,0)
τ1≺τ



π3(g(φin
τ )) = Mac3km

(〈nj0 , π2(g(φin
τ ))⊕ fk(nj0) , σin

τ (GUTIID
U )〉)

∧ σin
τ (s-valid-gutiID

U ) ∧ range(σin
τ (SQNID

U ), π2(g(φin
τ ))⊕ fk(nj0))

g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ σin

τ1(GUTIID
N ) 6= UnSet ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )





We rewrite π2(g(φin
τ ))⊕ fk(nj0) into σin

τ1(SQNID
N ):

↔
∨

τ1=_,TN(j0,0)
τ1≺τ



π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ1(SQNID

N ) , σin
τ (GUTIID

U )〉)

∧ σin
τ (s-valid-gutiID

U ) ∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N ))

∧ g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ σin

τ1(GUTIID
N ) 6= UnSet ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )


(21)

Let τ2 = _, TUID(j0, 0) ≺ τ . By validity of τ , there are no user ID actions between τ2 and τ , and therefore it is easy to
check that σin

τ (s-valid-gutiID
U ) → σin

τ2(valid-gutiID
U ), and that σin

τ (GUTIID
U ) = σin

τ2(GUTIID
U ). Moreover, using (B3) we know that

σin
τ2(valid-gutiID

U )→ σin
τ2(GUTIID

U ) 6= UnSet. Therefore σin
τ (s-valid-gutiID

U )→ σin
τ (GUTIID

U ) 6= UnSet. It follows that:(
σin
τ (GUTIID

U ) = σin
τ1(GUTIID

N ) ∧ σin
τ (s-valid-gutiID

U )
)
→ σin

τ1(GUTIID
N ) 6= UnSet

Hence we can simplify (21) by removing σin
τ1(GUTIID

N ) 6= UnSet. This yields:

acceptID
τ ↔

∨
τ1=_,TN(j0,0)

τ1≺τ

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ1(SQNID

N ) , σin
τ (GUTIID

U )〉) ∧ σin
τ (s-valid-gutiID

U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N )) ∧ g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )


↔

∨
τ1=_,TN(j0,0)

τ1≺τ

c-tr n:τ1
u:τ

Finally, it is easy to check that for every τ1 = _, TN(j0, 0) such that τ1 ≺ τ , we have c-tr n:τ1
u:τ → acceptID

τ1
.

Proof of (Equ5): Using (Acc4) we know that:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)≺τ

acceptID
τ ∧ acceptτi ∧ π1(g(φin

τi)) = nj

Moreover, using (Equ4) we know that:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)≺τ
τ2=_,TN(j2,0)≺τi

acceptID
τ ∧ c-tr n:τ2

u:τi ∧ π1(g(φin
τi)) = nj

Let τ2 = _, TN(j2, 0) ≺ τi. Then we know that c-tr n:τ2
u:τi → π1(g(φin

τi)) = nj2 . Therefore using EQIndep we know that if
j2 6= j: (

c-tr n:τ2
u:τi ∧ π1(g(φin

τi)) = nj
)
→
(
π1(g(φin

τi)) = nj2 ∧ π1(g(φin
τi)) = nj

)
→ false

Hence:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)

τ1≺τ τi

acceptID
τ ∧ c-tr n:τ1

u:τi ∧ π1(g(φin
τi)) = nj

Since c-tr n:τ1
u:τi → π1(g(φin

τi)) = nj :

↔
∨

τi=_,TUID(ji,1)
τ1≺τ τi

acceptID
τ ∧ c-tr n:τ1

u:τi

We inline the definition of acceptID
τ :

↔
∨

τi=_,TUID(ji,1)
τ1≺τ τi

g(φin
τ ) = Mac4kID

m
(nj) ∧ σin

τ (b-authjN) = ID ∧ c-tr n:τ1
u:τi

Using (Equ4), we know that for every τ1 = _, TN(j0, 0) such that τ1 ≺ τ , c-tr n:τ1
u:τ → acceptID

τ1
. Moreover, using (A6) we know

that acceptID
τ1
→ σin

τ1(b-authjN) = ID. Besides, σin
τ1(b-authjN) = ID → σin

τ (b-authjN) = ID. Hence c-tr n:τ1
u:τ → σin

τ (b-authjN) = ID.
By consequence:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)

τ1≺τ τi

g(φin
τ ) = Mac4kID

m
(nj) ∧ c-tr n:τ1

u:τi



C. GUTIID
U Concealment

Lemma 12. Let τ be a valid symbolic trace and IDx ∈ Sid. For every τa = _, TN(ja, 1) or τa = _, PN(ja, 1) such that τa � τ ,
and for every τb = PUIDx(ji, 1) or τb = TUIDx(ji, 1) such that τb ≺ τa, if:

{τ1 | τb ≺τ τ1} ∩ {PUIDx(j, _), TUIDx(j, _), FUIDx(j) | j ∈ N} ⊆ {PUIDx(ji, 2), FUIDx(ji)}

Then there exists a derivation of:

inc-acceptIDx
τa
∧ στb(b-authIDx

U ) = nja ∧ acceptIDx
τb
→ g(φin

τ ) 6= GUTIja

Proof of Lemma 12: Let leakin
τ be the vector of terms containing:

• leakin
τ0 if τ = τ0,ai0 and τ ≺ τa.

• The term β.
• All the keys except kIDx , kIDx

m and the asymmetric secret key skN.
• All elements of σin

τ (in an arbitrary order) except:
– All the user IDx values, i.e. for every X we have σin

τ (XIDx
U ) 6∈ leakin

τ .
– The network’s GUTI value of user IDx, i.e. σin

τ (GUTIIDx
N ) 6∈ leakin

τ .
Let:

β ≡ inc-acceptIDx
τa
∧ στb(b-authIDx

U ) = nja ∧ acceptIDx
τb

Let GUTI be a fresh name. We show by induction on τ1 in τa � τ1 ≺ τ that there are derivations of:

[β]
(
φτ1 , leakτ1 , GUTIja

)
∼ [β] (φτ1 , leakτ1 , GUTI)

β → στ1(GUTIIDx
N ) = GUTIja (22)

We depict the situation below:

τ :

TUIDx(ji, 1)
or PUIDx(ji, 1)

τb

TN(ja, 1)
or PN(ja, 1)

τa τ1 τ

a) Case τ1 = τa: First, β → inc-acceptIDx
τa

, and inc-acceptIDx
τa
→ στa(GUTIIDx

N ) = GUTIja . Therefore we know that:

β → στa(GUTIIDx
N ) = GUTIja

Then, we observe from the definition of leakτa that GUTIja 6∈ st(leakτa) (since στa(GUTIIDx
N ) is not in leakτa ). Moreover

GUTIja does not appear in φin
τa and tτa . Besides, GUTI is a fresh name. By consequence we can apply the Fresh axiom, and

then conclude using Refl:

[β]
(
φin
τ1 , leakin

τ1

)
∼ [β]

(
φin
τ1 , leakin

τ1

) Refl

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
) Fresh

b) Case τa ≺ τ1: Let ai be such that τ1 = _,ai. Assume by induction that:

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
)

(23)

β → σin
τ1(GUTIIDx

N ) = GUTIja (24)

c) Part 1: First, we show that:
β → στ1(GUTIIDx

N ) = GUTIja

Since we know that (22) holds, we just need to look at the case ai that updates GUTIIDx
N to conclude:

• If ai = TN(j, 0). Using (23), we know that g(φin
τ1) 6= GUTIja . Hence using (24) we know that:

β → σin
τ1(GUTIIDx

N ) 6= g(φin
τ1)

Which shows that β → ¬acceptIDx
τ1

. This concludes this case.



• If ai = PN(j, 1). Since τa = TN(j1, 1) or PN(j1, 1), we know by validity of τ that ja 6= j. Using (Equ3) we know that:

acceptIDx
τ1
→

∨
τn=_,PUID(jn,1)

τn≺τ1

g(φin
τn) = nj (25)

Since ja 6= j we know that nj 6= nja . Moreover:

στb(b-authIDx
U ) = nja ∧ acceptIDx

τb
→ g(φin

τb
) = nja

Hence β → g(φin
τb

) 6= nj . Moreover, for every τ ′ between τb and τ1, we know that τ ′ 6= PUIDx(_, 1). Therefore we know
that:

β ∧ acceptIDx
τ1
→

∨
τn=_,PUID(jn,1)

τn≺τb

g(φin
τn) = nj ∧ π1(g(φin

τ1)) = {〈IDx , σ
in
τn(SQNIDx

U )〉}njne
pkN

Let τn = _, PUID(jn, 1) such that τn ≺ τb. We know that:

β → στa(SQNIDx
N ) = στb(SQNIDx

U ) = suc(σin
τb

(SQNIDx
U ))

And that:

στa(SQNIDx
N ) ≤ σin

τ1(SQNIDx
N ) σin

τn(SQNIDx
U ) ≤ σin

τb
(SQNIDx

U )

Graphically:

τ :

PUIDx(jn, 1)

τn

TUIDx(ji, 1)
or PUIDx(ji, 1)

τb

TN(ja, 1)
or PN(ja, 1)

τa

PN(j, 1)

τ1

σin
τn(SQNID

U ) σin
τb

(SQNID
U ) στb(SQNID

U )

στa(SQNID
N ) σin

τ1(SQNID
N )

≤ +1

=

≤

We deduce that:
β ∧ acceptIDx

τ1
∧ g(φin

τn) = nj → σin
τ1(SQNIDx

N ) > σin
τn(SQNIDx

U )

Moreover:(
β ∧ inc-acceptIDx

τ1
∧ g(φin

τn) = nj ∧ π1(g(φin
τ1)) = {〈IDx , σ

in
τn(SQNIDx

U )〉}njne
pkN

)
→ σin

τ1(SQNIDx
N ) ≤ σin

τn(SQNIDx
U )

Hence: (
β ∧ acceptIDx

τ1
∧ g(φin

τn) = nj ∧ ∧π1(g(φin
τ1)) = {〈IDx , σ

in
τn(SQNIDx

U )〉}njne
pkN

)
→ ¬inc-acceptIDx

τ1

Using (25), this shows that:
β ∧ acceptIDx

τ1
→ ¬inc-acceptIDx

τ1

This concludes this proof.
• If ai = TN(j, 1). Since τa = TN(j1, 1) or PN(j1, 1), we know by validity of τ that ja 6= j. From the induction hypothesis

we know that:

β → σin
τ1(GUTIIDx

N ) = GUTIja

It is easy to check that:

σin
τ1(GUTIIDx

N ) = GUTIja → σin
τ1(sessionIDx

N ) = nja



Hence:

β → σin
τ1(sessionIDx

N ) = nja

→ σin
τ1(sessionIDx

N ) 6= nj (Since j 6= ja)
→ ¬inc-acceptIDx

τ1

→ στ1(GUTIIDx
N ) = σin

τ1(GUTIIDx
N ) = GUTIja

Which concludes this case.
d) Part 2: We now show that:

[β]
(
φτ1 , leakτ1 , GUTIja

)
∼ [βτ1 ] (φτ1 , leakτ1 , GUTI)

We do a case disjunction on ai. We only details the case where ai is a symbolic action of user ID, with ID 6= IDx, and the
case where ai = FN(ja). All the other cases are similar to these two cases, and their proof will only be sketched.
• If ai is a symbolic action of user ID, with ID 6= IDx, then for every u ∈ leakτ1\leakin

τ1 (resp. u ≡ tτ1 ) we show that there
exists a many-hole context Cu such that u ≡ Cu[φin

τ1 , leakin
τ1 ] and Cu does not contain any n.

We only detail the case ai = FUID(j). First, observe that:

acceptID
τ1
≡

(
eq(π2(g(φin

τ1)),Mac5km
(〈π1(g(φin

τ1))⊕ f r
k(σin

τ1(e-authID
U )) , σin

τ1(e-authID
U )〉))

∧ ¬eq(σin
τ1(e-authID

U ), fail) ∧ ¬eq(σin
τ1(e-authID

U ),⊥)

)
All the underlined subterms are in φin

τ1 , leakin
τ1 , therefore there exists a context Caccept such that acceptID

τ1
≡

Caccept[φ
in
τ1 , leakin

τ1 ]. Remark that leakτ1\leakin
τ1 = {σin

τ1(valid-gutiID
U ), σin

τ1(GUTIID
U )}. Moreover:

tτ1 ≡ if acceptID
τ1

then ok else error σin
τ1(valid-gutiID

U ) ≡ acceptID
τ1

σin
τ1(GUTIID

U ) ≡ if acceptID
τ1

then π1(g(φin
τ1))⊕ f r

k(σin
τ1(e-authID

U )) else UnSet

Using the fact that all the underlined subterms are in φin
τ1 , leakin

τ1 , and using Caccept it is easy to build the wanted contexts.
We then conclude using the FA rule under context, the Dup rule and the induction hypothesis:

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
)

[β]
(
φin
τ1 , leakin

τ1 , GUTIja , (Cu[φin
τ1 , leakin

τ1 ])u∈{tτ1 ,leakτ1\leakin
τ1
}

)
∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI, (Cu[φin
τ1 , leakin

τ1 ])u∈{tτ1 ,leakτ1\leakin
τ1
}

)
(FAc + Dup)∗

[β]
(
φτ1 , leakτ1 , GUTIja

)
∼ [β] (φτ1 , leakτ1 , GUTI)

R

• If ai = FN(ja). It is easy to check that:

σin
τa(e-authIDx

N ) 6= IDx → σin
τa(GUTIIDx

N ) 6= GUTIja → σin
τ (GUTIIDx

N ) 6= GUTIja

Therefore using the induction property (24) we deduce that β → σin
τa(e-authIDx

N ) = IDx. Moreover by validity of τ , there
are no session ja network actions between τa and τ1. It follows that σin

τa(e-authIDx
N ) = IDx → σin

τ1(e-authIDx
N ) = IDx.

Hence:
tτ1 =

〈
GUTIja ⊕ f r

kIDx (nja) , Mac5kIDx
m

(〈GUTIja , nja〉)
〉

Observe that:

[β]
(
φτ1 , leakτ1 , GUTIja

)
= [β]

(
φin
τ1 ,
〈

GUTIja ⊕ f r
kIDx (nja) , Mac5kIDx

m
(〈GUTIja , nja〉)

〉
, leakin

τ1 , GUTIja
)

We are now going to apply the PRF-f axiom on the left to replace GUTIja ⊕ f r
kIDx (nja) with GUTIja ⊕nf where nf is a fresh

nonce. For every τ2 = _, FUID(_) ≺ τ1, we use (Equ1) to replace every occurrences of acceptτ2 in φin
τ1 , leakin

τ1 , β with:

γτ2 ≡
∨

τ3=_,FN(_)≺τ2
τ3 6≺τ2 NSID(_)

fu-trn:τ3
u:τ2

which yields the terms φ′inτ1 , leak′inτ1 , β
′. We can check that:

set-prff
r

kIDx (γτ2) ⊆ {np | ∃τ ′ = _, FN(p) ≺ τ1}



And that:
set-prff

r

kIDx (φ′inτ1 , leak′inτ1) = {np | ∃τ ′ = _, FN(p) ≺ τ1}

Therefore we can apply the PRF-faxiom as wanted: first we replace φin
τ1 , leakin

τ1 , β by φ′inτ1 , leak′inτ1 , β
′ using rule R; then

we apply the PRF-faxiom; and finally we rewrite all γτ2 back into acceptIDx
τ2

. Then, we use the ⊕-indep axiom to replace
GUTIja ⊕ nf with a fresh nonce n′f . This yield the derivation:

[β]
(
φin
τ1 ,
〈

n′f , Mac5kIDx
m

(〈GUTIja , nja〉)
〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

[β]
(
φin
τ1 ,
〈

GUTIja ⊕ nf , Mac5kIDx
m

(〈GUTIja , nja〉)
〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

⊕-indep

[β]
(
φin
τ1 ,
〈

GUTIja ⊕ nf , Mac5kIDx
m

(〈GUTIja , nja〉)
〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

R

[β′]
(
φ′inτ1 ,

〈
GUTIja ⊕ nf , Mac5kIDx

m
(〈GUTIja , nja〉)

〉
, leak′inτ1 , GUTIja

)
∼ [β] (φτ1 , leakτ1 , GUTI)

R

[β′]
(
φ′inτ1 ,

〈
GUTIja ⊕ f r

kIDx (nja) , Mac5kIDx
m

(〈GUTIja , nja〉)
〉
, leak′inτ1 , GUTIja

)
∼ [β] (φτ1 , leakτ1 , GUTI)

PRF-f

[β]
(
φτ1 , leakτ1 , GUTIja

)
∼ [β] (φτ1 , leakτ1 , GUTI)

R

We do a similar reasoning to replace Mac5kIDx
m

(〈GUTIja , nja〉) with a fresh nonce n′′f using PRF-MAC5 axiom (we omit
the details):

[β]
(
φin
τ1 ,
〈
n′f , n′′f

〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

[β]
(
φin
τ1 ,
〈

n′f , Mac5kIDx
m

(〈GUTIja , nja〉)
〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

(R+ PRF-MAC5)∗

We then do the same thing on the right side, and use the FA axiom under context

[β]
(
φin
τ1 ,n

′
f ,n
′′
f , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 ,n

′
f ,n
′′
f , leakin

τ1 , GUTI
)

[β]
(
φin
τ1 ,
〈
n′f , n′′f

〉
, leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 ,
〈
n′f , n′′f

〉
, leakin

τ1 , GUTI
) FAc

[β]
(
φin
τ1 ,
〈
n′f , n′′f

〉
, leakin

τ1 , GUTIja
)
∼ [β] (φτ1 , leakτ1 , GUTI)

(R+ PRF-MAC5 + PRF-f +⊕-indep)∗

Using the fact that β ∈ leakin
τ1 , we have:

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
,n′f ,n

′′
f , ∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
)
,n′f ,n

′′
f ,

[β]
(
φin
τ1 ,n

′
f ,n
′′
f , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 ,n

′
f ,n
′′
f , leakin

τ1 , GUTI
) Simp

We then conclude using Fresh:

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
)

[β]
(
φin
τ1 , leakin

τ1 , GUTIja
)
,n′f ,n

′′
f ∼ [β]

(
φin
τ1 , leakin

τ1 , GUTI
)
,n′f ,n

′′
f

Fresh2

We now sketch the proof of the induction property for the remaining cases:
• If ai = FN(j) with j 6= ja. First, we can decompose tτ1 into terms of φin

τ1 , leakin
τ1 , except for the term:〈

GUTIj ⊕ f r
kIDx (nj) , Mac5kIDx

m
(〈GUTIj , nj〉)

〉
The rest of the proof goes as in case ai = FN(ja). On both side, we do the following:

– We apply the PRF-faxiom to replace GUTIj ⊕ f r
kIDx (nj) with GUTIj ⊕ nf where nf is a fresh nonce.

– We use the ⊕-indep axiom to replace GUTIj ⊕ nf with a fresh nonce n′f
– We apply the PRF-MAC5 axiom to replace Mac5kIDx

m
(〈GUTIj , nj〉) with a fresh nonce n′′f .

Finally we use Fresh to get rid of the introduced nonces n′f and n′′f .
• If ai = TN(j, 0). Using the induction hypothesis we know that β → ¬acceptIDx

τ1
. We can therefore rewrite all occurrences

of acceptIDx
τ1

into false under the condition β. This removes all occurrences of σin
τ1(GUTIIDx

N ) in leakτ1\leakin
τ1 and tτ1 .

We can then decompose the resulting terms into terms of φin
τ1 , leakin

τ1 .



• If ai = TN(j, 1). We can decompose leakτ1\leakin
τ1 and tτ1 into terms of φin

τ1 , leakin
τ1 , except for the term Mac4kIDx

m
(nj).

We get rid of this term using the PRF-MAC4 axiom.
• If ai = PN(j, 0). This is trivial using Fresh.
• If ai = PN(j, 1). We use (Equ3) to rewrite all occurrences of acceptIDx

τ1
in leakτ1\leakin

τ1 and tτ1 . We can then decompose
the resulting terms into terms of φin

τ1 , leakin
τ1 , except for the term:

Mac2kIDx
m

(〈nj , suc(π2(dec(π1(g(φin
τ1)), skN)))〉)

We get rid of this term using the PRF-MAC2 axiom.
• If ai is a symbolic action of user ID, with ID = IDx, then either ai = PUIDx(ji, 2) or ai = FUIDx(ji).

– If ai = PUIDx(ji, 2), then we show using (Equ2) that:

β →
(
acceptIDx

τ1
↔ g(φin

τ1) = tτa
)

Therefore we can rewrite acceptIDx
τ1

into g(φin
τ1) = tτa under β in tτ1 . The resulting term can be easily decomposed

into terms of φin
τ1 , leakin

τ1 .
– ai = FUIDx(ji). We do a similar reasoning, but using (Equ1) instead of (Equ2). We omit the details.

D. Stronger Characterizations

Using the GUTI concealment lemma, we can show the following stronger version of (Acc3):

Lemma 13. For every valid symbolic trace τ = _,ai and identity ID we have:
• (StrAcc1) If ai = TUID(j, 1). Let τ1 = _, TUID(j, 0) such that τ1 ≺ τ , and let k ≡ kID. Then:

τ :

TUID(j, 0)

τ1

TN(j1, 0)

τ0

TUID(j, 1)

τ

acceptID
τ →

∨
τ0=_,TN(j0,0)
τ1≺τ τ0

(
acceptID

τ0
∧ g(φin

τ0) = σin
τ1(GUTIID

U ) ∧ π1(g(φin
τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ0(GUTIID
N )

)

Proof. First, by applying (Acc3) we get that:

acceptID
τ →

∨
τ0=_,TN(j0,0)

τ0≺τ

(
acceptID

τ0
∧ π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N )

)
(26)

We have acceptID
τ → σin

τ (s-valid-gutiID
U ), and σin

τ (s-valid-gutiID
U ) → σin

τ1(valid-gutiID
U ). Let τ0 = _, TN(j0, 0), we know that

acceptID
τ0
→ σin

τ0(GUTIID
N ) 6= UnSet. Therefore:

acceptID
τ →

∨
τ0=_,TN(j0,0)

τ0≺τ

(
acceptID

τ0
∧ π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N ) ∧ σin
τ (GUTIID

U ) 6= UnSet ∧ σin
τ1(valid-gutiID

U )

)

To conclude, we need to get a contradiction if τ0 ≺ τ1. Therefore, we assume that τ0 ≺ τ1. If there does not exists any τ2
such that τ2 = _, FUID(ji) ≺ τ1, then it is easy to show that σin

τ (GUTIID
U ) = UnSet. In that case, from the equation above we

get that ¬acceptID
τ , which concludes this case.

Therefore, let τ2 be maximal w.r.t ≺ such that τ2 = _, FUID(ji) ≺ τ1. We have τ2 6≺τ FUID(_). Assume that there exists a
user ID action between τ2 and τ1. It is easy to show by induction (over τ ′ in τ2 ≺ τ ′ � τ1 that, since there are no FUID(_)
action between τ2 and τ1, we have ¬σin

τ1(valid-gutiID
U ). This implies ¬acceptID

τ , which concludes this case.
Therefore we can safely assume that there are no user ID actions between τ2 and τ1. We deduce that σin

τ1(valid-gutiID
U ) →

acceptID
τ2

. Hence acceptID
τ → acceptID

τ2
. By applying (Equ1) to τ2, we know that:

acceptID
τ →

∨
τa=_,FN(ja)≺τ2
τa 6≺τ NSID(_)

fu-trn:τa
u:τ2 (27)

We recall that:

fu-trn:τa
u:τ2 ≡

(
inj-authτ2(ID, ja) ∧ σin

τ2(e-authjaN ) 6= UnknownId

∧ π1(g(φin
τ2)) = GUTIja ⊕ f r

k(nja) ∧ π2(g(φin
τ2)) = Mac5km

(〈GUTIja , nja〉)

)



Let τa = _, FN(ja) ≺ τ2 such that τa 6≺τ NSID(_). We know that there exists τn = _, PN(ja, 1) and τn = _, TN(ja, 1) such that
τn ≺ τa, and that fu-trn:τa

u:τ2 → acceptID
τn

. Let τi = _, PUID(ji, 1) or _, TUID(ji, 1) such that τi ≺ τ2. If τn ≺ τi, we can show
using (Acc1) if τn = _, PN(ja, 1) or (Acc4) if τn = _, PN(ja, 1) that we have ¬fu-trn:τa

u:τ2 . Therefore, we assume that τi ≺ τn.
We depict the situation below:

τ :

PUID(ji, 1)
or TUID(ji, 1)

τi

PN(ja, 1)
or TN(ja, 1)

τn

FN(ja)

τa

FUID(ji)

τ2

TUID(j, 0)

τ1

TUID(j, 1)

τ

We can check that fu-trn:τa
u:τ2 → στ2(GUTIID

U ) = GUTIja . Moreover, since there are no user ID actions between τ2 and τ1 or
between τ1 and τ , στ2(GUTIID

U ) = σin
τ (GUTIID

U ). From (26), we know that acceptID
τ → σin

τ (GUTIID
U ) = σin

τ0(GUTIID
N ). It follows

that:
acceptID

τ ∧ fu-trn:τa
u:τ2 → σin

τ0(GUTIID
N ) = GUTIja (28)

If τ0 ≺ τn, then it is easy to check that σin
τ0(GUTIID

N ) 6= GUTIja . Therefore we have ¬(acceptID
τ ∧ fu-trn:τa

u:τ2 ).
Now, we assume that τn ≺ τ0. Recall that we assumed τ0 ≺ τ1. Our goal is to apply the GUTI concealment lemma

(Lemma 12) to τ0 get a contradiction. We can check that the following hypothesis of Lemma 12 is true:

{τ ′ | τi ≺τ0 τb} ∩ {PUID(j, _), TUID(j, _), FUID(j) | j ∈ N} ⊆ {PUID(ji, 2), FUID(ji)}

We deduce that:

inc-acceptID
τn
∧ στi(b-authID

U ) = nja ∧ acceptIDx
τi
→ g(φin

τ0) 6= GUTIja (29)

We know that:
fu-trn:τa

u:τ2 → acceptID
τi
∧ στi(b-authID

U ) = nja (30)

Moreover, ¬inc-acceptID
τn
→ στn(GUTIID

N ) 6= GUTIja . It is then straightforward to check that ¬inc-acceptID
τn
→ στ0(GUTIID

N ) 6=
GUTIja . Therefore, using (28) we get that:

acceptID
τ ∧ fu-trn:τa

u:τ2 ∧ ¬inc-acceptID
τn
→
(
σin
τ0(GUTIID

N ) = GUTIja ∧ σin
τ0(GUTIID

N ) 6= GUTIja
)
→ false

Hence acceptID
τ ∧ fu-trn:τa

u:τ2 → inc-acceptID
τn

. Therefore using (29) and (30), we get:

acceptID
τ ∧ fu-trn:τa

u:τ2 → g(φin
τ0) 6= GUTIja (31)

We have acceptID
τ0
→ g(φin

τ0) = σin
τ0(GUTIID

N ). We get from this, (28) and (31) that:

acceptID
τ ∧ fu-trn:τa

u:τ2 ∧ acceptID
τ0
→ false

We showed that this holds for every τa = _, FN(ja) ≺ τ2. We deduce from (27) that:

acceptID
τ ∧ acceptID

τ0
→ false

Since we have this for every τ0 ≺ τ1, we can rewrite (26) to get:

acceptID
τ →

∨
τ0=_,TN(j0,0)
τ1≺τ0≺τ

(
acceptID

τ0
∧ π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N )

)
(32)

To conclude, we observe that acceptID
τ ∧ fu-trn:τa

u:τ2 → σin
τ1(GUTIID

U ) = GUTIja . We recall that acceptID
τ0
→ g(φin

τ0) = σin
τ0(GUTIID

N ).
We conclude using (28) that:

acceptID
τ ∧ fu-trn:τa

u:τ2 → σin
τ1(GUTIID

U ) = g(φin
τ0)

Since this holds for every τa = _, FN(ja) ≺ τ2, we deduce from (27) that:

acceptID
τ ∧ acceptID

τ0
→ σin

τ1(GUTIID
U ) = g(φin

τ0)

Hence using (32) we get:

acceptID
τ →

∨
τ0=_,TN(j0,0)
τ1≺τ0≺τ

(
acceptID

τ0
∧ π1(g(φin

τ )) = nj0 ∧ π2(g(φin
τ )) = σin

τ0(SQNID
N )⊕ fk(nj0)

∧ σin
τ (GUTIID

U ) = σin
τ0(GUTIID

N ) ∧ σin
τ1(GUTIID

U ) = g(φin
τ0)

)



This concludes this proof.

We can now prove the following strong acceptance characterization properties:

Lemma 14. For every valid symbolic trace τ = _,ai and identity ID we have:
• (StrEqu1) If ai = FUID(j). For every τ1 = _, FN(j0) ≺ τ , if we let τ2 = _, TUID(j, 0) or _, PUID(j, 1) then:

acceptID
τ ↔

∨
τ2≺ττ1=_,FN(j0)

fu-trn:τ1
u:τ

• (StrEqu2) If ai = TUID(j, 1). Let τ2 = _, TUID(j, 0) such that τ2 ≺ τ . Then for every τ1 such that τ1 = _, TN(j1, 0) and
τ2 ≺τ τ1, we let:

part-trn:τ1
u:τ2,τ ≡


π1(g(φin

τ )) = nj1 ∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fkID (nj1)

∧ π3(g(φin
τ )) = Mac3kID

m
(〈nj1 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉)

∧ g(φin
τ1) = σin

τ2(GUTIID
U ) ∧ σin

τ2(GUTIID
U ) = σin

τ1(GUTIID
N ) ∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N ))


Then we have:(

part-trn:τ1
u:τ2,τ → acceptID

τ ∧ acceptID
τ1

)
τ1=_,TN(j1,0)
τ2≺τ τ1

acceptID
τ ↔

∨
τ1=_,TN(j1,0)
τ2≺τ τ1

part-trn:τ1
u:τ2,τ

• (StrEqu3) If ai = TN(j, 1). Let τ1 = _, TN(j, 0) such that τ1 ≺ τ . Let ID ∈ Sid and τi, τ2 be such that τi = _, TUID(ji, 1),
τ2 = _, TUID(ji, 0) and τ2 ≺τ τ1 ≺τ τi. Let:

full-trn:τ1,τ
u:τ2,τi ≡

(
part-trn:τ1

u:τ2,τi ∧ g(φin
τ ) = Mac4kID

m
(nj)

)
Then we have:(

full-trn:τ1,τ
u:τ2,τi → acceptID

τ ∧ acceptID
τi
∧ acceptID

τ1

)
τ2=_,TUID(ji,0)

τi=_,TUID(ji,1)
τ2≺τ τ1≺τ τi

acceptID
τ ↔

∨
τ2=_,TUID(ji,0)

τi=_,TUID(ji,1)
τ2≺τ τ1≺τ τi

full-trn:τ1,τ
u:τ2,τi

• (StrEqu4) If ai = PUID(j, 2) then for every τ1 = _, PN(j1, 1) such that τ2 ≺τ τ1, we have:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ inc-acceptID

τ1
∧ σin

τ (SQNID
N )− στ1(SQNID

N ) = 0

Moreover: (
¬σin

τ (syncID
U ) ∧ acceptID

τ

)
→ στ (SQNID

U )− στ (SQNID
N ) = 0

E. Proof of Lemma 14

Proof of (StrEqu1): First, we apply (Equ1):

acceptID
τ ↔

∨
τ1=_,FN(j0)≺τ
τ1 6≺τ NSID(_)

fu-trn:τ1
u:τ

Let τ1 = _, FN(j0) ≺ τ . Remark that if τ2 ≺ τ1 then τ1 6≺τ NSID(_). Hence to conclude we just need to show that if τ1 ≺ τ2
then ¬fu-trn:τ1

u:τ .
Let τi = _, PUID(j, 2) or _, TUID(j, 1) such that τi ≺ τ . We do a case disjunction on τi:
• If τi = _, PUID(j, 2). We know that fu-trn:τ1

u:τ → acceptID
τi

, hence by applying (Acc2) to τi:

fu-trn:τ1
u:τ →

∨
τx=_,PN(jx,1)
τ2≺τx≺τi

acceptID
τx
∧ g(φin

τ2) = njx ∧ π1(g(φin
τx)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN

We know that fu-trn:τ1
u:τ → g(φin

τ2) = nj0 . We deduce that the main term of the disjunction above is false whenever jx 6= j0.
Hence we have ¬fu-trn:τ1

u:τ if there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi and τ0 = _, PN(j0, 1).
If τ1 ≺ τ2 then we know that for every τ0, if τ0 = _, PN(j0, 1) ≺ τ then τ0 ≺ τ1, and by transitivity τ0 ≺ τ2. Hence
there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi and τ0 = _, PN(j0, 1). We deduce that if τ1 ≺ τ2 then ¬fu-trn:τ1

u:τ holds,
which is what we wanted.



• If τi = _, TUID(j, 1). We know that fu-trn:τ1
u:τ → acceptID

τi
, hence by applying (StrAcc1) to τi:

fu-trn:τ1
u:τ →

∨
τx=_,TN(jx,0)
τ2≺τx≺τi

(
acceptID

τx
∧ g(φin

τx) = σin
τ2(GUTIID

U ) ∧ π1(g(φin
τi)) = njx

∧ π2(g(φin
τi)) = σin

τx(SQNID
N )⊕ fk(njx) ∧ σin

τi(GUTIID
U ) = σin

τx(GUTIID
N )

)

Similarly to what we did for τi = _, PUID(ji, 2), the main term above if false if jx 6= j0. Hence we have ¬fu-trn:τ1
u:τ if

there does not exist any τ0 such that τ2 ≺ τ0 ≺ τi and τ0 = _, TN(j0, 0). Since this is the case whenever τ1 ≺ τ2, we
deduce that if τ1 ≺ τ2 then ¬fu-trn:τ1

u:τ holds. This concludes this case, and this proof.
Proof of (StrEqu2): We start by repeating the proof of (Equ4), but using (StrAcc1) instead of (Acc3). All the reasonings we

did apply, only the set of τ1 the disjunction quantifies upon changes. We quantify over τ1 in {τ1 | τ1 = _, TN(j0, 0)∧τ2 ≺τ τ1}
instead of {τ1 | τ1 = _, TN(j0, 0) ∧ τ1 ≺ τ}. We get that:

acceptID
τ ↔

∨
τ1=_,TN(j0,0)
τ2≺τ τ1

π3(g(φin
τ )) = Mac3km

(〈nj0 , σin
τ1(SQNID

N ) , σin
τ (GUTIID

U )〉) ∧ σin
τ (s-valid-gutiID

U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N )) ∧ g(φin
τ1) = σin

τ1(GUTIID
N ) ∧ π1(g(φin

τ )) = nj0

∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fk(nj0) ∧ σin

τ (GUTIID
U ) = σin

τ1(GUTIID
N )

 (33)

Since no user ID action occurs between τ2 and τ , we know that:

σin
τ (GUTIID

U ) = σin
τ2(GUTIID

U ) σin
τ (s-valid-gutiID

U )↔ σin
τ2(valid-gutiID

U )

Using this, we can rewrite (33) as follows (we underline the subterms where rewriting occurred):

acceptID
τ ↔

∨
τ1=_,TN(j0,0)
τ2≺τ τ1


π3(g(φin

τ )) = Mac3km
(〈nj0 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉) ∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N )) ∧ g(φin
τ1) = σin

τ1(GUTIID
N )

∧ π1(g(φin
τ )) = nj0 ∧ π2(g(φin

τ )) = σin
τ1(SQNID

N )⊕ fk(nj0) ∧ σin
τ2(GUTIID

U ) = σin
τ1(GUTIID

N )



We rewrite σin
τ1(GUTIID

N ) into σin
τ2(GUTIID

U ):

↔
∨

τ1=_,TN(j0,0)
τ2≺τ τ1


π3(g(φin

τ )) = Mac3km
(〈nj0 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉) ∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N )) ∧ g(φin
τ1) = σin

τ2(GUTIID
U )

∧ π1(g(φin
τ )) = nj0 ∧ π2(g(φin

τ )) = σin
τ1(SQNID

N )⊕ fk(nj0) ∧ σin
τ2(GUTIID

U ) = σin
τ1(GUTIID

N )



Finally we re-order the conjuncts:

↔
∨

τ1=_,TN(j0,0)
τ2≺τ τ1


π1(g(φin

τ )) = nj1 ∧ π2(g(φin
τ )) = σin

τ1(SQNID
N )⊕ fkID (nj1)

∧ π3(g(φin
τ )) = Mac3kID

m
(〈nj1 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉)

∧ g(φin
τ1) = σin

τ2(GUTIID
U ) ∧ σin

τ2(GUTIID
U ) = σin

τ1(GUTIID
N ) ∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N ))


↔

∨
τ1=_,TN(j0,0)
τ2≺τ τ1

part-trn:τ1
u:τ2,τ

Checking that for every τ1 = _, TN(j1, 0)τ2 ≺τ τ1:(
part-trn:τ1

u:τ2,τ → acceptID
τ ∧ acceptID

τ1

)
is straightforward.

Proof of (StrEqu3): The proof that:
acceptID

τ ↔
∨

τ2=_,TUID(ji,0)

τi=_,TUID(ji,1)
τ2≺τ τ1≺τ τi

full-trn:τ1,τ
u:τ2,τi

is exactly the same than the proof of (Equ5), but using (StrEqu2) instead of (Equ4).
Finally, it is straightforward to check that for every τ2 = _, TUID(ji, 0), τi = _, TUID(ji, 1) such that τ2 ≺τ τ1 ≺τ τi we

have: (
full-trn:τ1,τ

u:τ2,τi → acceptID
τ ∧ acceptID

τi
∧ acceptID

τ1

)



Proof of (StrEqu4): Let τ2 = _PUID(j, 1) such that τ2 ≺ τ . Using (Equ2), we know that:

acceptID
τ ↔

∨
τ1=_,PN(j1,1)
τ2≺τ τ1

supi-tr n:τ1
u:τ2,τ

Therefore to prove (StrEqu4) it is sufficient to show that for every τ1 such that τ1 = _, PN(j1, 1) and τ2 ≺τ τ1 we have:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ inc-acceptID

τ1
∧ σin

τ (SQNID
N )− στ1(SQNID

N ) = 0 ∧ στ (SQNID
U )− στ (SQNID

N ) = 0

Hence let τ1 with τ1 = _, PN(j1, 1) and τ2 ≺τ τ1.
a) Part 1: First, we are going to show that:(

¬σin
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ

)
→ στ1(SQNID

N ) = στ2(SQNID
U ) (34)

We know that inc-acceptID
τ1
→ στ1(SQNID

N ) = στ2(SQNID
U ), which is what we wanted. Hence it only remains to show (34)

when ¬inc-acceptID
τ1

. Using (B5) we know that στ1(SQNID
N ) ≤ στ1(SQNID

U ). By validity of τ there are no user action between
τ2 and τ , hence στ (SQNID

U ) = σin
τ2(SQNID

U ). Observe that:(
supi-tr n:τ1

u:τ2,τ ∧ ¬inc-acceptID
τ1

)
→ σin

τ1(SQNID
N ) > σin

τ2(SQNID
U )

And: (
supi-tr n:τ1

u:τ2,τ ∧ ¬inc-acceptID
τ1

)
→ στ2(SQNID

U ) = σin
τ2(SQNID

U ) + 1

Graphically:

τ :

PUID(j, 1)

τ2

PN(j1, 1)

τ1

PUID(j, 2)

τ

σin
τ2(SQNID

U ) στ2(SQNID
U )

σin
τ1(SQNID

N )

σin
τ1(SQNID

U )+1 =

≤<

We deduce that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ ¬inc-acceptID
τ1

)
→ σin

τ2(SQNID
U ) < σin

τ1(SQNID
N ) ≤ σin

τ2(SQNID
U ) + 1

→ σin
τ1(SQNID

N ) = σin
τ2(SQNID

U ) + 1

→ στ1(SQNID
N ) = στ2(SQNID

U ) (35)

Which is what we wanted to show.
b) Part 2: We now show that:(

¬σin
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ

)
→ στ1(SQNID

N ) > σin
τ2(SQNID

N ) (36)

First, notice that:

inc-acceptID
τ1
→ στ1(SQNID

N ) = σin
τ1(SQNID

N ) + 1

→ στ1(SQNID
N ) > σin

τ1(SQNID
N )

→ στ1(SQNID
N ) > σin

τ2(SQNID
N ) (By (B1))

Therefore we only need to prove:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ ¬inc-acceptID
τ1

)
→ στ1(SQNID

N ) > σin
τ2(SQNID

N )

Which is straightforward:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ ¬inc-acceptID
τ1

)
→ στ1(SQNID

N ) = σin
τ2(SQNID

U ) + 1 (By (35))

→ στ1(SQNID
N ) > σin

τ2(SQNID
U )

→ στ1(SQNID
N ) > στ2(SQNID

N ) (By (B5))

Which concludes the proof of (36).



c) Part 3: We give the proof of:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στ (SQNID

N ) = στ1(SQNID
N ) ∧ στ (SQNID

U )− στ (SQNID
N ) = 0 (37)

By validity of τ we know that στ (SQNID
U ) = στ2(SQNID

U ), therefore using (34) we know that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στ1(SQNID

N ) = στ (SQNID
U )

To conclude, we need to show that SQNID
N was kept unchanged since τ1, i.e. that ¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ implies that
στ1(SQNID

N ) = στ (SQNID
N ). This requires that no SUPI or GUTI network session incremented SQNID

N . Therefore we need to show
the two following properties:
• SUPI: For every τ1 ≺τ τi such that τi = _, PN(ji, 1):(

¬σin
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ

)
→ ¬inc-acceptID

τi
(38)

• GUTI: For every τ1 ≺τ τi such that τi = _, TN(ji, 1):(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ ¬inc-acceptID

τi
(39)

Assuming the two properties above, showing that (37) holds is easy. First, using (38) and (39) we know that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στ (SQNID

N ) = στ1(SQNID
N )

We know that στ (SQNID
U ) = σin

τ (SQNID
U ). We deduce that στ (SQNID

N ) = στ (SQNID
U ), which concludes this case. We summarize

graphically this proof below:

τ :

PUID(j, 1)

τ2

PN(j1, 1)

τ1

PN(ji, 1) or TN(ji, 1)

τi

PUID(j, 2)

τ

στ2(SQNID
U ) =

suc(σin
τ2(SQNID

U ))

στ1(SQNID
N ) =

suc(σin
τ2(SQNID

U )) στi(SQNID
N ) = σin

τi(SQNID
N )

στ (SQNID
N )

στ (SQNID
U ) =

σin
τ (SQNID

U )=

=

= =

d) Part 4 (Proof of (38)): Let τ1 ≺τ τi such that τi = _, PN(ji, 1). Using (Acc1) we know that:

acceptID
τi
→

∨
τ ′=_,PUID(j′,1)≺ττi

(
π1(g(φin

τi)) = {
〈

ID , σin
τ ′(SQNID

U )
〉
}nj
′

e
pkN
∧ g(φin

τ ′) = nji
)

We know that supi-tr n:τ1
u:τ2,τ → g(φin

τ2) = nj1 6= nji . Moreover from the validity of τ we know that for every τ ′′ such that:

τ2 = _, PUID(j, 1) ≺τ τ ′′ = _,ai′′ ≺τ τ = _, PUID(j, 2)

We have ai′′ 6= PUID(_, _). Hence:

supi-tr n:τ1
u:τ2,τ ∧ acceptID

τi
→

∨
τ ′=_,PUID(j′,1)≺ττ2

(
π1(g(φin

τi)) = {
〈

ID , σin
τ ′(SQNID

U )
〉
}nj
′

e
pkN
∧ g(φin

τ ′) = nji
)

Which implies that:

supi-tr n:τ1
u:τ2,τ ∧ inc-acceptID

τi
→

∨
τ ′=_,PUID(j′,1)≺ττ2

(
στi(SQNID

N ) = suc(σin
τ ′(SQNID

U ))
)

We recall (34): (
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ (στ1(SQNID

N ) = στ2(SQNID
U ))

Let τ ′ = _, PUID(j′, 1) ≺τ τ2. We know using (B1) that:

στ1(SQNID
N ) ≤ στi(SQNID

N ) στ ′(SQNID
U ) ≤ στ2(SQNID

U )



Moreover using (A2) we know that στ ′(SQNID
U ) 6= στ2(SQNID

U ), hence στ ′(SQNID
U ) < στ2(SQNID

U ). This implies that:

¬σin
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ ∧ inc-acceptID

τi

→
∨

τ ′=_,PUID(j′,1)≺ττ2

(
στ ′(SQNID

U ) < στ2(SQNID
U )∧στ2(SQNID

U ) = στ1(SQNID
N )

∧στ1(SQNID
N ) ≤ στi(SQNID

N )∧στi(SQNID
N ) = στ ′(SQNID

U )

)
→

∨
τ ′=_,PUID(j′,1)≺ττ2

(στ ′(SQNID
U ) < στ ′(SQNID

U ))

→ false

Which concludes this proof. We summarize graphically below:

τ :

PUID(j′, 1)

τ ′

PUID(j, 1)

τ2

PN(j1, 1)

τ1

PN(ji, 1)

τi

στ ′(SQNID
U )

στ2(SQNID
U )

στ1(SQNID
N )

στi(SQNID
N )

<

=

=

≤

e) Part 5 (Proof of (39)): Let τ1 ≺τ τi such that τi = _, TN(ji, 1). Using Lemma 7, we know that:

acceptID
τi
→
(
σin
τi(e-authjN) = ID

)
→

∨
τ′=_,TUID(_,1)
τ′≺τ τi

στ ′(b-authID
U ) = nji

Since supi-tr n:τ1
u:τ2,τ → g(φin

τ2) = nj1 , we know that supi-tr n:τ1
u:τ2,τ → στ2(b-authID

U ) = nj1 . As we know that nj1 6= nji , we deduce
that supi-tr n:τ1

u:τ2,τ → στ2(b-authID
U ) 6= nji . Moreover using the validity of τ we know that στi(b-authID

U ) = στ2(b-authID
U ).

Therefore: (
supi-tr n:τ1

u:τ2,τ ∧ acceptID
τi

)
→

∨
τ′=_,TUID(_,1)
τ′≺τ τ2

στ ′(b-authID
U ) = nji

Let τ ′ = _, TUID(_, 1) with τ ′ ≺τ τ2. We know that στ ′(b-authID
U ) = nji implies that στ ′(b-authID

U ) 6= fail, and therefore
acceptτ ′ holds: (

στ ′(b-authID
U ) = nji

)
→
(
στ ′(b-authID

U ) 6= fail
)
→ acceptτ ′

By applying (Acc3) we know that:

acceptτ ′ →
∨

τi′=_,TN(j′i,0)≺ττ ′
π1(g(φin

τ ′)) = nj
′
i

Since [acceptτ ′ ]στ ′(b-authID
U ) = [acceptτ ′ ]π1(g(φin

τ ′)) we deduce:(
στ ′(b-authID

U ) = nji
)
→ false if τ ′ ≺τ TN(ji, 0)

Hence if τ ′ ≺τ TN(ji, 0) we know that ¬
(
supi-tr n:τ1

u:τ2,τ ∧ acceptID
τi

)
, which is what we wanted to show. Therefore let τi′ =

_, TN(ji, 0), and assume τi′ ≺τ τ ′. We summarize graphically this below:

τ :

TN(ji, 0)

τi
′

TUID(_, 1)

τ ′

PUID(j, 1)

τ2

PN(j1, 1)

τ1

TN(ji, 1)

τi

PUID(j, 2)

τ

We recall (36): (
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→
(
σin
τ2(SQNID

N ) < στ1(SQNID
N )
)

Hence, using (B4) we know that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→

∨
τ2�τx�τ1

τx=_,TN(jx,0) or _,TN(jx,1) or _,PN(jx,1)

στ1(sessionID
N ) = njx



Since TN(ji, 0) ≺τ τ2 and τ1 ≺τ TN(ji, 1):(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στ1(sessionID

N ) 6= nji

For every τ1 � τ ′′ we have:

στ ′′(sessionID
N ) =


if inc-acceptID

τ ′′ then nj
′′

else σin
τ ′′(sessionID

N ) if τ ′′ = _, PN(j′′, 1)

if acceptID
τ ′′ then nj

′′
else σin

τ ′′(sessionID
N ) if τ ′′ = _, TN(j′′, 0)

σin
τ ′′(sessionID

N ) otherwise

Since τ ′ 6≺τ TN(ji, 0), we know that after having set στ ′′(sessionID
N ) to nj1 at τ1, it can never be set to nji . Formally, we

show by induction that:
στ1(sessionID

N ) 6= nji → στ ′′(sessionID
N ) 6= nji

We conclude by observing that σin
τi(sessionID

N ) 6= nji → ¬inc-acceptID
τi

.
f) Part 6: To conclude the proof of (StrEqu4), it only remains to show that:(

¬σin
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ

)
→ inc-acceptID

τ1
(40)

Since supi-tr n:τ1
u:τ2,τ → acceptID

τ1
, and since:(

acceptID
τ1
∧ ¬inc-acceptID

τ1

)
↔ σin

τ1(SQNID
N ) > σin

τ2(SQNID
U )

To show that (40) holds, it is sufficient to show that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ σin

τ1(SQNID
N ) ≤ σin

τ2(SQNID
U )

We generalize this, and show by induction that for every τn such that τ2 � τn ≺τ τ1, we have:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

• If τn = τ2, this is immediate using (B5) and the fact that στn(SQNID
N ) = σin

τn(SQNID
N ).

• Let τn >τ τ2. By induction, assume that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ σin

τn(SQNID
N ) ≤ σin

τ2(SQNID
U )

We then have three cases:
– If τn 6= _, PN(_, 1) and τn 6= _, TN(_, 1), we know that στn(SQNID

N ) = σin
τn(SQNID

N ), and we conclude directly using
the induction hypothesis.

– If τn = _, PN(jn, 1). Using (Equ3) we know that:

στn(SQNID
N ) 6= σin

τn(SQNID
N )→ acceptID

τn

→
∨

τx=_,PUID(jx,1)
τx≺τ τn

 g(φin
τx) = njn ∧ π1(g(φin

τn)) = {〈ID , σin
τx(SQNID

U )〉}njne
pkN

∧ π2(g(φin
τn)) = Mac1kID

m
(〈{〈ID , σin

τx(SQNID
U )〉}njne

pkN
, g(φin

τx)〉)


︸ ︷︷ ︸

θτx

Since τn ≺τ τ1, we know that jn 6= j1. Moreover, supi-tr n:τ1
u:τ2,τ → g(φin

τ2) = nj1 . By consequence:(
supi-tr n:τ1

u:τ2,τ ∧ g(φin
τ2) = njn

)
→ false

Which shows that
(
supi-tr n:τ1

u:τ2,τ ∧ θτ2
)
→ false. Hence:

supi-tr n:τ1
u:τ2,τ ∧ στn(SQNID

N ) 6= σin
τn(SQNID

N )→
∨

τx=_,PUID(jx,1)
τx≺τ τ2

θτx

Observe that for every τx = _, PUID(jx, 1) such that τx ≺τ τ2:

θτx → στn(SQNID
N ) = if σin

τn(SQNID
N ) ≤ σin

τx(SQNID
U ) then σin

τx(SQNID
U ) else σin

τn(SQNID
N )

Using (B1), we know that σin
τx(SQNID

U ) ≤ σin
τ2(SQNID

U ). Therefore:

θτx → στn(SQNID
N ) ≤ if σin

τn(SQNID
N ) ≤ σin

τx(SQNID
U ) then σin

τ2(SQNID
U ) else σin

τn(SQNID
N )



And using the induction hypothesis, we get that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ θτx
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

Hence: (
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ στn(SQNID
N ) 6= σin

τn(SQNID
N )
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

From which we deduce, using the induction hypothesis, that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

– If τn = _, TN(jn, 1). Using (StrEqu2), we know that:

στn(SQNID
N ) 6= σin

τn(SQNID
N )→ acceptID

τn

→
∨

τx′=_,TUID(jx,0)

τn′=_,TN(jn,0)
τx=_,TUID(jx,1)

τx′≺τ τn′≺τ τx≺τ τn

full-trn:τn′,τn
u:τx′,τx

Let τx = _, TUID(jx, 1), τn′ = _, TN(jn, 0), τx′ = _, TUID(jx, 0) be such that τx′ ≺τ τn′ ≺τ τx ≺τ τn. One can check
that:

inc-acceptID
τn
→

∧
τx≺ττi≺ττn

¬inc-acceptID
τi

→ στn′(SQNID
N ) = σin

τn(SQNID
N )

Moreover, since:
inc-acceptID

τn
→ σin

τx(SQNID
U ) = στn′(SQNID

N )

We deduce that:

full-trn:τn′,τn
u:τx′,τx → στn(SQNID

N ) = if inc-acceptID
τn

then suc(σin
τx(SQNID

U )) else σin
τn(SQNID

N )

By validity of τ , we know that jx 6= j and that τx ≺τ τ2. Therefore using (B1) we know that στx(SQNID
U ) ≤

σin
τ2(SQNID

U ). Moreover στx(SQNID
U ) = suc(instateτx(SQNID

U )). Hence:

full-trn:τn′,τn
u:τx′,τx → στn(SQNID

N ) ≤ if inc-acceptID
τn

then σin
τ2(SQNID

U ) else σin
τn(SQNID

N )

And using the induction hypothesis, we get that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ full-trn:τn′,τn
u:τx′,τx

)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

Hence: (
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ ∧ στn(SQNID
N ) 6= σin

τn(SQNID
N )
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )

From which we deduce, using the induction hypothesis, that:(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ στn(SQNID

N ) ≤ σin
τ2(SQNID

U )



APPENDIX IV
UNLINKABILITY

The goal of this section is to prove unlinkability of the AKA+ protocol. To do this, we need, for every valid basic symbolic
trace τ , to show that there exists a derivation of φτ ∼ φτ . We show this by induction on τ .

A. Resistance against de-synchronization attacks

To show that the GUTI protocol guarantees unlinkability, we need the protocol the be resilient to de-synchronization attacks:
for every agent ID, the adversary should not be able to keep ID synchronized in the left protocol, while de-synchronizing
ντ (ID) in the right protocol.

Therefore, we need the range check on the sequence number to hold on the left iff the range check hold on the right. More
precisely, for every identity ID and the matching identity ντ (ID) on the right, the range checks on the sequence numbers should
be indistinguishable:

range(στ (SQNID
U ), στ (SQNID

N )) ∼ range(στ (SQN
ντ (ID)
U ), στ (SQN

ντ (ID)
N )) (41)

But the property above is not a invariant of the AKA+ protocol for two reasons:

• First, knowing that the range checks are indistinguishable after a symbolic execution τ is not enough to show that they
are indistinguishable after τ1 = τ,ai (for some ai). For example, take a model where range(u, v) is implemented as a
check that the difference between u and v lies in some interval:

[[range(u, v)]] if and only if [[u]]− [[v]] ∈ {0, . . . , D}

for some constant D > 0, and suc is implemented as an increment by one. Then, a priori, we may have:

[[στ (SQNID
U )]]− [[στ (SQNID

N )]] = 0 ∈ {0, . . . , D}
[[στ (SQN

ντ (ID)
U )]]− [[στ (SQN

ντ (ID)
N )]] = D ∈ {0, . . . , D}

While (41) holds for τ , it does not hold for τ1 = τ, PUID(j, 1). Indeed, after executing PUID(j, 1) we have:

[[στ1(SQNID
U )]]− [[στ1(SQNID

N )]] = 1 ∈ {0, . . . , D}

[[στ1(SQN
ντ1 (ID)
U )]]− [[στ1(SQN

ντ1 (ID)
N )]] = D + 1 6∈ {0, . . . , D}

To avoid this, we require that range(_, _) and suc(_) are implemented as, respectively, an equality check and an integer
by-one increment.
Moreover, we strengthen the induction property to show that the difference between the sequence numbers are
indistinguishable, i.e.:

στ (SQNID
U )− στ (SQNID

N ) ∼ στ (SQN
ντ (ID)
U )− στ (SQN

ντ (ID)
N ) (42)

• Second, the property in (42) actually does not always hold: after a NSID(_) action, the agent ID and the network may be
synchronized on the left (if, e.g., the SUPI protocol has just been successfully executed), but ντ (ID) is not synchronized
with the network.
Even though the property does not hold, there is no attack on unlinkability. Indeed a desynchronization attack would need
the GUTI protocol to succeed on the left and fail on the right. But the GUTI protocol requires that a fresh GUTI has been
established between ID (resp. ντ (ID)) and the network. This can only be achieved through a honest execution of the SUPI
protocol. As such a execution will re-synchronized the agent and the network sequence numbers on both side, there is no
attack.
To model this, we extend the symbolic state with a new boolean variable, syncID

U , that records whether there was a
successful execution of the SUPI protocol with agent ID since the last NSID(_). This variable is only here for proof
purposes, and is never used in the actual protocol. We can then state the synchronization invariant:

if στ (syncID
U ) then στ (SQNID

U )− στ (SQNID
N )

else ⊥︸ ︷︷ ︸
sync-diffID

τ

∼ if στ (syncντ (ID)
U ) then στ (SQN

ντ (ID)
U )− στ (SQN

ντ (ID)
N )

else ⊥︸ ︷︷ ︸
sync-diffντ (ID)

τ



B. Strengthened induction hypothesis

Definition 44. Let L = (i1, . . . , il) be a list of indexes, and (bi)i∈L, (ti)i∈L two list of terms. Then:

case
i∈L

((bi)i∈L : (mi)i∈L) ≡

{
if bi1 then mi1 else case

i∈L0

((bi)i∈L0
: (mi)i∈L0

) when L 6= ∅ and L0 = (i2, . . . , il)

⊥ otherwise

We will often abuse notation, and write case
i∈L

(bi :mi) instead of case
i∈L

((bi)i∈L : (mi)i∈L).

Proposition 28. Let L = (i1, . . . , il) be a list of indexes, and (bi)i∈L, (ti)i∈L two list of terms. If (bi)i∈L is a CS partition,
then for any permutation π of {1, . . . , l}, if we let Lπ = (iπ(1), . . . , iπl) then:

case
i∈L

(bi :mi) = case
i∈Lπ

(bi :mi)

When that is the case, we write case
i∈{i1,...,il}

(bi :mi) (i.e. we use a set notation instead of list notation).

Proof. The proof is straightforward by induction over |L|.

If (bi)i∈L is such that (
∨
i∈L bi) = true then the case where all tests fail and we return ⊥ never happens. This motivates

the introduction of a second definition.

Definition 45. Let L = (i1, . . . , il) be a list of indexes with l ≥ 1, and (bi)i∈L, (ti)i∈L two list of terms. Then:

s-case
i∈L

((bi)i∈L : (mi)i∈L) ≡

{
if bi1 then mi1 else case

i∈L0

((bi)i∈L0 : (mi)i∈L0) when L0 = (i2, . . . , il) and l ≥ 1

m1 if l = 1

Proposition 29. For every list of terms (bi)i∈L and (ti)i∈L, if (
∨
i∈L bi) = true then:

case
i∈L

(bi :mi) = s-case
i∈L

(bi :mi)

Proof. We omit the proof.

Definition 46. Let τ = ai0, . . . ,ain be a valid basic symbolic trace. Then revealτ is a list of elements of the form u ∼ v,
where u, v are terms, representing the information that can be safely leaked to the adversary. Let ai = ain. Then revealτ
contains exactly the following list of elements:

1) All the elements from revealτ0 , where τ0 = ai0, . . . ,ain−1.
2) For every base identity ID, let:

m-suci ID
τ ≡ [στ (valid-gutiID

U )]στ (GUTIID
U )

We then have the following synchronization invariants.

στ (valid-gutiID
U ) ∼ στ (valid-gutiντ (ID)

U ) m-suci ID
τ ∼ m-suci ντ (ID)

τ στ (syncID
U ) ∼ στ (syncντ (ID)

U )

sync-diffID
τ ∼ sync-diffντ (ID)

τ len(〈ID , σin
τ (sqn-initID

U )〉) ∼ len(〈ID , σin
τ (sqn-initID

U )〉)

3) If ai 6= NS_(_) then for every base identity ID:

στ (SQNID
U )− σin

τ (SQNID
U ) ∼ στ (SQN

ντ (ID)
U )− σin

τ (SQN
ντ (ID)
U )

4) If ai = TUID(j, 0), then:
στ (s-valid-gutiID

U ) ∼ στ (s-valid-gutiντ (ID)
U )

5) If ai = PUID(j, 1), then:

{〈ID , σin
τ (SQNID

U )〉}nje
pkN
∼ {〈ντ (ID) , σin

τ (SQN
ντ (ID)
U )〉}nje

pkN

Mac1kID
m

(〈{〈ID , σin
τ (SQNID

U )〉}nje
pkN

, g(φin
τ )〉) ∼ Mac1

kντ (ID)
m

(〈{〈ντ (ID) , σin
τ (SQN

ντ (ID)
U )〉}nje

pkN
, g(φin

τ )〉)

6) If ai = PUID(_, 2), TUID(_, 1) or FUID(_):

στ (e-authID
U ) ∼ στ (e-authντ (ID)

U )

7) If TUID(j, 1) then for every τ1 = _, TN(j0, 0) such that TUID(j, 0) ≺τ τ1:

Mac4kID
m

(nj0) ∼ Mac4
kντ (ID)

m
(nj0)



8) If ai = PN(j, 1) then for every base identity ID, for every τ1 = _, PUID(j1, 1) ≺ τ such that τ1 6≺τ NSID(_) we have:

Mac2kID
m

(〈nj , suc(σin
τ1(SQNID

U ))〉) ∼ Mac2
kντ (ID)

m
(〈nj , suc(σin

τ1(SQN
ντ (ID)
U ))〉)

9) If ai = PN(j, 1) or ai = TN(j, 1), for all base identity ID, we let:

net-e-authτ (ID, j) ≡ eq(στ (e-authjN), ID)

net-e-authτ (ID, j) ≡
∨

ID∈copies-id(ID)

eq(στ (e-authjN), ID)

Then we ask that:

net-e-authτ (ID, j) ∼ net-e-authτ (ID, j)

10) If ai = FN(j) for every base identity ID we let {ID1, . . . , IDlID
} = copies-id(ID). We define:

t-suci-⊕τ (ID, j) ≡ GUTIj ⊕ f r
kID (nj)

t-suci-⊕τ (ID, j) ≡ s-case
1≤i≤lID

(eq(στ (e-authjN), IDi) : GUTIj ⊕ f r
kIDi (nj))

t-macτ (ID, j) ≡ Mac5kID
m

(〈GUTIj , nj〉)
t-macτ (ID, j) ≡ s-case

1≤i≤lID

(eq(στ (e-authjN), IDi) : Mac5kIDi
m

(〈GUTIj , nj〉))

Then we ask that:

GUTIj ∼ GUTIj

[net-e-authτ (ID, j)] (t-suci-⊕τ (ID, j)) ∼ [net-e-authτ (ID, j)]
(

t-suci-⊕τ (ID, j)
)

[net-e-authτ (ID, j)] (t-macτ (ID, j)) ∼ [net-e-authτ (ID, j)]
(

t-macτ (ID, j)
)

Let (ui ∼ vi)i∈I be such that revealτ = (ui ∼ vi)i∈I . Then we let l-revealτ = (ui)i∈I be the list of left elements of revealτ ,
and r-revealτ = (vi)i∈I list of left elements of revealτ (in the same order).

Proposition 30. For every basic valid symbolic trace τ = _,ai:
• (Der1) For every base identity, for every τ1 such that τ1 ≺ τ and τ1 6≺τ NSID(_), there exist derivations using only FA

and Dup of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
l-revealτ0 , σ

in
τ (syncID

U ) ∧ σin
τ (SQNID

N ) < σin
τ1(SQNID

U )

∼ r-revealτ0 , σ
in
τ (syncντ (ID)

U ) ∧ σin
τ (SQN

ντ (ID)
N ) < σin

τ1(SQN
ντ (ID)
U )

Simp

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
l-revealτ0 , σ

in
τ1(syncID

U ) ∧ σin
τ1(SQNID

N ) < σin
τ (SQNID

U )

∼ r-revealτ0 , σ
in
τ1(syncντ (ID)

U ) ∧ σin
τ1(SQN

ντ (ID)
N ) < σin

τ (SQN
ντ (ID)
U )

Simp

• (Der2) If ai = FUID(j). For every ID ∈ Sid, for every τ1 = _, FN(j0) ≺ τ such that τ1 6≺τ NSID(_):
– We have τ1 = _, FN(j0), τ = _, FUντ (ID)(j), τ1 ≺τ τ and τ1 6≺τ NSντ (ID)(_). Therefore, fu-trn:τ1

u:τ is well-defined.
– There is a derivation of the form:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , fu-trn:τ1

u:τ ∼ φin
τ , r-revealτ0 , fu-trn:τ1

u:τ

Simp

• (Der3) If ai = TUID(j, 1). For every τ1 = _, TN(j1, 0), τ2 = _, TUID(j, 0) such that τ2 ≺τ τ1:

τ :

TUID(j, 0)

τ2

TN(j1, 0)

τ1

TUID(j, 1)

τ

– We have τ2 = _, TUντ (ID)(j, 0), τ1 = _, TUντ (ID)(j, 1) and τ2 ≺τ τ1 ≺τ τ . Therefore, part-trn:τ1
u:τ2,τ is well-defined.



– There is a derivation of the form:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,part-trn:τ1

u:τ2,τ ∼ φin
τ , r-revealτ0 ,part-trn:τ1

u:τ2,τ

Simp

• (Der4) If ai = TN(j, 1). For every ID ∈ Sid, τi = _, TUID(ji, 1), τ1 = _, TN(j, 0), τ2 = _, TUID(ji, 0) such that
τ2 ≺τ τ1 ≺τ τi:

τ :

TUID(ji, 0)

τ2

TN(j, 0)

τ1

TUID(ji, 1)

τi

TN(j, 1)

τ

– We have τ2 = _, TUντ1 (ID)(ji, 0), τi = _, TUντ1 (ID)(ji, 1) and τ2 ≺τ τ1 ≺τ τi ≺τ τ . Therefore, full-trn:τ1,τ
u:τ2,τi is

well-defined.
– There is a derivation of the form:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , full-trn:τ1,τ

u:τ2,τi ∼ φin
τ , r-revealτ0 , full-trn:τ1,τ

u:τ2,τi

Simp

The proof is given in Section V

Lemma 15. For all valid basic symbolic trace τ with at most C actions NS, there exists a derivation of:

φτ , l-revealτ ∼ φτ , r-revealτ

The proof is given in Section VI.
Using this lemma, we can prove our main theorem, which we recall below:

Theorem (Theorem 1). The 5G-AKA protocol is σul-unlinkable for an arbitrary number of agents and sessions when the
asymmetric encryption {_}_

_ is IND-CCA1 secure and f and f r (resp. Mac1– Mac5) satisfy jointly the PRF assumption.

Proof. Using Proposition 19, we only need to show that for every τ ∈ dom(Rul), there is a derivation of φτ ∼ φτ using Ax.
Moreover, using Assumption 1 we know that for every τ ∈ dom(Rul), τ is a valid symbolic trace. Therefore, it is sufficient
to prove that for every valid symbolic trace τ , we have a derivation using Ax of φτ ∼ φτ . Using Lemma 15, we know that
we have a derivation of φτ , l-revealτ ∼ φτ , r-revealτ . We conclude using the Restr rule:

φτ , l-revealτ ∼ φτ , r-revealτ
φτ ∼ φτ

Restr



APPENDIX V
PROOF OF PROPOSITION 30

Proof of (Der1)
We have two cases:
• either there exists l such that NSID(l) ≺ τ and NSID(l) 6≺τ NSID(_). In that case we have NSID(l) ≺τ τ1.
• or for every i, NSID(i) 6≺τ τ1.

Let ID = ντ (ID). We summarize the situation graphically in Fig. 17. In both case, for every τ1 � τ ′ ≺ τ we have:(
στ ′(SQNID

U )− σin
τ ′(SQNID

U ), στ ′(SQN
ID
U )− σin

τ ′(SQN
ID
U )
)
∈ revealτ0(

[σin
τ (syncID

U )]
(
σin
τ (SQNID

N )− σin
τ (SQNID

U )
)
, [σin

τ (syncID
U )]
(
σin
τ (SQN

ID
N )− σin

τ (SQN
ID
U )
))
∈ revealτ0

We know that:

σin
τ (SQNID

U )− σin
τ1(SQNID

U ) = στ0(SQNID
U )− σin

τ1(SQNID
U ) =

∑
τ1�τ ′

στ ′(SQNID
U )− σin

τ ′(SQNID
U )

And:(
σin
τ (syncID

U ) ∧ σin
τ (SQNID

N ) < σin
τ1(SQNID

U )
)
↔

σin
τ (syncID

U ) ∧
((
σin
τ (SQNID

U )− σin
τ1(SQNID

U )
)

+ [σin
τ (syncID

U )]
(
σin
τ (SQNID

N )− σin
τ (SQNID

U )
)
< 0
)

Similarly:

σin
τ (SQN

ID
U )− σin

τ1(SQN
ID
U ) = στ0(SQN

ID
U )− σin

τ1(SQN
ID
U ) =

∑
τ1� τ ′� τ0

στ ′(SQN
ID
U )− σin

τ ′(SQN
ID
U )

=
∑
τ1�τ ′

στ ′(SQN
ID
U )− σin

τ ′(SQN
ID
U )

And:(
σin
τ (syncID

U ) ∧ σin
τ (SQN

ID
N ) < σin

τ1(SQN
ID
U )
)
↔

σin
τ (syncID

U ) ∧
(((

σin
τ (SQN

ID
U )− σin

τ1(SQN
ID
U )
)

+ [σin
τ (syncID

U )]
(
σin
τ (SQN

ID
N )− σin

τ (SQN
ID
U )
))

< 0
)

Putting everything together, we get the following derivation:

l-revealτ0 ∼ r-revealτ0
l-revealτ0 , σ

in
τ (syncID

U ), [σin
τ (syncID

U )]
(
σin
τ (SQNID

N )− σin
τ (SQNID

U )
)
,
(
στ ′(SQNID

U )− σin
τ ′(SQNID

U ),
)
τ1�τ ′

∼r-revealτ0 , σ
in
τ (syncID

U ), [σin
τ (syncID

U )]
(
σin
τ (SQN

ID
N )− σin

τ (SQN
ID
U )
)
,
(
στ ′(SQN

ID
U )− σin

τ ′(SQN
ID
U ),
)
τ1�τ ′

Dup∗

l-revealτ0 , σ
in
τ1(syncID

U ) ∧ σin
τ (SQNID

N ) < σin
τ1(SQNID

U )

∼ r-revealτ0 , σ
in
τ1(syncID

U ) ∧ σin
τ (SQN

ID
N ) < σin

τ1(SQN
ID
U )

Simp

The derivation of (30) is very similar. We omit the details, and only give the graphical representation of the situation in Fig. 18.

Proof of (Der3)

τ :

TUID(j, 0)

τ2

TN(j1, 0)

τ1

TUID(j, 1)

τ

Recall that:

part-trn:τ1
u:τ2,τ ≡



π1(g(φin
τ )) = nj1 ∧ π2(g(φin

τ )) = σin
τ1(SQNID

N )⊕ fkID (nj1). . . . . . . . . . . . . . . . . . . . . . .

∧ π3(g(φin
τ )) = Mac3kID

m
(〈nj1 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∧ g(φin
τ1) = σin

τ2(GUTIID
U ) ∧ σin

τ2(GUTIID
U ) = σin

τ1(GUTIID
N )

::::::::::::::::::::::
∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N ))


(43)



τ :

NSID(l) or ε τ1 τ

σin
τ1(SQNID

U ) σin
τ (SQNID

U )

σin
τ (SQNID

N )

σin
τ (SQNID

N )− σin
τ (SQNID

U )

σin
τ (SQNID

U )− σin
τ1(SQNID

U )

τ :

NSID(l) or ε τ1 τ

σin
τ1(SQN

ID
U ) σin

τ (SQN
ID
U )

σin
τ (SQN

ID
N )

σin
τ (SQN

ID
N )− σin

τ (SQN
ID
U )

σin
τ (SQN

ID
U )− σin

τ1(SQN
ID
U )

∼

Fig. 17. First Graphical Representation for the Proof of (Der1)

Since τ is valid, we know that for every τ ′, if τ2 ≺τ τ ′ then τ ′ 6= NSID(_). It follows that τ2 = _, TUντ (ID)(j, 0) and
τ = _, TUντ (ID)(j, 1). The fact that τ2 ≺τ τ1 is then straightforward. Letting ID = ντ (ID), we can then check that:

part-trn:τ1
u:τ2,τ ≡



π1(g(φin
τ )) = nj1 ∧ π2(g(φin

τ )) = σin
τ1(SQN

ID
N )⊕ fkID (nj1)

. . . . . . . . . . . . . . . . . . . . . . .

∧ π3(g(φin
τ )) = Mac3kID

m
(〈nj1 , σin

τ1(SQN
ID
N ) , σin

τ2(GUTI
ID
U )〉)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∧ g(φin
τ1) = σin

τ2(GUTI
ID
U ) ∧ σin

τ2(GUTI
ID
U ) = σin

τ1(GUTI
ID
N )

::::::::::::::::::::::

∧ σin
τ2(valid-gutiID

U )

∧ range(σin
τ (SQN

ID
U ), σin

τ1(SQN
ID
N ))


(44)

We have two cases.
a) Case 1: Assume that for all τ ′ ≺τ τ1 such that τ ′ 6≺τ NSID(_) we have τ ′ 6= _, FUID(_).

Then we know that for all τ ′ <τ τ1 such that τ ′ 6<τ NSντ (ID)(_) we have τ ′ 6= _, FUντ (ID)(_). Therefore using (B7) twice
we get:

part-trn:τ1
u:τ2,τ → false part-trn:τ1

u:τ2,τ → false

Therefore we have a trivial derivation:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , false ∼ φin

τ , r-revealτ0 , false
FA

φin
τ , l-revealτ0 ,part-trn:τ1

u:τ2,τ ∼ φin
τ , r-revealτ0 ,part-trn:τ1

u:τ2,τ
R

(45)

b) Case 2: Assume that there exists τ3 = _, FUID(j0) such that τ3 ≺τ τ1, τ3 6≺τ NSID(_) and τ3 6≺τ FUID(_). Then
τ3 = _, FUντ (ID)(_), τ3 <τ τ1, τ3 6<τ NSντ (ID)(_) and τ3 6<τ FUντ (ID)(_).

First, we show that j0 6= j: assume that j0 = j, then we know that τ ≺τ τ3, which is absurd. Therefore j0 6= j. Using the
validity of τ , we know that τ3 cannot occur between τ2 = _, TUID(j, 0) and τ = _, TUID(j, 0). Hence τ3 ≺τ τ2.

Let τNS be the latest NSID(_), if it exists, or ε otherwise: τNS = _, NSID(_) or ε and τNS 6≺τ NSID(_). Let τx be _, TUID(j0, 0)
or _, PUID(j0, 1) be the beginning of the U session associated to τ3. We know that τNS ≺τ τx ≺τ τ3.

We know that part-trn:τ1
u:τ2,τ → σin

τ2(valid-gutiID
U ). As τ3 6≺τ FUID(_), we know that there are no FUID(_) action between τ3 and

τ2. If there exists a action by user ID between τ3 and τ2, then we have either τ3 ≺τ PUID(_, 1) ≺τ τ2 or τ3 ≺τ TUID(_, 0) ≺τ τ2.
In both case, valid-gutiID

U is set to false, and cannot be set back to something else without a FUID(_) action. It follows that if
there exists a user action between τ3 and τ2 then ¬σin

τ2(valid-gutiID
U ). Using the same reasoning we have ¬σin

τ2(valid-gutiID
U ) if

there exists a user action between τ3 and τ2. Hence in that case the derivation (45) works.
By consequence we now assume that:

{_, TUID(_), _, PUID(_, _)1, FUID(_)} ∩ {τ ′ | τ3 ≺τ τ ′ ≺τ τ2} = ∅ (46)



τ :

NSID(l) or ε τ1 τ

σin
τ1(SQNID

U )

σin
τ1(SQNID

N )

σin
τ (SQNID

U )

σin
τ1(SQNID

N )− σin
τ1(SQNID

U )

σin
τ (SQNID

U )− σin
τ1(SQNID

U )

τ :

NSID(l) or ε τ1 τ

σin
τ1(SQN

ID
U )

σin
τ1(SQN

ID
N )

σin
τ (SQN

ID
U )

σin
τ1(SQN

ID
N )− σin

τ1(SQN
ID
U )

σin
τ (SQN

ID
U )− σin

τ1(SQN
ID
U )

∼

Fig. 18. Second Graphical Representation for the Proof of (Der1)

It follows that ¬acceptID
τ3
→ ¬σin

τ2(valid-gutiID
U ), hence part-trn:τ1

u:τ2,τ → acceptID
τ3

. We also deduce from (46) that στ3(GUTIID
U ) ≡

σin
τ2(GUTIID

U ). Applying (StrEqu1), we know that:

acceptID
τ3
↔

∨
τx≺ττa = _,FN(ja)≺ττ3

fu-trn:τa
u:τ3

Therefore:

part-trn:τ1
u:τ2,τ ↔

∨
τx≺ττa = _,FN(ja)≺ττ3

fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ

Similarly, we show that στ3(GUTI
ID
U ) ≡ σin

τ2(GUTI
ID
U ) and that:

part-trn:τ1
u:τ2,τ ↔

∨
τx≺ττa = _,FN(ja)≺ττ3

fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ

We can start building the wanted derivation:

φin
τ , l-revealτ0 ,

(
fu-trn:τa

u:τ3 ∧ part-trn:τ1
u:τ2,τ

)
τx≺ττa = _,FN(ja)≺ττ3

∼ φin
τ , r-revealτ0 ,

(
fu-trn:τa

u:τ3 ∧ part-trn:τ1
u:τ2,τ

)
τx≺ττa = _,FN(ja)≺ττ3

φin
τ , l-revealτ0 ,

∨
τx≺ττa = _,FN(ja)≺ττ3

fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ

∼ φin
τ , r-revealτ0 ,

∨
τx≺ττa = _,FN(ja)≺ττ3

fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ

FA∗

φin
τ , l-revealτ0 ,part-trn:τ1

u:τ2,τ ∼ φin
τ , r-revealτ0 ,part-trn:τ1

u:τ2,τ
R

Let τa = _, FN(ja) be such that τx ≺τ τa ≺τ τ3. Let τb be _, TN(ja, 1) or _, PN(ja, 1) such that τb ≺τ τa. To conclude, we
just need to build a derivation of:

φin
τ , l-revealτ0 , fu-trn:τa

u:τ3 ∧ part-trn:τ1
u:τ2,τ ∼ φin

τ , r-revealτ0 , fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ

The proof consist in rewriting fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ and fu-trn:τa
u:τ3 ∧ part-trn:τ1

u:τ2,τ such that they can be decomposed (using
FA) into corresponding parts appearing in revealτ0 . We do this piece by piece: the waved underlined part first, the dotted
underlined and the dashed underlined part. We represent graphically the protocols executions below:



NSID(_)
or ε

τNS

TUID(j0, 0)
or PUID(j0, 1)

τx

TN(ja, 1)
or PN(ja, 1)

τb

FN(ja)

τa

FUID(j0)

τ3

TUID(j, 0)

τ2

TN(j1, 0)

τ1

TUID(j, 1)

τ

c) Part 1 (Waves): We are going to give a derivation of:

φin
τ , l-revealτ0 , fu-trn:τa

u:τ3 ∧ σ
in
τ2(GUTIID

U ) = σin
τ1(GUTIID

N ) ∼ φin
τ , r-revealτ0 , fu-trn:τa

u:τ3 ∧ σ
in
τ2(GUTI

ID
U ) = σin

τ1(GUTI
ID
N )

Recall that στ3(GUTIID
U ) ≡ σin

τ2(GUTIID
U ) and στ3(GUTI

ID
U ) ≡ σin

τ2(GUTI
ID
U ). Therefore it is sufficient to give a derivation of:

φin
τ , l-revealτ0 , fu-trn:τa

u:τ3 ∧ στ3(GUTIID
U ) = σin

τ1(GUTIID
N ) ∼ φin

τ , r-revealτ0 , fu-trn:τa
u:τ3 ∧ στ3(GUTI

ID
U ) = σin

τ1(GUTI
ID
N )

We know that:
[fu-trn:τa

u:τ3 ]στ3(GUTIID
U ) = [fu-trn:τa

u:τ3 ]GUTIja

Hence: (
fu-trn:τa

u:τ3 ∧ στ3(GUTIID
U ) = σin

τ1(GUTIID
N )
)
↔
(
fu-trn:τa

u:τ3 ∧ σ
in
τ1(GUTIID

N ) = GUTIja
)

Intuitively, the only way we can have σin
τ1(GUTIID

N ) = GUTIja is:
• if the SUPI or GUTI network session ja accepts with the increasing sequence number condition.
• and if σin

τ1(GUTIID
N ) was not over-written between τb and τ1.

It is actually straightforward to show by induction that:

σin
τ1(GUTIID

N ) 6= GUTIja ↔

¬inc-acceptID
τb
∨

∨
τ′=_,TN(j′,1)

or τ′=_,PN(j′,1)
τb≺τ τ′≺τ τ1

inc-acceptID
τ ′ ∨

∨
τ′=_,TN(j′,0)
τb≺τ τ′≺τ τ1

acceptID
τ ′


Hence:

fu-trn:τa
u:τ3 ∧ στ3(GUTIID

U ) = σin
τ1(GUTIID

N )

↔ fu-trn:τa
u:τ3 ∧ inc-acceptID

τb
∧

∧
τ′=_,TN(j′,1)

or τ′=_,PN(j′,1)
τb≺τ τ′≺τ τ1

¬inc-acceptID
τ ′ ∧

∧
τ′=_,TN(j′,0)
τb≺τ τ′≺τ τ1

¬acceptID
τ ′

↔ fu-trn:τa
u:τ3 ∧ inc-acceptID

τb
∧

∧
τ′=_,TN(j′,1)

or τ′=_,PN(j′,1)
τb≺τ τ′≺τ τ1

¬inc-acceptID
τ ′ ∧

∧
τ′=_,TN(j′,0)
τb≺τ τ′≺τ τ1

g(φin
τ ′) 6= GUTIja

For every τn = _, TN(_, 1) or _, PN(_, 1), we know that SQNID
N is incremented at τn if and only if inc-acceptID

τn
is true.

Therefore:

inc-acceptID
τn
↔ σin

τn(SQNID
N ) < στn(SQNID

N )

Using the fact that σin
τn(SQNID

U ) = στn(SQNID
U ), we can rewrite this as:

inc-acceptID
τn
↔ σin

τn(SQNID
N )− σin

τn(SQNID
U ) < στn(SQNID

N )− στn(SQNID
U )

Using this remark we can show that:

fu-trn:τa
u:τ3 ∧ στ3(GUTIID

U ) = σin
τ1(GUTIID

N )

↔ fu-trn:τa
u:τ3 ∧

(
σin
τb

(SQNID
N )− σin

τb
(SQNID

U )

< στb(SQNID
N )− στb(SQNID

U )

)
∧

(
στb(SQNID

N )− στb(SQNID
U )

= σin
τ1(SQNID

N )− σin
τ1(SQNID

U )

)
∧
∧

τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja (47)

Doing exactly the same reasoning, we show that:

fu-trn:τa
u:τ3 ∧ στ3(GUTI

ID
U ) = σin

τ1(GUTI
ID
N )

↔ fu-trn:τa
u:τ3 ∧

(
σin
τb

(SQN
ID
N )− σin

τb
(SQN

ID
U )

< στb(SQN
ID
N )− στb(SQN

ID
U )

)
∧

(
στb(SQN

ID
N )− στb(SQN

ID
U )

= σin
τ1(SQN

ID
N )− σin

τ1(SQN
ID
U )

)
∧
∧

τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja (48)



We introduce some notation that will be used later: for every symbolic trace τ = τ0,ai and identity ID, we let sync-diff-inID
τ ≡

sync-diffID
τ0

.
We now split the proof in two, depending on whether σin

τb
(syncID

U ) is true or false. Let ψ ≡ fu-trn:τa
u:τ3 ∧ σ

in
τ2(GUTIID

U ) =

σin
τ1(GUTIID

N ) and ψ ≡ fu-trn:τa
u:τ3 ∧ σin

τ2(GUTI
ID
U ) = σin

τ1(GUTI
ID
N ). Using the fact that:(

σin
τb

(syncID
U ), σin

τb
(syncID

U )
)
∈ revealτ0

We can build the derivation:

φin
τ , l-revealτ0 , σin

τb
(syncID

U ) ∧ ψ,¬σin
τb

(syncID
U ) ∧ ψ ∼ φin

τ , r-revealτ0 , σin
τb

(syncID
U ) ∧ ψ,¬σin

τb
(syncID

U ) ∧ ψ

φin
τ , l-revealτ0 , σ

in
τb

(syncID
U ), σin

τb
(syncID

U ) ∧ ψ,¬σin
τb

(syncID
U ) ∧ ψ

∼ φin
τ , r-revealτ0 , σ

in
τb

(syncID
U ), σin

τb
(syncID

U ) ∧ ψ,¬σin
τb

(syncID
U ) ∧ ψ

Dup

φin
τ , l-revealτ0 , ψ ∼ φin

τ , r-revealτ0 , ψ
Simp

We now build a derivation of φin
τ , l-revealτ0 , σin

τb
(syncID

U ) ∧ ψ and one for φin
τ , l-revealτ0 ,¬σin

τb
(syncID

U ) ∧ ψ:
• Using the fact that we have σin

τb
(syncID

U ) and (47), we know that:

σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ στ3(GUTIID
U ) = σin

τ1(GUTIID
N )

↔ σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧

(
sync-diff-inID

τb

< sync-diffID
τb

)
∧

(
sync-diffID

τb

= sync-diff-inID
τ1

)
∧
∧

τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja

Similarly, using (48) we get:

σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ στ3(GUTI
ID
U ) = σin

τ1(GUTI
ID
N )

↔ σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧

(
sync-diff-inID

τb

< sync-diffID
τb

)
∧

(
sync-diffID

τb

= sync-diff-inID
τ1

)
∧
∧

τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja

Moreover, we know that:((
GUTIja , GUTIja

)
∈ revealτ0

)
τ′=_,TN(j′,0)
τb≺τ τ′≺τ τ1

(
sync-diff-inID

τ1
, sync-diff-inID

τ1

)
∈ revealτ0

(
sync-diff-inID

τb
, sync-diff-inID

τb

)
∈ revealτ0

(
sync-diffID

τb
, sync-diffID

τb

)
∈ revealτ0(

σin
τb

(syncID
U ), σin

τb
(syncID

U )
)
∈ revealτ0

And using (Der2), we know that we have a derivation of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , fu-trn:τa

u:τ3 ∼ φin
τ , r-revealτ0 , fu-trn:τa

u:τ3

Simp

Using this, we can rewrite σin
τb

(syncID
U ) ∧ ψ and σin

τb
(syncID

U ) ∧ ψ as two terms that decompose, using FA, into matching
part of revealτ0 . By consequence we can build the following derivation:

φin
τ , l-revealτ0ψ ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , σin

τb
(syncID

U ) ∧ ψ ∼ φin
τ , r-revealτ0 , σin

τb
(syncID

U ) ∧ ψ
Simp (49)

• We now focus on the case where we have ¬σin
τb

(syncID
U ).

First, assume that τb = _, TN(ja, 1). In that case, we know that fu-trn:τa
u:τ3 → acceptID

τb
. Since acceptID

τb
→ σin

τb
(syncID

U ), we
get that (¬σin

τb
(syncID

U )∧ψ)↔ false. Similarly we have (¬σin
τb

(syncID
U )∧ψ)↔ false. By consequence, we have a trivial

derivation:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , false ∼ φin

τ , r-revealτ0 , false
FA

φin
τ , l-revealτ0 ,¬σin

τb
(syncID

U ) ∧ ψ ∼ φin
τ , r-revealτ0 ,¬σin

τb
(syncID

U ) ∧ ψ
Simp



Now assume that τb = _, PN(ja, 1). Since τ3 = _, FUID(j0) ≺ τ , we know by validity of τ there there exists τ ′ =
_, PUID(j0, 2) or _, TUID(j0, 1) such that τ ′ ≺τ τ3. It is straightforward to check that if τ ′ = _, TUID(j0, 1) then since
τb = _, PN(ja, 1) we have fu-trn:τa

u:τ3 ↔ false and fu-trn:τa
u:τ3 ↔ false. Building the wanted derivation is then trivial.

Therefore assume that τ ′ = _, PUID(j0, 2). Observe that fu-trn:τa
u:τ3 → acceptID

τ ′ . We have two cases:

– Assume τ ′ ≺τ τb. Using (Equ2), we know that:

acceptID
τ ′ →

∨
τn=_,PN(jn,1)

τx≺τ τn≺τ τ′

supi-tr n:τn
u:τx,τ ′

→
∨

τn=_,PN(jn,1)

τx≺τ τn≺τ τ′

g(φin
τx) = njn

→
∨

τn=_,PN(jn,1)

τx≺τ τn≺τ τ′

σID
τx(b-authID

U ) = njn

→ σID
τx(b-authID

U ) 6= nja (Since τ ′ ≺τ τb)

Moreover:

fu-trn:τa
u:τ3 → σID

τ ′(e-authID
U ) = nja → σID

τx(b-authID
U ) = nja

Therefore fu-trn:τa
u:τ3 → false. Similarly we can show that fu-trn:τa

u:τ3 → false. It is then easy build the wanted derivation.
– Assume τb ≺τ τ ′. We summarize graphically the situation below:

NSID(_)
or ε

τNS

PUID(j0, 1)

τx

PN(ja, 1)

τb

PUID(j0, 2)

τ ′

FUID(j0)

τ3

TN(j1, 0)

τ1

TUID(j, 1)

τ

First, since there are no ID actions between τb and τ ′, we know that ¬σin
τb

(syncID
U ) → ¬σin

τ ′(syncID
U ). Recall that

fu-trn:τa
u:τ3 → acceptID

τ ′ . Using (Equ2), it is simple to check that fu-trn:τa
u:τ3 ∧ acceptID

τ ′ → supi-tr n:τb
u:τx,τ ′ . Therefore:(

¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3

)
→ ¬σin

τ ′(syncID
U ) ∧ acceptID

τ ′

→ inc-acceptID
τb
∧ σin

τ ′(SQNID
N )− στb(SQNID

N ) = 0
∧ στ ′(SQNID

U )− στ ′(SQNID
N ) = 0

(Using (StrEqu4))

Using again the fact that there are no ID actions between τb and τ ′, we know that σin
τb

(SQNID
U ) ≡ σin

τ ′(syncID
U ). Moreover

σin
τ ′(syncID

U ) ≡ στ ′(syncID
U ), therefore σin

τb
(SQNID

U ) = στ ′(syncID
U ). Similarly, we know that στ ′(SQNID

N ) ≡ σin
τ ′(SQNID

N ).
Summarizing:

NSID(_)
or ε

τNS

PUID(j0, 1)

τx

PN(ja, 1)

τb

PUID(j0, 2)

τ ′

FUID(j0)

τ3

TN(j1, 0)

τ1

TUID(j, 1)

τ

σin
τb

(SQNID
N )

σin
τb

(SQNID
U )

στ ′(SQNID
N )

στ ′(SQNID
U )

=

=

=

Using the fact that we have ¬σin
τb

(syncID
U ) and (47), we know that:

¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ στ3(GUTIID
U ) = σin

τ1(GUTIID
N )

↔ ¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ inc-acceptID
τb
∧

(
στ ′(SQNID

N )− στ ′(SQNID
U )

= σin
τ1(SQNID

N )− σin
τ1(SQNID

U )

)
∧
∧

τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja



Besides, acceptID
τ ′ → στ ′(syncID

U ), and since τ ′ ≺τ τ1 we know that στ ′(syncID
U )→ σin

τ1(syncID
U ). Hence:

¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ στ3(GUTIID
U ) = σin

τ1(GUTIID
N )

↔ ¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ inc-acceptID
τb
∧ sync-diffID

τ ′ = sync-diff-inID
τ1
∧

∧
τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja

Similarly we have:

¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ στ3(GUTI
ID
U ) = σin

τ1(GUTI
ID
N )

↔ ¬σin
τb

(syncID
U ) ∧ fu-trn:τa

u:τ3 ∧ inc-acceptID
τb
∧ sync-diffID

τ ′ = sync-diff-inID
τ1
∧

∧
τ′=_,TN(j′,0)
τb≺τ τ

′≺τ τ1

g(φin
τ ′) 6= GUTIja

And using (Der2), we know that we have a derivation of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , fu-trn:τa

u:τ3 ∼ φin
τ , r-revealτ0 , fu-trn:τa

u:τ3

Simp

Moreover, we know that:((
GUTIja , GUTIja

)
∈ revealτ0

)
τ′=_,TN(j′,0)
τb≺τ τ′≺τ τ1

(
sync-diff-inID

τ1
, sync-diff-inID

τ1

)
∈ revealτ0

(
sync-diffID

τ , sync-diffID
τ ′

)
∈ revealτ0

(
σin
τb

(syncID
U ), σin

τb
(syncID

U )
)
∈ revealτ0

Similarly to what we did in (49), we can rewrite ¬σin
τb

(syncID
U )∧ψ and ¬σin

τb
(syncID

U )∧ψ as two terms that decompose,
using FA, into matching part of revealτ0 . By consequence we can build the following derivation:

φin
τ , l-revealτ0ψ ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,¬σin

τb
(syncID

U ) ∧ ψ ∼ φin
τ , r-revealτ0 ,¬σin

τb
(syncID

U ) ∧ ψ
Simp

d) Part 2 (Dots): Using (StrEqu2) we know that part-trn:τ1
u:τ2,τ → acceptID

τ1
. Therefore, using (A6) we get that

part-trn:τ1
u:τ2,τ → ¬acceptID′

τ1
for every ID′ 6= ID. It follows that part-trn:τ1

u:τ2,τ → tτ1 = msgID
τ1

, and therefore:

part-trn:τ1
u:τ2,τ → π2(tτ1) = σin

τ1(SQNID
N )⊕ fkID (nj1) (50)

And:
part-trn:τ1

u:τ2,τ → π3(tτ1) = Mac3kID
m

(〈nj1 , σin
τ1(SQNID

N ) , σin
τ1(GUTIID

U )〉)

Moreover, since no action from agent ID occurs between τ2 and τ1, we know that σin
τ1(GUTIID

U ) = σin
τ2(GUTIID

U ). Hence:

part-trn:τ1
u:τ2,τ → π3(tτ1) = Mac3kID

m
(〈nj1 , σin

τ1(SQNID
N ) , σin

τ2(GUTIID
U )〉) (51)

Therefore using (50) and (51) we can rewrite part-trn:τ1
u:τ2,τ as follows:

part-trn:τ1
u:τ2,τ =


π1(g(φin

τ )) = nj1 ∧ π2(g(φin
τ )) = π2(tτ1). . . . . . . ∧ π3(g(φin

τ )) = π3(tτ1). . . . . . .

∧ g(φin
τ1) = σin

τ2(GUTIID
U ) ∧ σin

τ2(GUTIID
U ) = σin

τ1(GUTIID
N )

::::::::::::::::::::::
∧ σin

τ2(valid-gutiID
U )

∧ range(σin
τ (SQNID

U ), σin
τ1(SQNID

N ))


By a similar reasoning we rewrite part-trn:τ1

u:τ2,τ as follows:

part-trn:τ1
u:τ2,τ ≡


π1(g(φin

τ )) = nj1 ∧ π2(g(φin
τ )) = π2(tτ1). . . . . . . ∧ π3(g(φin

τ )) = π3(tτ1). . . . . . .

∧ g(φin
τ1) = σin

τ2(GUTI
ID
U ) ∧ σin

τ2(GUTI
ID
U ) = σin

τ1(GUTI
ID
N )

::::::::::::::::::::::

∧ σin
τ2(valid-gutiID

U )

∧ range(σin
τ (SQN

ID
U ), σin

τ1(SQN
ID
N ))





e) Part 3 (Dash): Since part-trn:τ1
u:τ2,τ → σin

τ2(valid-gutiID
U ) we know that:

part-trn:τ1
u:τ2,τ → σin

τ2(GUTIID
U ) = m-suci ID

τ

Besides, as σin
τ2(valid-gutiID

U ) → σin
τ2(syncID

U ), and since σin
τ2(valid-gutiID

U ) → σin
τ1(valid-gutiID

U ) (because τ2 ≺τ τ1 and τ2 6≺τ
NSID(_)), we know that:

part-trn:τ1
u:τ2,τ →

(
range(σin

τ (SQNID
U ), σin

τ1(SQNID
N ))↔

(
σin
τ1(valid-gutiID

U ) ∧ σin
τ (SQNID

U ) = σin
τ1(SQNID

N )
))

Similarly we have:

part-trn:τ1
u:τ2,τ → σin

τ2(GUTI
ID
U ) = m-suci ID

τ

part-trn:τ1
u:τ2,τ →

(
range(σin

τ (SQN
ID
U ), σin

τ1(SQN
ID
N ))↔

(
σin
τ1(valid-gutiID

U ) ∧ σin
τ (SQN

ID
U ) = σin

τ1(SQN
ID
N )
))

Moreover: (
m-suci ID

τ ∼ m-suci ID
τ

)
∈ revealτ0

(
σin
τ2(valid-gutiID

U ) ∼ σin
τ2(valid-gutiID

U )
)
∈ revealτ0

Finally, using (Der1), we know that we have a derivation of:

l-revealτ0 ∼ r-revealτ0
l-revealτ0 , σin

τ1(valid-gutiID
U ) ∧ σin

τ (SQNID
U ) = σin

τ1(SQNID
N ) ∼ r-revealτ0 , σin

τ1(valid-gutiID
U ) ∧ σin

τ (SQN
ID
U ) = σin

τ1(SQN
ID
N )

FA∗

f) Part 4 (conclusion): To conclude, we combine the derivations of Part 1, Part 2 and Part 3.

Proof of (Der4)

τ :

TUID(ji, 0)

τ2

TN(j, 0)

τ1

TUID(ji, 1)

τi

TN(j, 1)

τ

Recall that:

full-trn:τ1,τ
u:τ2,τi ≡

(
part-trn:τ1

u:τ2,τi ∧ g(φin
τ ) = Mac4kID

m
(nj)

)
The fact that τ2 = _, TUντ1 (ID)(ji, 0), τi = _, TUντ1 (ID)(ji, 1) and τ2 <τ τ1 <τ τi is straightforward from (Der3). It is easy to
check that:

full-trn:τ1,τ
u:τ2,τi ≡

(
part-trn:τ1

u:τ2,τi ∧ g(φin
τ ) = Mac4

k
ντ1

(ID)

m
(nj)

)
Moreover: (

Mac4kID
m

(nj),Mac4
k
ντ1 (ID)

m
(nj)

)
∈ revealτ0

And, using (Der3), we know that there exists a derivation using only FA and Dup of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0 →

(
φin
τ ,l-revealτ0 ,part-trn:τ1

u:τ2,τ

∼ φin
τ ,r-revealτ0 ,part-trn:τ1

u:τ2,τ

)
It is therefore easy to built the wanted derivation using only FA and Dup.

Proof of (Der2)
We recall that:

fu-trn:τ1
u:τ ≡

(
inj-authτ (ID, j0) ∧ σin

τ (e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ )) = GUTIj0 ⊕ f r

k(nj0) ∧ π2(g(φin
τ )) = Mac5km

(〈GUTIj0 , nj0〉)

)

fu-trn:τ1
u:τ ≡

(
inj-authτ (ντ (ID), j0) ∧ σin

τ (e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ )) = GUTIj0 ⊕ f r

k(nj0) ∧ π2(g(φin
τ )) = Mac5km

(〈GUTIj0 , nj0〉)

)

Let j0 ∈ N. Using Proposition 25 on τ , we know that:

inj-authτ (ID, j0) ↔ nj0 = σin
τ (e-authID

U ) (52)



Similarly, using Proposition 25 on τ we have:

inj-authτ (ντ (ID), j0) ↔ nj0 = σin
τ (e-authντ (ID)

U ) (53)

Let τ0 be such that τ = τ0,ai. It is straightforward to check that for any n ∈ N:(
στ0(e-authj0N ) = UnknownId

)
︸ ︷︷ ︸

unk

↔
∧

1≤i≤B

¬net-e-authτ (Ai, j0)

(
στ0(e-authj0N ) = UnknownId

)
︸ ︷︷ ︸

unk

↔
∧

1≤i≤B

¬net-e-authτ (Ai, j0)

Since for all 1 ≤ i ≤ B:
(net-e-authτ (Ai, j0) ∼ net-e-authτ (Ai, j0)) ∈ revealτ0

and since fu-trn:τ1
u:τ ∧ unk → false and fu-trn:τ1

u:τ ∧ unk → false, we deduce that:

φin
τ , l-revealτ0 , bji ∧ ¬unk ∼ φin

τ , r-revealτ0 , fu-trn:τ1
u:τ ∧ ¬unk

φin
τ , l-revealτ0 ,unk, false, fu-trn:τ1

u:τ ∧ ¬unk

∼φin
τ , r-revealτ0 ,unk, false, fu-trn:τ1

u:τ ∧ ¬unk

Dup∗

φin
τ , l-revealτ0 ,unk, fu-trn:τ1

u:τ ∧ unk, fu-trn:τ1
u:τ ∧ ¬unk

∼φin
τ , r-revealτ0 ,unk, fu-trn:τ1

u:τ ∧ unk, fu-trn:τ1
u:τ ∧ ¬unk

R

φin
τ , l-revealτ0 , fu-trn:τ1

u:τ ∼ φin
τ , r-revealτ0 , fu-trn:τ1

u:τ
FA∗

From the definitions, we get that:(
σin
τ (b-authj0N ) = ID

)
→
(
σin
τ (e-authj0N ) = ID ∨ σin

τ (e-authj0N ) = UnknownId
)

Therefore: (
fu-trn:τ1

u:τ ∧ ¬unk
)
→ σin

τ (e-authj0N ) = ID → net-e-authτ (ID, j0)

Moreover: (
net-e-authτ (ID, j0) →

(
GUTIj0 ⊕ f r

k(nj0) = [net-e-authτ (ID, j0)]t-suci-⊕τ (ID, j0)

∧ Mac5km
(〈GUTIj0 , nj0〉) = [net-e-authτ (ID, j0)]t-macτ (ID, j0)

))
Using (52) and the observations above, we can rewrite fu-trn:τ1

u:τ ∧ ¬unk as follows:

fu-trn:τ1
u:τ ∧ ¬unk =

 nj0 = σin
τ (e-authID

U ) ∧ ¬unk

∧ π1(g(φin
τ )) = [net-e-authτ (ID, j0)]t-suci-⊕τ (ID, j0)

∧ π2(g(φin
τ )) = [net-e-authτ (ID, j0)]t-macτ (ID, j0)


Similarly, using (53), we can rewrite fu-trn:τ1

u:τ ∧ ¬unk as follows:

fu-trn:τ1
u:τ ∧ ¬unk =


nj0 = σin

τ (e-authντ (ID)
U ) ∧ ¬unk

∧ π1(g(φin
τ )) = [net-e-authτ (ID, j0)]t-suci-⊕τ (ID, j0)

∧ π2(g(φin
τ )) = [net-e-authτ (ID, j0)]t-macτ (ID, j0)


We can now conclude the proof:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , στ (e-authID

U ),

nj0 ,¬unk, GUTIj0 ,

[net-e-authτ (ID, j0)]t-suci-⊕τ (ID, j0),

[net-e-authτ (ID, j0)]t-macτ (ID, j0)


∼φin

τ , r-revealτ0 , στ (e-authντ (ID)
U ),

nj0 ,¬unk, GUTIj0 ,

[net-e-authτ (ID, j0)]t-suci-⊕τ (ID, j0),

[net-e-authτ (ID, j0)]t-macτ (ID, j0)



Dup∗

φin
τ , l-revealτ0 , fu-trn:τ1

u:τ ∧ ¬unk ∼ φin
τ , r-revealτ0 , fu-trn:τ1

u:τ ∧ ¬unk
R+ FA∗



APPENDIX VI
PROOF OF LEMMA 15

The proof is by induction over τ . For τ = ε, we just need to check that the elements from Item 2 of Definition 46 are
indistinguishable, which is obvious from the definition of σε in Definition 43.

We now show the inductive case: let τ = ai0, . . . ,ain be a valid basic symbolic trace with at most C actions NS, and let
ai0, . . . ,ain be such that τ = ai0, . . . ,ain. Also let τ0 = ai0, . . . ,ain−1 and τ0 = ai0, . . . ,ain−1. We assume by induction that
there exists a derivation of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

We do a case disjunction on the value of ai.

A. Case ai = NSID(j)

We know that ai = NSντ (ID)(j) and ντ (ID) = fresh-id(ντ0(ID)). Moreover, φτ ≡ φin
τ and φτ ≡ φin

τ . Hence l-revealτ and
l-revealτ0 coincide everywhere except on:

στ (valid-gutiID
U ) ∼ στ (valid-gutiντ (ID)

U ) sync-diffID
τ ∼ sync-diffντ (ID)

τ m-suci ID
τ ∼ m-suci ντ (ID)

τ

We can easily conclude with the following derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , false,⊥, false ∼ φin

τ , r-revealτ0 , false,⊥, false
Simp

φin
τ , l-revealτ0 , στ (valid-gutiID

U ),m-suci ID
τ , sync-diffID

τ

∼ φin
τ , r-revealτ0 , στ (valid-gutiντ (ID)

U ),m-suci ντ (ID)
τ , sync-diffντ (ID)

τ

R

B. Case ai = PN(j, 0)

We know that ai = PN(j, 0). Here l-revealτ and l-revealτ0 coincides completely. Using invariant (A1) we know that
nj 6∈ st(φin

τ ), and nj 6∈ st(φτ0). Therefore we conclude this case easily using the axiom Fresh:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,nj ∼ φin

τ , r-revealτ0 ,nj
Fresh

C. Case ai = PUID(j, 1)

We know that ai = PUντ (ID)(j, 1). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

στ (valid-guti ID
U ) ∼ στ (valid-guti ντ (ID)

U ) m-suci ID
τ ∼ m-suci ντ (ID)

τ sync-diffID
τ ∼ sync-diffντ (ID)

τ

στ (SQNID
U )−σin

τ (SQNID
U ) ∼ στ (SQN

ντ (ID)
U )−σin

τ (SQN
ντ (ID)
U )

(
{〈ID , σin

τ (SQNID
U )〉}nje

pkN
∼ {〈ντ (ID) , σin

τ (SQN
ντ (ID)
U )〉}nje

pkN

)
(

Mac1kID
m

(〈{〈ID , σin
τ (SQNID

U )〉}nje
pkN

, g(φin
τ )〉) ∼ Mac1

kντ (ID)
m

(〈{〈ντ (ID) , σin
τ (SQN

ντ (ID)
U )〉}nje

pkN
, g(φin

τ )〉)
)

a) Part 1: We know that στ (valid-guti ID
U ) ≡ στ (valid-guti ντ (ID)

U ) ≡ false. We deduce that m-suci ID
τ = m-suci ντ (ID)

τ = ⊥.
It follows that we have the derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , false,⊥ ∼ φin

τ , r-revealτ0 , false,⊥ FA∗

φin
τ , l-revealτ0 , στ (valid-guti ID

U ),m-suci ID
τ ∼ φin

τ , r-revealτ0 , στ (valid-guti ντ (ID)
U ),m-suci ντ (ID)

τ

R
(54)

b) Part 2: We have:

στ (SQNID
U )− σin

τ (SQNID
U ) = suc(σin

τ (SQNID
U ))− σin

τ (SQNID
U ) = 1

στ (SQN
ντ (ID)
U )− σin

τ (SQN
ντ (ID)
U ) = suc(σin

τ (SQN
ντ (ID)
U ))− σin

τ (SQN
ντ (ID)
U ) = 1

And:

sync-diffID
τ = [στ (syncID

U )] (στ (SQNID
U )− στ (SQNID

N ))

=
[
σin
τ (syncID

U )
] (

suc(σin
τ (SQNID

U ))− σin
τ (SQNID

N )
)

=
[
σin
τ (syncID

U )
] (

suc(sync-diffID
τ0

)
)



Similarly, sync-diffντ (ID)
τ =

[
σin
τ (syncντ (ID)

U )
] (

suc(sync-diffντ (ID)
τ0

)
)

. Hence we have the derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , σin

τ (syncID
U ), sync-diffID

τ0
∼ φin

τ , r-revealτ0 , σin
τ (syncντ (ID)

U ), sync-diffντ (ID)
τ0

Dup∗

φin
τ , l-revealτ0 , sync-diffID

τ , στ (SQNID
U )− σin

τ (SQNID
U )

∼ φin
τ , r-revealτ0 , sync-diffντ (ID)

τ , στ (SQN
ντ (ID)
U )− σin

τ (SQN
ντ (ID)
U )

Simp (55)

c) Part 3: Let sl ≡ len(〈ID , σin
τ (SQNID

U )〉). Using the CCA1 axiom we directly have that:

φin
τ , l-revealτ0 , sl ∼ φin

τ , r-revealτ0 , sl

len(ID) = len(ντ (ID)) len(σin
τ (SQNID

U )) = len(σin
τ (SQN

ντ (ID)
U ))

len(〈ID , σin
τ (SQNID

U )〉) = len(〈ντ (ID) , σin
τ (SQN

ντ (ID)
U )〉)

φin
τ , l-revealτ0 , {〈ID , σin

τ (SQNID
U )〉}nje

pkN
∼ φin

τ , r-revealτ0 , {〈ντ (ID) , σin
τ (SQN

ντ (ID)
U )〉}nje

pkN

CCA1
(56)

Moreover, using Proposition 21, we know that:

len(σin
τ (SQNID

U )) = len(σin
τ (SQN

ντ (ID)
U ))

Similarly, we can show that sl = len(〈ID , σin
τ (sqn-initID

U )〉). Since:(
len(〈ID , σin

τ (sqn-initID
U )〉), len(〈ID , σin

τ (sqn-initID
U )〉)

)
∈ revealτ0

we know that:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , sl ∼ φin

τ , r-revealτ0 , sl
R+ Dup

This completes the derivation in 56.
d) Part 4: To conclude, it only remains to deal with the Mac1 terms. We start by computing set-mac1kID

m
:

set-mac1kID
m

(φin
τ , l-revealτ0) =

{
〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉 | τ1 = _, PUID(j1, 1) ≺ τ
}

∪
{
〈π1(g(φin

τ1)) , nj1〉 | τ1 = _, PN(j1, 1) ≺ τ
}

We want to get rid of the second set above: using (Equ3), we know that for every τ1 = _, PN(j1, 1) ≺ τ :

acceptID
τ ↔

∨
τ2=_,PUID(j2,1)

τ2≺τ τ1

 g(φin
τ2) = nj ∧ π1(g(φin

τ1)) = {〈ID , σin
τ2(SQNID

U )〉}nj2e
pkN

∧ π2(g(φin
τ1)) = Mac1kID

m
(〈{〈ID , σin

τ2(SQNID
U )〉}nj2e

pkN
, g(φin

τ2)〉)

 (57)

We let Ψ′ be the vector of terms φin
τ , l-revealτ0 where we replaced every occurrence of acceptID

τ1
(where τ1 = _, PN(j1, 1) ≺ τ )

by the equivalent term from (57). We can check that we have:

set-mac1kID
m

(Ψ′) =
{
〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉 | τ1 = _, PUID(j1, 1) ≺ τ
}

For every τ1 = _, PUID(j1, 1) ≺ τ it is easy to show using Proposition 21 that :

len(〈ID , σin
τ (SQNID

U )〉) = len(〈ID , σin
τ1(SQNID

U )〉)

Moreover, using the axioms in Axlen we know that len(〈ID , σin
τ (SQNID

U )〉) 6= 0. Therefore, using Proposition 18 we get that
we have:

{〈ID , σin
τ (SQNID

U )〉}nje
pkN
6= {〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN

Hence by left injectivity of 〈· , _〉:

〈{〈ID , σin
τ (SQNID

U )〉}nje
pkN

, g(φin
τ )〉 6= 〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉

It follows that we can apply the PRF-MAC1 axiom to replace the following term by a fresh nonce n:

Mac1kID
m

(〈{〈ID , σin
τ (SQNID

U )〉}nje
pkN

, g(φin
τ )〉)



We then rewrite every occurrence of the right-hand side of (57) into acceptID
τ1

(where τ1 = _, PN(j1, 1) ≺ τ ). This yields the
derivation:

φin
τ , l-revealτ0 ,n ∼ φin

τ , r-revealτ0Mac1
kντ (ID)

m
(〈{〈ντ (ID) , σin

τ (SQN
ντ (ID)
U )〉}nje

pkN
, g(φin

τ )〉)

φin
τ , l-revealτ0 , Mac1kID

m
(〈{〈ID , σin

τ (SQNID
U )〉}nje

pkN
, g(φin

τ )〉)

∼ φin
τ , r-revealτ0 , Mac1

kντ (ID)
m

(〈{〈ντ (ID) , σin
τ (SQN

ντ (ID)
U )〉}nje

pkN
, g(φin

τ )〉)

PRF-MAC1

We then do the same on the right side (we omit the details), and conclude using Fresh:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,n ∼ φin

τ , r-revealτ0 ,n
Fresh

φin
τ , l-revealτ0 ,n ∼ φin

τ , r-revealτ0Mac1
kντ (ID)

m
(〈{〈ντ (ID) , σin

τ (SQN
ντ (ID)
U )〉}nje

pkN
, g(φin

τ )〉)
PRF-MAC1

We conclude the proof by combining the derivation above with the derivations in (54), (55) and (56), and by using the induction
hypothesis.

D. Case ai = PN(j, 1)

We know that ai = PN(j, 1). For every base identity ID, let MID be the set:

MID = {τ2 | τ2 = _, PUID(j1, 1) ≺ τ ∧ ∀τ1 s.t. τ1 ≺τ τ1 τ1 6= _, NSID(_)}

Here l-revealτ and l-revealτ0 coincides everywhere except on the following pairs:(
sync-diffID

τ ∼ sync-diffντ (ID)
τ

)
ID∈Sbid

(
net-e-authτ (ID, j) ∼ net-e-authτ (ID, j)

)
ID∈Sbid(

Mac2kID
m

(〈nj , suc(σin
τ2(SQNID

U ))〉) ∼ Mac2
kντ (ID)

m
(〈nj , suc(σin

τ2(SQN
ντ (ID)
U ))〉)

)
τ2∈MID,ID∈Sbid

a) Part 1: Let ID be a base identity. We consider all the new sessions started with identity ID in τ :

{NSID(0), . . . , NSID(lID)} = {NSID(i) | NSID(i) ∈ τ}

This induce a partition of symbolic actions in τ for identity ID. Indeed, let k be such that ID = Ak,0, and for every −1 ≤ i ≤ lID,
let IDi = Ak,i+1. Then we define, for every −1 ≤ i ≤ lID:

T iID =

τ1 | τ1 = _, PUID(j1, 1) ∧


NSID(i) ≺τ τ1 ≺τ NSID(i+ 1) if 1 ≤ i < lID

τ1 ≺τ NSID(0) if i = −1

NSID(l) ≺τ τ1 ≺ τ if i = l


And TID = {τ1 | τ1 = _, PUID(j1, 1) ∧ τ1 ≺ τ}. We have TID =

⊎
−1≤i≤lID

T iID, and for every −1 ≤ i ≤ lID:

∀τ1 ∈ T iID, ντ1(ID) = IDi and T iID =
{
τ1 | τ1 = _, PUIDi

(j1, 1) ∧ τ1 ≺ τ1
}

b) Part 2: Using (Equ3) we know that:

acceptID
τ ↔

∨
τ1=_,PUID(j1,1)∈TID

 g(φin
τ1) = nj ∧ π1(g(φin

τ )) = {〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

∧ π2(g(φin
τ )) = Mac1kID

m
(〈{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, g(φin

τ1)〉)


︸ ︷︷ ︸

bID
τ1

(58)

For all τ1 ∈ TID, we let bID
τ1 be the main term of the disjunction above.

Similarly, using (Equ3) on τ , which is a valid symbolic frame, we have that for every −1 ≤ i ≤ lID:

acceptIDi
τ ↔

∨
τ1=_,PUID(j1,1)∈T iID

 g(φin
τ1) = nj ∧ π1(g(φin

τ )) = {〈IDi , σ
in
τ1(SQN

IDi
U )〉}nj1e

pkN

∧ π2(g(φin
τ )) = Mac1kIDi

m
(〈{〈IDi , σ

in
τ1(SQN

IDi
U )〉}nj1e

pkN
, g(φin

τ1)〉)


︸ ︷︷ ︸

b
IDi
τ1

(59)

Moreover, if we let {IDlID+1, . . . , IDm} be such that:

copies-id(ID) = {ID0, . . . , IDlID
} ] {IDlID+1, . . . , IDm}



Then, for all i > lID, we have acceptIDi
τ ↔ false. Therefore, using (A5), we can show that:

net-e-authID
τ ↔

∨
−1≤i≤l

acceptIDi
τ (60)

c) Part 3: For every τ1, τ2 ∈ TID such that τ1 6= τ2, τ1 = _, PUID(j1, 1) and τ2 = _, PUID(j2, 1), using Proposition 18 and
21 we can show that:

bID
τ1 ∧ b

ID
τ2 → {〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
= {〈ID , σin

τ2(SQNID
U )〉}nj2e

pkN

→ false (61)

Similarly, for every τ1, τ2 ∈ T
IDi
ID such that τ1 6= τ2, τ1 = _, PUID(j1, 1) and τ2 = _, PUID(j2, 1), using Proposition 18 and 21

we have that:

bIDi
τ1 ∧ b

IDi
τ2 → {〈IDi , σ

in
τ1(SQN

IDi
U )〉}nj1e

pkN
= {〈IDi , σ

in
τ2(SQN

IDi
U )〉}nj2e

pkN

→ false (62)

Moreover, since for all identities ID1 6= ID2, we have eq(ID1, ID2) = false we know that:

(acceptID1
τ ∧ acceptID2

τ ) = false
(

acceptID1
τ ∧ acceptID2

τ

)
= false

And for all non base identity ID, using (Acc1) we know that acceptID
τ ↔ false. We deduce that:((bID

τ1)τ1∈TID

)
ID∈Sbid

,
∧

ID∈Sbid
¬acceptID

τ︸ ︷︷ ︸
bunk

 and

((bIDi
τ1

)
τ1∈T

IDi
ID

−1≤i≤lID

)
ID∈Sbid

,
∧

ID∈Sid
¬acceptID

τ︸ ︷︷ ︸
bunk


are CS partitions. Besides, for all τ1 ∈ TID we have:[

bID
τ1

] (
tτ = Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U )〉)

)
and [bunk] (tτ = UnknownId)

From Proposition 28 we deduce:

tτ = if ¬bunk then case
τ1∈TID
ID∈Sbid

(bID
τ1 : Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U )〉))

else UnknownId
(63)

Similarly, for every −1 ≤ i ≤ l, for every τ1 ∈ T ID
i :[

bIDi
τ1

] (
tτ = Mac2kIDi

m
(〈nj , suc(σin

τ1(SQN
IDi
U )〉)

)
and

[
bunk

] (
tτ = UnknownId

)
Again, from Proposition 28 we deduce:

tτ = if ¬bunk then case
τ1∈TiID
−1≤i≤lID

ID∈Sbid

(bIDi
τ1

: Mac2kIDi
m

(〈nj , suc(σin
τ1(SQN

IDi
U )〉))

else UnknownId

Since TID =
⊎
−1≤i≤lID

T iID, and since ∀τ1 ∈ T iID, IDi = ντ1(ID), we know that:

tτ = if ¬bunk then case
τ1∈TID
ID∈Sbid

(b
ντ1 (ID)
τ1 : Mac2

k
ντ1

(ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U )〉))

else UnknownId
(64)



d) Part 4: We are going to show that for every ID ∈ Sbid, for every τ1 = PUID(j1, 1) ∈ TID, there is a derivation of:

Φτ1 ≡ φin
τ , l-revealτ0 , b

ID
τ1 ∼ φ

in
τ , r-revealτ0 , b

IDi
τ1

For this, we rewrite bID
τ1 and bIDi

τ1
using, respectively, (58) and (59). First, remark that:

φin
τ ∼ φin

τ

φin
τ , φ

in
τ1 ∼ φin

τ , φ
in
τ1

Dup∗

And that the following pairs of terms are in revealτ0 :

(nj ,nj)
(
{〈ID , σin

τ1(SQNID
U )〉}nj1e

pkN
, {〈ντ1(ID) , σin

τ1(SQN
ντ1 (ID)
U )〉}nj1e

pkN

)
(

Mac1kID
m

(〈{〈ID , σin
τ1(SQNID

U )〉}nj1e
pkN

, g(φin
τ1)〉),Mac1

k
ντ1 (ID)

m
(〈{〈ντ1(ID) , σin

τ1(SQN
ντ1 (ID)
U )〉}nj1e

pkN
, g(φin

τ1)〉)
)

Therefore:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , bID

τ1 ∼ φ
in
τ , r-revealτ0 , b

IDi
τ1

Simp (65)

Combining this with (58), (59) and (60), we have:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,

(
bID
τ1

)
τ1∈TID

∼ φin
τ , r-revealτ0 ,

(
bIDi
τ1

)
τ1∈TID

Simp

φin
τ , l-revealτ0 ,net-e-authID

τ ∼ φin
τ , r-revealτ0 ,net-e-authID

τ

Simp
(66)

And:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,

(
bID
τ1

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
bIDi
τ1

)
τ1∈TID,ID∈Sbid

Simp

φin
τ , l-revealτ0 , bunk ∼ φin

τ , r-revealτ0 , bunk
Simp

(67)

We can now prove that tτ ∼ tτ . First we rewrite tτ and tτ using, respectively, (63) and (64). Then we split the proof with
FA, and combine it with (65) and (67). This yields:

φin
τ , l-revealτ0 ,

(
Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U ))〉)

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
Mac2

k
ντ1 (ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

φin
τ , l-revealτ0 , bunk,

(
bID
τ1 ,Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U ))〉)

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,bunk,

(
b
ντ1 (ID)
τ1 ,Mac2

k
ντ1

(ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
Simp

(68)

Notice that for every ID ∈ Sbid, MID = T lID
ID . Therefore the Mac part in revealτ\revealτ0 appears in the derivation above, i.e.:(

Mac2kID
m

(〈nj , suc(σin
τ2(SQNID

U ))〉),Mac2
kντ (ID)

m
(〈nj , suc(σin

τ2(SQN
ντ (ID)
U ))〉)

)
τ2∈MID,ID∈Sbid

⊆
(

Mac2kID
m

(〈nj , suc(σin
τ1(SQNID

U ))〉),Mac2
k
ντ1 (ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

(69)

e) Part 5: Let ID ∈ Sbid. Our goal is to apply the PRF-MAC2 hypothesis to Mac2kID
m

(〈nj , suc(σin
τ1(SQNID

U ))〉) simultaneously
for every τ1 ∈ TID in:

Ψ ≡ φin
τ , l-revealτ0 ,

(
Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U ))〉)

)
τ1∈TID,ID∈Sbid

Using (Equ2) we know that for every NSID(lID) ≺τ τi = _, PUID(ji, 2):

acceptID
τi
↔

∨
τ1=_,PN(j1,1)

τ2=_,PUID(ji,1)
τ2≺τ τ1≺τ

g(φin
τ ) = Mac2kID

m
(〈nj1 , suc(σin

τ2(SQNID
U ))〉) ∧ g(φin

τ2) = nj1 (70)



Let Ψ′ be the formula obtained from Ψ by rewriting every acceptID
τi

s.t. NSID(lID) ≺τ τi = _, PUID(ji, 2) using the equation
above. Then we can check that for every τ1 ∈ TID, there is only one occurrence of Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U ))〉) in Ψ′.

Moreover:

set-mac2ID (Ψ′) \{〈nj , suc(σin
τ1(SQNID

U ))〉} ={
〈nj , suc(σin

τ2(SQNID
U ))〉 | τ2 ∈ TID ∧ τ1 6= τ2

}
∪
{
〈nj0 , suc(π2(dec(π1(g(φin

τi)), skN)))〉 | τi = _, PN(j0, 1) ≺ τ
}

To apply the PRF-MAC2 axioms, it is sufficient to show that for every element u in the set above, we have
(〈nj , suc(σin

τ1(SQNID
U ))〉 6= u:

• Using (A2) we know that for every τ1, τ2 ∈ TID, if τ1 6= τ2 then σin
τ2(SQNID

U )) 6= σin
τ2(SQNID

U )). Therefore:

〈nj , suc(σin
τ1(SQNID

U ))〉 6= 〈nj , suc(σin
τ2(SQNID

U ))〉

• for every τi = _, PN(j0, 1) ≺ τ , we have j0 < j, hence nj0 6= nj and by consequence:

〈nj , suc(σin
τ1(SQNID

U ))〉 6= 〈nj0 , suc(π2(dec(π1(g(φin
τi)), skN)))〉

We can conclude: we rewrite Ψ into Ψ′; we apply PRF-MAC2 for every τ1 ∈ TID, replacing Mac2kID
m

(〈nj , suc(σin
τ1(SQNID

U ))〉) by
a fresh nonce nj,τ1 ; and we rewrite any term of the form (70) back into acceptID

τi
. Doing this for every base identity ID ∈ Sbid,

this yields:
φin
τ , l-revealτ0 ,

(
nj,τ1

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
Mac2

k
ντ1 (ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

φin
τ , l-revealτ0 ,

(
Mac2kID

m
(〈nj , suc(σin

τ1(SQNID
U ))〉)

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
Mac2

k
ντ1

(ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

(PRF-MAC2)∗

We then do the same thing to replace, for every base identity ID and τ1 ∈ TID, the mac Mac2
k
ντ1

(ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

by the nonce nj,τ1 in the formula:

Ψ ≡ φin
τ , r-revealτ0 ,

(
Mac2

k
ντ1 (ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

The proof is similar, we omit to check the details. This yields:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,

(
nj,τ1

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
nj,τ1

)
τ1∈TID,ID∈Sbid

Fresh∗

φin
τ , l-revealτ0 ,

(
nj,τ1

)
τ1∈TID,ID∈Sbid

∼ φin
τ , r-revealτ0 ,

(
Mac2

k
ντ1

(ID)

m
(〈nj , suc(σin

τ1(SQN
ντ1 (ID)
U ))〉)

)
τ1∈TID,ID∈Sbid

(PRF-MAC2)∗

Combining this with (68), we get:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
....

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
Simp∗

(71)

f) Part 6: We now handle the sync-diffID
τ ∼ sync-diffντ (ID)

τ part. We first handle the case where σin
τ (syncID

U ) is false. Ob-
serve that σin

τ (syncID
U ) = σin

τ0(syncID
U ), σin

τ (syncντ (ID)
U ) = σin

τ0(syncντ (ID)
U ) and that (σin

τ0(syncID
U ), σin

τ0(syncντ (ID)
U )) ∈ revealτ0 .

Moreover:
[¬σin

τ (syncID
U )]sync-diffID

τ = ⊥ [¬σin
τ (syncντ (ID)

U )]sync-diffντ (ID)
τ = ⊥

Hence:

l-revealτ0 , [σin
τ (syncID

U )]sync-diffID
τ ∼ r-revealτ0 , [σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ

l-revealτ0 ,σ
in
τ (syncID

U ), [σin
τ (syncID

U )]sync-diffID
τ , [¬σin

τ (syncID
U )]sync-diffID

τ

∼ r-revealτ0 ,σ
in
τ (syncντ (ID)

U ),[σin
τ (syncντ (ID)

U )]sync-diffντ (ID)
τ ,[¬σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ

Simp

l-revealτ0 , sync-diffID
τ ∼ r-revealτ0 , sync-diffντ (ID)

τ

FA∗
(72)



Therefore we can focus on the case where σin
τ (syncID

U ) is true. For all ID ∈ Sbid, we let:

inc-SQNID
τ ≡ geq(π2(dec(π1(g(φin

τ )), skID
N )), σin

τ (SQNID
N ))

Then:

[σin
τ (syncID

U )]sync-diffID
τ = case

τ1∈TID

bID
τ1 :

if

(
σin
τ (syncID

U )

∧ inc-SQNID
τ

)
then σin

τ (SQNID
U )− suc(σin

τ (SQNID
N ))

else [σin
τ (syncID

U )]sync-diffID
τ0

 (73)

And:

[σin
τ (syncντ (ID)

U )]sync-diffντ (ID)
τ =

case
τ1∈T

IDlID
ID

bντ (ID)
τ1

:
if

(
σin
τ (syncντ (ID)

U )

∧ inc-SQNντ (ID)
τ

)
then σin

τ (SQN
ντ (ID)
U )− suc(σin

τ (SQN
ντ (ID)
N ))

else [σin
τ (syncντ (ID)

U )]sync-diffντ (ID)
τ0

 (74)

Take τ1 ∈ TID, and let τi be such that τi = _, NSID(lID) and τi ≺ τ . We have two cases:

• If τ1 ≺τ NSID(lID), then using (B1) and (B6), we know that σin
τ1(SQNID

U ) ≤ σin
τi(SQNID

U ) and that σin
τ1(syncID

U ) →
σin
τ (SQNID

N ) > σin
τi(SQNID

U ). We summarize this below:

τ :

PUID(j1, 1)

τ1

NSID(lID)

τi

PN(j, 1)

τ

σin
τ1(SQNID

U ) σin
τi(SQNID

U )

σin
τ (SQNID

N )

≤
<

Hence ¬(bID
τ1 ∧ σ

in
τ (syncID

U ) ∧ inc-SQNID
τ ).

Now we look at the right protocol: since τ1 ≺τ NSID(lID), we know that ντ1(ID) = IDlID−p for some p > 0. Hence
ντ1(ID) 6= IDlID

= ντ (ID), which implies that:

b
ντ1 (ID)
τ1 → acceptντ1 (ID)

τ → ¬acceptντ (ID)
τ →

∧
τ2∈T lID

ID

¬bντ (ID)
τ2

We deduce that:

[bID
τ1 ∧ σ

in
τ (syncID

U )]sync-diffID
τ = [bID

τ1 ∧ σ
in
τ (syncID

U )]sync-diffID
τ0

[b
ντ1 (ID)
τ1 ∧ σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ = [b
ντ1 (ID)
τ1 ∧ σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ0

Since (sync-diffID
τ0
, sync-diffντ (ID)

τ0
) ∈ revealτ0 , we have:

l-revealτ0 , bID
τ1 ∼ r-revealτ0 , b

ντ1 (ID)
τ1

l-revealτ0 , b
ID
τ1 , σ

in
τ (syncID

U ), sync-diffID
τ0
∼ r-revealτ0 , b

ντ1 (ID)
τ1 , σin

τ (syncντ (ID)
U ), sync-diffντ (ID)

τ0

Dup∗

l-revealτ0 , [b
ID
τ1 ∧ σ

in
τ (syncID

U )]sync-diffID
τ ∼ r-revealτ0 , [b

ντ1 (ID)
τ1 ∧ σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ

FA∗

Combining this with (65), we can get rid of bID
τ1 ∼ b

ντ1 (ID)
τ1 :

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
....

φin
τ , l-revealτ0 , [b

ID
τ1 ∧ σ

in
τ (syncID

U )]sync-diffID
τ

∼ φin
τ , r-revealτ0 , [b

ντ1 (ID)
τ1 ∧ σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ

FA∗ (75)



• If τ1 6≺τ NSID(lID), then ντ1(ID) = ντ (ID). Let ID = ντ (ID), and using (73) and (74) we get that:

[bID
τ1 ∧ σ

in
τ (syncID

U )]sync-diffID
τ =

[
bID
τ1 ∧ σ

in
τ (syncID

U )
] (
σin
τ (SQNID

U )− suc(σin
τ (SQNID

N ))
)

+ if bID
τ1 ∧ σ

in
τ (syncID

U ) ∧ inc-SQNID
τ then -1 else 0

[bID
τ1
∧ σin

τ (syncID
U )]sync-diffID

τ =
[
bID
τ1
∧ σin

τ (syncID
U )
] (
σin
τ (SQN

ID
U )− suc(σin

τ (SQN
ID
N ))
)

+ if bID
τ1
∧ σin

τ (syncID
U ) ∧ inc-SQNID

τ then -1 else 0

Hence using (65) we get:

φin
τ , l-revealτ0 , bID

τ1 ∧ σ
in
τ (syncID

U ) ∧ inc-SQNID
τ ∼ φin

τ , r-revealτ0 , b
ID
τ1
∧ σin

τ (syncID
U ) ∧ inc-SQN

ID
τ

φin
τ , l-revealτ0 , b

ID
τ1 , σ

in
τ (syncID

U ), σin
τ (SQNID

U )− σin
τ (SQNID

N ), bID
τ1 ∧ σ

in
τ (syncID

U ) ∧ inc-SQNID
τ

∼ φin
τ , r-revealτ0 , b

ID
τ1
, σin
τ (syncID

U ), σin
τ (SQN

ID
U )− σin

τ (SQN
ID
N ), bID

τ1
∧ σin

τ (syncID
U ) ∧ inc-SQNID

τ

Dup

φin
τ , l-revealτ0 , [bID

τ1 ∧ σ
in
τ (syncID

U )]sync-diffID
τ ∼ φin

τ , r-revealτ0 , [b
ID
τ1
∧ σin

τ (syncID
U )]sync-diffID

τ

FA∗
(76)

We split the proof in two, depending on whether σin
τ1(syncID

U ) is true or not.
– If it is true, this is simple:(

σin
τ1(syncID

U ) ∧ bID
τ1 ∧ σ

in
τ (syncID

U ) ∧ inc-SQNID
τ

)
↔
(
bID
τ1 ∧ σ

in
τ1(syncID

U ) ∧ σin
τ1(SQNID

U ) < σin
τ (SQNID

N )
)(

σin
τ1(syncID

U ) ∧ bID
τ1
∧ σin

τ (syncID
U ) ∧ inc-SQNID

τ

)
↔
(
bID
τ1
∧ σin

τ1(syncID
U ) ∧ σin

τ1(SQN
ID
U ) < σin

τ (SQN
ID
N )
)

Hence using (65) we get:

φin
τ , l-revealτ0 , σ

in
τ1(syncID

U ) ∧ σin
τ1(SQNID

U ) < σin
τ (SQNID

N )

∼ φin
τ , r-revealτ0 , σ

in
τ1(syncID

U ) ∧ σin
τ1(SQN

ID
U ) < σin

τ (SQN
ID
N )

φin
τ , l-revealτ0 , b

ID
τ1 ∧ σ

in
τ1(syncID

U ) ∧ σin
τ1(SQNID

U ) < σin
τ (SQNID

N )

∼ φin
τ , r-revealτ0 , b

ID
τ1
∧ σin

τ1(syncID
U ) ∧ σin

τ1(SQN
ID
U ) < σin

τ (SQN
ID
N )

Simp

φin
τ , l-revealτ0 , σ

in
τ1(syncID

U ) ∧ bID
τ1 ∧ σ

in
τ (syncID

U ) ∧ inc-SQNID
τ

∼ φin
τ , r-revealτ0 , σ

in
τ1(syncID

U ) ∧ bID
τ1
∧ σin

τ (syncID
U ) ∧ inc-SQNID

τ

R

We conclude the case σin
τ1(syncID

U ) using (Der1):

l-revealτ0 ∼ r-revealτ0
φin
τ , l-revealτ0 , σ

in
τ1(syncID

U ) ∧ σin
τ1(SQNID

U ) < σin
τ (SQNID

N )

∼ φin
τ , r-revealτ0 , σ

in
τ1(syncID

U ) ∧ σin
τ1(SQN

ID
U ) < σin

τ (SQN
ID
N )

Simp
(77)

– If syncID
U is false at τ1 and true at τ , then we know that there is an instant τ1 � τa such that ¬σin

τa(syncID
U ) ∧

σin
τa(syncID

U ). Since syncID
U is only updated at instant PUID(_, _) and NSID(_), and since τ1 6≺τ NSID(_), the only

possibilities are τa of the form _, PUID(ja, 2). In that case, we must have acceptID
τa

. Formally, it is straightforward to
show by induction that:(

bID
τ1 ∧ ¬σ

in
τ1(syncID

U ) ∧ σin
τ (syncID

U )
)
→

∨
τa=_,PUID(ja,2)

τ1≺τ τa

¬σin
τa(syncID

U ) ∧ acceptID
τa

(78)

Using (StrEqu4), we know that:

acceptID
τa
∧ ¬σin

τa(syncID
U ) → στa(SQNID

U ) = στa(SQNID
N )

We know that στa(SQNID
U ) = σin

τa(SQNID
U ) and στa(SQNID

N ) = σin
τa(SQNID

N ). Moreover using (B1) we have:

στ1(SQNID
U ) ≤ στa(SQNID

U ) στa(SQNID
N ) ≤ σin

τ (SQNID
N )

Finally, we know that στ1(SQNID
U ) = σin

τ1(SQNID
U ) + 1, and therefore στ1(SQNID

U ) > σin
τ1(SQNID

U ). We summarize this
graphically:



τ :

NSID(_)
or ε

τi

PUID(j1, 1)

τ1

PUID(ja, 2)

τa

PN(j, 1)

τ

σin
τ1(SQNID

U )

σin
τa(SQNID

N )

σin
τa(SQNID

U )

σin
τ (SQNID

N )

<

=

≤

Therefore: (
¬σin

τa(syncID
U ) ∧ acceptID

τa

)
→ σin

τ1(syncID
U ) < σin

τa(syncID
N )

Hence we deduce from (78) that:(
bID
τ1 ∧ ¬σ

in
τ1(syncID

U ) ∧ σin
τ (syncID

U )
)
→ inc-SQNID

τ

Similarly, we show that: (
bID
τ1
∧ ¬σin

τ1(syncID
U ) ∧ σin

τ (syncID
U )
)
→ inc-SQNID

τ

Hence using (65) we get:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , σ

in
τ1(syncID

U ), bID
τ1 , σ

in
τ (syncID

U ) ∼ φin
τ , r-revealτ0 , σ

in
τ1(syncID

U ), bID
τ1
, σin
τ (syncID

U )
Dup∗

φin
τ , l-revealτ0 ,¬σin

τ1(syncID
U ) ∧ bID

τ1 ∧ σ
in
τ (syncID

U )

∼ φin
τ , r-revealτ0 ,¬σin

τ1(syncID
U ) ∧ bID

τ1
∧ σin

τ (syncID
U )

Simp

φin
τ , l-revealτ0 ,¬σin

τ1(syncID
U ) ∧ bID

τ1 ∧ σ
in
τ (syncID

U ) ∧ inc-SQNID
τ

∼ φin
τ , r-revealτ0 ,¬σin

τ1(syncID
U ) ∧ bID

τ1
∧ σin

τ (syncID
U ) ∧ inc-SQNID

τ

R

(79)

Combining (77), (79) with (65) and (76), it is easy to build a derivation of the form:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
....

φin
τ , l-revealτ0 , [b

ID
τ1 ∧ σ

in
τ (syncID

U )]sync-diffID
τ

∼ φin
τ , r-revealτ0 , [b

ντ1 (ID)
τ1 ∧ σin

τ (syncID
U )]sync-diffID

τ

FA∗ (80)

g) Part 7: Now it only remains to put everything together. First combining (65), (75) and (80), we get:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
....

φin
τ ,l-revealτ0 ,

(
bID
τ1 , [σ

in
τ (syncID

U ) ∧ bID
τ1 ]sync-diffID

τ

)
τ1∈TID

∼ φin
τ ,r-revealτ0 ,

(
b
ντ1 (ID)
τ1 , [σin

τ (syncID
U ) ∧ bντ1 (ID)

τ1 ]sync-diffID
τ

)
τ1∈TID

φin
τ , l-revealτ0 , [σin

τ (syncID
U )]sync-diffID

τ ∼ φin
τ , r-revealτ0 , [σin

τ (syncID
U )]sync-diffID

τ

FA∗

Combine with (72), this yields:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
....

φin
τ , l-revealτ0 , sync-diffID

τ ∼ φin
τ , r-revealτ0 , sync-diffID

τ

FA∗
(81)

We conclude the proof of this case by combining (66), (71), and (81) (recall that the Mac in revealτ\revealτ0 where handled
in (69)).



E. Case ai = PUID(j, 2)

We know that ai = PUντ (ID)(j, 2). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

sync-diffID
τ ∼ sync-diffντ (ID)

τ στ (e-authID
U ) ∼ στ (e-authντ (ID)

U ) στ (syncID
U ) ∼ στ (syncντ (ID)

U )

Therefore we are looking for a derivation of:

Φ ≡
φin
τ , l-revealτ0 , sync-diffID

τ , στ (e-authID
U ), στ (syncID

U ),acceptID
τ

∼ φin
τ , r-revealτ0 , sync-diffντ (ID)

τ , στ (e-authντ (ID)
U ), στ (syncντ (ID)

U ),acceptντ (ID)
τ

(82)

Let τ2 = _, PUID(j, 1) ≺ τ . We know that τ2 6≺τ NSID(_), and therefore τ2 = _, PUντ (ID)(j, 1). We also know that:

σin
τ (b-authID

U ) ≡ στ2(b-authID
U ) ≡ g(φin

τ2) σin
τ (b-authντ (ID)

U ) ≡ στ2(b-authντ (ID)
U ) ≡ g(φin

τ2)

We summarize this graphically:

τ :

τ2 = _, PUID(j, 1) τ = _PUID(j, 2)

στ2(b-authID
U ) = g(φin

τ2)

τ :

τ2 = _, PUντ (ID)(j, 1) τ = _, PUντ (ID)(j, 2)

στ2(b-authντ (ID)
U ) = g(φin

τ2)

∼

Hence we can start deconstructing the terms using FA and simplifying with Dup:

φin
τ , l-revealτ0 , sync-diffID

τ ,acceptID
τ ∼ φin

τ , r-revealτ0 , sync-diffντ (ID)
τ ,acceptντ (ID)

τ

φin
τ , l-revealτ0 , sync-diffID

τ ,acceptID
τ , g(φτ2)

∼ φin
τ , r-revealτ0 , sync-diffντ (ID)

τ ,acceptντ (ID)
τ , g(φτ2)

Simp

Φ
Simp

a) Part 1: We now focus on acceptID
τ . Let:

T = {τ1 | τ1 = _, PN(j1, 1) ∧ τ2 ≺τ τ1 ≺ τ}

Using (Equ2) we know that:

acceptID
τ ↔

∨
τ1=_,PN(j1,1)∈T

 g(φin
τ ) = Mac2kID

m
(〈nj1 , suc(σin

τ2(SQNID
U ))〉) ∧ g(φin

τ2) = nj1

∧ π1(g(φin
τ1)) = {〈ID , σin

τ2(SQNID
U )〉}nje

pkN


︸ ︷︷ ︸

supi-tr n:τ1
u:τ2,τ

(83)

Using again (Equ2) on τ (which is a valid symbolic trace) we also have:

acceptντ (ID)
τ ↔

∨
τ1=_,PN(j1,1)∈T

 g(φin
τ ) = Mac2

kντ (ID)
m

(〈nj1 , suc(σin
τ2(SQN

ντ (ID)
U ))〉) ∧ g(φin

τ2) = nj1

∧ π1(g(φin
τ1)) = {〈IDντ (ID) , σin

τ2(SQN
ντ (ID)
U )〉}nje

pkN


︸ ︷︷ ︸

supi-tr
n:τ1
u:τ2,τ

b) Part 2: We focus on sync-diffID
τ . First we get rid of the case where σin

τ (syncID
U ) is true. Indeed, we have:

[σin
τ (syncID

U )]sync-diffID
τ = [σin

τ (syncID
U )]suc(sync-diffID

τ0
)

[σin
τ (syncντ (ID)

U )]sync-diffντ (ID)
τ = [σin

τ (syncντ (ID)
U )]suc(sync-diffντ (ID)

τ0
)



And: (
sync-diffID

τ0
, sync-diffντ (ID)

τ0

)
∈ revealτ0

(
σin
τ (syncID

U ), σin
τ (syncντ (ID)

U )
)
∈ revealτ0

Therefore:

φin
τ , l-revealτ0 , [¬σin

τ (syncID
U )]sync-diffID

τ ∼ φin
τ , r-revealτ0 , [¬σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ

φin
τ , l-revealτ0 , sync-diffID

τ ∼ φin
τ , r-revealτ0 , sync-diffντ (ID)

τ

Simp

Similarly:

[¬σin
τ (syncID

U ) ∧ ¬acceptID
τ ]sync-diffID

τ = ⊥ [¬σin
τ (syncντ (ID)

U ) ∧ ¬acceptντ (ID)
τ ]sync-diffντ (ID)

τ = ⊥

Hence we can go one step further:

φin
τ , l-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ , [¬σ
in
τ (syncID

U ) ∧ bτ1 ]sync-diffID
τ

)
τ1∈T

∼ φin
τ , r-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ , [¬σ
in
τ (syncντ (ID)

U ) ∧ bτ1 , ]sync-diffντ (ID)
τ

)
τ1∈T

φin
τ , l-revealτ0 ,acceptID

τ , [¬σin
τ (syncID

U ) ∧ acceptID
τ ]sync-diffID

τ

∼ φin
τ , r-revealτ0 ,acceptντ (ID)

τ ,[¬σin
τ (syncντ (ID)

U ) ∧ acceptντ (ID)
τ ]sync-diffντ (ID)

τ

Simp∗

φin
τ , l-revealτ0 ,acceptID

τ , sync-diffID
τ

∼ φin
τ , r-revealτ0 ,acceptντ (ID)

τ ,sync-diffντ (ID)
τ

Simp

(84)

c) Part 3: Using (StrEqu4) twice, we know that for every τ1 ∈ T :(
¬σin

τ (syncID
U ) ∧ supi-tr n:τ1

u:τ2,τ
)
→ sync-diffID

τ = 0 (85)

And that: (
¬σin

τ (syncντ (ID)
U ) ∧ supi-tr n:τ1

u:τ2,τ

)
→ sync-diffντ (ID)

τ = 0 (86)

Using (85) and (86), we can extend the derivation in (84):

φin
τ , l-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ
)
τ1∈T

∼ φin
τ , r-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ

)
τ1∈T

φin
τ , l-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ , [¬σ
in
τ (syncID

U ) ∧ supi-tr n:τ1
u:τ2,τ ]0

)
τ1∈T

∼ φin
τ , r-revealτ0 ,

(
supi-tr n:τ1

u:τ2,τ , [¬σ
in
τ (syncντ (ID)

U ) ∧ supi-tr n:τ1
u:τ2,τ ]0

)
τ1∈T

Simp

φin
τ , l-revealτ0 ,acceptID

τ , sync-diffID
τ

∼ φin
τ , r-revealτ0 ,acceptντ (ID)

τ , sync-diffντ (ID)
τ

Simp

(87)

We can check that for all τ1 = _, PN(j1, 1) ∈ T , since τ2 ≺τ τ1 and τ2 6≺τ NSID(_) we have that:(
Mac2kID

m
(〈nj1 , suc(σin

τ2(SQNID
U ))〉),Mac2

kντ (ID)
m

(〈nj1 , suc(σin
τ2(SQN

ντ (ID)
U ))〉)

)
∈ revealτ0

(
nj1 ,nj1

)
∈ revealτ0(

{〈ID , σin
τ2(SQNID

U )〉}nje
pkN
, {〈IDντ (ID) , σin

τ2(SQN
ντ (ID)
U )〉}nje

pkN

)
∈ revealτ0

We can complete the derivation in (87): first, for every τ1 ∈ T , we deconstruct bτ1 ∼ bτ1 with FA; and then, we absorb the
subterms into revealτ0 using rule Dup (which is sound using the remark above). This yields:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,acceptID

τ , sync-diffID
τ

∼ φin
τ , r-revealτ0 ,acceptντ (ID)

τ ,sync-diffντ (ID)
τ

Simp

Finally we conclude using the induction hypothesis.



F. Case ai = FN(j)

We know that ai = FN(j). Here l-revealτ and l-revealτ0 coincides everywhere except on the following pairs: for every base
identity ID:

GUTIj ∼ GUTIj

[net-e-authτ (ID, j)] (t-suci-⊕τ (ID, j)) ∼ [net-e-authτ (ID, j)]
(

t-suci-⊕τ (ID, j)
)

[net-e-authτ (ID, j)] (t-macτ (ID, j)) ∼ [net-e-authτ (ID, j)]
(

t-macτ (ID, j)
)

a) Part 1: Let ID ∈ Sid. Using Lemma 7, we know that:

στ (e-authjN) = ID →
∨
τ ′�τ

στ ′(b-authID
U ) = nj

Let τ ′ � τ . If ID is not a base identity we know that στ ′(b-authID
U ) ≡ ⊥, and therefore:

¬
(
στ ′(b-authID

U ) = nj
)

It follows that eq(στ (e-authjN), ID) = false. We can then check that:

tτ =

if net-e-authτ (A1, j) then
〈t-suci-⊕τ (A1, j) , t-macτ (A1, j)〉

else if net-e-authτ (A2, j) then
〈t-suci-⊕τ (A2, j) , t-macτ (A2, j)〉
· · ·

else UnknownId

tτ =

if net-e-authτ (A1, j) then

〈t-suci-⊕τ (A1, j) , t-macτ (A1, j)〉
else if net-e-authτ (A2, j) then

〈t-suci-⊕τ (A2, j) , t-macτ (A2, j)〉
· · ·

else UnknownId

Using the FA axiom, we can split tτ and tτ as follows:(
net-e-authτ (Ai, j), [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼
(
net-e-authτ (Ai, j), [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

tτ ∼ tτ FA∗

Since: (
net-e-authτ (Ai, j),net-e-authτ (Ai, j)

)
∈ revealτ0

We just need to prove that there is a derivation of:

φin
τ , l-revealτ0 ,

(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼ φin
τ , r-revealτ0 ,

(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

Assume that we have a proof of

φin
τ , l-revealτ0 ,

(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

∼ φin
τ , l-revealτ0 ,

(
ni,j , n′i,j

)
i≤B

(88)

And:
φin
τ , r-revealτ0 ,

(
ni,j , n′i,j

)
i≤B

∼ φin
τ , r-revealτ0 ,

(
[net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

)
i≤B

(89)

Where for all {ni,j ,n′i,j | 1 ≤ i ≤ B} are fresh distinct nonces. Since:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,

(
ni,j , n′i,j

)
i≤B ∼ φin

τ , r-revealτ0 ,
(
ni,j , n′i,j

)
i≤B

Fresh

We can conclude by induction.



b) Part 2: It only remains to give derivations of the formulas in Eq. (88) and Eq. (89). We only give the proof for
Eq. (89), and we omit the derivation of Eq. (88) (as it is similar, and simpler).

Instead of doing the proof simultaneously for all i in {1, . . . , B}, we give the proof for a single i. We let the reader check
that the syntactic side-conditions necessary for the derivations for i and i′, with i 6= i′, are compatible. Therefore the derivations
can be sequentially composed, which yield the full proof.

Let 1 ≤ i ≤ B. By transitivity, we only have to show that:

φin
τ , r-revealτ0 , ni,j , n′i,j

∼ φin
τ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j)

(90)

And:
φin
τ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j)

∼ φin
τ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

(91)

c) Derivation of Formula (91): Let {ID1, . . . , IDl} = copies-id(IDi). We define, for every 0 ≤ y ≤ l, the partially
randomized terms t-suci-⊕yτ (IDi, j):

t-suci-⊕yτ (IDi, j) ≡ if eq(στ (e-authjN), ID1) then n1
i,j

· · ·
else if eq(στ (e-authjN), IDy−1) then ny−1i,j

else if eq(στ (e-authjN), IDy) then GUTIj ⊕ f r
kIDy (nj)

· · ·
else GUTIj ⊕ f r

kIDl (nj)

Remark that:

[net-e-authτ (Ai, j)]t-suci-⊕0
τ (IDi, j) = [net-e-authτ (Ai, j)]t-suci-⊕τ (Ai, j)

And that:

φin
τ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macτ (Ai, j)

∼ φin
τ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕lτ (IDi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

indep-branch

Hence by transitivity, to prove that there exists a derivation of Formula (91) it is sufficient to prove that, for every 0 < y ≤ l,
that we have a derivation of φy−1 ∼ φy , where:

φy−1 ≡ φin
τ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕y−1τ (IDi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

φy ≡ φin
τ , r-revealτ0 , [net-e-authτ (Ai, j)]t-suci-⊕yτ (IDi, j), [net-e-authτ (Ai, j)]t-macτ (Ai, j)

Let 1 ≤ y ≤ B, we are going to give a derivation of φy−1 ∼ φy . This is done in two times:
• First, we are going to use the PRF-f r axiom applied to f r, with key kIDy , to replace GUTIj ⊕ f r

kIDy (nj) with GUTIj ⊕ n′′yi,j
(where n′′yi,j is a fresh nonce).
First, observe that there is only one occurrence of f r

kIDy (nj) in φy−1 (and none in φy). Moreover:

set-prff
r

kIDy (φy−1, φy) \{nj} =
{
σin
τ1(e-authID

U ) | τ1 = _, FUIDy
(p) ≺ τ

}
∪ {np | τ1 = _, FN(p) ≺ τ}

Let τ1 = _, FN(p) ≺ τ . We know that p 6= j, and therefore that (np = nj) = false. We deduce that:

f r
kIDy (nj) =

 ∧
τ1=_,FN(p)≺τ

np 6= nj

 f r
kIDy (nj)

But we still need guards for σin
τ1(e-authID

U ) = nj , for every τ1 = _, FUkIDy (p) ≺ τ . The problem is that it is not true that
(σin
τ1(e-authID

U ) = nj) = false. We solve this problem by rewriting φy−1 (resp. φy) into the vector of terms φ′y−1 (resp.
φ′y) obtained by replacing (recursively) any occurrence of acceptk

IDy

τ1
with:∨

τ0=_FN(j0)≺τ1
τ0 6≺τ1 NSIDy

(_)

(
inj-authτ1(IDy, j0) ∧ σin

τ1(e-authj0N ) 6= UnknownId

∧ π1(g(φin
τ1)) = GUTIj0 ⊕ f r

kIDy (nj0) ∧ π2(g(φin
τ1)) = Mac5

k
IDy
m

(〈GUTIj0 , nj0〉)

)
(92)



Which is sound using (Equ1). We then have:

set-prff
r

kIDy (φ′) = {np | τ1 = _, FN(p) ≺ τ}

Therefore we can apply the PRF-f r axioms as wanted: first we replace φy−1 and φy by φ′y−1 and φ′y using rule R; then
we apply the PRF-f r axiom; and finally we rewrite any term of the form (92) back into acceptk

IDy

τ1
.

• Then, we use the ⊕-indep axiom to replace GUTIj ⊕ n′′yi,j with nyi,j .
d) Derivation of Formula (90): We use the same proof technique. We define, for every 0 ≤ y ≤ l, the partially randomized

terms t-macyτ (IDi, j):

t-macyτ (IDi, j) ≡ if eq(στ (e-authjN), ID1) then n′1i,j
· · ·

else if eq(στ (e-authjN), IDy−1) then n′y−1i,j

else if eq(στ (e-authjN), IDy) then Mac5
k

IDy
m

(〈GUTIj , nj〉)

· · ·
else Mac5kIDl

m
(〈GUTIj , nj〉)

Remark that:

[net-e-authτ (Ai, j)]t-mac0τ (IDi, j) = [net-e-authτ (Ai, j)]t-macτ (Ai, j)

And that:

φin
τ , r-revealτ0 , ni,j , n′i,j

∼ φin
τ , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-maclτ (Ai, j)

indep-branch

Hence by transitivity, to prove that there exists a derivation of Formula (90) it is sufficient to prove that, for every 0 < y ≤ l,
that we have a derivation of ψy−1 ∼ ψy , where:

ψy−1 ≡ ψτ0 , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macy−1τ (IDi, j)

ψy ≡ ψτ0 , r-revealτ0 , ni,j , [net-e-authτ (Ai, j)]t-macyτ (IDi, j)

Let 1 ≤ y ≤ B, we are going to give a derivation of ψy−1 ∼ ψy . For this, we are going to use the PRF-MAC5 axiom with key
k

IDy
m , to replace Mac5

k
IDy
m

(〈GUTIj , nj〉) with a fresh nonce ñyi,j .
First, observe that there is only one occurrence of Mac5

k
IDy
m

(〈GUTIj , nj〉) in ψy−1 (and none in ψy). Moreover:

set-mac5kIDy (ψy−1, ψy) \
{
〈GUTIj , nj〉

}
=

{〈GUTIp , np〉 | τ1 = _, FN(p) ≺ τ}

∪
{
〈π1(g(φin

τ1))⊕ f r
k(σin

τ1(e-authkIDy

U )) , σin
τ1(e-authkIDy

U )〉 | τ1 = _, FN(p) ≺ τ
}

Let τ1 = _, FN(p) ≺ τ . Since GUTIj is a fresh nonce, we know using EQIndep and the injectivity of the pair function that:(
〈GUTIj , nj〉 = 〈GUTIp , np〉

)
= false(

〈GUTIj , nj〉 = 〈π1(g(φin
τ1))⊕ f r

k(σin
τ1(e-authkIDy

U )) , σin
τ1(e-authkIDy

U )〉
)

= false

Therefore we can directly apply the PRF-MAC5 axiom, which concludes this case.

G. Case ai = FUID(j)

We know that ai = FUντ (ID)(j). Here l-revealτ and l-revealτ0 coincides everywhere except on the pairs:

στ (valid-gutiID
U ) ∼ στ (valid-gutiντ (ID)

U )

if στ (valid-gutiID
U ) then στ (GUTIID

U )

else ⊥︸ ︷︷ ︸
m-suci ID

τ

∼ if στ (valid-gutiντ (ID)
U ) then στ (GUTI

ντ (ID)
U )

else ⊥︸ ︷︷ ︸
m-suci ντ (ID)

τ

Moreover, we also need to show that:
acceptID

τ ∼ acceptντ (ID)
τ



Recall that τ = τ0,ai and τ = τ0,ai, and that:

στ (valid-gutiID
U ) ≡ acceptID

τ

στ (GUTIID
U ) ≡ if acceptID

τ then π1(g(φin
τ ))⊕ f r

k(στ0(e-authID
U ))

else UnSet

στ (valid-gutiντ (ID)
U ) ≡ acceptντ (ID)

τ

στ (GUTI
ντ (ID)
U ) ≡ if acceptντ (ID)

τ then π1(g(φin
τ ))⊕ f r

k(στ0(e-authντ (ID)
U ))

else UnSet

Therefore we want a proof of:

φin
τ , l-revealτ0 ,acceptID

τ ,m-suci ID
τ ∼ φin

τ , r-revealτ0 ,acceptντ (ID)
τ ,m-suci ντ (ID)

τ (93)

Using (Equ1), we know that:

acceptID
τ ↔

∨
τ1=_,FN(j0)≺τ
τ1 6≺τ NSID(_)

fu-trn:τ1
u:τ (94)

We know that τ = τ0, FUντ (ID)(j) is a valid symbolic trace. Using (Equ1) again, we know that:

acceptντ (ID)
τ ↔

∨
τ1=_,FN(j0)≺τ
τ1 6≺τ NSID(_)

fu-trn:τ1
u:τ (95)

Let:

{j0, . . . , jl} = {i | τ ′ = _, FN(i) ≺ τ ∧ τ ′ 6≺τ NSID(_)}

One can check that:

{j0, . . . , jl} = {i | τ ′ = _, FN(i) ≺ τ ∧ τ ′ 6≺τ NSντ (ID)(_)}

For all 0 ≤ i ≤ l, let τji be such that τji = _, FN(ji) ≺ τ . One can check that:

m-suci ID
τ = if fu-trn:τj0

u:τ then GUTIj0

else if fu-trn:τj1
u:τ then GUTIj1

· · ·
else GUTIjl

m-suci ντ (ID)
τ = if fu-tr

n:τj0
u:τ then GUTIj0

else if fu-tr
n:τj1
u:τ then GUTIj1

· · ·
else GUTIjl

We can now start giving a derivation of (93):

φin
τ , l-revealτ0 ,

(
fu-trn:τji

u:τ

)
i≤l
∼ φin

τ , r-revealτ0 ,
(

fu-tr
n:τji
u:τ

)
i≤l

φin
τ , l-revealτ0 ,

(
fu-trn:τji

u:τ

)
i≤l

,
(

GUTIji
)
i≤l ∼ φ

in
τ , r-revealτ0 ,

(
fu-tr

n:τji
u:τ

)
i≤l

,
(

GUTIji
)
i≤l

Dup∗

φin
τ , l-revealτ0 ,acceptID

τ ,m-suci ID
τ ∼ φin

τ , r-revealτ0 ,acceptντ (ID)
τ ,m-suci ντ (ID)

τ

FA∗

Since for all 1 ≤ i ≤ l, (GUTIji ∼ GUTIji) ∈ revealτ0 . Finally, we conclude using (Der2) for every 0 ≤ i ≤ l:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,

(
fu-trn:τji

u:τ

)
i≤l
∼ φin

τ , r-revealτ0 ,
(

fu-tr
n:τji
u:τ

)
i≤l

FA∗

H. Case ai = TUID(j, 0)

We know that ai = TUντ (ID)(j, 0). Let ID = ντ (ID). Here l-revealτ and l-revealτ0 coincides everywhere except on:

στ (valid-gutiID
U ) ∼ στ (valid-gutiID

U ) στ (s-valid-gutiID
U ) ∼ στ (s-valid-gutiID

U ) m-suci ID
τ ∼ m-suci ID

τ

Handling these is completely trivial because:

στ (valid-gutiID
U ) ≡ false στ (valid-gutiID

U ) ≡ false στ (s-valid-gutiID
U ) ≡ σin

τ (valid-gutiID
U )

στ (s-valid-gutiID
U ) ≡ σin

τ (valid-gutiID
U ) m-suci ID

τ ≡ ⊥ m-suci ID
τ ≡ ⊥



And (σin
τ (valid-gutiID

U ), σin
τ (valid-gutiID

U )) ∈ revealτ0 . Finally, we conclude by observing that:

tτ = if σin
τ (valid-gutiID

U ) then m-suci ID
τ else NoGuti tτ = if σin

τ (valid-gutiID
U ) then m-suci ID

τ else NoGuti

Hence:
φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0 , σin
τ (valid-gutiID

U )

φin
τ , l-revealτ0 , σin

τ (valid-gutiID
U ),m-suci ID

τ ,NoGuti ∼ φin
τ , r-revealτ0 , σin

τ (valid-gutiID
U ),m-suci ID

τ ,NoGuti
Dup∗

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
Simp

I. Case ai = TN(j, 0)

We know that ai = TN(j, 0). Using (A6), we know that for every ID 6= ID′, ¬acceptID
τ ↔ ¬acceptID′

τ . Therefore the
answer from the network does not depend on the order in which we make the acceptID

τ tests. Formally, the following list of
conditionals is a CS partition: (acceptID

τ )ID∈Sid
,
∧

ID∈Sid

¬acceptID
τ


To get a uniform notation, we let acceptIDdum

τ ≡
∧

ID∈Sid
¬acceptID

τ , and Sext-id = Sid ∪ {IDdum}. Hence using Proposition 28
we get that:

tτ = case
ID∈Sext-id

(acceptID
τ : msgID

τ )

We are now going to show that for every ID ∈ Sext-id, the term msgID
τ can be replaced by

〈
nj ,n⊕ID , nMac

ID

〉
(where (n⊕ID)ID∈Sext-id

and (nMac
ID )ID∈Sext-id are fresh distinct nonces). We will then conclude easily using the fresh axiom.

Let ID1, . . . , IDl be an arbitrary enumeration of Sext-id. For every 1 ≤ n ≤ l, and for every IDi ∈ {ID1, . . . , IDl}, we let:

rnd-msgIDi
n ≡

{〈
nj ,n⊕IDi

, nMac
IDi

〉
if i ≤ n

rnd-msgIDi
τ if i > n

And we let tn be the term tτ where the subterms msgID
τ have been replaced by

〈
nj ,n⊕ID , nMac

ID

〉
for the first n identities:

tn ≡ case
ID∈Sext-id

(acceptID
τ : rnd-msgID

n )

We can check that t0 ≡ tτ .
a) Part 1: We now show that for every 1 ≤ n ≤ l, we have a derivation of:

φin
τ , l-revealτ0 , tn−1 ∼ φin

τ , l-revealτ0 , tn (96)

Let n be in {1, . . . , l}. Let ID = IDn, k = kID and km = kID
m . We are going to apply PRF-f axiom with key k to replace fnj (k)

by nID, where nID is a fresh nonce. Recall that:

msgID
τ ≡ 〈n

j , σin
τ (SQNID

N )︸ ︷︷ ︸
uSQN

⊕fkID (nj) , Mac3kID
m

(〈nj , σin
τ (SQNID

N ) , σin
τ (GUTIID

N )〉)︸ ︷︷ ︸
uMac

〉

We let ψ be the context with one hole (which has only one occurrence) such that:

ψ[
〈
nj , uSQN ⊕ fkID (nj) , uMac

〉
] ≡ φin

τ , l-revealτ0 , tn−1 ψ[
〈
nj ,n⊕ID , nMac

ID

〉
] ≡ φin

τ , l-revealτ0 , tn

Let ψ0[] ≡ ψ[
〈
nj , uSQN ⊕ [] , uMac

〉
]. Notice that:

set-prffk (ψ0[]) =
{
π1(φin

τ1) | τ1 = _, TUID(p, 1) ≺ τ
}

∪ {np | τ1 = _, TN(p) ≺ τ}

We want to get rid of the sub-terms of the form fk(π1(φin
τ1)), for any τ1 such that τ1 = _, TUID(p, 1) ≺ τ . To do this, for every

τ1 = _, TUID(p, 1) ≺ τ , we let τ3 = _, TUID(jp, 0) ≺ τ , and we apply (StrEqu2) to rewrite all occurrence of acceptID
τ1

in ψ0

using:
acceptID

τ1
↔

∨
τ2=_,TN(j1,0)
τ3<τ1

τ2<τ1
τ1

(
part-trn:τ2

u:τ3,τ1

)
(97)

This yields a vector of terms ψ′0[] with one hole. It is easy to check that:

set-prffk (ψ′0[]) = {np | τ1 = _, TN(p) ≺ τ}



By validity of τ , we know that for every τ1 = _, TN(p) ≺ τ , we have p 6= j. Therefore using fresh we have (nj = nP )↔ false.
It follows that we can apply the PRF-f axiom in ψ′0[fnj (k)], replacing fnj (k) by nID, which yields ψ′0[nID]. We then rewrite any
term of the form in (97) back into acceptID

τ1
, obtaining ψ0[nID] ≡ ψ[

〈
nj , uSQN ⊕ nID , uMac

〉
]. We then use ⊕-indep to replace

uSQN ⊕ nID by n⊕ID.
ψ[
〈
nj ,n⊕ID , uMac

〉
] ∼ ψ[

〈
nj ,n⊕ID , nMac

ID

〉
]

ψ[
〈
nj , uSQN ⊕ nID , uMac

〉
] ∼ ψ[

〈
nj ,n⊕ID , nMac

ID

〉
]
⊕-indep

ψ′0[nID] ∼ ψ[
〈
nj ,n⊕ID , nMac

ID

〉
]

R

ψ′0[fnj (k)] ∼ ψ[
〈
nj ,n⊕ID , nMac

ID

〉
]

PRF-f

ψ[
〈
nj , uSQN ⊕ fkID (nj) , uMac

〉
] ∼ ψ[

〈
nj ,n⊕ID , nMac

ID

〉
]
R

φin
τ , l-revealτ0 , tn−1 ∼ φin

τ , l-revealτ0 , tn
R

We now the same thing with uMac, applying PRF-MAC3 axiom to replace uMac by nMac
ID . The proof is similar to the one we

just did for PRF-f, and we omit the details. We then conclude using Refl. This yields:

ψ[
〈
nj ,n⊕ID , nMac

ID

〉
] ∼ ψ[

〈
nj ,n⊕ID , nMac

ID

〉
]

Refl....

ψ[
〈
nj ,n⊕ID , uMac

〉
] ∼ ψ[

〈
nj ,n⊕ID , nMac

ID

〉
]

b) Part 2: Using the fact that t0 ≡ tτ and (96), and using the transitivity axiom, we can build a derivation of:

φin
τ , l-revealτ0 , tτ ∼ φin

τ , l-revealτ0 , tl

Moreover, using the indep-branch axiom we know that:

φin
τ , l-revealτ0 , tl ∼ φin

τ , l-revealτ0 ,n
indep-branch

where n is a fresh nonce. Using transitivity again, we get a derivation of:

φin
τ , l-revealτ0 , tτ ∼ φin

τ , l-revealτ0 ,n (98)

Repeating everything we did in Part 1, we can show that we have a derivation of:

φin
τ , r-revealτ0 ,n

′ ∼ φin
τ , r-revealτ0 , tτ (99)

where n′ is a fresh nonce. We then conclude using the transitivity and Fresh:

(98)

φin
τ , l-revealτ0 , tτ

∼ φin
τ , l-revealτ0 ,n

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,n ∼ φin

τ , r-revealτ0 ,n′
Fresh

(99)

φin
τ , r-revealτ0 ,n

′

∼ φin
τ , r-revealτ0 , tτ

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
Trans

J. Case ai = TUID(j, 1)

We know that ai = TUντ (ID)(j, 1). Let ID = ντ (ID). By validity of τ , we know that there exists τ2 = _, TUID(j, 0) such that
τ2 ≺ τ . Here l-revealτ and l-revealτ0 coincides everywhere except on:

στ (SQNID
U )− σin

τ (SQNID
U ) ∼ στ (SQN

ID
U )− σin

τ (SQN
ID
U ) στ (e-authID

U ) ∼ στ (e-authID
U )(

Mac4kID
m

(nj0) ∼ Mac4kID
m

(nj0)
)
τ1=_,TN(j0,0)
τ2≺τ τ1

First, using (StrEqu2) twice we know that:

acceptID
τ ↔

∨
τ1=_,TN(j1,0)
τ2≺τ τ1

part-trn:τ1
u:τ2,τ acceptID

τ ↔
∨

τ1=_,TN(j1,0)
τ2≺τ τ1

part-trn:τ1
u:τ2,τ

Using (Der3) we know that for every τ1 = _, TN(j1, 0) such that τ2 ≺τ τ1 we have a derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,part-trn:τ1

u:τ2,τ ∼ φin
τ , r-revealτ0 ,part-trn:τ1

u:τ2,τ

Simp (100)



Therefore we can build the following derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 ,

(
part-trn:τ1

u:τ2,τ
)
τ1=_,TN(j1,0)
τ2≺τ τ1

∼ φin
τ , r-revealτ0 ,

(
part-trn:τ1

u:τ2,τ

)
τ1=_,TN(j1,0)
τ2≺τ τ1

Simp

φin
τ , l-revealτ0 ,acceptID

τ ∼ φin
τ , r-revealτ0 ,acceptID

τ

Simp
(101)

a) Part 1: We can check that for every τ1 = _, TN(j1, 0) such that τ2 ≺τ τ1:

part-trn:τ1
u:τ2,τ → στ (e-authID

U ) = nj1 part-trn:τ1
u:τ2,τ → στ (e-authID

U ) = nj1

¬acceptID
τ → στ (e-authID

U ) = fail ¬acceptID
τ → στ (e-authID

U ) = fail

And (nj1 ,nj1) ∈ revealτ0 . Therefore we can decompose στ (e-authID
U ) and στ (e-authID

U ) using FA and get rid of the resulting
terms using (100) and (101):

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,acceptID

τ ,
(
part-trn:τ1

u:τ2,τ ,n
j1
)
τ1=_,TN(j1,0)
τ2≺τ τ1

, fail

∼ φin
τ , r-revealτ0 ,acceptID

τ ,
(

part-trn:τ1
u:τ2,τ ,n

j1
)
τ1=_,TN(j1,0)
τ2≺τ τ1

, fail

Simp

φin
τ , l-revealτ0 , if acceptID

τ then case
τ1=_,TN(j1,0)
τ2≺τ τ1

(part-trn:τ1
u:τ2,τ : nj1) else fail

∼ φin
τ , r-revealτ0 , if acceptID

τ then case
τ1=_,TN(j1,0)
τ2≺τ τ1

(part-trn:τ1
u:τ2,τ : nj1) else fail

Simp

φin
τ , l-revealτ0 , στ (e-authID

U ) ∼ φin
τ , r-revealτ0 , στ (e-authID

U )
R

(102)

b) Part 2: Observe that for every τ1 = _, TN(j1, 0) such that τ2 ≺τ τ1:

part-trn:τ1
u:τ2,τ → στ (SQNID

U )− σin
τ (SQNID

U ) = 1 part-trn:τ1
u:τ2,τ → στ (SQN

ID
U )− σin

τ (SQN
ID
U ) = 1

¬acceptID
τ → στ (SQNID

U )− σin
τ (SQNID

U ) = 0 ¬acceptID
τ → στ (SQN

ID
U )− σin

τ (SQN
ID
U ) = 0

It is then easy to adapt the derivation in (102) to get a derivation of (we omit the details):

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , στ (SQNID

U )− σin
τ (SQNID

U ) ∼ φin
τ , r-revealτ0 , στ (SQN

ID
U )− σin

τ (SQN
ID
U )

Simp (103)

c) Part 3: We finally take care of tτ and the Mac4 terms. First, we check that for every τ1 = _, TN(j1, 0) such that
τ2 ≺τ τ1:

part-trn:τ1
u:τ2,τ → tτ = Mac4kID

m
(nj0) part-trn:τ1

u:τ2,τ → tτ = Mac4kID
m

(nj0)

¬acceptID
τ → tτ = error ¬acceptID

τ → tτ = error

Similarly to what we did in (102), we decompose tτ and tτ using (100) and (101). Omitting the detail of the derivation, this
yield:

φin
τ , l-revealτ0 ,

(
Mac4kID

m
(nj0)

)
τ1=_,TN(j0,0)
τ2≺τ τ1

∼ φin
τ , r-revealτ0 ,

(
Mac4kID

m
(nj0)

)
τ1=_,TN(j0,0)
τ2≺τ τ1

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
Simp

Observe that the Mac4 terms here are exactly the Mac4 terms in l-revealτ\l-revealτ0 . To conclude this proof, it only remains
to give a derivation of:

φin
τ , l-revealτ0 ,

(
Mac4kID

m
(nj0)

)
τ1=_,TN(j0,0)
τ2≺τ τ1

∼ φin
τ , r-revealτ0 ,

(
Mac4kID

m
(nj0)

)
τ1=_,TN(j0,0)
τ2≺τ τ1

For every τ1 = _, TN(j1, 0) such that τ2 ≺τ τ1, we are going to apply the PRF-MAC4 axiom with key kID
m to replace Mac4kID

m
(nj0)

by a fresh nonce nτ1 . Let ψ ≡ φin
τ , l-revealτ0 , observe that:

set-mac4ID (ψ) =
{
π1(g(φin

τa)) | τa = _, TUID(ja, 1) ≺ τ
}

∪
{

njn | τn = _, TN(jn, 1) ≺ τ
}



Let:

N =
{

nj0 | τ1 = _, TN(j0, 0) ∧ τ2 ≺τ τ1
}

Our goal is to rewrite ψ into a vector of terms ψ1 such that set-mac4ID (ψ1)∩N = ∅. This will allow us to apply the PRF-MAC4

axiom. We are going to rewrite ψ as follows:

• Let τa = _, TUID(ja, 1) ≺ τ . By validity of τ , we know that τa ≺τ τ2, and that there exists τb = _, TUID(ja, 0) ≺τ τa.
Using (StrEqu2), we know that:

acceptID
τa
↔

∨
τx=_,TN(jx,0)
τb≺τ τx≺τ τa

part-trn:τx
u:τb,τa

We let αID
τa be the right-hand side of the equation above. Using this, we can check that:

tτa = if αID
τa then case

τx=_,TN(jx,0)
τb≺τ τx≺τ τa

(part-trn:τx
u:τb,τa : Mac4kID

m
(njx)) else error

Let κID
τa be the right-hand side of the equation above. For every τx = _, TN(jx, 0) such that τ2 ≺τ τ1, we have njx ∈

set-mac4ID(αID
τa , κ

ID
τa) if and only if τb ≺τ τx ≺τ τa. Therefore:

set-mac4ID

(
αID
τa , κ

ID
τa

)
∩N

=
{

njx | τx = _, TN(jx, 0) ∧ τb ≺τ τx ≺τ τa
}
∩
{

nj0 | τ1 = _, TN(j0, 0) ∧ τ2 ≺τ τ1
}

=
{

njx | τx = _, TN(jx, 0) ∧ τb ≺τ τx ≺τ τa ∧ τ2 ≺τ τx
}

By validity of τ , we know that τa ≺τ τ2. This implies that whenever τb ≺τ τx ≺τ τa and τ2 ≺τ τx, we have
τx ≺τ τ2 ≺τ τx. Hence:

set-mac4ID

(
αID
τa , κ

ID
τa

)
∩N = ∅ (104)

Let ψ0 be ψ in which we replace, for every τa = _, TUID(ja, 1) ≺ τ , any occurrence of acceptID
τa

and tτa by, respectively,
αID
τa and κID

τa . We then have:

set-mac4ID (ψ0) =
{

njn | τn = _, TN(jn, 1) ≺ τ
}
∪

⋃
τa=_,TUID(ja,1)

τa≺τ

set-mac4ID

(
αID
τa , κ

ID
τa

)
And using (104), we know that:

set-mac4ID (ψ0) ∩N =
{

njn | τn = _, TN(jn, 1) ≺ τ
}

(105)

• Let τn = _, TN(jn, 1) and τn′ = _, TN(jn, 0) such that τn′ ≺τ τn. Using (StrEqu3), we know that:

acceptID
τn
↔

∨
τi
′=_,TUID(ji,0)

τi=_,TUID(ji,1)

τi
′≺τ τn′≺τ τi≺τ τn

full-trn:τn′,τn
u:τi′,τi

Let λID
τn be the right-hand side of the equation above. We can check that njn ∈ set-mac4ID(λID

τn) if and only if there
exists τi′ = _, TUID(ji, 0) and τi = _, TUID(ji, 1) such that τi′ ≺τ τn′ ≺τ τi ≺τ τn. Since τi ≺ τ , we know that ji 6= j.
Therefore τi ≺τ τ2, and we can show that:

set-mac4ID

(
λID
τn

)
∩N = ∅ (106)

Let ψ1 be ψ0 in which we replace, for every τn = _, TN(jn, 1) and τn′ = _, TN(jn, 0) such that τn′ ≺τ τn, any occurrence
of acceptID

τn
by λID

τa . Using (105) and (106), we can check that:

set-mac4ID (ψ1) ∩N = ∅

Which is what we wanted to show.



d) Part 4: Let τ1 = _, TN(j0, 0) be such that τ2 ≺τ τ1. For every τ1
′ = _, TN(j′0, 0) be such that τ2 ≺τ τ1

′, if
j′0 6= j0 then (nj

′
0 = nj0) ↔ false. Moreover, since set-mac4ID (ψ1) ∩ N = ∅, we know that for every n ∈ set-mac4ID (ψ1),

(n = nj0)↔ false.
We can therefore apply simultaneously the PRF-MAC4 axiom with key kID

m for every τ1 = _, TN(j0, 0) be such that τ2 ≺τ τ1,
to replace Mac4kID

m
(nj0) by a fresh nonce nτ1 . We then rewrite back ψ1 into ψ. This yield the derivation:

φin
τ , l-revealτ0 , (nτ1) τ1=_,TN(j0,0)

τ2≺τ τ1
∼ ζ

ψ1, (nτ1) τ1=_,TN(j0,0)
τ2≺τ τ1

∼ ζ
R

ψ1,
(

Mac4kID
m

(nj0)
)
τ1=_,TN(j0,0)
τ2≺τ τ1

∼ ζ
PRF-MAC4

φin
τ , l-revealτ0 ,

(
Mac4kID

m
(nj0)

)
τ1=_,TN(j0,0)
τ2≺τ τ1

∼ ζ
R

where:
ζ ≡ φin

τ , r-revealτ0 ,
(

(Mac4kID
m

(nj0)
)
τ1=_,TN(j0,0)
τ2≺τ τ1

Observe that we never used the fact that τ was a basic trace of actions above, but only the fact that τ is a valid trace of
actions. Therefore the same reasoning applies to ζ, which allows us, for every τ1 = _, TN(j0, 0) be such that τ2 ≺τ τ1, to
replace Mac4kID

m
(nj0) by a fresh nonce n′τ1 . We conclude using fresh. We get:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , (nτ1) τ1=_,TN(j0,0)

τ2≺τ τ1
∼ φin

τ , r-revealτ0 ,
(
n′τ1
)
τ1=_,TN(j0,0)
τ2≺τ τ1

fresh

φin
τ , l-revealτ0 , (nτ1) τ1=_,TN(j0,0)

τ2≺τ τ1
∼ φin

τ , r-revealτ0 ,
(

(Mac4kID
m

(nj0)
)
τ1=_,TN(j0,0)
τ2≺τ τ1

R+ PRF-MAC4

Which concludes this proof.

K. Case ai = TN(j, 1)

We know that ai = TN(j, 1). Here l-revealτ and l-revealτ0 coincides everywhere except on:

net-e-authτ (ID, j) ∼ net-e-authτ (ID, j) sync-diffID
τ ∼ sync-diffντ (ID)

τ

Let ID ∈ Sbid, τi = _, TUID(ji, 1), τ1 = _, TN(j, 0), τ2 = _, TUID(ji, 0) such that τ2 ≺τ τ1 ≺τ τi:

τ :

TUID(ji, 0)

τ2

TN(j, 0)

τ1

TUID(ji, 1)

τi

ai = TN(j, 1)

τ

Let f ≡ full-trn:τ1,τ
u:τ2,τi and f ≡ full-trn:τ1,τ

u:τ2,τi . Using (Der4) we know that we have the following derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , f ∼ φin

τ , r-revealτ0 , f
Simp (107)

Since f→ acceptID
τ , we have:

[f ∧ σin
τ (syncID

U )]sync-diffID
τ = [f ∧ σin

τ (syncID
U )]

(
if σin

τ (sessionID
N ) = nj then suc(sync-diffID

τ0
)

else sync-diffID
τ0

)
a) Case 1: Assume that τi = _, TUID(ji, 1) ≺τ NSID(_). Let τNS = _, NSID(jNS) be the latest session reset in τ , i.e.

τNS <τ τ and τNS 6≺τ NSID(_). We show by induction that for every τ ′ such that τNS � τ ′ we have:(
f ∧ σin

τ (sessionID
N ) = nj

)
→ στNS

(SQNID
N ) = στ ′(SQNID

N ) (108)

Let τ ′ be such that τNS � τ ′:
• If τ ′ = τNS then the property trivially holds.
• If τNS ≺τ τ ′. The only cases where SQNID

N is updated are PN(j′, 1) and TN(j′, 1):
– If τ ′ = _, PN(j′, 1): since τ = TN(j, 1) we know by validity of τ that j′ 6= j. Therefore:

inc-acceptID
τ ′ →

(
στ ′(sessionID

N ) = nj
′
)
→
(
στ ′(sessionID

N ) 6= nj
)
→
(
σin
τ (sessionID

N ) 6= nj
)



It follows that: (
σin
τ (sessionID

N ) = nj
)
→ ¬inc-acceptID

τ ′ →
(
σin
τ ′(SQNID

N ) = στ ′(SQNID
N )
)

And we conclude by applying the induction hypothesis.
– If τ ′ = _, TN(j′, 1): since τ = TN(j, 1) and τ ′ ≺ τ , we know that j′ 6= j (by validity of τ ). Therefore:(

σin
τ (sessionID

N ) = nj
)
→ ¬inc-acceptID

τ ′ →
(
σin
τ ′(SQNID

N ) = στ ′(SQNID
N )
)

And we conclude by applying the induction hypothesis.
This concludes the proof of (108).

We then prove by induction over τ ′, for NSID(jNS) � τ ′ � τ we have:(
f ∧ σin

τ (sessionID
N ) = nj

)
→ ¬στ ′(syncID

U ) (109)

Let ai′ be such that τ ′ = _,ai′.
• The case ai′ = NSID(jNS) is trivial since we then have στ ′(syncID

U ) = false.
• If ai′ 6= PUID(_, 2), then since NS(jNS) 6≺τ NS(_) we know that ai′ 6= NS(_). Hence σup

τ ′ (syncID
U ) = ⊥, which implies

στ ′(syncID
U ) ≡ σin

τ ′(syncID
U ). By induction hypothesis we know that:(

f ∧ σin
τ (sessionID

N ) = nj
)
→ ¬σin

τ ′(syncID
U )

which concludes this case.
• If ai′ = PUID(j′, 2). Let τ ′′′ = _, PUID(j′, 1) <τ . By validity of τ we know that τNS ≺τ τ ′′′. Using (Equ2) we know that:

acceptID
τ ′ ↔

∨
τ′′=_,PN(j′′,1)
τ′′′≺τ τ′′≺τ τ′

supi-tr n:τ ′′
u:τ ′′′,τ ′

And using (StrEqu4): (
¬σin

τ ′(syncID
U ) ∧ supi-tr n:τ ′′

u:τ ′′′,τ ′

)
→ στ ′(SQNID

U )− στ ′(SQNID
N ) = 0

Using (108), we know that:(
f ∧ σin

τ (sessionID
N ) = nj

)
→
(
στNS

(SQNID
N ) = σin

τ ′′′(SQNID
N ) ∧ στNS

(SQNID
N ) = στ ′(SQNID

N )
)

Therefore: (
f ∧ σin

τ (sessionID
N ) = nj

)
→
(
σin
τ ′′′(SQNID

N ) = στ ′(SQNID
N )
)

Using (B5) we know that σin
τ ′′′(SQNID

N ) ≤ σin
τ ′′′(SQNID

U ), and by (B1) we know that στ ′′′(SQNID
N ) ≤ στ ′(SQNID

U ). Moreover
στ ′′′(SQNID

N ) = suc(σin
τ ′′′(SQNID

N )) < σin
τ ′′′(SQNID

N ). We summarize all of this graphically below:

τ :
τNS

NSID(jNS)

τ ′′′

PUID(j′, 1)

τ ′′

PN(j′′, 1)

τ ′

PUID(j′, 2)

σin
τ ′′′(SQNID

N )

σin
τ ′′′(SQNID

U ) στ ′′′(SQNID
U )

στ ′(SQNID
N )

στ ′(SQNID
U )

=

=

≤

< ≤

Putting everything together we get that:(
f ∧ ¬σin

τ ′(syncID
U ) ∧ supi-tr n:τ ′′

u:τ ′′′,τ ′

)
→ (στ ′(SQNID

U ) < στ ′(SQNID
U )) → false

We deduce that: (
f ∧ ¬σin

τ ′(syncID
U ) ∧ acceptID

τ ′
)
→

∨
τ′′=_,PN(j′′,1)

PUID(j′,1)≺τ τ′′≺τ τ′

(
f ∧ ¬σin

τ ′(syncID
U ) ∧ supi-tr n:τ ′′

u:_,τ ′

)
→ false

Moreover, using the induction hypothesis we know that:(
f ∧ σin

τ (sessionID
N ) = nj

)
→ ¬σin

τ ′(syncID
U )



Therefore: (
f ∧ σin

τ (sessionID
N ) = nj

)
→ ¬acceptτ ′ → ¬στ ′(syncID

U )

This concludes the proof by induction of (109). Using (109) we get that:

[f]sync-diffID
τ = [f ∧ σin

τ (syncID
U )]sync-diffID

τ0

We know that f→ acceptντ2 (ID)
τ . Moreover, ντ2(ID) 6= ντ (ID), hence using (A5) we know that f→ ¬acceptντ (ID)

τ . Hence:

[f]sync-diffντ (ID)
τ = [f ∧ σin

τ (syncντ (ID)
U )]sync-diffντ (ID)

τ0

Using the derivation in (107) and the fact that:(
σin
τ (syncID

U ), σin
τ (syncντ (ID)

U )
)
∈ revealτ0

(
sync-diffID

τ , sync-diffντ (ID)
τ0

)
∈ revealτ0

We can build the derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 , f, σin

τ (syncID
U ), sync-diffID

τ0

∼ φin
τ , r-revealτ0 , f, σin

τ (syncντ (ID)
U ), sync-diffντ (ID)

τ0

Simp

φin
τ , l-revealτ0 , [f]sync-diffID

τ ∼ φin
τ , r-revealτ0 , [f]sync-diffντ (ID)

τ

Simp

(110)

b) Case 2: Assume that τi = _, TUID(ji, 1) 6≺τ NSID(_). We introduce the term θPN (resp. θTN) which states that no SUPI
(resp. GUTI) network session has been initiated which ID between τ1 and τ :

θPN ≡
∧

τ′=_,PN(_,1)
τ1≺τ τ′

¬inc-acceptID
τ ′ θTN ≡

∧
τ′=TN(_,0)
τ1≺τ τ′

¬acceptID
τ ′

It is easy to show that: (
f ∧ σin

τ (sessionID
N ) = nj

)
↔ (f ∧ θPN ∧ θTN)

We are now going to show that for every τ1 � τ ′, P (τ ′) holds where P (τ ′) is the term:

P (τ ′) ≡ (f ∧ θPN) →

 στ ′(GUTIID
N ) = UnSet

∧ στ ′(sessionID
N ) = nj ∧

∧
τ1≺τ τ′′�τ′
τ′′=TN(_,0)

¬acceptID
τ ′′

 (111)

Since f→ acceptτ1 , we know that f→ στ1(GUTIID
N ) = UnSet. This shows that P (sucτ (τ1)) holds. Let τ1 � τ ′0, and assume

P (τ ′0) holds by induction. Let τ ′ = sucτ (τ ′0). We have four cases:
• If τ ′ 6∈ {TN(_, 0), TN(_, 1), PN(_, 1)} then P (τ ′) ≡ P (τ ′0), which concludes this case.
• If τ ′ = TN(_, 0), then using the induction hypothesis P (τ ′0) we know that f ∧ θPN → σin

τ ′(GUTIID
N ) = UnSet. Therefore

f ∧ θPN → ¬acceptID
τ ′ . We know that f ∧ θPN → σin

τ ′(sessionID
N ) = nj . We conclude by observing that:(

¬acceptID
τ ′ ∧ σin

τ ′(GUTIID
N ) = UnSet ∧ σin

τ ′(sessionID
N ) = nj

)
→
(
στ ′(GUTIID

N ) = UnSet ∧ στ ′(sessionID
N ) = nj

)
• If τ ′ = TN(j′, 1). Since τ ′ ≺ τ , we know that j 6= j′. Therefore σin

τ ′(sessionID
N ) = nj → σin

τ ′(sessionID
N ) 6= nj

′
. We

deduce that f ∧ θPN → ¬acceptID
τ ′ . This concludes this case.

• If τ ′ = _, PN(_, 1). We know that:
f ∧ θPN → ¬inc-acceptID

τ ′

We then directly conclude using the facts that:

¬inc-acceptID
τ ′ → στ ′(sessionID

N ) = σin
τ ′(sessionID

N ) ¬inc-acceptID
τ ′ → στ ′(GUTIID

N ) = σin
τ ′(GUTIID

N )

By applying (111) at instant τ0, we get that:(
f ∧ σin

τ (sessionID
N ) = nj

)
↔ (f ∧ θPN ∧ θTN) ↔ (f ∧ θPN) (112)



c) Part 1: Let τ ′ = _, PN(j′, 1), with τ1 ≺τ τ ′. Let τ ′0 = PN(j′, 0). Using (Equ3) we know that:

acceptID
τ ′ ↔

∨
τa=_,PUID(ja,1)

τ′0≺τ τa≺τ τ
′

 g(φin
τa) = nj

′
∧ π1(g(φin

τ ′)) = {〈ID , σin
τa(SQNID

U )〉}njae
pkN

∧ π2(g(φin
τ ′)) = Mac1kID

m
(〈{〈ID , σin

τa(SQNID
U )〉}njae

pkN
, g(φin

τa)〉)


︸ ︷︷ ︸

λτ′τa

(113)

We define:

τNS =

{
NSID(jNS) if there exists jNS s.t. NSID(jNS) <τ τ and NSID(jNS) 6≺τ NSID(_).
ε otherwise

Let τa = _, PUID(ja, 1) such that τ ′0 ≺τ τa ≺τ τ ′. Since τi = _, TUID(ji, 1) 6≺τ NSID(_), we have only three interleavings
possible: τ1 ≺τ τa, τ1 ≺τ τa or τNS ≺τ τa ≺τ τ2. First, we are going to show that in the first two cases we have:

f ∧ λτ
′

τa → ¬inc-acceptID
τ ′

• If τa ≺τ τNS, we have the following interleaving:

τ :

PUID(ja, 1)

τa

NSID(_)

τNS

TUID(ji, 0)

τ2

TN(j, 0)

τ1

PN(j′, 1)

τ ′

TN(j, 1)

τ

By definition of inc-acceptID
τ ′ , and using the fact that λτ

′

τa → acceptID
τ ′ we know that:(

λτ
′

τa ∧ inc-acceptID
τ ′

)
→ σin

τ ′(SQNID
N ) ≤ σin

τa(SQNID
U )

To conclude this case, we only need to show that:(
λτ
′

τa ∧ inc-acceptID
τ ′

)
→ σin

τa(SQNID
U ) < σin

τ ′(SQNID
N ) (114)

From which we obtain directly a contradiction, implies that:

f ∧ λτ
′

τa → ¬inc-acceptID
τ ′ when τa ≺τ τNS (115)

The proof of (114) is straightforward using (B1) and (B6), we just give the proof graphically below:

τ :
τa

PUID(ja, 1)

τNS

NSID(jNS)

τ ′

PN(j′, 1)

σin
τa(SQNID

U ) σin
τNS

(SQNID
U )

σin
τ ′(SQNID

N )

≤
<

• If τNS ≺τ τa ≺τ τ2, we have the following interleaving:

τ :

NSID(_)
or ε

τNS

PUID(ja, 1)

τa

TUID(ji, 0)

τ2

TN(j, 0)

τ1

PN(j′, 1)

τ ′

TN(j, 1)

τ

We know that λτ
′

τa → στa(GUTIID
U ) = UnSet, and that f → σin

τ2(syncID
U ). By (B3), we get f → σin

τ2(GUTIID
U ) 6= UnSet.

This means that GUTIID
U is unset at τa, but set at τ2. Therefore there was a successful run of the protocol (SUPI or GUTI)

between τa and τ2. More precisely, using Proposition 23 we have:

f ∧ λτ
′

τa →
(
στa(GUTIID

U ) = UnSet ∧ σin
τ2(GUTIID

U ) 6= UnSet
)

→
∨

τ′′=_,FUID(j′′)
τa≺τ τ′′≺τ τ2

acceptID
τ ′′ (116)

Let τ ′′ = _, FUID(j′′) such that τa ≺τ τ ′′ ≺τ τ2. We then have two cases:



– Assume j′′ = ja. In order to have acceptID
τ ′′ , we need the SUPI or GUTI session j′′ to have been executed before τ ′′.

Intuitively, this cannot happen if j′′ = ja because the user session ja is interacting with the network session j′, and
τ ′′ ≺τ τ ′. Formally, using the fact that j′′ = ja we are going to show that:(

λτ
′

τa ∧ acceptID
τ ′′

)
→ false (117)

First, by (Equ1) we know that:

acceptID
τ ′′ →

∨
FN(jx) 6<τ′′NSID(_)

inj-authτ ′′(ID, jx)

→
∨

FN(jx) 6<τ′′NSID(_)

(
σin
τ ′′(b-authjxN ) = ID ∧ σin

τ ′′(e-authID
U ) = njx

)
By (A8) we get:

→
∨

FN(jx) 6<τ′′NSID(_)

(
σin
τ ′′(b-authjxN ) = ID ∧ σin

τ ′′(b-authID
U ) = njx

)
(118)

We know that λτ
′

τa → σin
τa(b-authID

U ) = nj
′
. Moreover, using the validity of τ we know that b-authID

U is not updated
between τa and τ ′′, therefore λτ

′

τa → σin
τ ′′(b-authID

U ) = nj
′
. Putting this together with (118), and using the fact that:(

σin
τ ′′(b-authID

U ) = njx ∧ σin
τ ′′(b-authID

U ) = nj
′
)
→ false if jx 6= j′

We get:

acceptID
τ ′′ ∧ λτ

′

τa → σin
τ ′′(b-authj

′

N ) = ID ∧ σin
τ ′′(b-authID

U ) = nj
′

Since τ ′′ ≺τ τ ′, we know that σin
τ ′′(b-authj

′

N ) = ⊥. This yields a contradiction:

→ σin
τ ′′(b-authj

′

N ) = ID ∧ σin
τ ′′(b-authj

′

N ) = ⊥
→ false

Which concludes the proof of (117).
– Assume j′′ 6= ja. Intuitively, we know that acceptID

τ ′′ implies that SQNID
U and SQNID

N have been incremented and
synchronized between τa and τ ′. Therefore we know that the test inc-acceptID

τ ′ fails. Formally, we show that:

acceptID
τ ′′ → στa(SQNID

U ) < σin
τ ′′(SQNID

N ) (119)

We give the outline of the proof. First, we apply (StrEqu1) to τ ′′. Then, we take τ ′′0 = _, FN(je) ≺ τ ′′. We let
τ ′′1 = _, PN(je, 1) or _, TN(je, 1) such that τ ′′1 ≺ τ ′′0 , and we do a case disjunction on τ ′′1 :
∗ If τ ′′1 = _, PN(je, 1), then we use (StrEqu4) on it, and we show that στa(SQNID

U ) < σin
τ ′′(SQNID

N ) by doing a case
disjunction on inc-acceptID

τ ′′1
.

∗ If τ ′′1 = _, TN(je, 1), then we use (StrEqu2) on it, and we show that στa(SQNID
U ) < σin

τ ′′(SQNID
N ) using (B4)

We omit the details.
Using (B1) we know that σin

τ ′′(SQNID
N ) ≤ σin

τ ′(SQNID
N ) and σin

τa(SQNID
U ) ≤ στa(SQNID

U ). Hence, we deduce from (119)
that:

acceptID
τ ′′ → σin

τa(SQNID
U ) < σin

τ ′(SQNID
N ) (120)

Moreover, by definition of inc-acceptID
τ ′ , and using the fact that λτ

′

τa → acceptID
τ ′ we know that:(

λτ
′

τa ∧ inc-acceptID
τ ′

)
→ σin

τ ′(SQNID
N ) ≤ σin

τa(SQNID
U ) (121)

Putting (120) and (121) together:(
λτ
′

τa ∧ inc-acceptID
τ ′ ∧ acceptID

τ ′′

)
→
(
σin
τ ′(SQNID

N ) ≤ σin
τa(SQNID

U ) ∧ σin
τa(SQNID

U ) < σin
τ ′(SQNID

N )
)
→ false

Hence: (
λτ
′

τa ∧ acceptID
τ ′′

)
→ ¬inc-acceptID

τ ′ (122)



From (116), (117) and (122) we deduce that:

f ∧ λτ
′

τa →
∨

τ′′=_,FUID(j′′)
τa≺τ τ′′≺τ τ2

f ∧ λτ
′

τa ∧ acceptID
τ ′′

→
∨

τ′′=_,FUID(j′′)
τa≺τ τ′′≺τ τ2

¬inc-acceptID
τ ′

Hence:

f ∧ λτ
′

τa → ¬inc-acceptID
τ ′ when τNS ≺τ τa ≺τ τ2 (123)

d) Part 2: Using (115) and (123), we know that we can focus on the (partial) SUPI sessions that started after τi, i.e. the
sessions with transcript of the from λτ

′

τa , where τa = _, PUID(ja, 1), τ ′ = _, PN(j′, 1) and τi ≺τ τa ≺τ τ ′. Formally, we have:

(f ∧ θPN) ↔
∧

τ′=_,PN(_,1)
τ1≺τ τ′

¬inc-acceptID
τ ′

↔
∧

τ′=_,PN(_,1)
τ1≺τ τ′

(
(f ∧ acceptID

τ ′)→ ¬inc-acceptID
τ ′
)

↔
∧

τ′=_,PN(j′,1)
τ′0=_,PN(j′,0)
τa=_,PUID(ja,1)

τ1≺τ τ′
τ′0≺τ τa≺τ τ

′

((
f ∧ λτ

′

τa

)
→ ¬inc-acceptID

τ ′

)
(By (113))

↔
∧

τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

((
f ∧ λτ

′

τa

)
→ ¬inc-acceptID

τ ′

)
(By (115) and (123))

We represent graphically the shape of the interleavings that we need to consider:

τ :

NSID(_)
or ε

τNS

TUID(ji, 0)

τ2

TN(j, 0)

τ1

TUID(ji, 1)

τi

PUID(ja, 1)

τa

PN(j′, 1)

τ ′

TN(j, 1)

τ

e) Part 3: We are now going to show that if at least one partial SUPI session that started after τi accepts (i.e. f ∧ λτ ′τa
holds), then we have σin

τ (sessionID
N ) 6= nj . First, from what we showed in Part 2, and using (112) we know that:

¬
(
f ∧ σin

τ (sessionID
N ) = nj

)
↔

∨
τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa ∧ inc-acceptID
τ ′

→
∨

τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa

In a first time, assume that for every τa = _, PUID(ja, 1) and τ ′ = _, PN(j′, 1) such that τi ≺τ τa ≺τ τ ′ we have:(
f ∧ λτ

′

τa ∧ ¬inc-acceptID
τ ′

)
→ σin

τ (sessionID
N ) 6= nj (124)

Then we know that: ∨
τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa → ¬
(
f ∧ σin

τ (sessionID
N ) = nj

)

Therefore:
¬
(
f ∧ σin

τ (sessionID
N ) = nj

)
↔

∨
τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa (125)



We now give the proof of (124). Let τa = _, PUID(ja, 1) and τ ′ = _, PN(j′, 1) such that τi ≺τ τa ≺τ τ ′. We know that:(
λτ
′

τa ∧ ¬inc-acceptID
τ ′

)
→ σin

τa(SQNID
U ) < σin

τ ′(SQNID
N )

And that:
f → σin

τ1(SQNID
N ) = σin

τi(SQNID
U )

Moreover by (B1) we know that σin
τi(SQNID

U ) ≤ σin
τa(SQNID

U ). We summarize this graphically:

τ :
τ2

TUID(ji, 0)

τ1

TN(j, 0)

τi

TUID(ji, 1)

τa

PUID(ja, 1)

τ ′

PN(j′, 1)

τ

TN(j, 1)

σin
τi(SQNID

U ) σin
τa(SQNID

U )

σin
τ1(SQNID

N ) σin
τ ′(SQNID

N )

=

≤
<

We deduce that: (
f ∧ λτ

′

τa ∧ ¬inc-acceptID
τ ′

)
→ σin

τ1(SQNID
N ) < σin

τ ′(SQNID
N )

Moreover:
σin
τ1(SQNID

N ) < σin
τ ′(SQNID

N ) →
( ∨

τx=PN(jx,1)

τ1≺τ τx≺τ τ′

inc-acceptID
τx

)
∨
( ∨

τx=TN(jx,1)

τ1≺τ τx≺τ τ′

inc-acceptID
τx

)

For every τx = PN(jx, 1) such that τ1 ≺τ τx ≺τ τ ′ we have jx 6= j. Therefore:∨
τx=PN(jx,1)

τ1≺τ τx≺τ τ′

inc-acceptID
τx
→

∨
τx=PN(jx,1)

τ1≺τ τx≺τ τ′

στx(sessionID
N ) = njx

→ σin
τ (sessionID

N ) 6= nj

And: ∨
τx=TN(jx,1)

τ1≺τ τx≺τ τ′

inc-acceptID
τx
→

∨
τx=TN(jx,1)

τ1≺τ τx≺τ τ′

σin
τx(sessionID

N ) = njx

→ σin
τ (sessionID

N ) 6= nj

This concludes the proof of (124).
The proofs in Part 1 to 3 only used the fact that τ is a valid symbolic trace. We never used the fact that τ is a basic trace.

Therefore, carrying out the same proof, we can show that:

¬
(

f ∧ σin
τ (sessionντ (ID)

N ) = nj
)
↔

∨
τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa (126)

f) Part 4: Let τa = _, PUID(ja, 1) and τ ′ = _, PN(j′, 1) be such that τi ≺τ τa ≺τ τ ′. Observing that:(
nj
′
,nj

′
)
∈ revealτ0

(
{〈ID , σin

τa(SQNID
U )〉}njae

pkN
, {〈ντ (ID) , σin

τa(SQN
ντ (ID)
U )〉}njae

pkN

)
∈ revealτ0(

Mac1kID
m

(〈{〈ID , σin
τa(SQNID

U )〉}njae
pkN

, g(φin
τa)〉),Mac1

kντ (ID)
m

(〈{〈ντ (ID) , σin
τa(SQN

ντ (ID)
U )〉}njae

pkN
, g(φin

τa)〉)
)
∈ revealτ0

It is straightforward to show that we have a derivation of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , λτ

′

τa ∼ φin
τ , r-revealτ0 , λ

τ ′

τa

Simp



Using (125) and (126), and combining the derivation above with the derivation in (107), we can build the following derivation:

φin
τ , l-revealτ0 ,∼ φin

τ , r-revealτ0 ,

φin
τ , l-revealτ0 ,¬

∨ τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ ′τa

 ∼ φin
τ , r-revealτ0 ,¬

∨ τa=_,PUID(ja,1)

τ′=_,PN(j′,1)
τi≺τ τa≺τ τ′

f ∧ λτ
′

τa

 (Dup,FA)∗

φin
τ , l-revealτ0 , f ∧ σin

τ (sessionID
N ) = nj ∼ φin

τ , r-revealτ0 , f ∧ σin
τ (sessionντ (ID)

N ) = nj
R

(127)

We know that:

[f]sync-diffID
τ =

if f ∧ σin
τ (syncID

U ) ∧ σin
τ (sessionID

N ) = nj

then suc(sync-diffID
τ0

)

else sync-diffID
τ0

Similarly:

[f]sync-diffντ (ID)
τ =

if f ∧ σin
τ (syncντ (ID)

U ) ∧ σin
τ (sessionντ (ID)

N ) = nj

then suc(sync-diffντ (ID)
τ0

)

else sync-diffντ (ID)
τ0

Hence, using (127) and the fact that:(
σin
τ (syncID

U ), σin
τ (syncντ (ID)

U

)
∈ revealτ0

(
sync-diffID

τ0
, sync-diffντ (ID)

τ0

)
∈ revealτ0

We have a derivation of:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , [f]sync-diffID

τ ∼ φin
τ , r-revealτ0 , [f]sync-diffντ (ID)

τ

Simp (128)

g) Part 5: Using (J10), we know that:

acceptID
τ ↔

∨
τi=_,TUID(ji,1)

τ1=_,TN(j,0)
τ2=_,TUID(ji,0)
τ2≺τ τ1≺τ τi

(
full-trn:τ1,τ

u:τ2,τi

)

We split between the cases τi ≺τ τNS and τi 6≺τ τNS:

↔
∨

τi=_,TUID(ji,1)

τ1=_,TN(j,0)
τ2=_,TUID(ji,0)

τ2≺τ τ1<ττi≺τ τNS

(
full-trn:τ1,τ

u:τ2,τi

)
∨

∨
τi=_,TUID(ji,1)

τ1=_,TN(j,0)
τ2=_,TUID(ji,0)

τNS≺τ τ2<ττ1≺τ τi

(
full-trn:τ1,τ

u:τ2,τi

)

If τi ≺τ τNS then ντ2(ID) = ντi(ID) 6= ντ (ID), and if τi 6≺τ τNS then ντ2(ID) = ντi(ID) = ντ (ID). It follows, using (J10) on
τ , that: ∨

ID∈copies-id(ID)
ID 6=ντ (ID)

acceptID
τ ↔

∨
τi=_,TUID(ji,1)

τ1=_,TN(j,0)
τ2=_,TUID(ji,0)

τ2≺τ τ1<ττi≺τ τNS

(
full-trn:τ1,τ

u:τ2,τi

)
acceptντ (ID)

τ ↔
∨

τi=_,TUντ (ID)(ji,1)

τ1=_,TN(j,0)
τ2=_,TUντ (ID)(ji,0)

τNS<ττ2≺τ τ1≺τ τi

(
full-trn:τ1,τ

u:τ2,τi

)

Hence, using (110) if τi ≺τ NSID, and (128) if τi 6≺τ NSID, we can build the following derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0

φin
τ , l-revealτ0 , sync-diffID

τ ∼ φin
τ , r-revealτ0 , sync-diffντ (ID)

τ

Simp

h) Part 6: Observe that:

net-e-authτ (ID, j) ↔ acceptID
τ net-e-authτ (ID, j) ↔

∨
ID∈copies-id(ID)

acceptID
τ

We therefore easily obtain the derivation:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,net-e-authτ (ID, j) ∼ φin

τ , r-revealτ0 ,net-e-authτ (ID, j)



Finally, using (J10), we know that: ∨
ID∈Sid

acceptID
τ ↔

∨
ID∈Sbid

acceptID
τ ↔ net-e-authID

τ

Moreover: ∨
ID∈Sid

acceptID
τ ↔

∨
ID∈Sbid

 ∨
ID∈copies-id(ID)

acceptID
τ

 ↔ ∨
ID∈Sbid

net-e-authτ (ID, j)

It follows that:

φin
τ , l-revealτ0 ∼ φin

τ , r-revealτ0
φin
τ , l-revealτ0 ,

∨
ID∈Sbid

net-e-authID
τ ∼ φin

τ , r-revealτ0 ,
∨

ID∈Sbid
net-e-authτ (ID, j)

Simp

φin
τ , l-revealτ0 ,

∨
ID∈Sid

acceptID
τ ∼ φin

τ , r-revealτ0 ,
∨

ID∈Sid
acceptID

τ

R

φin
τ , l-revealτ0 , tτ ∼ φin

τ , r-revealτ0 , tτ
FA

Which concludes this proof.


	Introduction
	The 5g-aka Protocol
	Description of the Protocol

	Unlinkability Attacks Against 5g-aka
	imsi-Catcher Attack
	The Failure Message Attack
	The Encrypted imsi Replay Attack
	Attack Against The priv-aka Protocol
	Sequence Numbers and Unlinkability

	The aka+ Protocol
	Efficiency and Design Constraints
	Key Ideas
	Architecture and States
	The supi, guti and assign-guti Sub-Protocols

	Unlinkability
	sigma-Unlinkability
	A Subtle Attack

	Modeling in The Bana-Comon Logic
	Syntax and Semantics
	Modeling of the aka+ Protocol States and Messages
	Axioms

	Security Proofs
	Mutual Authentication of the aka+ Protocol
	Sigma-Unlinkability of the aka+ Protocol

	Conclusion
	References
	Appendix I: Axioms
	CCA1 Axioms
	prf-mac Axioms
	euf-mac Axioms
	cr Axioms
	Cryptographic Axioms
	Structural and Implementation Axioms
	p-euf-macs Axioms
	p-euf-mac Axioms
	Additional Axioms

	Appendix II: Protocol
	Symbolic Protocol
	The aka+ Protocol
	Invariants and Necessary Acceptance Conditions
	Proof of Lemma 6
	Authentication of the User by the Network
	Authentication of the Network by the User
	Proof of Lemma 3
	Injective Authentication of the Network by the User

	Appendix III: Acceptance Characterizations
	First Characterizations
	Proof of Lemma 11
	gutiuid Concealment
	Stronger Characterizations
	Proof of Lemma 14

	Appendix IV: Unlinkability
	Resistance against de-synchronization attacks
	Strengthened induction hypothesis

	Appendix V: Proof of Proposition 30
	Appendix VI: Proof of Lemma 15
	Case ai= nsid(j)
	Case ai= pn(j,0)
	Case ai= puid(j,1)
	Case ai= pn(j,1)
	Case ai= puid(j,2)
	Case ai= fn(j)
	Case ai= fuid(j)
	Case ai= tuid(j,0)
	Case ai= tn(j,0)
	Case ai= tuid(j,1)
	Case ai= tn(j,1)


