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We are interested here in computing the minimum and maximum probabilities to reach a subset of
states of a given MDP, and in describing policies achieving these optima.

In the following, we consider an MDP M = (S, {A;}ses, p) with no reward functions. We recall that
a history o in M is an infinite sequence (so, ag, $1, a1, S2,...), such that for all i > 0, s, € S, a; € A,
and p(si+1 | Si,a;) > 0. Given an initial state s € S, we denote Hist(s) the set of histories starting in
5. Then a policy m € IT#% (history-dependent and randomized) permits to define discrete-time Markov
chain M™ with set of states being the finite prefixes of histories in Hist(s).

Given a target subset T of S, we denote as Hist(s,T) the set of histories, starting from state s, and
reaching at some moment a state of T', i.e., such that there exists n with s, € T. As the reachability
property only depends on a finite prefix of the history, Hist(s,T) is a measurable subset of Hist(s), hence,
the DTMC MT™ defines its probability, denoted Pr™ (s, T'). In the following, we study the two quantities

Pmin(s, T) = inf Pr"(s,T) and Pmax($,T) = sup Pr™(s,T).
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We will suppose in the following that states of T' are absorbing, i.e., for all t € T, A; = {a:} with

p(t]t, o) =1.
You are invited to use the example depicted below throughout the rest, with s = sg and T = {s2}.
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Exercise 1 (Qualitative analysis). We start by considering the problem of determining states s for which
Pmin(8,T) O Pmax(s,T) is zero or one: we denote these four possible sets of states as SPn=0 Gmin=1
S%nax:O and S%lale.

1. Find an iterative algorithm to compute the four sets.
2. What is the complexity of your algorithms?

Exercise 2 (Stationary deterministic policies are enough). We consider known, thanks to the previous
exercise, the sets S=0 and S®n=1 and denote as S* the set S\ (SH"=0y Smin=1) We define (E) as



the equation of the variable x € R:
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1. Show that the vector (pmin(s,T))ses is a solution of (E).

2. Consider a stationary deterministic policy d*°. Find a simple equation (E’) having as unique solu-
tion the vector (Pl‘doo (8,T))ses?- (Hint: to prove uniqueness, you may search for the classification
of the states of the underlying DTMC with set of states S.)

3. Prove that (F) has then a unique solution and that pmin(s,7T’) is indeed a minimum computable by
min, cppsp Pr™(s,T) (since IT°P is a finite set). This shows the existence of an optimal strategy.

Exercise 3 (Computing pmin(s,7T) and an optimal policy). We will study the three principal methods
enabling the computation of pyin(s,T) and an optimal policy: value iteration, linear programming and
policy iteration.

1. Write a value iteration algorithm to estimate the probability pmin(s,T) and an associated almost
optimal policy. (Recall: wvalue iteration is based on the iteration of the operator F suggested in
equation (E) of the previous exercise, such that pmin(s,T) is its unique fized point.)

2. Show that the vector (pmin(s,T))ses is the unique solution of the following linear programming:

Vs € SrT“inzl T, =1
Maximize Z x4 subject to { Vs € Smin=0 5 =0
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3. Write a policy iteration algorithm to find the exact value of pmin(s,T) and an associated optimal
policy.

Exercise 4 (When stationary deterministic policies are not enough...). Find objectives which are more
complex than reachability such that the maximal probability for this objective is not anymore obtainable
with a stationary deterministic policy. In particular, find an example where histories are necessary, and
another where randomization is necessary.



