Automates d'arbre

TD 4 : Logic and Alternation

Charlie Jacomme
October 17, 2019

1 Logic

Exercise 1: Decidability of the reducibility theory

Definition 1 If $t \in \mathcal{T}(F, \mathcal{X})$ and $u \in \mathcal{T}(F)$, u encompasses t if there is a substitution σ such that $t \sigma$ is a subterm of u.
The theory of reducibility associated with a set of term $S \subset \mathcal{T}(F, \mathcal{X})$ is the set of firstorder formulas built on the unary predicates $E_{t}, t \in S$ and interpreted as the set of terms encompassing t.

1. Why is it called the reduciblity theory?
2. Given a set of linear terms, show that its reducibility theory is decidable.

Exercise 2: The power of Wsks

Produce formulae of WSkS for the following predicates :

- the set X has exactly two elements.
- the set X contains at least one string beginning with a 1 .
- $x \leq_{l e x} y$ where $\leq_{l e x}$ is the lexicographic order on $\{1, \ldots k\}^{*}$.
- given a formula of WSkS ϕ with one free first-order variable, produce a formula of WSkS expressing that there is an infinity of words on $\{1, \ldots, k\}^{*}$ satisfying ϕ.

Exercise 3: The limit of Wsks

Prove that the predicate $x=1 y$ is not definable in WSkS .

2 Alternation

Exercise 4: SUCH AWA

Definition 2 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X}, i.e., formulae generated by the grammar $\phi::=\perp|\top| \phi \vee \phi \mid \phi \wedge \phi$.

Definition 3 A AWA (Alternating Word Automata) is a tuple $\mathcal{A}=\left(Q, \Sigma, Q_{0}, Q_{f}, \delta\right)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_{0} \subset Q$ (initial states), $Q_{f} \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A}=$ $\left(Q, \Sigma, Q 0, Q_{f}, \delta\right)$ on a word w is a tree t labelled by Q such that :

- if $w=\varepsilon$, then $t=q_{0}$ with $q_{0} \in Q_{0}$.
- if $w=a . w^{\prime}$, then $t=q_{0}\left(t_{1}, \ldots, t_{n}\right) q_{0} \in Q_{0}$ and such that for all i, t_{i} is a run of w^{\prime} on $\left(Q, \Sigma, q_{i}, Q_{f}, \delta\right)$ and $\left\{q_{1}, \ldots, q_{n}\right\} \models \delta\left(q_{0}, a\right)$.

Definition 4 We say that a run is accepting if every leaf of the form q satisfies that $q \in Q_{f}$.

1. Let $\Sigma=\{0,1\}$ and $\mathcal{A}=\left(Q, \Sigma, q_{0}, Q_{f}, \delta\right)$ the AWA such that $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{1}^{\prime}, q_{2}^{\prime}\right\}$, $Q_{f}=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ and :
$\delta=\left\{\quad q_{0} 0 \longrightarrow\left(q_{0} \wedge q_{1}\right) \vee q_{1}^{\prime} \quad q_{0} 1 \longrightarrow q_{0}\right.$

$$
q_{1} 0 \longrightarrow q_{2} \quad q_{1} 1 \longrightarrow \top
$$

$$
q_{2} 0 \longrightarrow q_{3} \quad q_{2} 1 \longrightarrow q_{3}
$$

$$
q_{3} 0 \longrightarrow q_{4} \quad q_{3} 1 \longrightarrow q_{4}
$$

$$
q_{4} 0 \longrightarrow \top \quad q_{4} 1 \longrightarrow \top
$$

$$
q_{1}^{\prime} 0 \longrightarrow q_{1}^{\prime} \quad q_{1}^{\prime} 1 \longrightarrow q_{2}^{\prime}
$$

$$
\left.q_{2}^{\prime} 0 \longrightarrow q_{2}^{\prime} \quad q_{2}^{\prime} 1 \longrightarrow q_{1}^{\prime}\right\}
$$

Give an example of an accepting computation of \mathcal{A} on $w=00101$ and an example of a non accepting computation of \mathcal{A} on w.
2. Prove that for all AWA, we can compute in exponential time a non-deterministic automaton which accepts the same language.
3. Show how to reduce the emptiness problem for an AWA on a one letter alphabet $\{a\}$ with formalas that are in positive disjunctive normal form to the emptiness problem of a tree automaton .
4. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem of an AWA on a one letter alphabet $\{a\}$. Conclude on the complexity of the emptiness problem for an AWA on a one letter alphabet.

