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Abstract

These lecture notes present five Markovian models: discrete time Markov chains (DTMC), conti-
nous time Markov chains (CTMC), Markov decision processes (MDP), stochastic games (SG) and
probabilistic automata (PA). It is addressed for master students and tries as most as possible to be
self-contained. However the basics of discrete probability (and additionally the basics of measure
and integration for the study of CTMC) are required. Recommended books for french speaking
students are [FOA 98, FOA 02]. There are a lot of good books for english speaking students.
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Chapter 1

Discrete Time Markov Chains

1.1 Discrete event systems
Most of the probabilistic systems we study in this course are (stochastic) Discrete Event Systems
(DES), a particular case of point processes (see [BRE 98] for more details). An execution of a DES
is specified by an (a priori infinite) sequence of events e1, e2, . . . occurring at successive instants.
Only events can change the state of the system.

Formally, the stochastic behaviour of a DES is determined by two families of random variables:

• S0, . . . , Sn, . . . belonging to the (discrete) state space of the system, denoted S. S0 represents
the initial state of the system and Sn (n > 0) the current state after the occurrence of the
nth event. The occurrence of an event does not necessarily modify the state of the system,
hence Sn+1 may be equal to Sn.

• T0, . . . , Tn, . . . belonging to R+. T0 represents the time interval before the first event and Tn
(n > 0) represents the time interval between the nth and the (n+ 1)th event. Observe that
this interval may be null (e.g. a sequence of instructions considered as instantaneous w.r.t.
database transactions involving input/output operations).

When the distribution of S0 is concentrated in a state s, one says that the DES starts in s (i.e.
Pr(S0 = s) = 1).

A priori, there is no restriction about these families of random variables. However, most of the
stochastic processes that we study cannot execute an infinite number of actions in a finite time
(which is called a Zeno behaviour). Otherwise stated:

∞∑
n=0

Tn =∞ almost surely (1.1)

When this property holds the state of the system can be defined for all instants. Let N(τ),
the random variable defined by:

N(τ)
def
= inf{n |

n∑
k=0

Tk > τ}

Using equation (1.1), N(τ) is defined almost everywhere (i.e. for almost every sample). As can
be observed in figure 1.1, N(τ) presents jumps whose range is greater than 1. State X(τ) of the
system at time τ , is then SN(τ). X(τ) is not equivalent to the stochastic process, but it allows,
in most of the cases, to perform the standard analyses. Figure 1.1 presents a possible sample of
the process and illustrates the previously defined random variables. In this sample, the process is
initially in state s4 and it stays in it until time τ0 when its state becomes s6. At time τ0 + τ1, the
system successively visits in zero time, states s3 and s12 before reaching state s7 where it stays

4
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Figure 1.1: A sample of a stochastic process

some non null time interval. The observations {X(τ)} do not capture the vanishing states s3 and
s12 of this sample.

Performance evaluation of a DES is related to two kinds of analysis:

• The study of the transient behaviour, i.e. the computation of measures that depend on
time elapsed since the system starts. Such a study is appropriate for systems presenting
different stages and terminating systems. The two main application areas are dependability
and safety analysis.

• The steady-state behaviour of the system. For numerous applications, the modeller is inter-
ested by the behaviour of the system after the intermediate stages, once it is stabilized.

Of course this requires that such a steady-state behaviour exists. Let us denote π(τ) the
distribution of X(τ). Then the following equation expresses this requirement:

lim
τ→∞

π(τ) = π∞ (1.2)

where π∞ must also be a distribution, called the steady-state distribution.
Transient and steady-state distributions allow to compute performance indices. For instance,

the steady-state probability that a server is available, the probability that at time τ , a connexion
is established and the mean number of clients for a service are such indices.

In order to reason in a generic way about DES, it is useful to specify functions whose domain
is the set of states and whose range is R. Then a function f can be viewed as a performance
index and given some distribution π, the expression

∑
s∈S π(s) · f(s) represents the measure of

this index.
When the range of the index is {0, 1}, it can be viewed as an atomic proposition satisfied

by a state when the function is evaluated to 1. In the sequel, one denotes P, the set of atomic
propositions and s � ϕ, with s a state and ϕ a proposition, the satisfaction of ϕ by s. With
this notation, given some distribution π, the expression

∑
s�ϕ π(s) represents the measure of this

index.
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1.2 Renewal processes with arithmetic distribution [FEL 68]

1.2.1 The renewal theorem
The renewal process is a very simple case of DES: it has a single state and the time intervals
between events are integers obtained by sampling i.i.d. random variables. Renewal instants are
the instants corresponding to the occurrence of events.

In order to present renewal processes, let us discuss a simple example. Assume that a bulb
is used by some lamp and that the bulb seller provides some probabilistic information about the
quality of the bulb:

fn, the probability that the bulb duration is n days
For instance f2 = 0.4, f3 = 0.6 and fn = 0 for n /∈ {2, 3}. The user wants to infer:

un, the probability that on day n the bulb must be changed
Continuing the example, u0 = 1 since the bulb is bought on day 0, u1 = 0, u2 = f2 = 0.4,

u3 = f3 = 0.6. In order to determine u4, one observes that the bulb must have been changed on
the second day, so that u4 = u2f2 = 0.16. Similarly u5 = u3f2 + u2f3 = 0.48.

Generalizing the reasoning about the first change (if any) before day n one obtains the following
“convolution” formula:

un = u0fn + · · ·+ un−1f1 when n > 0 (1.3)

Let us examine for the previous example different values of un when n increases:

u10 = 0.3696, u20 = 0.38867558, u30 = 0.38423714, u40 = 0.38463453, u50 = 0.38461546

Clearly (in this example) un seems to be a convergent sequence. So one is interested about the
value of this limit. Let us develop an informal reasoning. We denote µ def

=
∑
n∈N nfn, the expected

value of the distribution {fn}. Since the average interval between two renewal instants is µ, the
average probability that n is a renewal instant is equal to µ−1. In our example µ−1 = 0.38461538.
The main theorem of this section establishes this result and precises the required hypotheses. In
the sequel, we note η def

= µ−1 with the convention that η = 0 when µ =∞.

Let us call ρk
def
=
∑
i>k fi the probability that the duration before a new renewal instant is

strictly greater than k. Observe that:

µ =
∑
i∈N

ifi =
∑
i∈N

∑
0≤k<i

fi =
∑
k∈N

∑
i>k

fi =
∑
k∈N

ρk

We now establish an equation fulfilled by the un’s and the ρn’s. Define the event Lnk (with
k ≤ n) as:

The last renewal instant in [0, n] is k.
In order for Lnk to be realized, k must be a renewal instant and the next renewal instant must

be strictly greater than n. Using conditional probabilities, the probability of this event is exactly
ukρn−k. Since (given n) exactly one such event must occur, one obtains:

ρ0un + ρ1un−1 + · · ·+ ρnu0 = 1 (1.4)

We are now searching about a (necessary and) sufficient condition for the existence of the limit.
The next lemma establishes such a condition.

Lemma 1.1 Let {un} be any sequence that fulfills (1.4) and assume that lim supn→∞ un ≤ η.
Then limn→∞ un exists and is equal to η.

Proof
Which situations can falsify the hypothesis of the previous lemma? Let us choose a very simple

distribution f2 = 1 and fi = 0 for i 6= 2. Then µ = 2 implying η = 1
2 . However for all n, u2n = 1

6



and u2n+1 = 0. In order to characterize such pathologic behaviours, we introduce the periodicity
of a distribution.

Definition 1.2 The periodicity of a distribution {fn} is defined by: gcd(n | fn > 0). A distribu-
tion is aperiodic if its periodicity is 1.

We are going to prove that aperiodicity is the single requirement in order to get the existence
of the limit. To do so, we need the following characterization of aperiodicity.

Lemma 1.3 Let a1, . . . , ak be natural integers whose gcd is 1. Then there exists n0 such that:
∀n ≥ n0 ∃α1, . . . , αk ∈ N n = a1α1 + . . . akαk.

Proof
We also need this standard “diagonalization” lemma.

Lemma 1.4 Let (xn,m)n,m∈N be a bounded set of reals. Then there exists an infinite sequence of
indices m1 < m2 < · · · such that for all n ∈ N the subsequence (xn,mk)k∈N is convergent.

Proof
The next lemma is the key lemma and this is where aperiodicity is required.

Lemma 1.5 Let f be an aperiodic distribution and (wn)n∈N such that for all n, wn ≤ w0 and:

wn =

∞∑
k=1

fkwn+k (1.5)

Then for all n, wn = w0.

Proof
We are now in position to establish the renewal theorem.

Theorem 1.6 Let f be an aperiodic distribution with a (non necessarily finite) mean µ.
Then limn→∞ un = µ−1.

Proof

1.2.2 Generalizations
We develop here several generalizations of the previous theorem.

First we show that the case of a periodic distribution can be straightforwardly reduced to the
previous case. Indeed assume that distribution f has periodicity p. Then considering instant np
as instant n, one recovers an aperiodic distribution. Formalizing this observation leads to a new
version of the renewal theorem.

Theorem 1.7 Let f be a distribution of period p with (non necessarily finite) mean µ.
Then limn→∞ unp = pµ−1 and for all n such that n mod p 6= 0, un = 0.

Let us consider that
∑
n∈N fn ≤ 1 with the interpretation that 1−

∑
n∈N fn is the probability

that there will be no next renewal instant. In our example, this could be the case that the bulb is
perfect. In order to analyze this renewal process, it is useful to introduce some generative series:

F (s) =
∑
n∈N

fns
n U(s) =

∑
n∈N

uns
n for s ∈ [0, 1]

When s < 1, Multiplying (1.3) by sn and summing up one gets U(s)−1 = U(s)F (s) or equivalently
U(s) = 1

1−F (s) . Observe that U(1), the mean number of renewal instants, can be either finite or
infinite. The next proposition characterizes this situation.

Proposition 1.8 The mean number of renewal instants,
∑
n∈N un, is finite iff

∑
n∈N fn < 1.

In this case,
∑
n∈N un = 1

1−
∑
n∈N fn

.
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Proof
As an immediate consequence, when

∑
n∈N fn < 1, one has limn→∞ un = 0.

Let us continue our example. Assume that there is already a bulb with the lamp. This life
duration of this specific bulb is not assumed to have the same distribution as the next ones and
can be perfect. We denote {bn} this distribution and B(s) its generative series. We say that this
is a delayed process and we define vn as the probability that n is a renewal instant of this process
(V (s) is its generative series).

Reasoning on the first renewal instant as before, one obtains the following equation:

vn = bnu0 + bn−1u1 + · · ·+ b0un

which can be rewritten as:
V (s) = B(s)U(s) =

B(s)

1− F (s)

The next theorem expresses the fact that only B(1), the probability that there is another
renewal instant after 0, has an impact on the result obtained for the original process.

Theorem 1.9

• If limn→∞ un = ω then limn→∞ vn = B(1)ω

• If
∑
n→∞ un = U(1) is finite then

∑
n→∞ vn = B(1)U(1)

Proof
We let the reader adapt the previous theorem for the case of a delayed periodic process.
We introduce the last generalization with our example. Assume that there is a non null

probability f0 < 1 that a new bulb is initially faulty. In this case, un can no more be considered
as the probability that on day n, the bulb is changed but instead as the mean number of changes
on day n.

However, there is a simple trick that allows to extend the previous theory. Suppose that n is a
renewal instant, then the number of renewals at instant n follows a geometric law with parameter
1− f0. Consider now a modified renewal process with f ′0 = 0 and f ′i = fi

1−f0 . Let us denote u
′
n the

probability of a renewal instant at time n for this process. Then it is immediate that un =
u′n

1−f0 .

1.3 Discrete time Markov chains [KSK 76]

1.3.1 Presentation
A Discrete Time Markov Chain (DTMC) is a DES with the following features:

• The time interval between events Tn for n ≥ 1 is the constant 1.

• The selection of the state that follows the current state only depends on that state and the
transition probabilities remain constant1 along the run:

Pr(Sn+1 = sj | S0 = si0 , ..., Sn = si) = Pr(Sn+1 = sj | Sn = si)
def
= pij

def
= P[i, j]

We indifferently use the two notations for transition probabilities. Depending on the context, we
will consider that a DTMC has an initial distribution π0 over its states. Observe that for all i,∑
j pij = 1 and for all j, pij ≥ 0. When a matrix fulfills these properties we say that it is a

transition or a stochastic matrix.
The transition matrix P of a DTMC can be represented by a (possibly countable) oriented

graph that we denote GP. It is defined as follows:

• The set of vertices is the set of the states of the DTMC;
1Sometimes these chains are called homogeneous DTMC.
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Figure 1.2: A random walk
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Figure 1.3: Simulating a renewal process

• There is an edge from si to sj labelled by pij if pij > 0.

Example 1.10 (A random walk) Figure 1.2 represents the graph of a random walk. The
walker starts in position 0 of the path and at the next instant will go forward to position 1 with
probability 1. In position n > 0 he goes forward to position n+ 1 with probability p or backward to
position n− 1 with probability 1− p.

Example 1.11 (A simulation of a renewal process) Figure 1.3 shows that a renewal process
can be seen as a particular case of DTMC. Being in state 0 corresponds to a renewal instant while
state n > 0 means that the next renewal instant will occur in n time units. The single probabilistic
state is state 0 where the selection of the time before the next renewal instant is done following the
distribution {fn}.

Example 1.12 (A finite DTMC) Figure 1.4 shows on the right the transition matrix and on the
left its associated graph. Here there are only three states. While the graph representation could only
appear to be a visual help, the structure of the graph provides useful information on the behaviour
of a finite DTMC.
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Figure 1.4: A finite DTMC

9



1.3.2 Transient and steady-state behaviour of a DTMC

Analyzing the transient behaviour of a DTMC does not raise any difficulty. The state changes
occur at times {1, 2, . . .}. Given an initial distribution π0 and a transition matrix P, one denotes
πn the distribution of Sn (i.e. the state of the chain at time n). It is given by:

πn = π0 ·Pn

which can be established by an elementary recurrence.
Analyzing the asympotical behaviour requires some additional notations.

• For n ∈ N, pni,j denotes the probability to reach in n steps state j from state i. These values
are the items of matrix Pn (which is also a transition matrix).

• For n ∈ N, fni,j denotes the probability to reach in n steps state j from state i for the first
time. One denotes fi,j =

∑
n∈N f

n
i,j the probability to reach j from i and µi =

∑
n∈N nf

n
i,i

the mean return time in i (only relevant if fi,i = 1).

A first equation can be derived by a case decomposition w.r.t. the first time the chain reaches j
from i:

pni,j =

n∑
m=0

fmi,jp
n−m
j,j

With every state i, one associates a renewal process where the renewal instants correspond to
the visits of i. One observes that {fni,i}n∈N is the distribution of the renewal time and that pni,i is
the probability that n is a renewal instant. Furthermore with every pair of states (i, j), one also
associates a delayed renewal process where again the renewal instants correspond to the visits of
i. The distribution of the delay is given by {fnj,i}n∈N.

One classifies states depending on their associated renewal process.

• A state i is transient if fi,i, the probability of a return is less than 1.

• A state is null recurrent if the probability of a return is 1 and µi, the mean time of a return
is infinite.

• A state is positive recurrent if the probability of a return is 1 and the mean time of a return
is finite.

In addition we say that a state is periodic (resp. aperiodic) if its associated renewal process is
periodic (aperiodic). Finally a state is ergodic if it is positive recurrent and aperiodic.

By a straightforward application of results on renewal processes, one gets:

• A state i is transient iff
∑
n∈N p

n
i,i <∞. In this case, for every j, one has limn→∞ pnj,i = 0.

• A state i is null recurrent iff
∑
n∈N p

n
i,i = ∞ and limn→∞ pni,i = 0. In this case, for every j,

one has limn→∞ pnj,i = 0.

• A state i is positive recurrent iff
∑
n∈N p

n
i,i = ∞ and µi < ∞. If in addition i is aperiodic,

for every j, one has limn→∞ pnj,i = fj,iµ
−1
i .

We want to globally reason about the chain. In order to do so we introduce some properties
of a DTMC.

Definition 1.13 Let C be a DTMC.

• S′, a subset of states of C, is closed if for all i ∈ S′, one has
∑
j∈S′ pi,j = 1.

• Let i be a state of C, its closure is defined by Cl(i) = {j | fi,j > 0}.

10



• C is irreducible if for all pairs of states i, j one has fi,j > 0 (or equivalently
∑
n∈N p

n
i,j > 0).

We let the reader prove that Cl(i) is closed. A closed subset may be studied in isolation since it
constitutes a DTMC. The importance of irreducibility is shown by the next theorems.

Theorem 1.14 All states of an irreducible chain are of the same kind.

Proof
So in the sequel, we say that an irreducible DTMC is transient (resp. null recurrent, positive

recurrent, aperiodic) if its states are transient (resp. null recurrent, positive recurrent, aperiodic).
Similarly the period of an irreducible DTMC is the common period of its states.

Theorem 1.15 Let i be a recurrent state. Then Cl(i) is irreducible and for all pair of states
(j, k) ∈ Cl(i), one has fj,k = 1.

Proof
Summarizing, a DTMC can be partitioned between the transient states say T and the irreducible

subchains C1, C2, . . . Observe that an infinite DTMC may have only transient states as in the chain
where the states are integers and pi,i+1 = 1. The periodicity is particularly relevant in case of
irreducible chains.

Theorem 1.16 Let C be an irreducible chain with periodicity p. Then S, the set of states, can be
partitioned as: S = S0 ] S1 ] . . . ] Sp−1 such that:

∀i ∈ Sk ∀j ∈ S pi,j > 0⇒ j ∈ S(k+1) mod p

Furthermore p is the greatest integer fulfilling this property.

Proof
We now establish the main theorem of DTMC.

Theorem 1.17 Let C be an irreducible DTMC whose states are aperiodic.

Existence. Assume that the states of C are positive recurrent.
Then the limits limn→∞ pnj,i exist and are equal to µ−1

i (so independent from j).
Furthermore they fulfill

∑
i∈S µ

−1
i = 1 and for all i, µ−1

i =
∑
j∈S µ

−1
j pj,i.

Unicity. Conversely, assume there exist {ui} such that:
For all i, ui ≥ 0,

∑
j∈S uj = 1 and ui =

∑
j∈S ujpj,i.

Then for all i, ui = µ−1
i (which implies that states are ergodic).

Proof
We are looking for a (more or less effective) characterization of recurrence for a state. Let S′

be a subset of states, P restricted to states of S′, denoted P′, represents the behaviour of the
chain along as it remains in S′. So P′n[i, j] is the probability that at time n, the chain is in state j
without ever leaving S′, starting from state i. Observe that

∑
j∈S′ P

′n[i, j] is the probability that
at time n, the chain has never left S′, starting from state i. One denotes this quantity by pinnS′ [i].

Proposition 1.18 For all i, limn→∞ pinnS′ [i] exists. Denoting pinS′ [i] this limit, then pinS′ is
the maximal solution of equation:

∀i x[i] =
∑
j∈S′

P[i, j]x[j] ∧ 0 ≤ x[i] ≤ 1 (1.6)

11



Proof
Using this proposition, we get a characterization of the recurrence in the infinite case (the finite

case is addressed by theorem 1.23).

Theorem 1.19 Let C be an irreducible Markov chain whose state space is N. Then 0 is recurrent
iff the maximal solution of the equation:

∀i > 0 x[i] =
∑
j>0

P[i, j]x[j] ∧ 0 ≤ x[i] ≤ 1 (1.7)

is the null vector. Otherwise stated, the null vector is the single solution of (1.7).

Proof
Finally we generalize the results of theorem 1.17 to irreducible chains whose states are (null

or positive) recurrent. To this aim, we introduce the following probability: rp
(n)
ij represents the

probability that starting from i one reaches j after n transitions without ever visiting r. We allow
i to be equal to r and for the case n = 0, we set rp

(0)
ij

def
= 1i=j .

One observes that rπij defined by rπij
def
=
∑
n∈N rp

(n)
ij is the mean number of visits of j without

visiting r. Since the chain is irreducible, the probability of a visit to r starting from j is positive.
Let us consider the chain obtained by making r an absorbing state (i.e. prr = 1), all states different
from r are transient. So the mean number of visits to these states is finite, i.e. rπij <∞.

Theorem 1.20 Let C be an irreducible DTMC whose states are recurrent.
• Let r be an arbitrary state. Then vector u defined by ui

def
= rπri fulfills:

u = u ·P and for all i ui > 0 and ur = 1

• Conversely, let u 6= 0 such that u = u · P and for all i, ui ≥ 0. Then there exists λ such that
for all i, ui = λ · rπri. Furthermore, the states of C are positive recurrent iff

∑
i∈S ui <∞.

Proof
Using the two previous theorems, we provide a useful characterization of the positive recurrence

for irreducible DTMCs.

Proposition 1.21 Let C be an irreducible DTMC, then the states of C are positive recurrent iff
there exists u such that u = u ·P with for all i, ui > 0 and

∑
i∈S ui <∞.

Proof
The table below summarizes the characterization of the status of an irreducible DTMC.

Status Characterization

Recurrent

0 is the single solution of:
∀i ∈ S \ s0 ui =

∑
j∈S\{s0} pi,juj and 0 ≤ ui ≤ 1

In this case given any r ∈ S,
∀u ≥ 0 u ·P = u⇔ ∃α > 0 ∀s u[s] = α · rπrs

Positive Recurrent
∃!u > 0 u ·P = u ∧

∑
i∈S ui = 1

(u is the steady-state distribution
when the DTMC is aperiodic)

Period is p
S = S0 ] S1 ] . . . ] Sp−1 with

∀r < p ∀i ∈ Sr ∀j ∈ S pi,j > 0⇒ j ∈ Sr+1 mod p

and p is the greatest integer fulfilling this property.

12



Let us apply the results we have obtained to the example 1.10 related to random walks. This
chain is irreducible. So all states are of the same kind.

We first want to decide whether the states are recurrent. We apply theorem 1.19. The equation
system is:

x1 = px2 and ∀i ≥ 2 xi = pxi+1 + (1− p)xi−1

It can be rewritten as:

x1 = px2 and ∀i ≥ 2 xi+1 − xi =
1− p
p

(xi − xi−1)

If x1 = 0 then x2 = 0 and by induction xi = 0 for all i. Let us consider that x1 > 0. Using
the first equation x2 − x1 > 0 and using the other equation for i ≥ 2,

xi = x1 + (x2 − x1)

i−2∑
j=0

(
1− p
p

)j
= x1

1 +
1− p
p

i−2∑
j=0

(
1− p
p

)j = x1

i−1∑
j=0

(
1− p
p

)j
Thus if p ≤ 1

2 then the xi’s are unbounded implying that the single bounded solution is 0 and
so the states of the chain are recurrent.

Otherwise the xi’s are bounded by x1
p

2p−1 . So taking x1 = 2p−1
p provides the non null maximal

solution implying that the states of the chain are transient.
When p ≤ 1

2 we also want to know whether the states are null or positive recurrent. We apply
the last assertion of theorem 1.20 to decide it. So we are looking for non null solution (unique up
to a constant) of:

x0 = (1− p)x1 and x1 = (1− p)x2 + x0 and ∀i ≥ 2 xi = (1− p)xi+1 + pxi−1

which can be rewritten as:

x0 = (1− p)x1 and px1 = (1− p)x2 and ∀i ≥ 2 pxi + (1− p)xi = (1− p)xi+1 + pxi−1

Substracting the second equation to the third one gets: px2 = (1− p)x3.
By induction, ∀i ≥ 1 pxi = (1− p)xi+1. So:

∀i ≥ 1 xi =

(
p

1− p

)i−1

x1

When p = 1
2 , one gets for i ≥ 1, xi = x1. So

∑
i∈N xi =∞ and the chain is null recurrent.

When p < 1
2 ,
∑
i∈S xi = x1

(
1− p+

∑
i∈N

(
p

1−p

)i)
= x1(1− p+ 1−p

1−2p ) is finite and the chain is

positive recurrent. Since the chain has period 2 it is not ergodic.

1.4 Finite discrete time Markov chains [KS 60]

1.4.1 Graph analysis
In the general case, the interest of GP is to provide a visual intuition of the behaviour of the
chain. However for finite DTMC, studying this graph provides the classification of states. Let us
recall that the vertices of a graph can be partitioned in strongly connected components (scc). This
partition can be performed in linear time w.r.t. the size of the graph by the algorithm of Tarjan
(see for instance [AHU 74]).

Definition 1.22 A scc S′ is a maximal subset of vertices such that for all i, j ∈ S′ there is a path
from i to j. A scc S′ is terminal if there is no path from S′ to S \ S′.

13



6 7

8

0.7
0.3

1

0.80.2

1 2

3

0.7

1
0.8

0.1

0.1
4 5

1

1

0.3

Figure 1.5: The scc of a DTMC
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In figure 1.5, we have highlighted the scc with colors. The blue and green scc’s are terminal.
The next theorems show that GP contains all the relevant information for classification of

states.

Theorem 1.23 In a finite DTMC, the transient states are the states of the non terminal scc’s.
Every terminal scc is an irreducible DTMC. The states of terminal scc’s are positive recurrent.

Proof
We now focus on periodicity in the irreducible case. So we assume that GP is strongly connected

(i.e. there is a single scc).
The periodicity is computed by algorithm 1 whose time complexity is linear w.r.t. the size

of the graph. Let us describe its behavior. It builds an oriented tree covering the vertices by a
breadth-first search. The algorithm also works with any search but here the breadth-first search is
more efficient since it minimizes the height of the tree. With every discovered vertex the algorithm
associates an height denoted Height. Every edge is labelled by an integer: the label of an edge
(u, v) is defined by Height[u] −Height[v] + 1. So the edges of the tree have zero for label. The
periodicity of the graph is then the gcd of the (non null) labels. This algorithm is illustrated in
figure 1.6.

Proposition 1.24 Algorithm 1 returns the periodicity of a (finite) DTMC.

Proof
The next property on random paths of a finite DTMC is used in several contexts.

14



Algorithm 1: Computing the periodicity
Periodicity(G): an integer
Input: G, an oriented graph whose set of vertices is {1, . . . , n}
Output: p, the periodicity of G

Data: i, j integers, Height an array of size n, Q a queue

for i from 1 to n do Height[i]←∞
p← 0; Height[0]← 0; InsertQueue(Q, 0)
while not EmptyQueue(Q) do

i← ExtractQueue(Q)
for (i, j) ∈ G do

if Height[j] =∞ then
Height[j]← Height[i] + 1
InsertQueue(Q, j);

else p← gcd(p,Height[i]−Height[j] + 1)

end
end
return p
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Figure 1.7: A non irreducible DTMC and some related matrices

Proposition 1.25 Almost surely a random path ends up in a terminal scc and visits infinitely
often all its states.

Proof

1.4.2 Linear algebra analysis
In an ergodic chain, theorem 1.17 asserts that the steady-state distribution exists and is indepen-
dent from the initial distribution. More precisely, this is the unique distribution π fulfilling the
following equation:

π = π ·P (1.8)

In order to solve (1.8), a direct computation is possible (via a Gaussian elimination) enlarging
the equation system with the normalisation equation π ·1T = 1 where 1T denotes the unit column
vector. But iterative computations are more interesting if the state space is huge. The simplest
consists in iterating π ← π · P starting from an arbitrary distribution, (see [STE 94] for more
elaborate computations).
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Let us address a more general case. We introduce some notations to handle this issue.

Definition 1.26 Let C be a finite DTMC whose irreducible subchains associated with terminal scc
are denoted {C1, . . . , Ck}. For 1 ≤ i ≤ k, the steady-state distribution (if it exists) of Ci is denoted
πi.
The set of transient states are denoted T . PT,T denotes the transition matrix restricted to T . For
1 ≤ i ≤ k, PT,i denotes the transition submatrix from states of T to states of Ci.

Figure 1.7 illustrates the different matrices on some DTMC. Assuming that the terminal scc’s
are aperiodic, the chain also admits a steady-state distribution which here depends on the initial
distribution.

Proposition 1.27 Let C be a finite DTMC with initial distribution π0 and whose irreducible sub-
chains associated with terminal scc’s are aperiodic. Then (using the notations of definition 1.26),
there exists a steady-state distribution whose expression is given by:

k∑
i=1

((
π0,i + π0,T (Id−PT,T )

−1 ·PT,i

)
· 1T

)
πi

where π0,i (resp. π0,T ) is π0 restricted to states of Ci (resp. T ).
Thus Id−PT,T is invertible. Furthermore its inverse is equal to (

∑
n≥0 (PT,T )n).

Proof
Matrix (Id − PT,T )−1 represents the mean number of visits between transient states. For

instance, in the DTMC of figure 1.8 the mean number of visits of state 2 starting from state 1 is
equal to 70

93 .

1.4.3 Convergence to the steady-state distribution
We want to analyze how fast the transient distribution of an ergodic DTMC converges to the
steady-state distribution and we present two approaches.

We say that a matrix M (resp. a vector v) is positive if for all i, j, M[i, j] > 0 (resp. v[i] > 0).
We say that a matrix M (resp. a vector v) is non negative if for all i, j, M[i, j] ≥ 0 (resp. v[i] ≥ 0).
We say that a non negative square matrix M is regular if there exists some k such that Mk is
positive.

Lemma 1.28 Let P be the transition matrix of an ergodic DTMC. Then P is regular.
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Proof
Let π∞ be the steady-state distribution w.r.t. transition matrix P of an ergodic DTMC. We

introduce the steady-state square matrix Π∞ where every row is a copy of π∞. We let the reader
prove that the following equalities hold:

• For every transition matrix P′, P′Π∞ = Π∞;

• Π∞P = Π∞.

The first approach is based on the steady-state matrix. The following proposition characterizes
the magnitude order of the convergence rate to the steady-state distribution. In fact, the theorem
is also valid if we take π∞ as a solution of π∞P = π∞ ∧ π∞ · 1T = 1 (there is a priori at least one
solution). Thus it provides an alternative proof of the existence of a steady-state distribution for
a finite irreducible DTMC.

Proposition 1.29 Let C be an ergodic DTMC with P its transition matrix, πn its distribution at
time n and π∞ its steady-state distribution. Then there exists some 0 < λ < 1 such that:

||π∞ − πn|| = O(λn)

Proof
The second approach consists in studying the eigenvalues of matrix P and provides a more

precise information on the convergence rate. It is based on the following proposition, a simplified
version of the famous Perron-Frobenius theorem about non negative matrices. It also constitutes
an alternative proof of the existence of a steady-state distribution for a finite irreducible DTMC.

Let us recall that given M, a matrix, and λ, a complex value:

• λ is an eigenvalue of M if there exists a non null vector v such that (M− λId)v = 0.

• Such a vector is called an eigenvector associated with λ. A vector v is a generalized eigen-
vector w.r.t. λ if there exists some k such that (M− λId)kv = 0.

• Given {λ1, . . . , λm} the set of eigenvalues of M, the vector space is the direct sum of
E1, . . . , Em where Ei is the set of generalized eigenvectors w.r.t. λi called the generalized
eigenspace of λi.

Proposition 1.30 Let M be a non negative regular matrix. Then there exists λ such that:

• λ is an eigenvalue of M whose generalized eigenspace has dimension 1 and is generated by
a positive vector.

• Every other eigenvalue λ′ fulfills |λ′| < λ.

Proof

Proposition 1.31 Let C be an ergodic DTMC with P its transition matrix, πn its distribution at
time n and π∞ its steady-state distribution. Then:

||π∞ − πn|| = O(ns−2λn)

where s is the number of states and λ < 1 is the second largest module of eigenvalues of P.

Proof
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1.5 Proofs

1.5.1 Proofs of section 1.2.1
Proof of lemma 1.1
If µ =∞ then η = 0, and we are done.
Let us assume that µ is finite. We pick an arbitrary subsequence un1 , un2 , . . . , converging toward
η′ (≤ η by hypothesis). Let us select some integer r > 0 and some ε > 0.
The hypotheses ensure that there exists m such that:

∀ni ≥ m |uni − η′| ≤ ε ∧ ∀1 ≤ r′ ≤ r uni−r′ − η ≤ ε
We recall (1.4) for ni:

ρ0uni + ρ1uni−1 + · · ·+ ρniu0 = 1

So:

ρ0(η′ + ε) + (η + ε)

r∑
r′=1

ρr′ +
∑
r′>r

ρr′ ≥ 1

When ε goes to 0, the inequation becomes:

ρ0η
′ + η

r∑
r′=1

ρr′ +
∑
r′>r

ρr′ ≥ 1

When r goes to ∞ (let us recall that ρ0 = 1), the inequation becomes:

η′ + η(µ− 1) ≥ 1

which can be rewritten as:
η′ − η ≥ 0

Using η′ ≤ η, one deduces that η′ = η. Since the subsequence is arbitrary, limn→∞ un = η.

q.e.d. (lemma 1.1) ♦♦♦

Proof of lemma 1.3
Using Euclid algorithm, one obtains y1, . . . , yk ∈ Z such that:

1 = a1y1 + · · ·+ akyk
Let us note s = a1 + · · ·+ ak and x = supi |yi|(s− 1).
Let n ≥ xs. One performs the Euclidian division of n by s:

n = qs+ r =

k∑
i=1

(q + ryi)ai

and q + ryi is non negative using the hypotheses.

q.e.d. (lemma 1.3) ♦♦♦

Proof of lemma 1.4
Since the xn,m’s are bounded, one extracts a sequence of indices (m0

k)k∈N such that (x0,m0
k
)k∈N is

convergent.
Assume that after n stages, one has extracted a sequence of indices (mn

k )k∈N. Then one extracts
from this sequence a subsequence (mn+1

k )k∈N such that (xn+1,mn+1
k

)k∈N is convergent.

Let us now consider the sequence of indices mk = mk
k. Let n ∈ N, starting from the nth item, the

sequence (xn,mk)k∈N is a subsequence of (xn,mnk )k∈N and thus it is convergent.

q.e.d. (lemma 1.4) ♦♦♦
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Proof of lemma 1.5
Let us note A = {k | fk > 0}.
w0 =

∑∞
k=1 fkwk ≤ w0

∑∞
k=1 fk = w0

In order to have equality, it is necessary that wk = w0 for all k ∈ A.
Let k ∈ A,
w0 = wk =

∑∞
k′=1 fk′wk+k′ ≤ w0

∑∞
k′=1 fk′ = w0

So, it is also necessary that wk+k′ = w0 for all k, k′ ∈ A.
Iterating the process, one gets wk = w0 for all k, positive linear combination of items of A.
f is aperiodic. Using lemma 1.3, there exists n0 such that for all n ≥ n0, wn = w0.
So:
wn0−1 =

∑∞
k=1 fkwn0−1+k = w0

∑∞
k=1 fk = w0

Iterating this process, one concludes.

q.e.d. (lemma 1.5) ♦♦♦

Proof of theorem 1.6
Let us note ν = lim supn→∞ un (between 0 and 1).
Let (rm)m∈N be a sequence of indices such that ν = limm→∞ urm . With every integer n, one
associates the sequence (un,m)m∈N defined by un,m = urm−n if n ≤ rm and un,m = 0 otherwise.
Using lemma 1.4, there exists a sequence m1,m2, . . . such that for all n, (un,mk)k∈N converges to
a limit denoted wn (consistently with the notations of lemma 1.5). From definition of ν, one gets
0 ≤ wn ≤ ν and w0 = ν. Equation (1.3) can be rewritten as:

un,mk =

∞∑
i=1

fiun+i,mk

This equality still holds at the limit since the un’s are bounded and
∑∞
i=1 fi = 1 hence finite. One

obtains the hypotheses of lemma 1.5. Hence, for all n, wn = ν.
We now prove that ν ≤ η in order to conclude by application of lemma 1.1.
Using (1.4), one establishes that:

ρ0u0,mk + ρ1u1,mk + · · ·+ ρrmkurmk ,mk = 1 (1.9)

Let us use (1.9). For all fixed r,

• ρ0u0,mk + ρ1u1,mk + · · ·+ ρrur,mk ≤ 1;

• ρ0u0,mk + ρ1u1,mk + · · ·+ ρrur,mk goes to ν
∑r
r′=0 ρr′ when k goes to infinity.

Hence if µ =∞ then ν = 0 establishing the result.
Otherwise ν

∑r
r′=0 ρr′ ≤ 1 for all r. Hence νµ ≤ 1.

q.e.d. (theorem 1.6) ♦♦♦

1.5.2 Proofs of section 1.2.2
Proof of proposition 1.8
Due to the non negativity of un and fn,
lims↑1 U(s) = U(1) (with U(1) finite or infinite) and lims↑1 F (s) = F (1).
Let us suppose F (1) < 1. Then considering the limit when s→ 1 of equality U(s) = 1

1−F (s) ,
one obtains U(1) = 1

1−F (1) as required by the proposition.

Let us suppose U(1) <∞. Then considering the limit when s→ 1 of equality U(s)−1 = U(s)F (s),
one obtains U(1)− 1 = U(1)F (1). Hence F (1) = U(1)−1

U(1) < 1.

q.e.d. (proposition 1.8) ♦♦♦
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Proof of theorem 1.9
Let us denote rk =

∑
k′>k bk′ . Using the definition of vn for n > k one has:

k∑
k′=0

bk′un−k′ ≤ vn ≤
k∑

k′=0

bk′un−k′ + rk

Let ε > 0. Then there exists k such that rk ≤ ε and there exists n0 such that for n ≥ n0 one has
|ω − un| ≤ ε. Consequently for all n > n0 + k

ωB(1)−2ε ≤ (ω−ε)(B(1)−ε) ≤
k∑

k′=0

bk′un−k′ ≤ vn ≤
k∑

k′=0

bk′un−k′+rk ≤ (ω+ε)B(1)+ε ≤ ωB(1)+2ε

which establishes the first assertion.
The second assertion is straightforward since V (s) = B(s)U(s).

q.e.d. (theorem 1.9) ♦♦♦

1.5.3 Proofs of section 1.3.2
Proof of theorem 1.14
Let i, j be two states of the chain, there exist r and s such that pri,j > 0 and psj,i > 0. Furthermore,

pn+r+s
i,i ≥ pri,jpnj,jpsj,i (1.10)

So if
∑
n∈N p

n
i,i is finite then

∑
n∈N p

n
j,j is finite. If limn→∞ pni,i = 0 then limn→∞ pnj,j = 0. Since

the situation is symmetric, one deduces that i is transient (resp. null recurrent, positive recurrent)
iff j is transient (resp. null recurrent, positive recurrent).
Let us examine periodicity. Assume i has period t ≥ 1. Using (1.10), with n = 0, one deduces
that r + s is a multiple of t. So if n is not a multiple of t, then pnj,j = 0 which means that the
period of j is a multiple of t. Since the situation is symmetric, one deduces that i and j have the
same period.

q.e.d. (theorem 1.14) ♦♦♦

Proof of theorem 1.15
Let j ∈ Cl(i). By definition, fi,j > 0. Moreover 1 − fi,i ≥ fi,j(1 − fj,i). Since i is recurrent one
has fi,i = 1 which implies fj,i = 1.
Let k ∈ Cl(i), fj,k ≥ fj,ifi,k > 0. So Cl(i) is irreducible. Since Cl(i) is irreducible, all states are
recurrent and “replaying” the beginning of the proof with k instead of i establishes fj,k = 1.

q.e.d. (theorem 1.15) ♦♦♦

Proof of theorem 1.16
Let us pick some arbitrary state i and define Sk, with 0 ≤ k < p as the subset of states j for which
there is a path from i to j with length equal to lp + k for some l. Since the chain is irreducible,
these subsets cover S. By definition of Sk, ∀i ∈ Sk ∀j ∈ S pi,j > 0⇒ j ∈ S(k+1) mod p. It remains
to prove that their intersection is empty.
Assume there exists j ∈ Sk ∩ Sk′ with k 6= k′. Since from j the chain reaches i, there exists at
least a path from i to i whose length is not a multiple of p, leading to a contradiction.
Assume now there is some p′ > p fulfilling this property. Then the periodicity of the renewal
process associated with i is a multiple of p′ leading to another contradiction.

q.e.d. (theorem 1.16) ♦♦♦
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Proof of theorem 1.17
Using theorem 1.9 on delayed renewal process:
limn→∞ pnj,i = fj,iµ

−1
i = µ−1

i since C is irreducible.
We assume that S is countable and identify it to N (the case of a finite S is even simpler and left
to the reader). One has:

pn+1
k,i =

∑
j∈S

pnk,jpj,i ≥
∑
m≤M

pnk,mpm,i

Consequently, letting n goes to infinity: µ−1
i ≥

∑
m≤M µ−1

m pm,i

and letting M goes to infinity: µ−1
i ≥

∑
j∈S µ

−1
j pj,i

We now prove that
∑
j∈S µ

−1
j is finite.

1 =
∑
j∈S

pni,j

Consequently, letting n goes to infinity: 1 ≥
∑
m≤M µ−1

m

and letting M goes to infinity: 1 ≥
∑
j∈S µ

−1
j

Summing µ−1
i ≥

∑
j∈S µ

−1
j pj,i over i, one obtains:∑

i∈S
µ−1
i ≥

∑
i∈S

∑
j∈S

µ−1
j pj,i =

∑
j∈S

µ−1
j

∑
i∈S

pj,i =
∑
j∈S

µ−1
j

One has equality of sums, so also equality of terms: µ−1
i =

∑
j∈S µ

−1
j pj,i

By iteration: µ−1
i =

∑
j∈S µ

−1
j pnj,i

This equality holds at the limit since
∑
j∈S µ

−1
j is finite and pnj,i is bounded by 1:

µ−1
i =

∑
j∈S

µ−1
j µ−1

i

Since µ−1
i > 0,

∑
j∈S µ

−1
j = 1

Conversely, assume there exist {ui} such that ui ≥ 0,
∑
i∈S ui = 1 and for all i, ui =

∑
j∈S ujpj,i.

Let us pick some ui > 0, by iteration of the last equation: ui =
∑
j∈S ujp

n
j,i

Since the states of the chain are aperiodic, limn→∞ pnj,i exists for all j. Moreover the equality holds
at the limit since

∑
i∈S ui = 1 and pnj,i ≤ 1. If for all j, pnj,i goes to 0 then, using the equality, one

obtains ui = 0 leading to a contradiction.
So i is positive recurrent and then ergodic (since aperiodic). So all states are ergodic implying
that the limits of pnj,i are µ

−1
i . The (limit) equation can be written as:

ui =
∑
j∈S

ujµ
−1
i = µ−1

i

q.e.d. (theorem 1.17) ♦♦♦

Proof of proposition 1.18
By definition the sequence pinnS′ [i] is decreasing and it is lower bounded by 0 so it is convergent.∑
j∈S′ P

′n+1[i, j] =
∑
j,j′∈S′ P[i, j′]P′n[j′, j]

So:
pinn+1

S′ [i] =
∑
j′∈S′ P[i, j′]pinnS′ [j

′]
This equality holds at the limit since

∑
j′∈S′ P[i, j′] ≤ 1 and pinnS′ [i] are bounded by 1.

Substituting j′ by j:
pinS′ [i] =

∑
j∈S′ P[i, j]pinS′ [j]

Otherwise stated, the pinS′ [i]’s are a solution of (1.6).
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Let x be a solution of this equation. One has ∀i x[i] ≤ pin0
S′ [i] = 1.

We prove by induction that the equality holds for all n.
x[i] =

∑
j∈S′ P[i, j]x[j] ≤

∑
j∈S′ P[i, j]pinnS′ [i] = pinn+1

S′ [i]
Letting n goes to infinity, the maximality is obtained.

q.e.d. (proposition 1.18) ♦♦♦

Proof of theorem 1.19
Let x denote the maximal solution of (1.7). Then x[i] represents the probability to not return to
0 starting from i.
If state 0 is recurrent the return probability is 1. Since there exists a non null probability to reach
from 0 state i (i being arbitrary), x[i] must be null.
If the maximal solution is null then the probability to stay in states of N∗ is null whatever the
initial state. So the probability to return in 0 is equal to 1.

q.e.d. (theorem 1.19) ♦♦♦

Proof of theorem 1.20
Let u defined by ui ≡ rπri. One has rp

(0)
rr = 1 and rp

(n)
rr = 0 for n > 0. So ur = 1. Since the chain

is irreducible, there exists a non null probability to reach an arbitrary state i from r implying
ui > 0.
Using definition of rp

(n)
ij , one obtains for i 6= r: rp

(n+1)
ri =

∑
j∈N rp

(n)
rj pji.

Summing over n, one obtains:∑
n≥1 rp

(n)
ri =

∑
n≥0

∑
j∈N rp

(n)
rj pji

Since rp
(0)
ri = 0, one deduces: rπri =

∑
j∈N rπrjpji.

In case i = r, one observes that
∑
j∈N rp

(n)
rj pjr is the probability of a first return to r at the n+1th

transition. Summing over n, one deduces that
∑
j∈N rπrjpjr is the probability of a return to r.

Since r is recurrent, this quantity is equal to 1. This finally proves that u = u ·P.
Assume now that there exists u such that u = u ·P and for all i, ui ≥ 0. Using the first equation
if ui = 0 for i arbitrary then uj = 0 for all j such that pji > 0. By induction, one deduces that
uj = 0 for all j that allows to reach k. Since the chain is irreducible, either u is null, or all its
components are strictly positive.
In case u is strictly positive, one assumes w.l.o.g. (by applying a multiplicative factor) that ur = 1.
Hence for i 6= r,
ui = pri +

∑
j 6=r ujpji = pri +

∑
j 6=r

(
prj +

∑
k 6=r ukpkj

)
pji = pri + rp

(2)
ri +

∑
k 6=r uk · rp(2)

ki

Proceeding by induction, one obtains:
ui = pri + rp

(2)
ri + · · ·+ rp

(n)
ri +

∑
j 6=r uj · rp(n)

ji

Letting n go to infinity, one deduces that ui ≥ rπri. So {ui− rπri} is also a non negative solution
of the equation system. Since it is null for component r, it is null for all components so that
ui = rπri for all i.
Let us compute the mean return time to r. The probability that the return time is greater or equal
than n (for n ≥ 1) is equal to

∑
j∈S rp

(n−1)
rj . Thus the mean return time is:

∑
n≥1

∑
j∈S rp

(n−1)
rj =∑

j∈S rπrj which proves the last assertion of the theorem.

q.e.d. (theorem 1.20) ♦♦♦

Proof of proposition 1.21
Assume that the chain is positive recurrent. Then theorem 1.20 allows to conclude.
Assume there exists u such that u = u ·P (and thus u = u ·Pk for any k), for all i, ui > 0 and∑
i∈S ui is finite.

Let us suppose that there exists x, a non null solution of:

∀i > 0 x[i] =
∑
j>0

P[i, j]x[j] ∧ 0 ≤ x[i] ≤ 1
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and by iteration
∀k ∀i > 0 x[i] =

∑
j>0

Pk[i, j]x[j] ∧ 0 ≤ x[i] ≤ 1

By hypothesis, there is some i0 with x[i0] > 0 and some k such that Pk[0, i0] > 0.
By a weighted sum of the previous equalities one gets:∑
i>0 u[i]x[i] =

∑
i>0 u[i]

(∑
j>0 Pk[i, j]x[j]

)
Thus:∑
i>0 u[i]x[i] =

∑
j>0

(∑
i>0 u[i]Pk[i, j]

)
x[j] =

∑
j>0(1− u[0]Pk[0, j])u[j]x[j] ≤

∑
i>0 u[j]x[j]

Since the sum is finite all terms must be equal but (1− u[0]Pk[0, i0])u[i0]x[i0] < u[i0]x[i0]. Thus
applying theorem 1.19, we deduce that the chain is recurrent and by an application of theorem 1.20
that it is positive recurrent.

q.e.d. (proposition 1.21) ♦♦♦

1.5.4 Proofs of section 1.4.1
Proof of theorem 1.23
Let i belonging to a non terminal scc. Then there is a path from i to j belonging to a terminal
scc. The probability to follow this path is non null and it is a lower bound to the probability of
non returning to i. So i is transient.
Let S′ be a terminal scc. Since there is no way to exit S′, S′ constitutes a DTMC. It is irreducible
by definition of scc.
Let P be its transition matrix. Pick some state i ∈ S′ and observe that for all n,

∑
j∈S′ p

n
i,j = 1.

Since this is a finite sum, there exists at least some j such that pni,j does not converge to 0 when
n goes to infinity. This implies that j is positive recurrent. Since all states of S′ are of the same
kind, they are all positive recurrent.

q.e.d. (theorem 1.23) ♦♦♦

Proof of proposition 1.24
Let p be the periodicity of the graph, p′ the gcd of the edge labels and r the root of the tree.
Given two paths with same source and destination, the difference between the lengths of these
paths must be a multiple of p, using the same argument applied in the proof of theorem 1.16.

• Let (u, v) be an edge with non null label. Let us denote σu, the path from r to u along the
tree and σv the path from r to v along the tree. The length of σu is Height[u], the one of
σv is Height[v]. With the edge (u, v), one obtains another path σu(u, v) from r to v. The
difference between the lengths of the two paths is: Height[u]−Height[v] + 1 which must be
a multiple of p. Since (u, v) is arbitrary, one deduces that p|p′.

• Let us partition the states in S′0, . . . , S
′
p′−1 with s ∈ S′i iff Height[s] mod p′ = i. By

construction, an edge of the tree joins a vertex of S′i to a vertex of S′i+1 mod p′ . An edge
(u, v) out of the tree joins u ∈ S′Height[u] mod p′ to v ∈ S′Height[v] mod p′ but Height[u] −
Height[v] + 1 mod p′ = 0. So, S′Height[v] mod p′ = S′Height[u]+1 mod p′ . By theorem 1.16,
p′ ≤ p. Since p|p′, one obtains p = p′.

q.e.d. (proposition 1.24) ♦♦♦

Proof of proposition 1.25
Every infinite path ends up in a scc.
Let us fix some non terminal scc, S′. There is an edge (u, v) with u ∈ S′ and v /∈ S′. So given any
state w ∈ S′, there is a path from w to v with length say lw and probability say εw > 0. Define
l = max(lw) and ε = min(εw). We partition the paths ending in S′ depending on their first entry
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in S′. After the entry, we split the suffix of the path in segments of length l. There is a probability
at least ε to leave S′ during a segment. Thus the probability to remain in S′ after n segments
is at most (1 − ε)n and goes to 0 when n goes to infinity. This proves that with probability 1 a
random path ends up in a terminal scc.
Let us fix some terminal scc, S′. When entering S′ the probability to visit once every state is 1
(since states are recurrent). By induction, the probability to visit every state at least n times is
1. Letting n go to infinity yields the result.

q.e.d. (proposition 1.25) ♦♦♦

1.5.5 Proofs of section 1.4.2
Proof of proposition 1.27
The distribution is given by π =

∑k
i=1 Pr(to reach Ci) · πi. It remains to compute the probability

to reach a terminal scc. One evaluates this quantity starting from an arbitrary state and then one
“unconditions” it w.r.t. the initial distribution:

Pr(to reach Ci) =
∑
s∈S

π0(s) · π′Ci(s)

where π′Ci(s) = Pr(to reach Ci | S0 = s).
When state s belongs to Ci, then π′Ci(s) = 1 and π′Cj (s) = 0 for j 6= i.
Let us consider the transient states. The probability for a transient state s to reach Ci can be
decomposed w.r.t. to the length of the path from s to Ci along the transient states. Let n+ 1 be
the length of such paths. Then the probability of these paths is exactly

(
(PT,T )n ·PT,i · 1T

)
[s].

Summing over n gives the desired formula once we have proven that:∑
n≥0

(PT,T )n = (Id−PT,T )−1

We observe that (
∑
n≥0 (PT,T )n)[i, j] corresponds to the mean number of visits of j starting from

i and is finite due to the definition of transient states. So the sum is convergent. Now for every
n0:

(
∑
n≤n0

(PT,T )n)(Id−PT,T ) = Id− (PT,T )n0+1

Since limn→∞(PT,T )n = 0 letting n0 go to infinity establishes the result.

q.e.d. (proposition 1.27) ♦♦♦

1.5.6 Proofs of section 1.4.3
Proof of lemma 1.28
We denote s def

= |S|.
Let us pick some state i. Since i is ergodic, by definition there is a n0 such that for all n ≥ n0,
pnii > 0. Furthermore for all j, there are m,m′ ≤ s− 1 such that pmij > 0 and pm

′

ji > 0. So for all
j, j′ and n ≥ n0 + 2(s− 1), one has pnjj′ > 0.

q.e.d. (lemma 1.28) ♦♦♦

Proof of proposition 1.29
Since the chain is ergodic there is a positive integer k such that Pk is positive. Thus there is some
0 < δ < 1 such that for all i, j one has Pk[i, j] ≥ δΠ∞[i, j]. Define θ = 1 − δ (0 < θ < 1) and
matrix Q by:

Q =
1

θ
Pk − 1− θ

θ
Π∞
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One observes that Q is a transition matrix and fulfills:

Pk = θQ + (1− θ)Π∞

Let us prove by induction that:

∀n Pkn = θnQn + (1− θn)Π∞

First we observe that Π∞Q = 1
θΠ∞Pk − 1−θ

θ Π∞Π∞ = 1
θΠ∞ − 1−θ

θ Π∞ = Π∞.
Then:

Pkn+k = (θnQn + (1− θn)Π∞)(θQ + (1− θ)Π∞)

= θn+1Qn+1 + ((1− θn)θ + (1− θ)θn + (1− θn)(1− θ))Π∞ = θn+1Qn+1 + (1− θn+1)Π∞

We rewrite the equation as:
∀n Pkn −Π∞ = θn(Qn −Π∞)

Multiplying by Pj with 0 ≤ j < k:

∀n ∀j < k Pkn+j −Π∞ = θn(QnPj −Π∞)

Multiplying by π0:
∀n ∀j < k πkn+j − π∞ = θn(π0Q

nPj − π∞)

Thus the result is established with λ = θ
1
k .

q.e.d. (proposition 1.29) ♦♦♦

Proof of proposition 1.30
We denote k the integer such that Mk is positive.
Let us define λ by λ ≡ sup(α | ∃v ≥ 0 ∧ v 6= 0 ∧Mv ≥ αv).
Let m ≡ mini(maxj M[i, j]).
If m = 0 then there is a null row and this row is also null for Mk yielding a contradiction.
Then M1T ≥ m1T . So λ > 0.
Let us pick λn ↑ λ and vn ≥ 0 such that ||vn||1 = 1 and Mvn ≥ λnvn.
Then by compactness of {v | ||v||1 = 1}, there exists v ≥ 0 such that ||v||1 = 1 and Mv ≥ λv.
Suppose that Mv 6= λv.
Then vector v′

def
= Mkv fulfills Mv′ ≥ λv′, and by positivity of Mk fulfills for all i, Mv′[i] > λv′[i].

Thus there exists some ε > 0 such that Mv′ ≥ (λ+ ε)v′ yielding a contradiction. So Mv = λv.
Since Mkv = λkv, v is a positive vector.
Assume there exists w another λ-eigenvector independent from v.
Then α def

= maxi−w[i]
v[i] verifies w + αv ≥ 0 and there exists i with (w + αv)[i] = 0.

But Mk(w + αv) = λk(w + αv). So w + αv should be a positive vector yielding a contradiction.
Assume there exists w a vector such that (M− λId)w 6= 0 and (M− λId)2w = 0.
Due to the previous paragraph, (M− λId)w = αv for some α 6= 0.
W.l.o.g. we assume that α > 0.
There exists a β such that w + βv ≥ 0.
Furthermore, (M− λId)(w + βv) = αv, i.e. M(w + βv) = λ(w + βv) + αv.
So there exists some ε > 0 such that M(w + βv) ≥ (λ+ ε)(w + βv) yielding a contradiction. We
have finally proved the first item of the proposition.
To prove the second item, let λ′ 6= λ be an eigenvalue and v′ be an associated eigenvector.
Define v′′ as the vector of modules of components of v′.
Mv′′ ≥ |Mv′| = |λ′|v′′ (with a slight abuse of notation)
We claim that the equality holds only if all (non null) components of v′ have the same argument.
Indeed Mv′ = λ′v′ implies Mkv′ = λ′kv′.
So Mkv′′ ≥ |λ′k|v′′. Assuming Mv′′ = |λ′|v′′ implies Mkv′′ = |λ′|kv′′.
Since Mk is positive, equality holds only if all (non null) components of v′ have the same argument.
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On the other hand, Mv′′ ≥ |λ′|v′′ implies |λ′| ≤ λ.
If |λ′| = λ then:

1. Since Mv′′ ≥ λv′′ and v′′ is non negative, Mv′′ = λv′′. So v′′ is an eigenvector of λ.

2. Using the previous claim, all (non null) components of v′ have the same argument.
Then v′′ is also an eigenvector of λ′ yielding a contradiction.

So |λ′| < λ.

q.e.d. (proposition 1.30) ♦♦♦

Proof of proposition 1.31
We denote s = |S|.

Let v ≥ 0. Then Pv[i] =
∑
j P[i, j]v[j] ≤

(∑
j P[i, j]

)
max(v[j]) = max(v[j]). So if Pv = λv

then λ ≤ 1. On the other hand, P1 = 1. So 1 is the eigenvalue with largest module.
Let us decompose the vector space Rs into the generalized eigenspaces corresponding to the left
generalized eigenvectors: E =

⊕K
k=1Ek with Ek corresponding to the eigenvalue λk sorted by

decreasing module. Since P is regular, one applies proposition 1.30: λ1 = 1, dim(E1) = 1, E1 is
generated by v1 a positive vector and for all k > 1, |λk| < 1. W.l.o.g. we assume that ||v1||1 = 1
so that v1 = π∞. One can select a basis of Ek such that P, restricted to Ek, becomes an upper
triangular matrix Tk whose diagonal is a sequence of λk: Tk = λkId + Nk where Nk fulfills
(Nk)s−1 = 0 (since dim(E1) = 1 and dim(Ek) ≤ s− 1 for k ≥ 2).
Let us denote B the matrix corresponding to the basis of Rs obtained as the union of the previous
bases. Then: P = B−1TB where T is the block-diagonal matrix whose blocks are Tk’s. So
πn = π0B

−1TnB. Otherwise stated, πnB−1 = π0B
−1Tn. Define π′n = πnB−1. The equality can

be rewritten π′n = π′0T
n. Given a vector v, one denotes projk(v) the subvector v related to Ek.

So v =
∑K
k=1 projk(v).

π′n =

K∑
k=1

projk(π′n) =

K∑
k=1

projk(π′0)(λkId + Nk)n

= proj1(π′0) +

K∑
k=2

s−2∑
i=0

(
n

i

)
(λk)n−iprojk(π′0)(Nk)i

So:

||π′n − proj1(π′0)|| ≤
K∑
k=2

s−2∑
i=0

(
n

i

)
|λk|n−i||projk(π′0)(Nk)i|| ≤ C ′ns−2|λ2|n

for some constant C ′.
Applying B:

||πn − proj1(π′0)B|| ≤ Cns−2|λ2|n

for some constant C.
This also establishes that πn converges toward αv1 and since ||πn||1 = ||v1||1 = 1, α = 1.

q.e.d. (proposition 1.31) ♦♦♦
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Chapter 2

Continuous Time Markov Chains

2.1 Renewal processes with non arithmetic distribution [FEL 71]

2.1.1 Limits, measures and integration
In this paragraph, we state some results (most of them elementary) about limits of functions,
measures and integration useful for establishing the renewal theorem.

Lemma 2.1 Let (xn)n∈N be a bounded sequence of reals such that there exists l, limit of every
convergent subsequence. Then (xn)n∈N converges toward l.

Proof
The following lemma is nothing but a rewriting of lemma 1.4 once one observes that R is

compact.

Lemma 2.2 Let (xn)n∈N be a sequence of reals and fm be a sequence of functions from R to R.
Then there exists a sequence of indices m1 < m2 < · · · such that for all n ∈ N the sequence
{fmk(xn)}k∈N converges in R = R ∪ {−∞,+∞} (in R if for all xn, supm |fm(xn)| <∞).

The notion of equicontinuity is similar to uniform continuity but it is defined for a whole family
of functions.

Definition 2.3 Let {fn}n∈N be a family of real functions, this family is equicontinuous if:

∀ε > 0 ∃δ > 0 ∀n ∀x, x′ |x− x′| ≤ δ ⇒ |fn(x)− fn(x′)| ≤ ε

Proposition 2.4 Let {fn}n∈N be an equicontinuous sequence of functions such that there exists
B with for all x and n, |fn(x)| ≤ B. Then there exists a subsequence that converges, uniformly
over every bounded interval, toward a uniformly continuous function.

Proof
Let us recall that a (real) measure µ associates with every measurable set E of R (and in

particular with every interval) a (finite or infinite) positive value µ{E} such that:

1. µ{∅} = 0;

2. for every countable family of disjoint sets Ei, one has µ{
⊎
i∈NEi} =

∑
i∈N µ{Ei}.

Here we are only interested in locally finite measures, i.e. such that for every bounded interval I,
one has µ{I} < ∞. A point a is a continuity point of µ if it fulfills lima′↑a µ{[b, a′]} = µ{[b, a]}
with b < a (this definition is independent of b). The set of discontinuity points, also called atoms
is countable and a, discontinuity point, fulfills µ{a} > 0. A continuity interval is an interval whose
bounds are continuity points (by convention −∞,+∞ are considered as continuity points).
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Definition 2.5 A sequence of measures {µn}n∈N converges toward a measure µ iff for every I,
bounded continuity interval of µ, one has:

lim
n→∞

µn{I} = µ{I}

Proposition 2.6 Let {µn}n∈N be a sequence of measures fulfilling supn(µn{I}) < ∞ for every
bounded interval I. Then:

• {µn}n∈N has a subsequence which converges toward a measure.

• If every convergent subsequence {µn}n∈N converges toward a (fixed) measure µ then {µn}n∈N
converges toward µ.

Proof
This convergence of measures is not the only possible one. As shown by proposition 2.8, it is

appropriate to obtain limits of integrals.
Notations. Cf denotes the set of continuous functions u whose support (i.e. u−1(R∗)) is bounded.

Lemma 2.7 Let µ and µ′ be two measures fulfilling
∫
u(x)µ{dx} =

∫
u(x)µ′{dx} for all u ∈ Cf .

Then: µ = µ′.

Proof

Proposition 2.8 Let {µn}n∈N be a sequence of measures such that (1) it converges to µ, and (2)
it fulfills sup(µn{I}) <∞ for every bounded interval I.
Then for all u ∈ Cf :

lim
n→∞

∫
u(x)µn{dx} =

∫
u(x)µ{dx}

Proof
For technical reasons, we need a stronger definition of integrable function than the usual ones

(Riemann and Lebesgue integration).

Definition 2.9 A function z from R+ to R+ is directly Riemann integrable if denoting mkh =
inf(z(x) | kh ≤ x < (k + 1)h) and Mkh = sup(z(x) | kh ≤ x < (k + 1)h) with h ∈ R+ and k ∈ N,
one has:

lim
h→0

h
∑
k∈N

mkh = lim
h→0

h
∑
k∈N

Mkh (and is finite)

For instance, let function f be defined by: for every n ∈ N∗ and every x ∈ [n, n+ 1
n2 ], f(x)

def
= 1

and f(x)
def
= 0 otherwise. Then f is Riemann integrable but not directly Rieman integrable. For

functions with bounded support direct and standard Riemann integration are the same ones. We
give below another sufficient condition.

Proposition 2.10 A Lebesgue integrable function from R+ to R+ which is non increasing is
directly Riemann integrable.

Proof

2.1.2 The renewal theorem
In the sequel, we will use without mentioning it the equivalence between the distribution functions
and the probability measures on R. For a measure µ concentrated on R+, one defines µ(x) by
µ(x)

def
= µ{[0, x]}.
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The convolution of two distributions F,G denoted F ? G is the distribution of the sum of two
independent random variables following distributions F and G. It is defined by:

F ? G(x)
def
=

∫ ∞
−∞

F (x− y)G{dy}

This convolution is also defined for an integrable function and a measure. When the random
variables are positive it can be rewritten:

F ? G(x) =

∫ ∞
0

F (x− y)G{dy} =

∫ x

0

F (x− y)G{dy}

One denotes F k?, F convoluted k − 1 times with itself. F 0? consists in the Dirac distribution
concentrated in 0 i.e. F 0?(0) = 1.

Suppose that a renewal process follows distribution F . Then F k? represents the distribution of
the kth renewal instant (starting with 0). The measure U def

=
∑∞
n=0 F

n? is related to the number
of renewal instants: given E a measurable set of R+, U(E) is the mean number of renewal instants
in E. We are interested about the asymptotic behaviour of U and more precisely we want to prove
a statement similar to the discrete case: limt→∞ U([t, t+ δ]) = δ

µ where µ is the mean value of F .
We start by showing that U is locally finite.

Lemma 2.11 Let F be a distribution whose support is included in ]0,∞[ (i.e. F (0) = 0). Then
for all x, U(x) is finite. More precisely for all h ≥ 0, there exists Ch such that U{I} ≤ Ch for all
interval I with length h.

Proof
An increasing point of a measure µ is a real x such that for every open interval I including

x, µ(I) > 0. An atom is an increasing point but the converse is not necessarily true. A measure
is arithmetic if there exists a real λ > 0 such that the measure is concentrated on atoms kλ for
k ∈ Z. The greatest λ fulfilling this property is called the period of the measure. We have studied
renewal theory in the case of an arithmetic distribution in paragraph 1.2. Here we are interested
by the non arithmetic case. The next lemma establishes the main property of non arithmetic
distributions. It presents similarities with lemma 1.3 for the discrete case.

Lemma 2.12 Let F be a non arithmetic distribution whose support is included in ]0,∞[ and let Σ,
be the set of increasing points of distributions F, F 2?, F 3?, . . . (included in those of U =

∑
i∈N F

i?).
Then Σ is asymptotically dense in R+, that is to say:

∀ε > 0 ∃xε ∀x ≥ xε Σ ∩ [x, x+ ε] 6= ∅

Proof
Using the previous lemma, one establishes another lemma similar to lemma 1.5 for the discrete

case.

Lemma 2.13 Let F be a non arithmetic distribution whose support is included in ]0,∞[ and let
g be a bounded and uniformly continuous function fulfilling for all x, g(x) ≤ g(0) and:

g(x) =

∫ ∞
0

g(x− y)F{dy}

Then for all x, one has g(x) = g(0).

Proof
Let us consider that at every renewal instant one buys a product whose value evolves as time

elapses and is given by function z (by convention z is null on R−∗). An example of function z
could be z(x) = 1x≤δ meaning that the product price is 1 until δ time unit elapses and then
the price becomes 0 (a sharp amortization of the price). One is interested to study the function
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Z(x) which is defined as the expectation of the value at time x of all products that have been
bought. Reasoning about the first renewal instant that occurs after 0, one gets the following
renewal equation:

Z(x) = z(x) +

∫ x

0

Z(x− y)F{dy} (2.1)

This lemma relates Z with U .

Lemma 2.14 Let F be a distribution whose support is included in ]0,∞[ and let z be a function
bounded on bounded intervals.
Then the function Z defined by Z(x)

def
=
∫ x

0
z(x − y)U{dy} is the single solution, bounded on

bounded intervals, of (2.1).

Proof
In the sequel we say that U ? z is the solution of the renewal equation associated with z.

Lemma 2.15 Let F be a non arithmetic distribution whose support is included in ]0,∞[. Let z
be a continuous function whose support is included in [0, h]. Let Z be the corresponding solution
of the renewal equation. Then Z is uniformly continuous and for every a ≥ 0 one has:

lim
x→∞

Z(x+ a)− Z(x) = 0

Proof
The next proposition establishes that a property of the asympotic behaviour of measure U

entails a similar property for the solution Z of the renewal equation.

Proposition 2.16 Let F be a distribution whose support is included in ]0,∞[ and U be the mea-
sure defined by U def

=
∑
k∈N F

k?. Let us suppose that there exists η > 0 and an increasing sequence
of instants tn going to ∞ such that:

lim
n→∞

U(tn)− U(tn − h) = hη for all h > 0

Then for every function z directly Riemann integrable, the solution Z of the renewal equation
fulfills:

lim
n→∞

Z(tn) = η

∫ ∞
0

z(x)dx

Proof
We are now in position to establish the renewal theorem.

Theorem 2.17 Let F be a non arithmetic distribution whose support in included R+∗ with (finite
or infinite) expectation µ and let U be the measure defined by U def

=
∑
k∈N F

k?. Then:

lim
t→∞

U(t)− U(t− h) =
h

µ
for all h > 0

Proof
The following theorem allows to study the asymptotic behaviour of rewards for renewal instants.

Its omitted proof is immediately obtained by substituting tn by x in the proof of proposition 2.16.

Theorem 2.18 Let z be a directly Riemann integrable function, F be a non arithmetic distribution
whose support is included in R+∗ with (finite or infinite) expectation µ and Z be the corresponding
solution of the renewal equation. Then:

lim
x→∞

Z(x) = µ−1

∫ ∞
0

z(y)dy

We also provide an intuitive justification of this theorem. Let us consider a large x as the
current instant (see Figure 2.1). Assume that there has been approximatively in the past one
renewal instant uniformly distributed per interval [x−iµ, x−(i+1)µ]. Then: Z(x) ≈ 1

µ

∫ µ
0
z(y)dy+

1
µ

∫ 2µ

µ
z(y)dy + · · · yielding the equality of the theorem.
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Figure 2.1: An interpretation of Theorem 2.18

2.1.3 Generalizations
One straightforwardly generalizes the previous results when F has 0 for atom, i.e. 0 < p

def
=

F (0) < 1. Indeed, one reduces it to the previous case by considering that the renewal instants are
produced by the following mechanism:

• Choose a number of repetitions of renewal at the same instant with a Bernoulli law whose
parameter is p.

• Choose the next renewal instant with distribution G defined by G(0)
def
= 0 and G(x)

def
=

(1− p)−1(F (x)− p) for x > 0.

Let us denote U def
=
∑
i∈N F

i? and V
def
=
∑
i∈NG

i?. Using the above reasoning, one has U =
(1− p)−1V . So, the results are still applicable.
One also generalizes the results with a delayed renewal process, where the first renewal instant is
not necessarily 0 but is randomly chosen by a distribution G. Afterwards, the process behaves as
a standard renewal process. Let V (t), be the number of renewal instants until t, then V fulfills:
V = G ? U where U is the number of renewal instants of the standard process. So for h > 0, one
has:

V (t+ h)− V (t) =

∫ t+h

0

U(t+ h− y)− U(t− y)G{dy}

Let t0 be such that 1−G(t0) ≤ ε and let t1 be such that for all t ≥ t1,
one has |U(t+ h)− U(t)− h/µ| ≤ ε.
Then for all t ≥ t0 + t1, one gets:
|V (t+ h)− V (t)− h/µ|
≤

∫ t0
0
|U(t+ h− y)− U(t− y)− hµ|G{dy}+

∫ t+h

t0
|U(t+ h− y)− U(t− y)|G{dy}+ h/µ

∫∞
t0
G{dy}

≤ (1 + Ch + h/µ)ε

The same reasoning for the delayed solutions of the renewal equation can be performed with
the restriction that they must be bounded. This yields to the following theorem which includes
the previous generalizations.
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Theorem 2.19 Let G be a distribution whose support is included in R+ and F be a non arithmetic
distribution whose support is included in R+ with a (finite or infinite) expectation µ. Let U be the
measure defined by U def

=
∑
k∈N F

k? and V def
= G ? U . Then:

lim
t→∞

V (t)− V (t+ h) =
h

µ
for all h > 0

Moreover, let z be a directly Riemann integrable function and Z be the corresponding solution of
the renewal equation. If Z is bounded then:

lim
x→∞

(G ? Z)(x) = µ−1

∫ ∞
0

z(y)dy

2.2 Continuous time Markov chains [CIN 75]

2.2.1 Presentation
A Continuous Time Markov Chain (CTMC) is a DES with the following features:

• the time interval between events Tn is a random variable whose distribution is the exponential
one and whose rate only depends on state Sn. More formally:

Pr(Tn ≤ τ | S0 = si0 , ..., Sn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Tn ≤ τ | Sn = si)
def
= 1− e−λi·τ

• The selection of the state that follows the current state only depends on that state and the
transition probabilities remain constant1 along the run:

Pr(Sn+1 = sj | S0 = si0 , ..., Sn = si, T0 ≤ τ0, ..., Tn ≤ τn) =

Pr(Sn+1 = sj | Sn = si)
def
= P[i, j]

def
= pij

The DTMC defined by transition matrix P is called the embedded chain. It observes the
state changes of the CTMC without taking into account the time elapsed. A state of the CTMC
is absorbing if it is absorbing w.r.t. the embedded DTMC. The chain is said irreducible if the
embedded chain is irreducible.

The choice of the exponential distribution is fundamental since the distribution of the remaining
time after τ , is the same as the original one (τ ′ > τ):

Pr(T > τ ′ | T > τ) =
Pr(T > τ ′)

Pr(T > τ)
=
e−λτ

′

e−λτ
= e−λ(τ ′−τ) = Pr(T > τ ′ − τ)

Furthermore let X (resp. Y independent from X) follow an exponential distribution with rate
λ (resp. µ). Then: Pr(min(X,Y ) > τ) = e−λτe−µτ = e−(λ+µ)τ . So min(X,Y ) follows an
exponential distribution with rate λ+ µ. Last Pr(X < Y ) =

∫∞
0
e−µτλe−λτdτ = λ

λ+µ .
A CTMC has also an oriented graph representation defined as follows:

• The set of vertices is the set of the states of the CTMC;

• There is an edge from si to sj labelled by λipij if pij > 0 and si 6= sj . This choice of labels
will be justified in section 2.2.2.
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Figure 2.3: An infinite-server queue

Example 2.20 (A single-server queue) Figure 2.2 represents the behaviour of a client queue
in front of a service. Interarrival times of client are i.i.d. and their common distribution is an
exponential one with rate λ. The service time has also an exponential distribution with rate µ.
One client is served at a time. The states of the infinite CTMC are characterized by the number
of clients. The exit rate of state 0 is λ (the arrival of a client) while the exit rate of state n ≥ 1 is
λ+ µ. Here we use the fact that if X (resp. Y ) has an exponential distribution with rate λ (resp.
µ) and X and Y are independent then min(X,Y ) has an exponential distribution with rate λ+ µ.
Its is also known that Pr(X < Y ) = λ

λ+µ . Thus for n ≥ 1, pn,n+1 = λ
λ+µ and pn,n−1 = µ

λ+µ .

Example 2.21 (An infinite-server queue) Figure 2.3 represents the behaviour of a client queue
in front of a multi-threaded service. While the parameters of the system are the same as the pre-
vious ones, the clients are served simultaneously, each one by its own server. Then the end of
a service in state n follows an exponential distribution with rate nµ. So its exit rate is λ + nµ,
pn,n+1 = λ

λ+nµ and pn,n−1 = nµ
λ+nµ .

Example 2.22 (A tandem queue) Figure 2.4 represents a more complex system when clients
are successively served by two servers, one with rate µ and the other with rate δ. This system

1Sometimes these chains are called homogeneous CTMC.
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Figure 2.4: A tandem queue
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is known as a tandem queue. Thus the states of the CTMC are indexed by a pair of integers
corresponding to the number of clients in each queue. We leave it to the reader to check that the
infinite graph on the right part of the figure is the CTMC associated with this system.

2.2.2 Transient behaviour of a CTMC

In a CTMC, due to the memoryless property of the exponential distribution, the evolution of the
DES only depends on its current state. Let πij(τ) denote the probability that at time τ , the CTMC
is in state sj knowing that at time 0 the CTMC is in state si. Then by the memoryless property,
πij(τ) is also the probability that at time ∆ + τ , the CTMC is in state sj knowing that at time ∆
the CTMC is in state si. Thus the following equation is satisfied:

πij(∆ + τ) =
∑
k

πik(∆)πkj(τ) (2.2)

We now study the transient behaviour of a CTMC and first its smoothness. Let us define
matrix Q by: qij

def
= λi · pij for i 6= j and qii

def
= (pii − 1)λi(= −

∑
j 6=i qij). Matrix Q is called

the infinitesimal generator of the CTMC. The next proposition shows that the behaviour of the
CTMC fulfills a backward differential equation system related to Q.

Proposition 2.23 Let C be a CTMC with P its transition matrix and λ its rate vector. The
family of functions {πij}ij satisfies the following properties:

• For all i 6= j, limτ↓0 πii(τ) = 1 and limτ↓0 πij(τ) = 0;

• For all i, j, πij is differentiable and fulfills: dπij(τ)
dτ =

∑
k qikπkj(τ).

Proof
Introducing matrix Π whose item Π[i, j] is πij , the previous equation can be rewritten:

dΠ

dτ
= Q ·Π (2.3)

Looking at the proof, it could be wrongly (why?) deduced that by another use of (2.2), one would
obtain dΠ

dτ = Π·Q. In fact we need additional constraints in order to get such a forward differential
equation system.

For instance observe that the time divergence expressed by (1.1) may be falsified. Let us

consider an infinite CTMC whose set of states is N and whose transitions are: i 2i−→ i + 1. Then
the mean time of an execution is 2, implying that almost surely an infinite execution lasts a finite
time! The next lemma exhibits a condition that excludes such pathologic behaviours and provides
a useful bound on the probability that n events take place in a time interval.

Lemma 2.24 Let C be a CTMC with P its transition matrix and λ its rate vector. Define α def
=

supi(λi) and assume that α <∞. Then for all ∆:

Pr(
∑
m≤n

Tm ≤ ∆) ≤ 1− e−α∆
∑

0≤m≤n

(α∆)m

m!

In particular:
lim
n→∞

Pr(
∑
m≤n

Tm ≤ ∆) = 0

Proof
As a consequence when α is finite, (1.1) holds. We also establish that the set of functions πij

follows a forward differential equation system.
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Proposition 2.25 Let C be a CTMC with P its transition matrix and λ its rate vector such that
for α def

= supk(λk) is finite. Then the family of functions {πij} fulfills:

dπij(τ)

dτ
=
∑
k

πik(τ)qkj

which can be rewritten as:
dΠ

dτ
= Π ·Q (2.4)

Proof
W.r.t. a state point of view (i.e. forgetting the events) a CTMC is indifferently specified by its

infinitesimal generator Q or by its transition matrix P and its exit rate vector λ.

2.2.3 Steady-state behaviour of a CTMC

The classification of states (transient, null recurrent or positive recurrent) has the same definition
as for the discrete case (see section 1.3.2). One observes that the recurrent character only depends
on P (but not the distinction between null or positive recurrence). So states are recurrent in the
CTMC iff they are recurrent in the embedded DTMC. Using renewal theory, we establish a first
characterization of positive recurrence.

Theorem 2.26 Let C be a CTMC (with P, λ and Q defined as usual). Let i be a recurrent state
and Di be the mean time between two visits of i. Then:

lim
τ→∞

πii(τ) =
1

λiDi

Thus i is positive recurrent iff limτ→∞ πii(τ) > 0.

Proof
With this characterization, we achieve our study of irreducibility.

Proposition 2.27 Let i, j be two states of an irreducible recurrent CTMC. Then i is positive
recurrent iff j is positive recurrent.

Proof
We now present two theorems similar to theorems 1.20 and 1.17 for the discrete case.

Theorem 2.28 Let C be an irreducible CTMC (with P, λ and Q defined as usual) whose states are
recurrent. Let v be a non negative and non null solution de v = v ·P (unique up to a multiplicative
factor). Then vector u defined by ui

def
= vi

λi
fulfills:

u ·Q = 0

Conversely, let u′ 6= 0 be such that u′ ·Q = 0 and for all i u′i ≥ 0, then there exists α such that
u′i = α · ui
Proof

The above equation is called (global) balance equation. The following theorem establishes
a necessary and sufficient condition for the existence and unicity of a steady-state distribution.
Additionally it proves that when the CTMC is recurrent then time diverges almost surely (why?).

Theorem 2.29 Let C be an irreducible CTMC (with P, λ and Q defined as usual) whose states
are recurrent. If the states are null recurrent then the transient distribution π(τ) converges to 0
when time τ goes to infinity. Otherwise it converges to a steady-state distribution u which is the
single solution of u ·Q = 0∧u · 1T = 1∧u ≥ 0. Furthermore for any state i, ui = 1

Diλi
where Di

is the mean return time to state i.
Moreover, let v 6= 0 be such that for all i vi ≥ 0 and v = v · P (unique up to a multiplicative
factor). Then the states are positive recurrent iff s

def
=
∑
i∈N

vi
λi

is finite.
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Proof
We now provide a useful characterization of the positive recurrence for irreducible CTMCs.

Proposition 2.30 Let C be an irreducible CTMC, (with P, λ and Q defined as usual) such that
sup(λs | s ∈ S) is finite. Then the states of C are positive recurrent iff there exists u such that
u ·Q = 0 with for all i, ui > 0 and

∑
i∈S ui <∞.

Proof
Observe that we have required that sup(λs | s ∈ S) is finite. Indeed without an additional

condition, this proposition is false. Let us examine the example of the transient random walk with
p > 1

2 . This random walk admits a positive vector v that verifies v · P = v (but
∑
i vi = ∞).

Define λi
def
= 2i viv0

. Then ui
def
= vi

λi
= 2−iv0 fulfills u ·Q = 0 and

∑
i ui <∞.

The table below summarizes the characterization of the status of an irreducible CTMC.

Status Characterization

Recurrent The embedded DTMC is recurrent.

Positive Recurrent

(1) The embedded DTMC is recurrent
(implied by (2) when sup(λi | i ∈ S) <∞)

and
(2) ∃u > 0 u ·Q = 0 ∧

∑
i∈S ui = 1

(u is the steady-state distribution)

We illustrate these characterizations with the analysis of the infinite-server queue. First we
discriminate between recurrence and transience. So we are looking for a positive non null bounded
solution of:

x1 =
λ

µ+ λ
x2 and ∀i ≥ 2 xi =

λ

iµ+ λ
xi+1 +

iµ

iµ+ λ
xi−1

It can be rewritten as:

x1 =
λ

µ+ λ
x2 and ∀i ≥ 2 xi+1 − xi =

iµ

λ
(xi − xi−1)

By induction:

∀i ≥ 1 xi+1 − xi > 0 and ∀i ≥ i0
def
=

⌈
λ

µ

⌉
xi+1 − xi ≥ xi − xi−1

Thus ∀i ≥ i0 xi ≥ (i − i0)(xi0 − xi0−1) implying that the xi’s are unbounded. So the CTMC is
recurrent.
Let us state the global balance equation x ·Q = 0:

λx0 = µx1 and ∀i ≥ 1 λxi + iµxi = (i+ 1)µxi+1 + λxi−1

Observe that the first equation can be subtracted to the second one yielding λx1 = 2µx2 and by
induction, one gets the following local balance equations:

∀i ≥ 0 λxi = (i+ 1)µxi+1

Let ρ def
= λ

µ . For i ≥ 0, xi = x0
ρi

i! . Thus the CTMC is positive recurrent and π∞(i) = e−ρ ρ
i

i! .
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Figure 2.5: Illustration of the uniformization technique

2.3 Finite continuous time Markov chains
We now exploit the results of the previous sections in order to provide algorithms for computing
the transient and the steady-state distributions of a CTMC.

2.3.1 Transient analysis of finite CTMC

In a finite CTMC, the condition of proposition 2.25 is obviously satisfied. So the forward differ-
ential equation system (2.4) could be the basis of an approximate computation of the transient
distribution.

However there is a more efficient and accurate technique to compute the transient distribution.
As a first step, given an arbitrary CTMC C, we show how to obtain a uniform CTMC C with the
same infinitesimal generator. A uniform CTMC is a CTMC with constant exit rates.

Let us pick an arbitrary value µ ≥ supi(λi). Then for every state si, its exit rate in C′ λ′i, is
equal to µ. The transition matrix P′ is defined by:

∀i 6= j p′ij =
λi
µ
pij and p′ii = 1−

∑
j 6=i

p′ij

Since for all j 6= i, 0 ≤ p′ij ≤ pij one gets pii ≤ p′ii ≤ 1. So P′ is a transition matrix. Now:

∀i 6= j q′ij = p′ijλ
′
i =

λi
µ
pijµ = pijλi = qij

Thus the infinitesimal generator is unchanged.
Figure 2.5 illustrates the uniformization of a chain. First one chooses µ = 10 ≥ max(1, 2, 5).

Then the p′ij ’s are defined accordingly: for instance, p′12 = 5
100.7 = 0.35.
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The expression of the transient distribution π(τ) is obtained as follows. We decompose this
probability depending on the number of state changes.

π(τ) =
∑
n∈N

Pr(
∑
m<n

Tm ≤ τ <
∑
m≤n

Tm)π(0)(P′)n

The transient distribution of the states knowing that there have been n state changes is given by
the behaviour of the embedded chain and is equal to π(0) · (P′)n. On the other hand,

Pr(
∑
m<n

Tm ≤ τ <
∑
m≤n

Tm)

is the probability of exactly n state changes in [0, τ ] when Tm follows an exponential distribution
with parameter µ. Using the proof of lemma 2.24, one obtains:

Pr(
∑
m<n

Tm ≤ τ <
∑
m≤n

Tm) =

1− e−µτ
∑

0≤m<n

(µτ)m

m!

−
1− e−µτ

∑
0≤m<n+1

(µτ)m

m!


= e−µτ

(µτ)n

n!

So we obtain:

π(τ) = π(0) ·

e−µτ ∑
n≥0

(µτ)n(P′)n

n!


From an implementation point of view, this infinite sum is not a problem as it converges very
quickly. For instance, the summation can be stopped as soon as the required precision is greater
than e−µτ ·(µτ)n

n! (see [FOX 88] for more information on the convergence of this sum).
This technique has been introduced in [JEN 53] and is known as the uniformization technique.

2.3.2 Steady-state analysis of finite CTMC

Let us examine the asympotic behaviour of a finite CTMC. The easiest way to do it consists
in exploiting the embedded chain. As observed during the presentation of the uniformization
technique, it is not unique. Let us focus on a DTMC obtained with a choice of µ > maxi(λi). In
this case, every state si fulfills p′ii > 0. Thus every terminal scc of this DTMC is ergodic. Using
proposition 1.27 this implies that it has a steady-state distribution. This distribution measures in
the original CTMC the steady-state probability of occurrence of states. Since the chain is uniform,
the mean sojourn time in states is identical ( 1

µ ). Thus using theorem 2.29, it is also the steady-state
distribution of the CTMC.

In the particular case of an ergodic chain, using again theorem 2.29 this distribution is obtained
by solving the following equation (X is the unknown distribution).

X ·Q = 0 and X · 1T = 1

2.4 Proofs

2.4.1 Proofs of section 2.1.1
Proof of lemma 2.1
Suppose there exists ε > 0 such that ∀n ∃n′ > n |xn′ − l| ≥ ε. Iterating this property one
extracts a sequence (xnr )r∈N distant of at least ε from l. Since the initial sequence is bounded
one extracts from sequence (xnr )r∈N a convergent subsequence thus converging toward l, yielding
a contradiction.

q.e.d. (lemma 2.1) ♦♦♦
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Proof of proposition 2.4
Let us pick some countable and dense set of reals {ai}i∈N. Using lemma 2.2, there exists a
subsequence {fnr}r∈N which converges for all ai.
Let us fix a bounded interval I. Let ε et δ corresponding to the definition of equicontinuity. Using
density, there exists a finite subset of indices S such that for all x ∈ I, there exists ai with i ∈ S
and |x − ai| ≤ δ. On the other hand, there exists r0 such that for all r, r′ ≥ r0 and i ∈ S,
|fnr (ai) − fnr′ (ai)| ≤ ε. So for all x ∈ I, |fnr (x) − fnr′ (x)| ≤ 3ε. This proves that {fnr (x)}r∈N
is a Cauchy sequence and thus converges to a limit denoted f(x). The proof also establishes that
the convergence is uniform over interval I.
The uniform continuity is obtained by letting r go to infinity in the implication:

|x− x′| ≤ δ ⇒ |fnr (x)− fnr (x′)| ≤ ε

q.e.d. (proposition 2.4) ♦♦♦

Proof of proposition 2.6
One picks a point r which is not an atom for every measure µn, and a countable dense set {ai}i∈N
of R \ {r}. One introduces functions fn defined on R \ {r} by:

• fn(x)
def
= µn([r, x]) if x > r;

• fn(x)
def
= µn([x, r]) if x < r.

One applies lemma 2.2 to these sequences of functions and points. Let fns be the convergent
subsequence, one defines function g by:

• g(ai)
def
= lims→∞ fns(ai);

• g(x)
def
= inf(g(ai) | ai ≥ x) for x > r;

• g(x)
def
= inf(g(ai) | ai ≤ x) for x < r.

The function g is defined over R\{r}, non increasing over ]−∞, r[ and non decreasing over ]r,+∞[.
So it admits left and right limits g(x−), g(x+) for all x.
One introduces function h equal to g over its continuity points and such that:

• for every discontinuity point x < r, h(x)
def
= g(x−);

• for every discontinuity point x > r, h(x)
def
= g(x+).

Then one defines a measure µ by

• ∀a < r µ{[a, r[} def
= h(a)− g(r−);

• ∀b > r µ{]r, b]} def
= h(b)− g(r+);

• µ{r} = g(r+) + g(r−).

Let us prove that {µns}s∈N converges to µ. We establish the case of a continuity interval [a, b]
with −∞ < a < r < b <∞ and let the other cases to the reader. Let ε > 0, there exists:
ai1 ≤ a ≤ ai2 < r < ai3 ≤ b ≤ ai4 such that:
g(ai1) ≥ h(a) ≥ g(ai2) ≥ g(ai1)− ε and g(ai3) ≤ h(b) ≤ g(ai4) ≤ g(ai3) + ε.
On the other hand, there exists s0 such that for all s ≥ s0, and 1 ≤ j ≤ 4 one has:
|g(aij )− fns(aij )| ≤ ε
So,
µ{[a, b]} ≤ µ{[ai2 , ai3 ]}+ 2ε ≤ µns{[ai2 , ai3 ]}+ 4ε ≤ µns{[a, b]}+ 4ε
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Similarly it can be proven that:
µ{[a, b]} ≥ µns{[a, b]} − 4ε

Assume that every convergent subsequence of {µn}n∈N converges toward µ but {µn}n∈N does not
converge toward µ. There exists ε > 0 and I, a continuity interval of µ, such that:
∀n ∃n′ > n |µn′{I} − µ{I}| ≥ ε
Iterating this property, one obtains a subsequence (µns)s∈N with µns{I} distant from at least ε
from µ{I}. Since the subsequence fulfills the hypotheses of the proposition, one extracts from
{µns}s∈N a convergent subsequence which must converges to µ, yielding a contradiction.

q.e.d. (proposition 2.6) ♦♦♦

Proof of lemma 2.7
Let I be a bounded interval, its indicator function can be obtained as the increasing limit of
functions of Cf . The monotone convergence theorem allows us to conclude.

q.e.d. (lemma 2.7) ♦♦♦

Proof of proposition 2.8
Let u ∈ Cf with M = sup(|u(x)|). Pick some ε > 0. Let I be a bounded continuity interval of µ
containing the support of u. Define B def

= sup(µn{I}).
Since u is uniformly continuous, one partitions I in continuity intervals I1, . . . , Ik such that for all
x ∈ Ij |u(x) − uj | ≤ ε given some arbitrary uj ∈ u(Ij). Define v by v(x)

def
= uj for x ∈ Ij and

v(x)
def
= 0 for x ∈ Ic.

By hypothesis, there exists n0 such that for all n ≥ n0 and j, one has |µn{Ij} − µ{Ij}| ≤ ε/k.
So:∣∣∫ u(x)µ{dx} −

∫
u(x)µn{dx}

∣∣ =
∣∣∣∑k

j=1

∫
Ij
u(x)µ{dx} −

∫
Ij
u(x)µn{dx}

∣∣∣
=
∣∣∣∑k

j=1

∫
Ij

(u(x)− v(x))µ{dx}+
∫
Ij
v(x)µ{dx} −

∫
Ij
v(x)µn{dx}+

∫
Ij

(v(x)− u(x))µn{dx}
∣∣∣

≤
∑k
j=1

∫
Ij
|u(x)− v(x)|µ{dx}+Mε+

∑k
j=1

∫
Ij
|v(x)− u(x)|µn{dx}

≤ (µ{I}+M +B)ε

q.e.d. (proposition 2.8) ♦♦♦

Proof of lemma 2.10
A non negative function z is Lebesgue integrable if:
sup

(∑
i∈N inf (z(x) | x ∈ Ei) · µ(Ei) | {Ei}i∈N countable and measurable partition of R+

)
<∞

with µ the Lebesgue measure on the real line.
So, limh→0 h

∑
k∈Nmkh is finite.

Assume that z is non increasing. Then h
∑
k∈NMkh ≤ hM0h + h

∑
k∈Nmkh. So the two limits

converge and are equal.

q.e.d. (proposition 2.10) ♦♦♦

2.4.2 Proofs of section 2.1.2
Proof of lemma 2.11
Define Un

def
=
∑n
k=0 F

k?. One observes that:∫ x

0

(1− F (x− y))Un{dy} = 1− F (n+1)?(x) ≤ 1

Pick τ > 0 and η > 0 such that 1− F (τ) ≥ η. Then:

η(Un(x)− Un(x− τ)) = η

∫ x

x−τ
Un{dy} ≤

∫ x

x−τ
(1− F (x− y))Un{dy} ≤ 1
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Letting n go to ∞, one concludes that U{I} is bounded by η−1 on every interval I with length τ
and that U{I} is bounded by Ch

def
= η−1(1 + bhτ c) on every interval I with length h.

In particular U(x) ≤ Cx is finite.

q.e.d. (lemma 2.11) ♦♦♦

Proof of lemma 2.12
One observes that if a and b belong to Σ then a+ b ∈ Σ (proof left to the reader).

Let us suppose that δ def
= inf(b − a | a < b ∈ Σ) > 0. Pick some pair a, b ∈ Σ such that

h
def
= b− a < 2δ. Let n ∈ N be such that nb ≥ (n+ 1)a, then we claim that:

Σ ∩ [na, (n+ 1)a] = {na+ kh | na ≤ na+ kh ≤ (n+ 1)a}

Since na + kh = (n − k)a + kb, one deduces that: {na + kh | na ≤ na + kh ≤ (n + 1)a} ⊆
Σ∩[na, (n+1)a]. Assume that there exists c ∈ Σ∩[na, (n+1)a]\{na+kh | na ≤ na+kh ≤ (n+1)a}.
Thus there exists k such that na+ kh < c < na+ (k + 1)h and so either c− (na+ kh) ≤ b−a

2 < δ

or na+ (k + 1)h− c ≤ b−a
2 < δ yielding in both cases a contradiction.

Since (n+ 1)a ∈ Σ, one deduces that a and b are multiples of h. Let c be another increasing point
and let n be chosen such that nh ≥ c. Then na ≤ na+ c ≤ nb. So, c is also a multiple of h.
Thus we have established that for all ε > 0, there exists a < b two points of Σ with b− a < ε. As
previously observed, for n0 large enough,

⋃
n≥n0

[na, nb] = [n0a,∞[. This concludes the proof.

q.e.d. (lemma 2.12) ♦♦♦

Proof of lemma 2.13
By induction, one obtains that g(x) =

∫∞
0
g(x − y)F k?{dy}. So the equality is possible only if

g(−y) = g(0) for all y ∈ Σ, defined as in lemma 2.12. Since Σ is asympotically dense and g is
uniformly continuous one deduces that limy→∞ g(−y) = g(0).
There exists δ > 0 such that F (δ) < 1. Observe that

∑
i<n Ti ≤ kδ implies that |{i | i < n ∧ Ti ≥

δ}| ≤ k or equivalently |{i | i < n ∧ Ti < δ}| ≥ n− k. So, for all k and for all n:
Fn?(kδ) ≤

(
n

n−k
)
F (δ)n−k

Hence for all k, limn→∞ Fn?(kδ) = 0.
Let x and ε > 0 be arbitrarily chosen, there exists y0 such that ∀y ≥ y0 g(x− y) ≥ g(0)− ε.
Let n be such that Fn?(y0) ≤ ε. One obtains:

g(x) =

∫ ∞
0

g(x− y)Fn?{dy} ≥
∫ ∞
y0

g(x− y)Fn?{dy} ≥ (g(0)− ε)(1− ε)

Letting ε go to 0, g(x) ≥ g(0). Since g(x) ≤ g(0), one deduces that g(x) = g(0).

q.e.d. (lemma 2.13) ♦♦♦

Proof of lemma 2.14
By construction, Un(x) defined as in lemma 2.11 converges to U(x). Define Hn

def
= Un ? z, Hn(x)

goes to (U ? z)(x) uniformly on every bounded interval:

|(U ? z)(x)−Hn(x)| ≤ sup
y≤x

(|z(y)|)(U(x)− Un(x))

One observes that Hn+1 = z + F ? Hn.
Since the convergence of Hn is uniform on every bounded interval, one deduces that F ? Hn

converges to F ? (U ? z). So U ? z = z + F ? (U ? z) which proves that Z is a solution of (2.1).
Let V be the difference of two solutions of 2.1 bounded on every bounded interval. V fulfills
V = F ? V . By induction V = F k? ? V . Since F k? converges to 0 (U is finite) and V is bounded,
letting k go to infinity, one gets V = 0.

q.e.d. (lemma 2.14) ♦♦♦
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Proof of lemma 2.15
First, we suppose that z has a continuous derivative.
Let us consider the interval [0,M ] with M ≥ x+ δ. For all y, one has:
δ−1(z(x− y)− z(x+ δ − y)) = z′(x+ δx − y) with 0 < δx < δ
z′ is uniformly continuous in [0,M ]. So let ε > 0. There exists δ > 0 such that:
|z′(u)− z′(v)| ≤ ε when |u− v| ≤ δ
So:
|
∫∞

0
δ−1(z(x− y)− z(x+ δ − y))U{dy} −

∫∞
0
z′(x− y)U{dy}|

= |
∫M

0
z′(x− y + δx)− z′(x− y)U{dy}| ≤ U(M)ε.

Hence Z(x) has a derivative
∫∞

0
z′(x− y)U{dy} which fulfills the renewal equation corresponding

to z′.
Let v be a continuous function whose support is included in [0, h] and V be the corresponding
solution of the renewal equation. The support of function v(x+ δ)−v(x) is included in an interval
of length h+ 2δ and so: |V (x+ δ)− V (x)| ≤ Ch+2δ sup |v(x+ δ)− v(x)|. This establishes that V
is uniformly continuous since v is uniformly continuous. Applying this reasoning to z′ establishes
that Z ′ is uniformly continuous. Moreover, Z ′ is bounded by supx(|z′(x)|)Ch.

So, η def
= lim supx→∞ Z ′(x) is finite. Let us pick a sequence tn such that Z ′(tn) converges to η.

The family of functions ζn(x)
def
= Z ′(tn + x) is equicontinuous. Using proposition 2.4, one extracts

a subsequence Z ′(tnr + x) which converges, uniformly on every bounded interval, towards a limit
ζ uniformly continuous (and bounded).
ζn fulfills equation:

ζn(x) = z′(tn + x) +

∫ ∞
0

ζn(x− y)F{dy}

Letting n go to infinity and using the dominated convergence theorem yields:

ζ(x) =

∫ ∞
0

ζ(x− y)F{dy}

ζ fulfills the hypotheses of lemma 2.13 (since ζ(0) = η). So for all x, Z ′(tnr +x)→ η uniformly on
every bounded interval. Fix some arbitrary a. Since Z(tnr + a)− Z(tnr ) = Z ′(tnr + x)a for some
x ∈ [0, a], one deduces that limr→∞ Z(tnr + a)−Z(tnr ) = aη. Z is bounded implying η = 0. The
same reasoning yields: lim infx→∞ Z ′(x)=0. So limx→∞ Z ′(x) exists and is equal to 0. Using the
mean value theorem, the result is proved for a continuously derivable function z.
Every continuous function with support in [0, h] can be approximated within ε > 0 by a contin-
uously derivable fonction z1, with support in [0, h]. Let Z1 be the corresponding solution of the
renewal equation. Since |z(x)− z1(x)| ≤ ε, one has |Z(x)− Z1(x)| ≤ Chε. Fix some arbitrary a.
For x large enough, |Z1(x+ a)− Z1(x)| ≤ ε. So |Z(x+ a)− Z(x)| ≤ (2Ch + 1)ε which yields the
result.

q.e.d. (lemma 2.15) ♦♦♦

Proof of proposition 2.16
Let h > 0 be fixed then:
limn→∞ U(tn)− U(tn − h) = hη and limn→∞ U(tn)− U(tn − 2h) = 2hη
Thus: limn→∞ U(tn − h)− U(tn − 2h) = hη
By induction for any k, limn→∞ U(tn − kh)− U(tn − (k + 1)h) = hη

Let zkh be the indicator function of interval [kh, kh + h[ and Zkh be the corresponding solution
of the renewal equation. For a given z, mkh and Mkh are defined as in the direct Riemman
integration.
Zkh(x) = U(x− kh)− U(x− (k + 1)h) ≤ Ch for all k and all x.
So, the infinite sum of fonctions Zmh

def
=
∑
kmkhZkh and ZMh

def
=
∑
kMkhZkh are finite and

constitute a frame for Z.
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For all ε > 0, there exists k0 such that one has
∑
k≥k0 Mkh ≤ ε.

Pick n0 such that for all n ≥ n0 and all k < k0, |U(tn − kh)− U(tn − (k + 1)h)− hη| ≤ ε/k0.
Then:
|
∑
kMkhZkh(tn)−

∑
k hηMkh| ≤

|
∑
k<k0

MkhZkh(tn)−
∑
k<k0

hηMkh|+ |
∑
k≥k0 MkhZkh(tn)|+ |hη

∑
k≥k0 Mkh|

≤ (1 + Ch + hη)ε
One concludes that limn→∞ ZMh (tn) = η

∑
k hMkh.

By a similar reasoning limn→∞ Zmh (tn) = η
∑
k hmkh.

So, every limit l of convergent subsequence of Z(tn) fulfills:

η
∑
k

hmkh ≤ l ≤ η
∑
k

hMkh

Letting h go to 0, one obtains l = η
∫∞

0
z(x)dx. Since the Z(tn)’s are bounded, one concludes that

limn→∞ Z(tn) exists (lemma 2.1) and is equal to η
∫∞

0
z(x)dx.

q.e.d. (proposition 2.16) ♦♦♦

Proof of theorem 2.17
Let M be an arbitrary measure. Denote by Mt the measure defined by Mt{I}

def
= M{I + t} where

I is an interval and I + t is the translation by t of interval I.
Let I be a bounded interval, we know by lemma 2.11 that supt∈R Ut{I} is finite. Applying
proposition 2.6, one deduces that there exists a sequence tk → ∞ such that Utk{I} converges
toward a measure V .
Let z be a continuous function whose support is included in [0, a] and Z be the corresponding
solution of the renewal equation. Let x ≥ 0, using proposition 2.8, one gets:

lim
k→∞

Z(tk+x+a) = lim
k→∞

∫ tk+x+a

tk+x

z(tk+x+a−y)U{dy} = lim
k→∞

∫ a

0

z(a−y)Utk+x{dy} =
∫ a

0

z(a−y)Vx{dy}

Since limk→∞ Z(tk + x + a) = limk→∞ Z(tk + a) (lemma 2.15), one deduces that V and Vx are
equal on continuous functions with bounded support. Using lemma 2.7, V = Vx. So measure V is
invariant by translation. We let the reader prove that V {I} is proportional to the length of I for
every bounded interval I. Let γ be the proportionality factor, one deduces that:
limk→∞ U(tk + h)− U(tk) = hγ (every interval is a continuity interval of V ).
Using proposition 2.16, one deduces that for every z directly Riemann integrable function and Z
the corresponding solution of the renewal equation, one has:

limk→∞ Z(tk) = γ
∫∞

0
z(y)dy

Observe that function z(x) = 1 − F (x) for x ≥ 0 is non negative and non increasing. Z the
solution of the renewal equation is the constant 1 (proof left to the reader). Moreover

∫∞
0
z(y)dy

is equal to µ. If µ <∞ then z is directly Riemmann integrable (proposition 2.10) and so µγ = 1.
If µ =∞, one truncates z and concludes that γ

∫ a
0
z(y)dy ≤ 1 for all a which implies γ = 0.

So γ is independent from the convergent subsequence and using proposition 2.6, the result is
established.

q.e.d. (theorem 2.17) ♦♦♦

2.4.3 Proofs of section 2.2.2
Proof of proposition 2.23
In order to have a state change, at least one event must occur. So:
πii(τ) ≥ e−λiτ and thus limτ↓0 πii(τ) = 1
Since for j 6= i,
πii(τ) + πij(τ) ≤ 1 one obtains limτ↓0 πij(τ) = 0
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One has (see (2.2)):
πij(τ + dτ) =

∑
k πik(τ)πkj(dτ)

Since
∑
k πik(τ) ≤ 1 and for all k, 0 ≤ πkj(τ) ≤ 1:

limdτ↓0 πij(τ + dτ) =
∑
k πik(τ) limdτ↓0 πkj(dτ) = πij(τ)

Thus πij is right-continuous and so measurable. We introduce a “renewal equation” (justified by
measurability of πij). It is based on a case decomposition w.r.t. the (possible) occurrence of the
first event in [0, τ ]:

πij(τ) = 1i=je
−λiτ+

∑
k

λipik

∫ τ

0

e−λi(τ−x)πkj(x)dx = e−λiτ

(
1i=j +

∑
k

λipik

∫ τ

0

eλixπkj(x)dx

)

Every integral is a continuous function of τ . Furthermore, the infinite sum of functions is normally
convergent (bounded by

∑
k λipikτe

λiτ ). So the infinite sum is continuous implying the continuity
of πij .
Since the πij ’s are continuous, any integral is differentiable and its derivative is equal to eλiτπkj(τ).
Due to the normal convergence of the sum of derivatives (bounded by

∑
k λipike

λiτ ), the infinite
sum is differentiable implying the differentiability of πij .
Let us compute the derivative of πij :

dπij(τ)

dτ
= e−λiτ

(∑
k

λipike
λiτπkj(τ)

)
− λiπij(τ) =

∑
k

qikπkj(τ)

q.e.d. (proposition 2.23) ♦♦♦

Proof of lemma 2.24
Let us consider the i.i.d random variables T ′n following an exponential distribution with rate α.
By hypothesis,

Pr(
∑
m≤n

Tm ≤ ∆) ≤ Pr(
∑
m≤n

T ′m ≤ ∆)

We prove by induction that gn, the density function of
∑
m≤n T

′
m, is the following one:

gn(x) = αe−αx
(αx)n

n!

The basis case n = 0 follows from the definition of the exponential distribution. Now:

gn+1(x) =

∫ x

0

gn(x− τ)g0(τ)dτ =

∫ x

0

αe−α(x−τ) (α(x− τ))n

n!
αe−ατdτ

= αe−αx
∫ x

0

α
(α(x− τ))n

n!
dτ = αe−αx

(αx)n+1

n+ 1!

The reader can check (by derivation) that the corresponding distribution is then defined by:

Pr(
∑
m≤n

T ′m ≤ ∆) = 1− e−α∆
∑

0≤m≤n

(α∆)m

m!

q.e.d. (lemma 2.24) ♦♦♦

Proof of proposition 2.25
Let us express πij(τ + dτ) conditionally w.r.t. πik(τ).

πij(τ + dτ) =
∑
k

∑
n∈N

πik(τ)Pr

∑
m≤n

Tm ≤ dτ <
∑

m≤n+1

Tm ∧ Sn = sj | S0 = sk
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Thus considering n = 0, n = 1 and n ≥ 2:

1

dτ

∣∣∣∣∣∣πij(τ + dτ)− πij(τ)(1− (1− pjj)(1− e−λjdτ ))−
∑
k 6=j

πik(τ)pkj(1− e−λkdτ )

∣∣∣∣∣∣
≤ 2

dτ

∑
k

πik(τ)Pr(T0 + T1 ≤ dτ | S0 = sk)

≤ 2

dτ
(1− e−αdτ (1 + αdτ))

(here we have used lemma 2.24)

≤ 2

dτ
(1− (1− αdτ)(1 + αdτ)) = 2α2dτ

So

lim
dτ→0

1

dτ

πij(τ + dτ)− πij(τ)(1− (1− pjj)(1− e−λjdτ ))−
∑
k 6=j

πik(τ)pkj(1− e−λkdτ )

 = 0

Now
dπij(τ)

dτ
= lim
dτ→0

1

dτ

πij(τ)(pjj − 1)(1− e−λjdτ ) +
∑
k 6=j

πik(τ)pkj(1− e−λkdτ )


= πij(τ)(pjj − 1)λj +

∑
k 6=j

πik(τ)λkpkj

(to invert the sum and the limit we have used the dominated convergence theorem
since

∑
k 6=j πik ≤ 1 and 1−e−λkdτ

dτ ≤ α)

q.e.d. (proposition 2.25) ♦♦♦

2.4.4 Proofs of section 2.2.3
Proof of theorem 2.26
Let zi(τ) be the (non increasing) probability to stay in i during at least τ time units: zi(τ)

def
= e−λiτ .

Furthermore
∫∞

0
zi(τ)dτ = 1

λi
is finite.

πii(τ) fulfills the renewal equation:

πii(τ) = zi(τ) +

∫ τ

0

πii(τ − y)F{dy}

where F is the distribution of the return time to i. Since F is the convolution the sojourn time in
i, a continuous distribution and an arbitrary distribution, F is continuous, hence non arithmetic.
Using renewal theorem 2.18:

lim
τ→∞

πii(τ) =
1

Di

∫ ∞
0

e−λiτdτ =
1

λiDi

Let i be a transient state. For all ε > 0, there is an integer n0 such that the probability of n0 visits
to i is less than ε. Let us define the (possibly infinite) random variable Ti,n of time entrance in i
at the nth visit. There is a time d such that for all n < n0, Pr(d ≤ Ti,n < ∞) ≤ ε

n0
. In addition

there is a time d′ such that the probability to stay in i at least d′ is less or equal than ε
n0

. So
πi,i(τ) ≤ Pr({∃u ≥ τ X(u) = i}) ≤ 3ε for τ ≥ d+ d′ which implies that limτ→∞ πii(τ) = 0.
Let i be a recurrent state then it is null recurrent iff Di = ∞. We have thus established the
characterization.

q.e.d. (theorem 2.26) ♦♦♦
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Proof of proposition 2.27
Assume that i is positive recurrent. There is a path from j to i and vice versa. So given an
arbitrary δ > 0, πji(δ) > 0 and πij(δ) > 0.
πjj(τ + 2δ) ≥ πji(δ)πii(τ)πij(δ) implies: limτ→∞ πjj(τ + 2δ) > 0.
So j is positive recurrent.

q.e.d. (proposition 2.27) ♦♦♦

Proof of theorem 2.28
The existence and unicity of vector v is proved by theorem 1.20.
One has: ∀i (pii − 1)vi +

∑
j 6=i pjivj = 0

Thus: ∀i (pii − 1)λiui +
∑
j 6=i λjpjiuj = 0

Which yields: ∀i qiiui +
∑
j 6=i qjiuj = 0

The other statement of the theorem is obtained by observing that the transformation of equations
can be done in the converse direction.

q.e.d. (theorem 2.28) ♦♦♦

Proof of theorem 2.29
Let r be some state of the CTMC. Let G be the distribution (which depends on the initial distri-
bution of the CTMC) of the time to reach r and Yr(τ) the probability to be in r at time τ after a
visit in r. Yr = G?Zr. Applying theorem 2.19 related to the delayed renewal process, one obtains:

lim
τ→∞

Yr(τ) =
1

λrDr

Since the probability to reach r is 1, this limit is also the limit of the probability to be in r at time
τ when τ →∞. So the transient distribution has a limit independent from the initial distribution.
If Dr =∞, (i.e. r is null recurrent) then the limit of the transient distribution is null.
Otherwise observe that Dr =

∑
i
rπri
λi

, or equivalently 1 = 1
Dr

∑
i
rπri
λi

.
We know by theorem 1.20 that whatever s, (sπsi)i is an invariant vector of the embedded DTMC
and that all these vectors are proportional. So:

rπri
Dr

=
sπsi
Ds

and then rπri
Dr

=
iπii
Di

=
1

Di

Thus:
1 =

∑
i

1

Diλi

which shows that the limits
(

1
λiDi

)
i
constitute a steady-state distribution. Moreover applying

theorem 2.28, it is the single solution of u ·Q = 0 ∧ u · 1T = 1 ∧ u ≥ 0.
Conversely let v 6= 0 be such that for all i, vi ≥ 0 and v = v ·P. Then for some α > 0, vi = α rπri.
Since Dr =

∑
i
rπri
λi

, it is finite iff
∑
i
vi
λi

is finite.

q.e.d. (theorem 2.29) ♦♦♦

Proof of proposition 2.30
Assume that the chain is positive recurrent. Then theorem 2.29 allows to conclude.

Assume there exists u such that u ·Q = 0 for all i, ui > 0 and
∑
i∈S ui is finite. Define vi

def
= uiλi.

Then v ·P = v and
∑
i∈S vi ≤ supi(λi)

∑
i∈S ui is finite.

So applying proposition 1.21, one obtains that the embedded DTMC is positive recurrent and so
the CTMC is recurrent. Applying now theorem 2.29, one finally gets that it is positive recurrent.

q.e.d. (proposition 2.30) ♦♦♦
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Chapter 3

Markov Decision Processes [PUT 94]

3.1 Presentation
The previous models of these lecture notes are purely probabilistic. In this chapter (and in the
following one), we consider models that present both non deterministic and probabilistic features.
There are several interests of such simultaneous features. Let us present two examples.

Example 3.1 (The spinner game) In this game, the player has to compose a five-digit number
whose digits are randomly chosen by a spinner during five rounds. After every round (except the
last one), the player chooses in which position he inserts the current digit. The goal of the player
is to obtain the largest number as possible. In figure 3.1, the spinner has successively output 3
placed by the player in the fifth position and 6 placed by the player in the second position.

Example 3.2 (Management of a stock) The manager of a stock in a warehouse with fixed
capacity decides at the beginning of every month, which additional stock he will order. Then
the monthly commands randomly arrive following some distribution. If the commands exceed the
inventory the commands are lost. Every unit of a stock has a monthly cost while selling it provides
a benefit. The aim of the manager is to maximize the expected profit during a year including the
value of the stock at the end of the year. In figure 3.2, the activity of two months is presented with
an excess of the demands during the second month.

An MDP is a transition system. In this chapter, we only consider a finite number of states and
transitions. The dynamic of the system is defined as follows. Non deterministically, one chooses
an action which is enabled in the current state. Then one selects randomly the next state. The
corresponding distribution depends on the current state and on the selected action. As seen in the
previous examples MDP’s have been introduced to specify optimization problems. So there is a
numerical reward associated with every pair of (current) state and (selected) action. In addition,
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Figure 3.1: The spinner game
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Figure 3.2: Management of a stock

when one considers optimization problems with finite horizon, there is a reward associated with
every (terminal) state.

Definition 3.3 A Markov decision process (MDP)M = (S, {As}s∈S , p, r, rend) is defined by:

• S, the finite set of states;

• For every state s, As, the finite set of actions enabled in s.
We denote A def

=
⋃
s∈S As, the whole set of actions.

• p, a mapping from {(s, a) | s ∈ S, a ∈ As} to the set of distributions over S. The conditional
probability transition p(s′|s, a) denotes the probability to go from s to s′ if a is selected.

• r, a mapping from {(s, a) | s ∈ S, a ∈ As} to R. r(s, a) is the reward associated with the
selection of a in state s.

• rend, a mapping from S to R. rend(s) is the reward obtained when ending in state s.

Example 3.4 (A simple MDP) Figure 3.3 depicts a MDP with two states s1 and s2. In s1

actions a and b are enabled while in s2 only action a is possible. An edge from a state to another
one is labelled by (1) the action that has triggered the transition, (2) the probability that this
transition is selected given the chosen action and, (3) the reward associated with the source state
and the transition. For instance, the transition labelled by (a, 0.7, 5) means that when a is chosen
in state s1, the probability that the next state is s2, p(s2|s1, a), is equal to 0.7 and the reward
r(s1, a) is equal to 5. The outgoing edge from a state with no destination is labelled by its terminal
reward. There are some redundant information in the graph and this suggests that the reward could
also depend on the destination state. We discuss this topic later on.

A history is a possible finite or infinite execution of the MDP.

Definition 3.5 Given an MDPM, a history is a finite or infinite sequence alternating states and
actions σ = (s0, a0, . . . , si, ai, . . .). lg(σ) denotes the number of actions of σ. One requires that for
all 0 ≤ i < lg(σ), p(si+1|si, ai) > 0.

We now introduce the three main criteria related to optimization problems specified by MDP’s.
The total reward of a finite history consists in the sum of the rewards of the selected actions and
the reward of the final state. The discounted reward of an infinite history consists in the sum of the
rewards of the selected actions discounted by a multiplicative factor relative to the time. Since the
rewards are bounded, this infinite sum is well defined. The average reward of an infinite history
is the limit of the average reward of its finite sub-histories. Since this limit does not necessarily
exist, we consider both the liminf and limsup which are finite due to the boundedness of rewards.
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Figure 3.3: A simple MDP

Definition 3.6 Let σ be an history of an MDP M and 0 < λ < 1. Then:

• When lg(σ) <∞, the total reward of σ is u(σ)
def
=
∑

0≤i<lg(σ) r(si, ai) + rend(slg(σ)).

We also denote v(σ)
def
=
∑

0≤i<lg(σ) r(si, ai) the pure total reward which does not take into
account the final reward.

• When lg(σ) =∞, the discounted reward of σ w.r.t. λ is vλ(σ)
def
=
∑

0≤i r(si, ai)λ
i.

• When lg(σ) =∞, the lim sup average reward of σ is g+(σ)
def
= lim supn→∞

1
n

∑
0≤i<n r(si, ai).

• When lg(σ) =∞, the lim inf average reward of σ is g−(σ)
def
= lim infn→∞

1
n

∑
0≤i<n r(si, ai).

In order to obtain a stochastic process, we need to fix the non deterministic features of the
MDP. This is done via (1) decision rules that select at some time instant the next action depending
on the history of the execution, and (2) policies which specify which decision rules should be used
at any time instant. Different classes of decision rules and policies are defined depending on
two criteria: (1) the information used in the history and (2) the way the selection is performed
(deterministically or randomly).

Definition 3.7 Given an MDP M and t ∈ N, a decision rule dt associates with every history σ
of length t <∞, a distribution dt(σ) over Aslg(σ) .

• The set of all (and is also called history-dependent randomized) decision rules at time t is
denoted DHR

t and is also called history-dependent randomized decision rules.

• The subset of history-dependent deterministic decision rules at time t, DHD
t consists in

selecting a single action. In this case dt(σ) ∈ Aslg(σ) .

• The subset of Markovian randomized decision rules at time t, DMR
t (also denoted DMR)

only depends on the final state of the history. So one denotes dt(s) the distribution that
depends on s.

• The subset of Markovian deterministic decision rules at time t, DMD
t (also denoted DMD)

only depends on the final state of the history and selects a single action. So one denotes
dt(s) this action belonging to As.

Given a Markovian decision rule d, the vector rd, defined by rd[s]
def
=
∑
a∈As d(a)r(s, a), repre-

sents the immediate expected reward obtained by d.

Definition 3.8 Given an MDP M and t ∈ N, a policy (also called a strategy) πππ is a finite or
infinite sequence of decision rules πππ = (d0, . . . , dt, . . .) such that dt is a decision rule at time t.
The set of policies such that for all t, dt ∈ DK

t is denoted ΠK .
When decisions dt are Markovian and all equal to some d, πππ is said stationary and denoted d∞.
The set of stationary randomized (resp. deterministic) policies is denoted ΠSR (resp. ΠSD).
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Once a policy is chosen, an MDP becomes a DTMC whose states are histories. Assuming an
initial distribution we denote Xn the random state of the MDP at time n and Yn corresponding
to the chosen action at time n. Observe that {Xn}n∈N is not generally a DTMC. However when a
stationary policy d∞ is chosen, the states of the DTMC are those of the MDP and the transition
matrix Pd is defined by:

Pd[s, s
′]

def
=
∑
a∈As

d(s)(a)p(s′|s, a)

Given a policy πππ, we indicate the probabilities (resp. the expectations) induced by such a
policy by Prπππ (resp. Eπππ). When the policy is clear from the context, we omit the superscript.
We are now in position to express the rewards produced by a policy.

Definition 3.9 Let πππ be a policy of an MDP M, t ∈ N and 0 < λ < 1. Then:

• The total (expected) reward at time t of πππ is uπππt
def
=
∑

0≤i<t E
πππ(r(Xi, Yi)) + Eπππ(rend(Xt)).

• The pure total (expected) reward at time t of πππ is vπππt
def
=
∑

0≤i<t E
πππ(r(Xi, Yi)).

• The discounted (expected) reward of πππ w.r.t. λ is vπππλ
def
=
∑

0≤i λ
iEπππ(r(Xi, Yi)).

• The lim sup average (expected) reward of πππ is gπππ+
def
= lim supn→∞

1
n

∑
0≤i<n Eπππ(r(Xi, Yi)).

• The lim inf average (expected) reward of πππ is gπππ−
def
= lim infn→∞

1
n

∑
0≤i<n Eπππ(r(Xi, Yi)).

One observes that the initial distribution X0 is independent from the policy and the first
decision applies after the initial state is selected. So we focus on the vector of rewards indexed by
the initial state. The scalar reward is then obtained by the sum of its components weighted by
the initial distribution. So in the sequel, uπππt , vπππt , vπππλ , gπππ+, gπππ− denote such reward vectors. We also

denote optimal vectors u∗t , v∗t , v∗λ, g∗+, g∗− with the following definition: u∗t [s]
def
= supπππ(uπππt [s]) (the

other definitions are similar).
In the sequel we will look for (almost) optimal policies w.r.t. some of the above rewards. The

next result shows that we can safely restrict ourselves to Markovian policies. This will simplify
both the notations and the theoretical developments.

Theorem 3.10 Let πππ ∈ ΠHR be a policy of an MDP M. Then there exists a policy πππ′ ∈ ΠMR

such that for all n ∈ N, s0, s ∈ S and a ∈ As:

Prπππ
′
(Xn = s, Yn = a | X0 = s0) = Prπππ(Xn = s, Yn = a | X0 = s0)

Proof
Let us consider the generalization of the model which consists in allowing the reward to be

also dependent on the destination state specified by r(s, a, s′). Let us fix some current state s,
some time instant t and some Markovian policy πππ = (d0, d1, . . .). In the expression of rewards
Eπππ(r(Xi, Yi)) should be replaced by Eπππ(r(Xi, Yi, Xi+1)) but this value is given by:∑

a∈As

dt(s)(a)
∑
s′∈S′

p(s′|s, a)r(s, a, s′)

So defining r(s, a) by r(s, a)
def
=
∑
s′∈S′ p(s

′|s, a)r(s, a, s′) and forgetting the individual rewards do
not modify the optimization problem. Summarizing one allows modelling rewards to depend on
the destination state while theoretical developments assume wlog that rewards are independent
from the destination state.
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3.2 Finite horizon analysis
Let us design on example 3.4 a procedure to compute an optimal policy for the total reward for
time horizon 2. We are going to solve the problem not only for horizon 2 but also for horizons 0
and 1.

At horizon 0, there is no decision to take and the total reward is given by rend: −2 for state
s1 and 1.5 for state s2.

At horizon 1, in state s2 a single action a is possible and since we know the optimal values
at horizon 0, we get as expected value −1 + 0.9 ∗ 1.5 + 0.1 ∗ −2 = 0.15. In state s1, we consider
successively actions a with expected value 5 + 0.7∗1.5 + 0.3∗−2 = 5.45 and b with expected value
10 + 1 ∗ 1.5 = 11.5. So the optimal decision is b with associated value 11.5.

At horizon 2, in state s2 a single action a is possible and since we know the optimal values at
horizon 1, we get as expected value −1 + 0.9 ∗ 0.15 + 0.1 ∗ 11.5 = 0.285. In state s1, we consider
successively actions a with expected value 5 + 0.7 ∗ 0.15 + 0.3 ∗ 11.5 = 8.555 and b with expected
value 10 + 1 ∗ 0.15 = 10.15. So the optimal decision is b with associated value 10.15.

state \ time 0 1 2
s1 -2 a: 5.45 a: 8.555

b: 11.5 b: 10.15
s2 1.5 a: 0.15 a: 0.285

Algorithm 2: Computing an optimal policy for the total expected reward
TotalReward(M, n)
Input: M, an MDP and n, a finite horizon

Output: optval, the optimal value given a state and an horizon ≤ n
Output: optdec, the optimal decision given a state and positive horizon ≤ n
Data: i integer, s, s′ states, a action, temp, best reals

for s ∈ S do optval[s, 0]← rend(s)
for i from 1 to n do

for s ∈ S do
best← −∞
for a ∈ As do

temp← r(s, a)
for s′ ∈ S do temp← temp+ p(s′|s, a)optval[s′, i− 1]
if best < temp then best← temp; optdec[s, i]← a

end
optval[s, i]← temp

end
end

Algorithm 2 generalizes this procedure. Arrays optval and optdec indexed by pairs of states
and horizons respectively contain the optimal values and optimal decisions. They are filled by
increasing horizons until the researched value. For time horizon 0, optval is filled with the rend’s
values. Then at successive time horizons, optdec and optval are filled state per state comparing
the reward obtained by choosing the enabled actions assuming that the optimal value at the next
time unit is the one computed at the previous step.

This algorithm performs in polynomial time w.r.t. the size of the MDP and n. Hence it is
pseudo-polynomial w.r.t. the size of the problem. The next proposition establishes its correction.

Proposition 3.11 Algorithm 2 returns an optimal policy for the total expected reward.

Proof
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3.3 Discounted reward analysis

3.3.1 Characterization of optimality
Let πππ = (d0, . . . , dn, . . .) be some Markovian policy. Then summing over all instants, its discounted
expected reward is:

vπππλ =
∑
i∈N

λi

 ∏
0≤j<i

Pdj

 rdi

In case of a stationary policy d∞, this reward can be rewritten as:

vπππλ =
∑
i∈N

(λPd)
i
rd

Observing that the maximal modulus of an eigenvalue of a stochastic matrix is 1, for every 0 <
λ < 1, Id− λPd is invertible and its inverse is

∑
i∈N (λPd)

i. So:

vπππλ = (Id− λPd)
−1

rd

and consequently
vπππλ = rd + λPdv

πππ
λ (3.1)

Let us define v∗λ[s]
def
= sup(vπππλ [s] | πππ ∈ ΠMR). Observe that v∗λ is a real vector over S. In order to

compute this vector and (if possible) an associated policy, we introduce a transformation on such
vectors.

Definition 3.12 L is a mapping from RS to RS defined by:

L(v)[s]
def
= max(r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As)

Observe first that given v by picking an optimal action for each state s, one obtains a Markovian
deterministic rule d such that L(v) = rd + λPdv. Furthermore let d′ be a Markovian randomized
rule. Then rd′ [s] + λPd′v[s] =

∑
a∈As d

′(s)(a)
(
r(s, a) + λ

∑
s′∈S p(s

′|s, a)v[s′]
)
. So for all s,

rd′ [s] + λPd′v[s] ≤ rd[s] + λPdv[s]. This leads to an alternative definition of L.

L(v) = sup(rd + λPdv | d ∈ DMR)

We establish some useful properties of this operator and in particular that an hypothetic fixed
point would lead to the optimal vector.

Proposition 3.13 Let v ∈ RS. Then:

• If v ≤ L(v) then v ≤ v∗λ

• If v ≥ L(v) then v ≥ v∗λ

• If v = L(v) then v = v∗λ

Proof
The next proposition shows that L has indeed a fixed point. In fact, we present here a particular

case of the Banach fixed-point theorem.

Proposition 3.14 Let v0 be an arbitrary vector and define inductively vn+1
def
= L(vn). Then:

• L is Lipschitz-continuous with Lipschitz constant equal to λ.

• For all n, ||vn+1 − vn||∞ ≤ λn||v1 − v0||∞
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• For all n, ||v∗λ − vn||∞ ≤ λn

1−λ ||v1 − v0||∞

Thus limn→∞ vn = v∗λ and v∗λ is a solution of v = L(v).

Proof
In example 3.4, starting with v0

def
= 0 and λ = 0.5, one converges very quickly to the fixed

point v∗λ = (9.523809524,−0.952380952). For instance, v3 = (9.525,−0.9525).
An immediate consequence of the previous result is the existence of an optimal stationary

deterministic policy for the discounted reward problem.

Theorem 3.15 Every deterministic stationary policy d∞ whose associated decision rule d fulfills
v∗λ = rd + λPdv

∗
λ is an optimal policy. There is at least one such policy.

Proof
In example 3.4, there are exactly two decision rules d and d′ defined by d(s1) = b and d′(s1) =

d(s2) = d′(s2) = a. It can be checked that for λ = 0.5, d fulfills the requirement of the theorem
while rd′ + 0.5Pd′v

∗
λ = (6.095238095,−0.95238095).

We want to analyze the dependency of optimal policies w.r.t. λ. In particular we are interested
in Blackwell optimal policies.

Definition 3.16 A policy πππ is Blackwell optimal if there exists 0 ≤ λ0 < 1 such that πππ is optimal
for every λ ∈ [λ0, 1[.

Theorem 3.17 There exist k ∈ N, 0 = λ0 < λ1 < · · · < λk < λk+1 = 1 and d0, . . . , dk determin-
istic rules such that:

∀0 ≤ i ≤ k ∀λ ∈ [0, 1[ λ ∈ [λi, λi+1]⇒ d∞i is an optimal policy for λ

In particular d∞k is a Blackwell optimal policy.

Proof
We now present three different ways to compute the optimal vector (or an almost optimal

one) and an associated deterministic stationary policy: value iteration, policy iteration and linear
programming. These procedures are presented in increasing order of complexity design.

3.3.2 Value iteration approach
The value iteration approach is directly based on proposition 3.14. Algorithm 3 implements such
an approach. It starts with the null vector but could start with an arbitrary vector. When it stops
at iteration n, one knows that ||vn+1 − vn||∞ ≤ ε(1−λ)

2λ and so ||vn+1 − v∗λ||∞ ≤ ε
2 . The interesting

issue is the guarantee of the expected reward provided by the stationary policy associated with
optdec.

Proposition 3.18 Let d be the decision rule computed by algorithm 3. Then: ||vd∞λ − v∗λ||∞ ≤ ε.

Proof

3.3.3 Policy iteration approach
In the value iteration approach, the expected discounted reward due to the current policy is never
evaluated. Otherwise stated, the variables optval and oldval are only approximations of the reward
induced by the decision rule specified by the variable optdec. Unlike value iteration approach, the
policy iteration approach maintains the exact value of the rewards associated with the current
decision rule and tries to improve this reward by substituting another decision rule.

Algorithm 4 implements this principle. Given the current decision rule d specified by optdec, the
first step of the iteration consists to build matrix Id−λPd (represented by variable Md) and vector
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Algorithm 3: Value iteration for the discounted reward
DiscountedReward(M, λ, ε)
Input: M an MDP, λ the discount factor, ε the precision

Output: optval, the almost optimal value array indexed by states
Output: optdec, the almost optimal decision array indexed by states

Data: oldval array, s, s′ states, a action, temp, best reals, stop boolean

for s ∈ S do optval[s]← 0
repeat

oldval← optval
for s ∈ S do

best← −∞
for a ∈ As do

temp← r(s, a)
for s′ ∈ S do temp← temp+ λp(s′|s, a)oldval[s′]
if best < temp then best← temp; optdec[s]← a

end
optval[s]← temp

end
stop← true

for s ∈ S do if |optval[s]− oldval[s]| > ε(1−λ)
2λ then stop← false

until stop

rd (represented by variable rd). Then one solves the linear equation system (Id− λPd)v
d∞

λ = rd
(by a call to LinearSolve) and stores the result in optval. Finally one computes d′ such that
L(vd

∞

λ ) = (rd′ + λPd′)v
d∞

λ trying to choose d if possible.
If the algorithm terminates then L(vd

∞

λ ) = (rd + λPd)v
d∞

λ = vd
∞

λ (by equation 3.1). So vd
∞

λ

is the optimal value and d is an optimal decision rule. It remains to prove that the algorithm
terminates.

Proposition 3.19 Let vn and vn+1 be two successive rewards computed by algorithm 4. Then:
vn+1 6= vn and vn+1 ≥ vn. As there is a finite number of deterministic decision rules, algorithm 4
terminates.

Proof
Independently of the fact that policy iteration finds the optimal solution, it is interesting to

compare policy and value iterations with respect to the convergence. Indeed, solving the linear
equation system in an iteration of algorithm 4 leads to a complexity of O(|S|3) compared to a
complexity of O(|S|2) for an iteration of algorithm 3. The next proposition shows that policy
iteration always converges at least as quick as value iteration when starting with the same initial
reward.

Proposition 3.20 Let d0 be an initial decision rule. Let {un} and {vn} be respectively the
sequences of rewards obtained by value and policy iterations starting with v

d∞0
λ . Then:

∀n un ≤ vn ≤ v∗λ

Proof

3.3.4 Basics of linear programming [CHV 83]
A linear program is the specification of an optimization problem where both constraints and goal
(also called objective) are expressed by linear expressions related to the variables of the problem.
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Algorithm 4: Policy iteration for the discounted reward
DiscountedReward(M, λ)
Input: M an MDP, λ the discount factor

Output: optval, the optimal value array indexed by states
Output: optdec, the optimal decision array indexed by states

Data: s, s′ states, a action, temp, best reals, stop boolean, Md matrix, rd vector

for s ∈ S do optdec[s]← some a ∈ As
repeat

stop← true
for s ∈ S do

rd[s]← r(s, optdec[s])
for s′ ∈ S do

if s = s′ then Md[s, s′]← 1− λp(s′|s, optdec[s])
else Md[s, s′]← −λp(s′|s, optdec[s])

end
end
optval← LinearSolve(Md, rd)
for s ∈ S do

best← optval[s]
for a ∈ As do

temp← r(s, a)
for s′ ∈ S do temp← temp+ λp(s′|s, a)optval[s′]
if best < temp then best← temp; optdec[s]← a; stop← false

end
end

until stop
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There are different ways to express such problems: general, canonic or standard ones. They are
all equivalent with linear time reductions between them.

We present the standard form as it is more convenient to design resolution algorithms. Such
a problem is specified by a (constraint) matrix A with dimension m × n, a (constraint) column
vector b with dimension m and a (goal) row vector c with dimension n. x is a vector of variables
with dimension n. It can be expressed by:

Maximize c · x such that Ax = b ∧ x ≥ 0

Observe that choosing c′ = −c, one transforms a minimization problem in a maximization problem
and vice versa. There are three possible outputs.

1. The set of feasible solutions (i.e. x fulfilling the constraints) is empty.

2. The problem is unbounded, i.e. there exists a sequence of feasible solutions {xn} such that
limn→∞ c · xn =∞.

3. The problem admits an optimal value v, i.e. for all feasible solution x, c · x ≤ v and for all
ε > 0 there exists a feasible solution x with c · x ≥ v − ε.

The simplex algorithm

The most well known algorithm, the simplex algorithm, proceeds in several steps that we
partially present below.

First step. One modifies the problem in order to fulfill rank(A) = m. By a variant of Gauss
elimination, this is performed in polynomial time. At the end of the first step there are two possible
results: either there is no feasible solution or the rank of the matrix is equal to its number of lines
(i.e. constraints) and so m ≤ n.

One denotes I, the set of row indices and J , the set of column indices. One considers a dynamic
partition of indices of J = B ]N with |B| = m and |N | = n −m. One denotes AB (resp. AN )
the submatrix of A constituted by columns of indices belonging to B (resp. N). We introduce
the same notations with c et x. The next definition is a key ingredient for the study of linear
programming.

Definition 3.21 (Basis of a linear program) A basis B is a subset of m indices of J such
that AB is invertible and A−1

B b is non negative. There is a solution associated with basis B which
is defined by:

∀j ∈ B x[j]
def
= (A−1

B b)[j] and ∀j /∈ B x[j]
def
= 0

and it is called a basic feasible solution.

Second step. It consists in looking for an initial basic feasible solution. The principle of this
research is to build another linear problem which has an obvious initial basic feasible solution and
whose resolution has two possible outputs: either it detects that there is no feasible solution or it
returns an initial basic feasible solution.

Third step. It consists in improving the current basis (and basic feasible solution) by substitut-
ing an index of the current basis by an index out of the basis with a value of the objective function
at least as good as before. This is always possible unless: (1) either the current basic feasible
solution is optimal which is detected by the satisfaction of equation cN − cBA−1

B AN ≤ 0 or (2)
the algorithm detects that the problem is unbounded. Furthermore with an appropriate exchange
strategy for indices, the algorithm never produces twice the same basis. So it must terminate.
Observe that when the linear program admits an optimal value, it is reached by a feasible solution
and moreover by a basic feasible solution.
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Duality

Duality is a key concept in mathematics (and also in computer science). We illustrate its use
for linear programming. Assume that we have a linear combination y of the row vectors of A,

d
def
= yA

(
=
∑
i∈I

y[i]A[i,−]

)
such that d ≥ c

Then for all feasible solution x,

c · x ≤ d · x =
∑
i∈I

y[i](A[i,−] · x) =
∑
i∈I

y[i]b[i]

Otherwise stated,
∑
i∈I y[i]b[i] is an upper bound of the optimal value. Looking for the smallest

possible upper bound, one obtains a dual problem:

Minimize y · b such that yA ≥ c ∧ y ∈ RI

The dual problem can be defined for the general formulation of linear programs and it is routine
to check that the dual of the dual is the primal linear problem.

The next proposition is the fundamental result related to duality.

Proposition 3.22 Let P be a linear problem and D be its dual. Then the following relations hold:

• If P is unbounded then D does not admit a feasible solution.

• If D is unbounded then P does not admit a feasible solution.

• P admits an optimal solution if and only if D admits an optimal solution. In that case, the
optimal values are equal.

We only develop the proof of the last item as it gives additional informations that we will use later
on.

Assume that P has an optimal solution and let B be a basis corresponding to an optimal basic
feasible solution. We denote f(B) the (optimal) value associated with B. Let us recall equations
fulfilled by this basis:

f(B) = cBA−1
B b (3.2)

(this equation is fulfilled by every basis)

cN − cBA−1
B AN ≤ 0 (3.3)

(this equation is fulfilled by every optimal basis)

We are going to produce a solution of the dual problem. Define y
def
= cBA−1

B . On the one hand
cB = yAB and, on the other hand, equation 3.3 can be rewritten as: cN ≤ yAN . So c ≤ yA.
This shows that y is a solution of D. Observe that the constraints of D indexed by B are fulfilled
with equality. This is called the slackness property.

Equation 3.2 can be rewritten as: f(B) = y · b. Since the value associated with y is the
optimal value of P and so a lower bound of the possible values for D, y is an optimal solution and
the optimal values of the two problems are equal.

One can solve either the primal or the dual problem. As we maintain a basis, it appears that
the main criterion is the number of rowsm. The dual problem should be transformed in a standard
form. This is done in two steps. First every real variable is considered as the difference of two non
negative variables and then an additional non negative variable is added per constraint in order to
transform inequalities into equalities. This leads to a problem whose dimension is n × (2m + n).
Since m ≤ n, it is usually more efficient to solve the primal problem.
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3.3.5 Linear programming approach
In this section, we prove that a linear program specification of the optimal reward and decision
rule is possible leading to a polynomial time algorithm [RTV 97]. This is not the case for the
policy iteration algorithm since the number of deterministic decision rules is exponential (equal
to
∏
s∈S |As|).

The starting point of this approach is one statement of proposition 3.13: any v that fulfills
v ≥ L(v) is an upper bound of v∗λ which also fulfills this inequation. So one could constraint the
set of solutions by:

for all d deterministic decision rule v ≥ rd + λPdv

Since the number of rules is exponential, we use an alternative equivalent specification.
Primal Linear Program

Minimize
∑
s∈S

αsv[s]

subject to ∀s ∈ S ∀a ∈ Asv[s]−
∑
s′∈S

λp(s′|s, a)v[s′] ≥ r(s, a)

Here the variables are the components of vector v while the αs’s are arbitrary constants that
fulfill: ∀s 0 < αs and

∑
s∈S αs = 1. We choose {αs}s∈S to be a distribution since this distribution

will have an interpretation in the dual problem.
In order to improve the efficiency of this approach, we build the dual of this problem. Indeed

the dual has |S| constraints while the primal has
∑
s∈S |As| constraints.

Dual Linear Program

Maximize
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

subject to ∀s ∈ S
∑
a∈As

x(s, a)−
∑
s′∈S

∑
a∈As′

λp(s|s′, a)x(s′, a) = αs

∀s ∈ S ∀a ∈ As x(s, a) ≥ 0

Here the variables are the x(s, a)’s. A feasible solution of the dual linear program x fulfills for all
s,
∑
a∈As x(s, a) ≥ αs > 0.

We now introduce mappings between Markovian decision rules and solutions of the dual linear
program.

Definition 3.23 Let d be a Markovian decision rule. Then xd is defined by:

xd(s, a)
def
= d(s)(a)

∑
s′∈S

αs′
∑
n∈N

λn(Pd)
n[s′, s]

Proposition 3.24 Let d be a Markovian decision rule. Then:

• For all s,
∑
a∈As xd(s, a) > 0 and d(s)(a) = xd(s,a)∑

a′∈As xd(s,a′) ;

• For all s, a, xd(s, a) is the average discounted number of times that action a is selected in
state s knowing that the initial distribution is given by {αs};

• xd is a feasible solution of the dual linear program;

•
∑
s∈S

∑
a∈As r(s, a)xd(s, a) is the expected discounted reward of policy d∞ knowing that the

initial distribution is given by {αs}.
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Proof

Definition 3.25 Let x be a feasible solution of the dual linear program. Then the decision rule
dx is defined by:

dx(s)(a)
def
=

x(s, a)∑
a∈As x(s, a)

Proposition 3.26 Let d be a Markovian decision rule. Then dxd = d.
Let x be a feasible solution of the dual linear program. Then xdx = x.

Proof
The last proposition shows that there is a one-to-one correspondence between Markovian deci-

sion rules and feasible solutions of the dual linear program. Since the objective value of a feasible
solution is the expected average reward of the associated stationary policy, solving the linear
program yields an optimal strategy.

Most of the algorithms for linear programming return a basic feasible solution. In the case of
the above dual linear program, the rank of the constraint matrix is already the number of lines,
|S| (prove it). We establish another correspondence between deterministic decision rules and basic
feasible solutions of the dual linear program.

Proposition 3.27 Let d be a Markovian deterministic decision rule. Then xd is a basic feasible
solution of the dual linear program.
Let x be a basic feasible solution of the dual linear program. Then dx is a Markovian deterministic
decision rule.

Proof

3.4 Average reward analysis

3.4.1 More results on finite DTMC’s
In order to analyze the average reward criterion, we need to investigate a little bit further the
long run behaviour of a finite DTMC. Proposition 1.27 establishes that if the terminal scc’s are
aperiodic then Pn converges to a matrix whose row indexed by s is the steady-state distribution
when the chain starts from s. We want to get rid of the aperiodicity requirement. So we introduce
alternative notions of convergence.

Definition 3.28 Let {un}n∈N be a sequence of reals. Then:

• {un}n∈N is Cesaro convergent to a limit l if limn→∞
1

n+1

∑
i≤n ui = l. One denotes it by

un →c l.

• {un}n∈N is Abel convergent to a limit l if for all 0 ≤ λ < 1, u(λ)
def
=
∑
n∈N unλ

n exists and
limλ↑1(1− λ)u(λ) = l. One denotes it by un →a l.

Observe the analogy of these definitions with the discounted and average rewards. We will also
use these definitions for sequences of vectors and matrices. The next lemma establishes a relation
between the convergence notions.

Lemma 3.29 Let {un}n∈N be a sequence of reals.

• If un → l then un →c l.

• If un →c l then un →a l.
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Proof
We are now in position to “generalize” proposition 1.27 (this is not really a generalization since

the conclusion is weaker).

Theorem 3.30 Let P be a stochastic matrix. Then {Pn} is Cesaro convergent to a stochastic
matrix. One denotes its limit P∗ and one has:

P∗P = PP∗ = P∗P∗ = P∗

Proof
The item P∗[i, j] has a probabilistic interpretation: it is the mean number of visits of state j

per time unit starting from state i. We introduce two matrices related to the rate of the (Cesaro-)
convergence toward P∗, the fundamental and deviation matrices.

Theorem 3.31 Let P be a stochastic matrix. Then Id − P + P∗ is invertible and its inverse
called the fundamental matrix and denoted Z fulfills:

n∑
i=0

(P−P∗)i →c Z

Proof
The deviation matrix D is defined by D

def
= Z−P∗. The aperiodic case gives more information

about the meaning of these matrices. In this case, one knows Pn → P∗. Due to the property of
P∗, for n ≥ 1 one has Pn−P∗ = (P−P∗)n, implying that the greatest module of matrix P−P∗

is smaller than 1 and thus the fundamental matrix Z is simply Id +
∑
n≥1(Pn − P∗). Thus the

deviation matrix D is
∑
n∈N(Pn−P∗). So D[s, s′] is the limit when n goes to ∞ of the difference

between:

1. the mean number of visits of s′ starting from s until time n;

2. the mean number of visits of s′ starting from the steady-state distribution reached when the
initial state is s until time n.

Observe that when s′ is recurrent and reachable from s, the limits of these mean number of visits
are infinite but their difference converges to a finite value.

Theorem 3.32 Let P be a stochastic matrix. Its deviation matrix D fulfills:

• D = limn→∞
1
n

∑n
i=1

∑i−1
k=0(Pk −P∗) = limλ↑1

∑∞
n=0 λ

n(Pn −P∗)

• P∗D = DP∗ = (Id−P)D + P∗ − Id = D(Id−P) + P∗ − Id = 0

Proof
In case of aperiodic chains all the equalities above have a probabilistic proof. P∗D = 0

since (P∗D)[s, s′] is the difference of twice the same quantity: the mean number of visits of s′
starting from the steady-state distribution reached when the initial state is s. ((Id−P)D)[s, s′] =
D[s, s′] − PD[s, s′]. As the second quantity is the the limit when n goes to ∞ of the difference
between:

1. the mean number of visits of s′ starting from s until time n excluding time 0 ;

2. the mean number of visits of s′ starting from the steady-state distribution reached when the
initial state is s until time n excluding time 0.

So D[s, s′]−PD[s, s′] is the difference between (1) the probability of an initial visit of s′ starting
from s and (2) the probability of an initial visit of s′ starting from the steady-state distribution
reached when the initial state is s. This is exactly (Id−P∗)[s, s′].
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3.4.2 Characterization of optimality
In order to characterize optimal policies for the average reward criterion, we first establish an upper
bound on the optimal average reward (compare to the second statement of proposition 3.13).

Proposition 3.33 Assume there exists two vectors g,h over states such that for all d ∈ DMD :

• g ≥ Pdg

• g + h ≥ Pdh + rd

Then g ≥ g∗+

Proof
The next proposition weakens the conditions to obtain an upper bound.

Proposition 3.34 Assume there exists two vectors g,h over states such that for all d ∈ DMD ,
for all s ∈ S:

• either g[s] >
∑
s′∈S Pd[s, s

′]g[s′]

• or g[s] =
∑
s′∈S Pd[s, s

′]g[s′] and g[s] + h[s] ≥
∑
s′∈S Pd[s, s

′]h[s′] + rd[s]

Then g ≥ g∗+

Proof
Let us focus on stationary policies. We first study the average reward triggered by such a

policy. Accordingly with the previous section, given d a decision rule, P∗d is the Cesaro limit of
{Pn

d}, Zd is the fundamental matrix of {Pd} and Dd is the deviation matrix of {Pd}.

Proposition 3.35 Let d ∈ DMD , then:

gd
∞

− = gd
∞

+ = P∗drd = lim
λ↑1

(1− λ)vd
∞

λ

Proof
We now denote gd

∞ def
= gd

∞

− = gd
∞

+ . We want to determine more precisely the convergence of

(1− λ)vd
∞

λ towards gd
∞
. Let us define ρ def

= 1−λ
λ .

Proposition 3.36 Let d ∈ DMD , assume that ||Dd||
1+||Dd|| < λ < 1 then:

vd
∞

λ =
1

1− λ

(
P∗drd −

∞∑
n=1

(−ρDd)
nrd

)

Proof
We only need a “first-order Taylor” development of vd

∞

λ .

Corollary 3.37 Let d ∈ DMD , then:

vd
∞

λ =
1

1− λ
P∗drd + Ddrd +O(1− λ)

Proof
The next theorem is the characterization we looked for.

Theorem 3.38 Consider the following equation system where the variables are vectors g and h.

∀s ∈ S g[s] = max
a∈As

(∑
s′∈S

p(s′|s, a)g[s′]

)
(3.4)
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∀s ∈ S g[s] + h[s] = max
a∈Bs

(∑
s′∈S

p(s′|s, a)h[s′]

)
+ rd[s] where Bs

def
= arg max

a∈As

(∑
s′∈S

p(s′|s, a)h[s′]

)
(3.5)

Then:

• Let (g0,h0) be a solution of this system. Then g0 = g∗+ = g∗−.

• Let d∞ be a Blackwell optimal policy. Then (P∗drd,Ddrd) is a solution of this system.

Proof

Corollary 3.39 Every Blackwell optimal policy is optimal w.r.t. the average reward criterion.

In the sequel, we only consider the policy iteration and linear programming approaches.

3.4.3 Policy iteration approach

Algorithm 5: Policy iteration for the average reward
AverageReward(M)
Input: M an MDP

Output: x, the optimal value array indexed by states
Output: optdec, the optimal decision array indexed by states

Data: s, s′ states, a action, temp, best, tempbis, bestbis reals, stop boolean
Data: Md matrix, rd,y, z vectors

for s ∈ S do optdec[s]← some a ∈ As
repeat

stop← true
for s ∈ S do

rd[s]← r(s, optdec[s])
for s′ ∈ S do

if s = s′ then Md[s, s′]← 1− p(s′|s, optdec[s])
else Md[s, s′]← −p(s′|s, optdec[s])

end
end

(x,y, z)← LinearSolve(

Md 0 0
Id Md 0
0 Id Md

 ,

 0
rd
0

)

for s ∈ S do
best← x[s]; bestbis← x[s] + y[s]
for a ∈ As do

temp← r(s, a); tempbis← r(s, a)
for s′ ∈ S do

temp← temp+ λp(s′|s, a)x[s′]
tempbis← tempbis+ λp(s′|s, a)y[s′]

end
if best < temp or (best = temp and bestbis < tempbis) then

best← temp; bestbis← tempbis; optdec[s]← a; stop← false
end

end
end

until stop
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As seen for the discounted reward, the policy approach is based on two key items.

• Computing the reward provided by a stationary policy d∞. Here we are going to compute
both the reward P∗drd but also the first term of the above Taylor development Ddrd.

• Designing a rule that either identifies an optimal stationary policy or provides a way to
improve it. As we will see later, the improvement is more elaborated than for the discounted
case.

Contrary to the discounted reward, one cannot specify the average reward as the unique solution
of a linear system, the main reason being that Id−Pd is not invertible. Here the trick consists in
introducing additional variables and equations to the linear equation system in order (1) to also
compute the deviation reward Ddrd and (2) to confine the non deterministic part of the solution
into irrelevant variables. The correctness of the proposition is based on the properties of the
deviation matrix.

Proposition 3.40 Let d be a decision rule and consider the following equation system where the
variables are vectors x, y and z.

(Id−Pd)x = 0 (3.6)
x + (Id−Pd)y = rd (3.7)
y + (Id−Pd)z = 0 (3.8)

Then:

• Vectors P∗drd, Ddrd and −D2
drd are solutions of this system.

• Any (x,y, z) solution of this system fulfills x = P∗drd and y = Ddrd.

Proof
We illustrate this characterization on example 3.4 with the two policies d and d′ already

described. First we compute Pd and Pd′ .

Id−Pd =

(
1 −1
−0.1 0.1

)
and Id−Pd′ =

(
0.7 −0.7
−0.1 0.1

)
The range of Id −Pd is α(1,−0.1). So x = α(1,−0.1) + (10,−1) for some α. Furthermore x

is in the kernel of Id−Pd. So we get α+ 10 = −0.1α− 1 yielding α = −10 and x = (0, 0).
The range of Id−Pd′ is α(0.7,−0.1). So x = α(0.7,−0.1)+(5,−1) for some α. Furthermore x

is in the kernel of Id−Pd′ . So we get 0.7α+ 5 = −0.1α− 1 yielding α = − 15
2 and x = (− 1

4 ,−
1
4 ).

The following proposition is the main ingredient of algorithm 5 based on policy iteration.
Observe that using the assertions of the proposition, when one substitutes d′ for d, the average
reward is not decreased and due to the strict increasing of the discounted reward, one cannot
encounter twice the same policy. More precisely the proposition yields two procedures: (1) to
decide whether a policy is Blackwell optimal and (2) compute for a policy which is not Blackwell
optimal a better policy for the discounted reward given that λ the discount factor is close enough
to 1. The proof is mainly based on corollary 3.37 which provides a Taylor development for the
discounted reward in the neighborhood of 1.

Proposition 3.41 Let d be a decision rule and s be a state. Define:

Improve(d, s)
def
= {a ∈ As | (P∗drd)[s] <

∑
s′∈S

p(s′|s, a)(P∗drd)[s
′]} ∪

{a ∈ As | (P∗drd[s] =
∑
s′∈S

p(s′|s, a)(P∗drd)[s
′]∧((P∗d+Dd)rd)[s] < r(s, a)+

∑
s′∈S

p(s′|s, a)(Ddrd)[s
′]}

Then the following assertions hold:

• If for all s, Improve(d, s) = ∅ then d∞ is average optimal.
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• Otherwise let d′ be any policy such that for all s,
(1) Improve(d, s) = ∅ implies d′(s) = d(s)
and (2) Improve(d, s) 6= ∅ implies d′(s) ∈ Improve(d, s).
Then P∗drd ≤ P∗d′rd′

and there exists some 0 < λ0 < 1 such that for all λ0 < λ < 1, vd
∞

λ < vd
′∞

λ .

Proof

3.4.4 Linear programming approach
Let us compile some results in order to specify the linear program associated with the average
reward. Using proposition 3.33, for every pair of vectors (g,h) such that for all d ∈ DMD , g ≥ Pdg
and g + h ≥ Pdh + rd one gets: g ≥ g∗+.
Using theorem 3.38 and the proof of proposition 3.34, one gets that given any Blackwell optimal
policy d∞, as soon as M is large enough, then (P∗drd,Ddrd + MP∗drd) is a solution of such a
system. Thus one concludes that any optimal solution of the following linear program has its g
component equal to the optimal expected average reward.
Primal Linear Program

Minimize
∑
s∈S

αsg[s]

subject to ∀s ∈ S ∀a ∈ As,

g[s]−
∑
s′∈S

p(s′|s, a)g[s′] ≥ 0 and

g[s] + h[s]−
∑
s′∈S

p(s′|s, a)h[s′] ≥ r(s, a)

Here the variables are the components of vectors g and h while the αs’s are arbitrary positive
constants. Let us build the dual program.
Dual Linear Program

Maximize
∑
s∈S

r(s, a)x[s, a]

subject to ∀s ∈ S∑
a∈As

x[s, a]−
∑
s′∈S

∑
a∈As′

p(s|s′, a)x[s′, a] = 0 and

∑
a∈As

(x[s, a] + y[s, a])−
∑
s′∈S

∑
a∈As′

p(s|s′, a)y[s′, a] = αs

∀s ∈ S ∀a ∈ As x[s, a] ≥ 0 ∧ y[s, a] ≥ 0

The next proposition shows how to recover optimal average deterministic stationary policies
from a basic optimal solution of the dual linear program.

Proposition 3.42 Let (x,y) be a basic optimal solution of the dual linear program. Then every
deterministic d∞ that fulfills the following requirements for every s ∈ S is average optimal.

• either x[s, d(s)] > 0

• or
∑
a∈As x[s, a] = 0 and y[s, d(s)] > 0

Furthermore there is at least one such policy.

Proof
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3.5 Proofs

3.5.1 Proofs of section 3.1
Proof of theorem 3.10
Given πππ be an arbitrary policy, let us define Markovian policy πππ′ = (d′0, d

′
1, . . .) by:

d′n(s)(a)
def
= Prπππ(Yn = a | Xn = s,X0 = s0)

This is a partially defined strategy since Prπππ(Xn = s,X0 = s0) could be equal to 0. However
due to the equality of the proposition that we are going to inductively establish in this case
Prπππ

′
(Xn = s,X0 = s0) is also equal to 0.

For n = 0, the equality Prπππ
′
(Xn = s, Yn = a | X0 = s0) = Prπππ(Xn = s, Yn = a | X0 = s0) is only

relevant for s = s0 and holds by definition of πππ′.
Assume that the equality holds up to n. Then:
Prπππ

′
(Xn+1 = s | X0 = s0) =

∑
s′∈S

∑
a∈As′

Prπππ
′
(Xn = s′, Yn = a | X0 = s0)p(s|s′, a)

=
∑
s′∈S

∑
a∈As′

Prπππ(Xn = s′, Yn = a | X0 = s0)p(s|s′, a) = Prπππ(Xn+1 = s | X0 = s0)

Now:
Prπππ

′
(Xn+1 = s, Yn+1 = a | X0 = s0)

= d′n+1(s)(a)Prπππ
′
(Xn+1 = s | X0 = s0)

= Prπππ(Yn+1 = a | Xn+1 = s,X0 = s0)Prπππ
′
(Xn+1 = s | X0 = s0)

= Prπππ(Xn+1 = s, Yn+1 = a | X0 = s0)

q.e.d. (theorem 3.10) ♦♦♦

3.5.2 Proofs of section 3.2
Proof of proposition 3.11
We prove by induction on the time horizon that the policy computed by the algorithm is optimal.
In order to give more intuition about the proof we index in a backward way the decision rules.

Assume that πππn−1
def
= dn−1, . . . , d1, the policy computed by the algorithm for time horizon n − 1

is optimal and let dn be the decision rule computed at the nth iteration. Pick an arbitrary policy
πππ′n

def
= d′n, . . . , d

′
1 and denote πππ′n−1

def
= d′n−1, . . . , d

′
1.

Let s ∈ S,

uπππnn [s] = r(s, dn(s)) +
∑
s′∈S

p(s′|s, dn(s))u
πππn−1

n−1 [s′] ≥ r(s, d′n(s)) +
∑
s′∈S

p(s′|s, d′n(s))u
πππn−1

n−1 [s]

(due to the iterative step of the algorithm)

≥ r(s, d′n(s)) +
∑
s′∈S

p(s′|s, d′n(s))u
πππ′n−1

n−1 [s] = u
πππ′n
n [s]

(due to the inductive hypothesis)

q.e.d. (proposition 3.11) ♦♦♦

3.5.3 Proofs of section 3.3
Proof of proposition 3.13
Let v ≤ L(v). By definition, there is a decision rule d such that L(v) = rd + λPdv.
Thus v − λPdv ≤ rd. Applying the non negative matrix (Id− λPd)

−1 to the inequality yields:
v ≤ (Id− λPd)

−1rd = vd
∞ ≤ v∗λ
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Let v ≥ L(v). Let πππ def
= (d0, . . . , dn, . . .) be a Markovian policy.

v ≥ L(v) ≥ rd0 + λPd0v. By induction for n ≥ 0,

v ≥
∑

0≤i<n

λi

 ∏
0≤j<i

Pdj

 rdi + λn

 ∏
0≤j<n

Pdj

v

On the other hand,

vπππλ =
∑
i∈N

λi

 ∏
0≤j<i

Pdj

 rdi

Let us define B def
= max(maxs(|v[s]|),maxs,a(|r(s, a)|). Then for all s ∈ S and n ∈ N:

v[s]− vπππλ [s] ≥ −λnB(1 +
∑
i∈N

λi)

Letting n go to ∞, one gets: v ≥ vπππλ . Since πππ is arbitrary, one obtains: v ≥ v∗λ.
The last assertion is a consequence of the previous ones.

q.e.d. (proposition 3.13) ♦♦♦

Proof of proposition 3.14
Let v and v′ be two vectors. Let d be a decision rule such that L(v) = rd + λPdv. Then:

L(v)[s]− L(v′)[s] ≤ λ (Pd(v − v′)) [s] ≤ λ||v − v′||∞
So: ||L(v)− L(v′)||∞ ≤ λ||v − v′||∞
This proves the Lipschitz-continuity of L.
Let {vn} be defined as in the proposition. For all m,n with m ≥ n:

||vm − vn||∞ ≤
∑

n≤i<m

||vi+1 − vi||∞ ≤ λn(
∑
i∈N

λi)||v1 − v0||∞

This proves that {vn} is a Cauchy sequence thus convergent to some v∞.
More precisely: ||v∞ − vn||∞ ≤ λn

1−λ ||v1 − v0||∞
By continuity of L, v∞ = L(v∞). So by proposition 3.13, v∞ = v∗λ.

q.e.d. (proposition 3.14) ♦♦♦

Proof of theorem 3.15
Observe that the discounted reward associated with policy d∞ is: (Id− λPd)

−1rd.
Thus if d fulfills v∗λ = rd + λPdv

∗
λ then v∗λ = (Id− λPd)

−1rd.
We know that v∗λ = L(v∗λ). Let d ∈ DMD be a decision rule associated with L(v∗λ).
Then d fulfills v∗λ = rd + λPdv

∗
λ.

q.e.d. (theorem 3.15) ♦♦♦

Proof of theorem 3.17
Observe that the discounted reward vd

∞

λ associated with policy d∞ fulfills: vd
∞

λ = (Id−λPd)
−1rd.

So every item of this vector is a rational fraction of λ with poles outside [0, 1[. We consider vd
∞

x [s]
as a function of x.
Thus Zero def

= {λ | ∃d, d′ ∈ DMD ∃s ∈ S vd
∞

x [s] 6= vd
′∞

x [s] ∧ vd
∞

λ [s] = vd
′∞

λ [s]} is finite.

Let I def
=]a, b[ be an interval such that Zero∩I = ∅. Pick an arbitrary c ∈ I and let d be an optimal

decision rule w.r.t. to c. We claim that d is optimal for the whole interval I. Otherwise, due to the
continuity of vd

∞

x [s], there should exist λ ∈ I, d′ and s with vd
∞

x [s] 6= vd
′∞

x [s] ∧ vd
∞

λ [s] = vd
′∞

λ [s].
Furthermore again by continuity d is also optimal at a and b (when b 6= 1).
So the decomposition of [0, 1[ in appropriate subintervals is obtained by considering [0, 1[\Zero.

q.e.d. (theorem 3.17) ♦♦♦
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Proof of proposition 3.18

||vd
∞

λ − vn+1||∞ ≤ ||vd
∞

λ − (rd + λPdvn+1)||∞ + ||(rd + λPdvn+1)− vn+1||∞
= λ||Pdv

d∞

λ −Pdvn+1||∞ + λ||Pdvn+1 −Pdvn||∞ ≤ λ||vd
∞

λ − vn+1||∞ + λ||vn+1 − vn||∞

So
||vd

∞

λ − vn+1||∞ ≤
λ

1− λ
||vn+1 − vn||∞ ≤

ε

2

Thus:
||vd

∞

λ − v∗λ||∞ ≤ ||vd
∞

λ − vn+1||∞ + ||vn+1 − v∗λ||∞ ≤
ε

2
+
ε

2
= ε

q.e.d. (proposition 3.18) ♦♦♦

Proof of proposition 3.19
Let dn and dn+1 be the decision rules associated with vn and vn+1. One has:

rdn+1 + λPdn+1vn ≥ rdn + λPdnvn = vn

with at least one strict inequality.
Thus:

rdn+1
≥ (Id− λPdn+1

)vn

Applying (Id− λPdn+1)−1 (=
∑
i∈N (λPdn+1)i)

vn+1 ≥ vn

Moreover since (Id− λPdn+1
)−1 ≥ Id, the strict inequality is preserved.

q.e.d. (proposition 3.19) ♦♦♦

Proof of proposition 3.20
By proposition 3.19, vn is an increasing sequence which converges to v∗λ. So the second inequality
is fulfilled. Let us prove the first inequation by induction. The basis case is included in the
hypotheses of the proposition. Let us call dun (resp. dvn) the decision rule corresponding to the
nth iteration of the value (resp. policy) iteration algorithm.
vn+1 = rdvn+1 + λPdvn+1vn+1 ≥ rdvn+1 + λPdvn+1vn
since vn+1 ≥ vn
rdvn+1

+ λPdvn+1
vn ≥ rdun+1

+ λPdun+1
vn

since rdvn+1
+ λPdvn+1

vn = L(vn)
rdun+1

+ λPdun+1
vn ≥ rdun+1

+ λPdun+1
un = un+1

since vn ≥ un

q.e.d. (proposition 3.20) ♦♦♦

Proof of proposition 3.24
(Pd)

n[s′, s] is the probability (under policy d∞), that the state at time n is s knowing that at time
0 the state is s′.
Thus

∑
a∈As xd(s, a) =

∑
s′∈S αs′

∑
n∈N λ

n(Pd)
n[s′, s] is the discounted number of visits of s

knowing that the initial distribution is {αs}.
So
∑
a∈As xd(s, a) ≥ αs > 0 and d(s)(a) = xd(s,a)∑

a′∈As xd(s,a′) .
Since at every visit of s, a is selected with probability d(s)(a), xd(s, a) is the average discounted
number of times that action a is selected in state s knowing that the initial distribution is given
by {αs}.
Multiplying by rewards and summing over states and actions,

∑
s∈S

∑
a∈As r(s, a)xd(s, a) is the

expected discounted reward of policy d∞ knowing that the initial distribution is given by {αs}.
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A visit to state s is either done at time 0, or done at time n due to a visit at some state s′ at time
n−1 followed by selection of action a ∈ As′ with probability d(s′)(a) and random choice of s with
probability p(s|s′, a). In the latter case, the discounted value of the visit of s is the discounted
value of visit of s′ multiplied by λ. So:

∑
a∈As

xd(s, a) = αs + λ
∑
s′∈S

 ∑
a′∈As′

xd(s
′, a′)

 ∑
a∈As′

d(s′)(a)p(s|s′, a)

= αs+λ
∑
s′∈S

 ∑
a′∈As′

xd(s
′, a′)

 ∑
a∈As′

xd(s
′, a)∑

a′∈As′
xd(s′, a′)

p(s|s′, a) = αs+λ
∑
s′∈S

∑
a∈As′

xd(s
′, a)p(s|s′, a)

Consequently xd is a feasible solution of the dual linear program.

q.e.d. (proposition 3.24) ♦♦♦

Proof of proposition 3.26
The result dxd = d is included in the first statement of proposition 3.24.

Let x be a feasible solution of the dual linear program. Define y(s)
def
=
∑
a∈As x(s, a).

αs = y(s)− λ
∑
s′∈S

∑
a∈As′

p(s|s′, a)x(s′, a) = y(s)− λ
∑
s′∈S

∑
a∈As′

p(s|s′, a)dx(s′)(a)y(s′)

Which leads in a vectorial notation to: α = y(Id− λPdx)
So y = α(Id− λPdx)−1 = α(

∑
n∈N(λPdx)n)

Thus y(s) =
∑
s′∈S αs′

∑
n∈N λ

n(Pdx)n[s′, s] =
∑
a∈As xdx(s, a)

Since vector (xdx(s, a))a∈As is proportional to vector dx(s) which is proportional to vector (x(s, a))a∈As ,
one concludes that xdx = x.

q.e.d. (proposition 3.26) ♦♦♦

Proof of proposition 3.27
Let d be a Markovian deterministic decision rule. Then xd has exactly |S| non null components
corresponding to the columns (s, d(s)). The submatrix corresponding to these variables is (Id −
λPd). As it is invertible, xd is a basic feasible solution.
Let x be a basic feasible solution of the dual linear program. For all s,

∑
a∈As x(s, a) > 0. Since

x is basic there is at most |S| non null components. This implies that for all s, there is exactly
a single a such that x(s, a) > 0. Since dx(s) is proportional to (x(s, a))a∈As , dx is a Markovian
deterministic decision rule.

q.e.d. (proposition 3.27) ♦♦♦

3.5.4 Proofs of section 3.4
Proof of lemma 3.29
Let {un}n∈N be such that un → l. Then for all ε there exists n0 such that for all n ≥ n0, |un−l| ≤ ε
Let n ≥ n0,
| 1n
∑
k<n(un − l)| ≤ 1

n |
∑
k<n0

(un − l)|+ n−n0

n ε ≤ 2ε
for n large enough.
Let {un}n∈N be such that un →c l.
Define sn =

∑
i≤n un and vn = sn

n+1 .
By hypothesis, vn → l.∑n
k=0 λ

kuk = (1− λ)
∑n−1
k=0 λ

k(k + 1)vk + λn(n+ 1)vn
Using the Cauchy criterion, the series

∑n−1
k=0 λ

k(k + 1)vk is convergent. So:
u(λ) = (1− λ)

∑∞
k=0 λ

k(k + 1)vk
For all ε there exists n0 such that for all n ≥ n0, |vn − l| ≤ ε
(1− λ)u(λ) ≤ (1− λ)2

(∑
k<n0

λk(k + 1)(vk − l − ε) + (l + ε)
∑∞
k=0 λ

k(k + 1)
)
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= (1− λ)2
(∑

k<n0
λk(k + 1)(vk − l − ε)

)
+ (l + ε)

Thus: lim supλ↑1(1− λ)u(λ) ≤ l + ε
By a similar reasoning: lim infλ↑1(1− λ)u(λ) ≥ l − ε
Letting ε go to 0, one gets: limλ↑1(1− λ)u(λ) = l

q.e.d. (lemma 3.29) ♦♦♦

Proof of theorem 3.30
Let P̃n

def
= 1

n

∑
0≤i<n Pi for n > 0.

P̃n is a stochastic matrix thus the sequence {P̃n} is bounded.
Pick a sequence of indices n0 < n1 < · · · such that L

def
= limk→∞ P̃nk exists.

Observe that: P̃nP = PP̃n = P̃n + 1
n (Pn − Id)

Applying these equalities to nk letting k go to ∞ yields: LP = PL = L

Let L′ be another limit of a subsequence of {P̃n}. Then: PL′ = L′P = L′.
By iteration, PnL′ = L′Pn = L′ for all n.
By linear combination, P̃nL′ = L′P̃n = L′ for all n.
Applying this equality for nk and letting k go to ∞ yields L′L = LL′ = L′.
Swapping L and L′ yields LL′ = L′L = L. Thus L′ = L.
So P̃n is convergent and the limit is stochastic since the (finite) sum of the items of every row of
a stochastic matrix is 1 and this equality is preserved by limit operations.

q.e.d. (theorem 3.30) ♦♦♦

Proof of theorem 3.31
Let k be the number of terminal scc’s and let us order the states per terminal scc’s followed by
transient states. Then P can be described as:

P1 0 . . . 0 0
0 P2 . . . 0 0
0 0 . . . 0 0
0 0 0 Pk 0

PT,1 PT,2 . . . PT,k PT,T


where Pi is the stochastic matrix associated with the ith terminal scc,
PT,i is the submatrix of the transitions from the transient states to the ith terminal scc
and PT,T is the substochastic matrix associated with the transient states.
Recall that P∗[i, j] represent the mean number of visits to j starting from i per time unit. Since
the total mean number of visits of transient states is finite, one can rewrite P∗ as:

P∗1 0 . . . 0 0
0 P∗2 . . . 0 0
0 0 . . . 0 0
0 0 0 P∗k 0

P∗T,1 P∗T,2 . . . P∗T,k 0


where P∗i is a matrix where all rows are identical and represent the single distribution solution of
xPi = x.
So Id−P + P∗ can be rewritten as:

Id−P1 + P∗1 0 . . . 0 0
0 Id−P2 + P∗2 . . . 0 0
0 0 . . . 0 0
0 0 0 Id−Pk + P∗k 0

−PT,1 + P∗T,1 −PT,1 + P∗T,2 . . . −PT,k + P∗T,k Id−PT,T
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We already know that Id−PT,T is invertible. So to prove that Id−P + P∗ is invertible it only
remains to prove that for all i, Id−Pi + P∗i is invertible.
Assume (by contradiction) that x is a non null vector such that (Id−Pi + P∗i )x = 0.
Let π be the unique invariant distribution of Pi.
π(Id−Pi + P∗i )x = 0 but π is invariant by P∗i , so πx = 0.
As every row of P∗i is equal to π, one gets P∗ix = 0.
So (Id−Pi)x = 0 meaning that x is a right eigenvector of Pi for eigenvalue 1.
Since Pi is an irreducible chain the dimension of eigenspace corresponding to 1 is 1.
So x = α1T but since πx = 0 this entails that α is null, a contradiction.
Since P∗P = PP∗ = P∗P∗ = P∗ we claim that (P−P∗)n = Pn −P∗.
By induction: (P−P∗)n+1 = (Pn −P∗)(P−P∗) = Pn+1 −P∗ + P∗ −P∗

Let ∆ = P−P∗.
For all i ≥ 1, Id−∆i = (Id−∆)

∑
0≤k<i ∆

k

Averaging over i yields:

Id− 1

n

n∑
i=1

∆i = (Id−∆)
1

n

n∑
i=1

∑
0≤k<i

∆k

Otherwise stated

(Id−∆)−1(Id− 1

n

n∑
i=1

∆i) =
1

n

n∑
i=1

∑
0≤k<i

∆k

In order to conclude, it remains to prove that: limn→∞
1
n

∑n
i=1 ∆i = 0

limn→∞
1
n

∑n
i=1 ∆i = limn→∞

1
n

∑n
i=1(Pi −P∗) = limn→∞( 1

n

∑n
i=1 Pi)−P∗ = 0

q.e.d. (theorem 3.31) ♦♦♦

Proof of theorem 3.32

1

n

n∑
i=1

i−1∑
k=0

(Pk −P∗) = Id−P∗ +
1

n

n∑
i=1

i−1∑
k=1

(P−P∗)k

= Id−P∗ +
1

n

n∑
i=1

i−1∑
k=0

(P−P∗)k − Id = −P∗ +
1

n

n∑
i=1

i−1∑
k=0

(P−P∗)k

Letting n go to ∞ one gets: D = limn→∞
1
n

∑n
i=1

∑i−1
k=0(Pk −P∗)

Let us consider the series Hα
def
=
∑∞
n=0 α

n(P−P∗)n for 0 ≤ α < 1. Since (P−P∗)n = Pn −P∗,
{||Pn−P∗||} is bounded and the series is convergent. Consequently Hα is convergent and it is the
inverse of Id− α(P−P∗).
So: Id = Hα(Id− α(P−P∗)) = Hα(Id−P + P∗) + (1− α)Hα(P−P∗)
Since {Pn−P∗} is Cesaro convergent to zero, it is also Abel convergent i.e., limα↑1(1−α)Hα = 0.
So Z = limα↑1 Hα.∑∞
n=0 α

n(Pn −P∗) = Hα −P∗

So limα↑1
∑∞
n=0 α

n(Pn −P∗) = Z−P∗ = D

Since PP∗ = P∗P, PD = DP and P∗D = DP∗.
•DP∗ = limn→∞

1
n

∑n
i=1

∑i−1
k=0(Pk −P∗)P∗ = limn→∞

1
n

∑n
i=1

∑i−1
k=0(P∗ −P∗) = 0

•D(Id−P) = limn→∞
1
n

∑n
i=1

∑i−1
k=0(Pk −P∗)(Id−P)

= limn→∞
1
n

∑n
i=1

∑i−1
k=0(Pk −Pk+1) = limn→∞

1
n

∑n
i=1(Id−Pn) = Id−P∗

q.e.d. (theorem 3.32) ♦♦♦
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Proof of proposition 3.33
One first observes that by convexity the inequations hold for every d ∈ DMR.
Let πππ = (d1, d2, . . .) be a Markovian policy. Using the second inequation with dk, one gets:

g ≥ rdk + (Pdk − Id)h

Then one applies the first inequation with dk−1 getting:

g ≥ Pdk−1
g ≥ Pdk−1

rdk + Pdk−1
(Pdk − Id)h

Applying iteratively the first inequation with Pdk−2
, . . . ,Pd1 one obtains:

g ≥ Pd1 . . .Pdk−1
rdk + Pd1 . . .Pdk−1

(Pdk − Id)h

Summing this inequation for k from 1 to n, one gets

ng ≥ vπππn + (Pd1 . . .Pdn−1Pdn − Id)h

Since the last term is bounded by 2||h||, dividing by n and letting n go to ∞ yields:

g ≥ lim sup
n→∞

1

n
vπππn = gπππ+

Since πππ is arbitrary, the result follows.

q.e.d. (proposition 3.33) ♦♦♦

Proof of proposition 3.34
Let g,h be a solution of this system.
We claim that g,h +Mg for M large enough is a solution of the system of proposition 3.33.
An equation that could not be fulfilled is an equation of the following kind:
g(s) + (h[s] +Mg[s]) ≥

∑
s′∈S Pd[s, s

′](h[s′] +Mg[s′]) + rd[s]
for which g[s] >

∑
s′∈S Pd[s, s

′]g[s′]
but asMg[s] occurs on the left side and

∑
s′∈S Pd[s, s

′]Mg[s′] occurs on the right side it is enough
to take a value ofM large enough to satisfy such an equation. Since there are only a finite number
of equations, choosing M as the maximal value provides such a solution.

q.e.d. (proposition 3.34) ♦♦♦

Proof of proposition 3.35
Observe that the average reward triggered by policy d∞ is given by: limn→∞

1
n

∑n−1
i=0 (Pd)

ird
As {(Pd)

n} is Cesaro convergent to P∗d, one concludes that: gd
∞

− = gd
∞

+ = P∗drd
Using lemma 3.29, Pd is Abel convergent to P∗d.
Thus: limλ↑1(1− λ)vd

∞

λ = limλ↑1(1− λ)
∑∞
i=0(λPd)

ird = P∗drd

q.e.d. (proposition 3.35) ♦♦♦

Proof of proposition 3.36
One knows that vd

∞

λ is the single solution of rd − (Id− λPd)v
d∞

λ = 0.
So we prove that the expression of the proposition fulfills this equation.

rd −
1

1− λ
(Id− λPd)

(
P∗drd −

∞∑
n=1

(−ρDd)
nrd

)
= rd −P∗drd +

Id− λPd

1− λ

∞∑
n=1

(−ρDd)
nrd

(using PdP
∗
d = P∗d)

= (Id−P∗d)rd +
λ(Id−Pd) + (1− λ)Id

1− λ

∞∑
n=1

(−ρDd)
nrd

71



= (Id−P∗d)rd − (Id−P∗d)

∞∑
n=0

(−ρDd)
nrd +

∞∑
n=1

(−ρDd)
nrd

(using (Id−Pd)Dd = Id−P∗d)

= (Id−P∗d)rd − (Id−P∗d)rd −
∞∑
n=1

(−ρDd)
nrd +

∞∑
n=1

(−ρDd)
nrd = 0

(using (P∗dDd = 0)

q.e.d. (proposition 3.36) ♦♦♦

Proof of corollary 3.37
Using formula of proposition 3.36 we get:

vd
∞

λ =
1

1− λ
P∗drd +

1

λ
Ddrd +O(1− λ)

which can be rewritten as:

vd
∞

λ =
1

1− λ
P∗drd + Ddrd +

1− λ
λ

Ddrd +O(1− λ) =
1

1− λ
P∗drd + Ddrd +O(1− λ)

q.e.d. (proposition 3.37) ♦♦♦

Proof of theorem 3.38
Let (g0,h0) be a solution of this system. It is immediate that (g0,h0) fulfill the requirements of
proposition 3.34. So g0 ≥ g∗+.
Let us define a deterministic decision rule d by choosing some d(s) ∈ Bs. The equation system
can be rewritten

g0 = Pdg0 and g0 + h0 = Pdh0 + rd

Using the second equation, one gets:

g0 = rd + (Pd − Id)h0

Then one applies the first equation getting:

g0 = Pdg0 = Pdrd + Pd(Pd − Id)h0

Applying iteratively the first equation one obtains:

g0 = Pk
drd + Pk−1

d (Pd − Id)h0

Summing these equations for k from 1 to n, one gets

ng0 = ud
∞

n + (Pn
d − Id)h0

Since the last term is bounded by 2||h0||, dividing by n and letting n go to ∞ yields:

g0 = lim
n→∞

1

n
ud
∞

n = gd
∞

+ = gd
∞

−

Since g0 ≥ g∗+, the result follows.
Let d∞ be a Blackwell optimal policy. Consider λ ∈ [λ0, 1[ an interval where d∞ is optimal.
Then using characterization of theorem 3.15, one gets for all s ∈ S and a ∈ As:
vd
∞

λ [s] ≥ r(s, a) + λ
∑
s′∈S p(s

′|s, a)vd
∞

λ [s′]
Using corollary 3.37

1
1−λ (P∗drd)[s] + (Ddrd)[s] +O(1− λ)
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≥ r(s, a) + λ
∑
s′∈S p(s

′|s, a)
(

1
1−λ (P∗drd)[s

′] + (Ddrd)[s
′]
)

+O(1− λ)

= r(s, a) +
∑
s′∈S p(s

′|s, a)
(

1
1−λ (P∗drd)[s

′] + (Ddrd)[s
′]
)
−
∑
s′∈S p(s

′|s, a)(P∗drd)[s
′] +O(1− λ)

Thus:
1

1−λ
(
(P∗drd)[s]−

∑
s′∈S p(s

′|s, a)(P∗drd)[s
′]
)

+
(Ddrd)[s]− r(s, a)−

∑
s′∈S p(s

′|s, a)(Ddrd −P∗drd)[s
′] +O(1− λ) ≥ 0

So one must have:
(P∗drd)[s]−

∑
s′∈S p(s

′|s, a)(P∗drd)[s
′] ≥ 0

and when the equality holds one must have:
(Ddrd)[s]− r(s, a)−

∑
s′∈S p(s

′|s, a)(Ddrd −P∗drd)[s
′] ≥ 0

which can be rewritten (due to equality) as:
(Ddrd)[s]− r(s, a)−

∑
s′∈S p(s

′|s, a)(Ddrd)[s
′] + (P∗drd)[s] ≥ 0

This establishes that equations (3.4) and (3.5) hold with inequalities instead of equalities.
To prove that the equalities hold, let us choose for state s, action d(s).
Then equation (3.4) holds due to equality P∗d = PdP

∗
d (see theorem 3.30).

And equation (3.5) holds due to equality P∗d + Dd = Id + PdDd (see theorem 3.32).

q.e.d. (proposition 3.38) ♦♦♦

Proof of proposition 3.40
Let us check that P∗drd, Ddrd and −D2

drd are solutions of this system.
• (Id−Pd)P

∗
drd = (P∗d −P∗d)rd = 0

• P∗drd + (Id−Pd)Ddrd = (P∗d + (Id−Pd)Dd) rd = rd
• Ddrd − (Id−Pd)D

2
drd = (Id− (Id−Pd)Dd) Ddrd = P∗dDdrd = 0

Let x, y and z be a solution of this system. Pdx = x entails P∗dx = x.
So x = P∗dx = P∗drd −P∗d(Id−Pd)y = P∗drd

0 = P∗d (y + (Id−Pd)z) = P∗dy
Thus using second equation of the system:
rd −P∗drd = (Id−Pd)y = (Id−Pd + P∗d)y
which can be rewritten as:
y = (Id−Pd + P∗d)

−1(Id−P∗d)rd = (Dd + P∗d)(Id−P∗d)rd = Ddrd

q.e.d. (proposition 3.40) ♦♦♦

Proof of proposition 3.41
Assume that for all s, Improve(d, s) = ∅. Observing that choosing a = d(s), leads to equality in
the two equations, one concludes that (P∗drd,Ddrd) fulfill the equations of theorem 3.38. So d∞
is an optimal policy.
Assume that for at least one s, Improve(d, s) 6= ∅ and consider d′ fulfilling the requirements of the
proposition. Define policy πππ def

= (d′, d, d, . . .).
If d′(s) = d(s) then for all λ, vπππλ [s] = vd

∞

λ [s].
On the other hand,
vπππλ = rd′ + λPd′v

d∞

λ = rd′ + λPd′(
1

1−λP∗drd + Ddrd +O(1− λ))

= rd′ + λ
1−λPd′P

∗
drd + λPd′Ddrd +O(1− λ)

= rd′ + 1
1−λPd′P

∗
drd −Pd′P

∗
drd + Pd′Ddrd +O(1− λ)

So:

vπππλ − vd
∞

λ =
1

1− λ
(Pd′ − Id)P∗drd + (rd′ + Pd′Ddrd −Pd′P

∗
drd −Ddrd) +O(1− λ) (3.9)

So if a def
= d′(s) 6= d(s) then

• either (P∗drd)[s] <
∑
s′∈S p(s

′|s, a)(P∗drd)[s
′] and using the term where 1

1−λ occurs in equa-
tion (3.9), one concludes that for λ enough close to 1, vπππλ [s] > vd

∞

λ [s].
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• or (P∗drd)[s] =
∑
s′∈S p(s

′|s, a)(P∗drd)[s
′] and ((P∗d+Dd)rd)[s] < r(s, a)+

∑
s′∈S p(s

′|s, a)(Ddrd)[s
′].

Due to the former equation, the constant term in equation (3.9) becomes:
(rd′ + Pd′Ddrd − (P∗d + Dd)rd)[s]
So one concludes that for λ close enough to 1, vπππλ [s] > vd

∞

λ [s].

Summarizing for λ close enough to 1, vπππλ > vd
∞

λ which can be rewritten as:

rd′ + λPd′v
d∞

λ > vd
∞

λ

or as:
vd
′∞

λ = (Id− λPd′)
−1rd′ > vd

∞

λ

Multiplying by 1− λ and letting λ go to 1, one gets:

gd
′∞
≥ gd

∞

q.e.d. (proposition 3.41) ♦♦♦

Proof of proposition 3.42
Due to the second equation for all s,

∑
a∈As(x[s, a] + y[s, a]) > 0. So there is at least one policy

d fulfilling the requirements of the proposition.

We define the set Sx
def
= {s ∈ S |

∑
a∈As x[s, a] > 0} and we introduce the optimal solution (g,h)

of the primal linear program built from (x,y) (see section 3.3.4).
Let us prove that Sx is closed in the DTMC specified by Pd.
Let s /∈ Sx, one gets: 0 =

∑
a∈As x[s, a] =

∑
s′∈S

∑
a∈As′

x[s′, a]p(s|s′, a) ≥ 0

So for all s′ ∈ S and a ∈ As′ : x[s′, a]p(s|s′, a) = 0

Choosing s′ ∈ Sx and a = d(s′) yields: Pd[s
′, s]

def
= p(s|s′, d(s′)) = 0

Let us prove that all states of S \ Sx are transient in the DTMC specified by Pd.
Otherwise since Sx is closed, there exists a terminal scc S′ included in S \ Sx. Since (x,y) is a
basic solution, the columns of the matrix of constraints indexed by {y[s, d(s)]}s∈S′ are linearly
independent.
Let us analyze the components of these columns. Those corresponding to the equations involving
only x are null. Those corresponding to the equations where αs occurs with s /∈ S′ are also null
since Pd[s

′, s] = 0 for all s′ ∈ S′ (S′ is a terminal scc). So these columns restricted to equations
where αs occurs with s ∈ S′ are also linearly independent. But summing these columns one gets
for the component related to αs with s ∈ S′:

y[s, d(s)]

(
1−

∑
s′∈S′

p(s′|s, d(s))

)
= 0

yielding a contradiction.
So for all s ∈ S and s′ /∈ Sx, P∗d[s, s

′] = 0.
Using the slackness property applied to x[s, d(s)] with s ∈ Sx, one gets:

g[s] + h[s]−
∑
s′∈S

p(s′|s, a)h[s′] = r(s, d(s))

So for all s ∈ S:
gd
∞

[s] = (P∗drd)[s] =
∑
s′∈Sx

P∗d[s, s
′]r(s′, d(s′))

=
∑
s′∈Sx

P∗d[s, s
′]

(
g[s′] + h[s′]−

∑
s′′∈S

p(s′′|s′, d(s′))h[s′]

)
= (P∗dg)[s] + (P∗d(h−Pdh)) [s] = (P∗dg)[s]
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So in order to conclude it remains to prove that g = P∗dg.
We are going to prove a stronger statement: g = Pdg.
For all s ∈ S and a ∈ As, g[s]−

∑
s′∈S p(s

′|s, a)g[s′] ≥ 0

So:
∑
s∈S

∑
a∈As x[s, a]

(
g[s]−

∑
s′∈S p(s

′|s, a)g[s′]
)
≥ 0

On the other hand:∑
s∈S

∑
a∈As x[s, a]

(
g[s]−

∑
s′∈S p(s

′|s, a)g[s′]
)

=
∑
s∈S

(∑
a∈As x[s, a]−

∑
s′∈S

∑
a∈As′

p(s|s′, a)x[s′, a]
)

g[s] = 0

So for all s ∈ S, and a ∈ As, x[s, a]
(
g[s]−

∑
s′∈S p(s

′|s, a)g[s′]
)

= 0
Thus for s ∈ Sx as x[s, d(s)] > 0, we deduce that: g[s]−

∑
s′∈S p(s

′|s, d(s))g[s′] = 0

For s /∈ Sx one has y[s, d(s)] > 0. So using the slackness property applied to variable y[s, d(s)]
and looking at the corresponding inequation in the primal linear program one also obtains:
g[s]−

∑
s′∈S p(s

′|s, d(s))g[s′] = 0

q.e.d. (proposition 3.42) ♦♦♦
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Chapter 4

Stochastic Games

4.1 Presentation
In MDP, the agent who selects a strategy (also called a policy) may be viewed as a player in a
game whose opponent is chance. Since a random player does not aim at minimizing the gain of
the agent, MDP are also called games with one and half players. In this chapter, we generalize
this idea by considering games with two players or with two and half players.

Let us first give a general overview. Whatever the variant that we study in this chapter, we
assume that the two players, denoted Max and Min have opposite objectives. Such games are
called zero-sum games meaning that, given any play, the sum of the rewards of the players is
null. One may alternatively formalize it as a single reward r which maps plays to values and that
Max (respectively Min) tries to maximize (respectively minimize). Denote G the structure and the
protocol of the game equipped with the reward r. At this point we could imagine two (among
other) ways of playing in G. Either Max announces its strategy σ and then Min selects a strategy τ
or they do it in the reverse order. Observe that the first (respectively second) way of playing is the
least (respectively most) favourable for Max among all possible ways of revealing the strategies.
Let us denote h the random play in G, once the strategies are fixed and Eσ,τ

G (r(h)) the expected
reward of the play triggered by these strategies. Then with the first way of playing, there are
strategies for Max that ensure an expected reward as close as possible to:

val↓(G) = sup
σ

inf
τ

Eσ,τ
G (r(h))

In addition val↓(G) is the greatest value fulfilling this property. With the second way of playing,
there are strategies for Min that ensure an expected reward as close as possible to:

val↑(G) = inf
τ∈

sup
σ

Eσ,τ
G (r(h))

In addition val↑(G) is the smallest value fulfilling this property. By definition, val↓(G) ≤ val↑(G).
An interesting question is whether these values are equal. In such a case, one says that the game
has a value or that it is determined. This important issue will be handled in Section 4.2. We will
focus on another important issue for games that are determined: does some player have an optimal
strategy and in the positive case does there exist “simple” optimal strategies? For instance, a mixed
strategy includes random choices while a pure strategy only performs deterministic choices. The
other kind of restrictions we are looking for, is related to the memory required to manage an
optimal strategy. If the structure of the game is a graph whose vertices may be visited several
times, a memoryless strategy only depends on the current vertex and so is less computationally
costly.

Example 4.1 (The spinner game revisited) In this game, the player has to compose a five-
digit number whose digits are randomly chosen by a spinner during five rounds. After every round
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Figure 4.1: The spinner game revisited
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0.5b

Figure 4.2: A simple SG

(except the last one), the player chooses in which position he inserts the current digit. The goal of
the player is to obtain the largest number as possible. In figure 3.1, the spinner has successively
output 3 placed by the player in the fifth position and 6 placed by the player in the second position.

However at any time but at most once, the TV presenter may switch the current digit with a
previous one when their value difference is at most 2. The goal of the presenter is to obtain the
smallest number as possible.

A stochastic game (SG) is a finite transition system where any state belongs to either player
Max or Min. The dynamic of the system is defined as follows. The player owning the current state
chooses (possibly randomly) an enabled action. Then the environment randomly selects the next
state. The distribution depends on the current state and the selected action. There are several
ways to define rewards that will be introduced later on.

Definition 4.2 A SG G def
= (S, {As}s∈S , p) is defined by:

• S = SMin ] SMax, the finite set of states;

• For every state s, As, the finite set of actions enabled in s. A def
=
⋃
s∈S As is the whole set

of actions.

• p, a mapping from {(s, a) | s ∈ S, a ∈ As} to the set of distributions over S. p(s′|s, a)
denotes the probability to go from s to s′ if a is selected.

A history h def
= s0a0 . . . siai . . . is a finite or infinite sequence alternating states and actions such

that when si+1 is defined p(si+1|si, ai) > 0.

Example 4.3 (A simple SG) A stochastic game is depicted as a labelled graph (see Figure 4.2).
States of player Max are represented by circles (©). States of player Min are represented by squares
(�). An edge (s, s′) is labelled by

∑
a∈As p(s

′|s, a)a (when non null). When a state has a single
enabled action with Dirac distribution (i.e. wihout randomness) as for s1, s3 and s4, we omit the
label on the single outgoing edge.

In order to obtain a stochastic process, one needs to fix the non deterministic features of the
SG. A strategy of a player P is a mapping from histories ending in a state s ∈ SP to a distribution
over As. Classes of strategies are defined depending on two criteria.
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Figure 4.3: From SG to DTMC.

• the information used in the history. When a strategy only depends on the last state, it is
called memoryless;

• the way the selection is performed. When a strategy deterministically selects its actions, it
is called pure.

The DTMC Gσ,τ is the behaviour of the SG G once strategies σ and τ of respectively Max and
Min are chosen. Its states are information used in strategies. One denotes h the random infinite
history and Prσ,τG,s (resp. Eσ,τ

G,s) the probability measure (the expectation operator) in Gσ,τ when
starting in s.

Example 4.4 Consider the SG depiceted in Figure 4.2. Let σ be the pure memoryless strategy of
Max that selects b in s2 and τ be the strategy of Min that selects a in s0. Then Gσ,τ is depicted in
Figure 4.3.

We now introduce several kinds of SG depending on the specification of rewards. In the next
definition we specify for h = s0a0s1 . . ., an infinite history, its reward depending on the game. For
some of the games we need to introduce Inf(h) = {s | ∀i ∃j > i sj = s}, the set of states occurring
infinitely often in h.

Definition 4.5 Let G be a game. Then:

• Let r be a mapping from {(s, a) | s ∈ S, a ∈ As} to [0, 1] and λ be a real in ]0, 1[. Then G is
a discounted game if the reward of h is defined by: r(h) =

∑
n∈N λ

nr(sn, an);

• Let r be a mapping from {(s, a) | s ∈ S, a ∈ As} to [0, 1]. Then G is a mean payoff game if
the reward of h is defined by: r(h) = lim infn→∞

1
n

∑
i<n r(si, ai);

• Let pri be a mapping from S to N. Then G is a parity game if the reward of h is defined by:
r(h) = 1pri(h) is even where pri(h) = max(pri(s) | s ∈ Inf(h));

• Let pri be an injective mapping from S to N. Then G is a parity game if the reward of h is
defined by: r(h) = r(smax) where smax(h) = arg max(pri(s) | s ∈ Inf(h)).

Observe that priority SG extend parity SG. Moreover the requirement that numerical rewards
must belong to [0, 1] is only introduced for convenience and will be sometimes relaxed as it can be
recovered by an affine transformation.

We now introduce the main problems we adress in this chapter.
Determinacy problem. Let s be a state of a SG G. Define ms = supσ infτ Eσ,τ

G,s(r(h)) and
Ms = infτ supσ Eσ,τ

G,s(r(h)) By construction, ms ≤ Ms. Does ms = Ms? For all games we
consider, the answer is yes. It is called the value of s in G and denoted valG(s).
Existence of optimal strategies. Does there exist σ (resp. τ) such that infτ Eσ,τ

G,s(r(h)) =

valG(s) (resp. supσ Eσ,τ
G,s(r(h)) = valG(s))? The answer is still yes.

Classes of optimal strategies. How can σ and τ be chosen? For all games we consider, there
exist pure and memoryless optimal strategies.
Computational problems. What is the complexity of the associated decision problems like
valG(s) ≥ ν for some input threshold ν? For most of the games we consider, these problems
belong to NP ∩ coNP. Furthermore, we establish polynomial time reductions between problems
implying that their complexity are “equivalent”.
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4.2 Pure memoryless determinacy

4.2.1 Discounted games
Consider G a discounted game and let L be the mapping from RS to RS defined by:

• When s ∈ SMax,

L(v)[s]
def
= max

(
r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As

)

• When s ∈ SMin,

L(v)[s]
def
= min

(
r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As

)

L “selects” the best decision rule for the owner of s in a game that stops at time 1 including a
terminal reward λv. Using a proof similar to the one for discounted rewards in MDP, one shows
that L is Lipschitz-continuous with Lipschitz constant equal to λ < 1. Thus L admits a unique
fixed-point denoted v∗λ.
Let σ∗ be a pure memoryless strategy of player Max that selects in s ∈ SMax some as such that:

r(s, as) + λ
∑
s′∈S

p(s′|s, as)v∗λ[s′] = v∗λ[s]

Let τ∗ be a pure memoryless strategy of player Min that selects in s ∈ SMin some as such that:

r(s, as) + λ
∑
s′∈S

p(s′|s, as)v∗λ[s′] = v∗λ[s]

The next two lemmas show that the items of v∗λ are the values of the game and imply pure
memoryless determinacy.

Lemma 4.6 Let vn be the infimum of the expected discounted rewards up to time n in Gσ∗,τ
against an arbitrary strategy τ of player Min. Then:

vn[s] ≥ v∗λ[s]− λn

1− λ

Proof of Lemma 4.6
We establish the proof by induction on n. The basis case is a consequence that expected rewards
for discounted games are bounded by λ

1−λ .
• Inductive step when s ∈ SMax.

vn+1[s] = r(s, as) + λ
∑
s′∈S

p(s′|s, as)vn[s′]

≥ r(s, a) + λ
∑
s′∈S

p(s′|s, a)(v∗λ[s′]− λn

1− λ
)

= r(s, as) + λ
∑
s′∈S

p(s′|s, as)v∗λ[s′]− λn+1

1− λ

= v∗λ[s]− λn+1

1− λ
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• Inductive step when s ∈ SMin. Let a be the action selected by τ .

vn+1[s] = r(s, a) + λ
∑
s′∈S

p(s′|s, a)vn[s′]

≥ r(s, a) + λ
∑
s′∈S

p(s′|s, a)(v∗λ[s′]− λn

1− λ
)

= r(s, a) + λ
∑
s′∈S

p(s′|s, a)v∗λ[s′]− λn+1

1− λ

≥ v∗λ[s]− λn+1

1− λ

q.e.d. (Lemma 4.6) ♦♦♦

The proof of the second lemma is very close to the previous one and so is omitted.

Lemma 4.7 Let wn be the supremum of the expected discounted rewards up to time n in Gσ,τ∗

against an arbitrary strategy σ of player Max. Then:

wn[s] ≤ v∗λ[s] +
λn

1− λ
The following theorem is a direct consequence of the lemmas.

Theorem 4.8 Any discounted game G is determined with value v∗λ and optimal strategies σ∗ for
Max and τ∗ for Min.

4.2.2 Mean Payoff games
In order to establish pure memoryless determinacy of mean payoff games we proceed as for MDP
establishing the existence of Blackwell strategies. Let G be a mean payoff game and Gλ the
discounted version with discount λ.

Pick some increasing sequence {λn}n∈N such that limn→∞ λn = 1. Let σn and τn be pure
memoryless optimal strategies for Gλn . Since there are only finite such strategies, some strategies
σ∗ and τ∗ must occur simultaneously infinitely often. By considering a subsequence, one assumes
that σ∗ and τ∗ are optimal for all Gλn .

Lemma 4.9 There exists n0 such that for all λ ≥ λn0
, σ∗ and τ∗ are optimal in Gλ.

Proof of Lemma 4.9
We prove it by contradiction.
Assume there exists some increasing sequence {nk}k∈N and λnk < µk < λnk+1

such that for all k,
there exist s ∈ S and pure memoryless strategies σ and τ (optimal for µk) fulfilling:

• either Eσ,τ
Gµk ,s

(r(h)) > Eσ∗,τ
Gµk ,s

(r(h));

• or Eσ,τ
Gµk ,s

(r(h)) < Eσ,τ∗

Gµk ,s
(r(h)).

For pure memoryless strategies σ and τ , Eσ,τ
Gλ,s(r(h)) is a rational function of λ. So define:

fs(λ) =
∏

Eσ,τGλ,s
(r(h)) 6=Eσ

′,τ′
Gλ,s

(r(h))

Eσ,τ
Gλ,s(r(h))−Eσ′,τ ′

Gλ,s (r(h))

Then some fs would have an infinite number of zeroes.

q.e.d. (Lemma 4.9) ♦♦♦
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We are now in position to prove the pure memoryless strategies of mean payoff games.

Theorem 4.10 Any mean payoff game G is determined with optimal strategies σ∗ for Max and
τ∗ for Min.

Proof of Theorem 4.10
Let us denote the random history h = s0a0s1 . . .
Consider the MDP Gτ∗ obtained by using strategy τ∗ for player Min. σ∗ is a Blackwell policy in
Gτ∗ . So it is optimal for mean payoff reward:

lim sup
n→∞

1

n

∑
i<n

Eσ,τ∗

G,s (r(si, ai)) ≤ lim
n→∞

1

n

∑
i<n

Eσ∗,τ∗

G,s (r(si, ai))

Using a similar reasoning, one gets for all s and τ :

lim inf
n→∞

1

n

∑
i<n

Eσ∗,τ
G,s (r(si, ai)) ≥ lim

n→∞

1

n

∑
i<n

Eσ∗,τ∗

G,s (r(si, ai))

Thus:

sup
σ

inf
τ

(lim inf
n→∞

1

n

∑
i<n

Eσ,τ
G,s(r(si, ai))) ≥ inf

τ
(lim inf
n→∞

1

n

∑
i<n

Eσ∗,τ
G,s (r(si, ai)))

= lim
n→∞

1

n

∑
i<n

Eσ∗,τ∗

G,s (r(si, ai)) ≥ sup
σ

(lim sup
n→∞

1

n

∑
i<n

Eσ,τ∗

G,s (r(si, ai)))

≥ inf
τ

sup
σ

(lim sup
n→∞

1

n

∑
i<n

Eσ,τ
G,s(r(si, ai)))

q.e.d. (Theorem 4.10) ♦♦♦

4.2.3 Priority games
In order to establish pure memoryless determinacy of priority games, we recall an elementary
result of analysis about non decreasing 1-Lipschitz functions (see Figure 4.4 for an example of
such functions).

Lemma 4.11 Let f be a non decreasing function from [0, 1] to [0, 1] that is 1-Lipschitz: |f(x)−
f(x′)| ≤ |x− x′|. Then the set of fixed points of f is a non empty interval denoted [a, b]. Further-
more denoting f∞(x) = limn→∞ f (n)(x):

• for all x < a, f∞(x) = a and f(x) > x;

• for all a ≤ x ≤ b, f∞(x) = x;

• for all b < x, f∞(x) = b and f(x) < x.

Proof of Lemma 4.11
Let I = {x | x = f(x)}. Since f(0) ≥ 0 and f(1) ≤ 1, using the intermediate value theorem I is
not empty. Since f is continuous, I is closed.
Let x < z < y with x = f(x) and y = f(y). Then:

• f(z)− f(x) ≤ z − x implying f(z) ≤ z;

• f(y)− f(z) ≤ y − z implying f(z) ≥ z.
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Figure 4.4: A non decreasing 1-Lipschitz function.

Thus f(z) = z.
Let x < a then f(a) − f(x) ≤ a − x implying f(x) ≥ x but since f(x) 6= x, f(x) > x. Since f is
non decreasing, f(x) ≤ f(a) = a. By induction fn(x) ≤ a and by continuity f∞(x) ≤ a. Again
by continuity, f(f∞(x)) = f∞(x). Thus f∞(x) ≥ a.
The case x > b is handled similarly.

q.e.d. (Lemma 4.11) ♦♦♦

A state s of a stochastic game is absorbing if As = {a} for some a and p(s|s, a) = 1. Observe
that the priority of an absorbing state is irrelevant. A state s is vanishing if for all s′ and a ∈ As′ ,
p(s|s′, a) = 0. A state is relevant if it is neither absorbing nor vanishing. The proof of the pure
memoryless determinacy is done by induction on the number of relevant states. So we introduce
a construction for the inductive step.

Let G be a stochastic game with s the relevant state with maximal priority. We define the
game G′ as follows.

• Add an absorbing state s̃ with reward v.

• Redirect all incoming transitions in s to s̃:

p′(s̃|s′, a) = p(s|s′, a) and p′(s|s′, a) = 0.

Since s is vanishing in G′, it has less relevant states than G. This construction is illustrated in
Figure 4.5.

Theorem 4.12 Any priority game G is determined with pure memoryless optimal strategies.

Proof of Theorem 4.12
By induction on the number of relevant states.
Basis case. When there is no relevant state, all strategies are memoryless. The value of an
absorbing state s is r(s). The value of a vanishing state s belonging to Max (resp. Min) is:

max
a∈As

∑
s′

p(s′|s, a)r(s′) (resp. min
a∈As

∑
s′

p(s′|s, a)r(s′))

and an action corresponding to a pure optimal strategy is some:

arg max
a∈As

∑
s′

p(s′|s, a)r(s′) (resp. arg min
a∈As

∑
s′

p(s′|s, a)r(s′))

Inductive step. Let G be a stochastic game with s the relevant state with maximal priority. We
consider all rewards for s and denote Gv the game G with r(s) = v and G′v the reduced game for
which induction applies.
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Figure 4.5: Reducing the number of relevant states.

One denotes valG′v (t) by ft(v), the value of state t in G′v. Let v < v′. Then:

Eσ,τ
G′v,t

(r(h)) = Prσ,τG′v,t(smax(h) 6= s)Eσ,τ
G′v,t

(r(h)|smax(h) 6= s) + vPrσ,τG′v,t(smax(h) = s)

≤ Eσ,τ
G′
v′ ,t

(r(h)|smax(h) 6= s) + v′Prσ,τG′v,t(smax(h) = s)

= Eσ,τ
G′
v′ ,t

(r(h))

Thus ft is non decreasing and 1-Lipschitz.
• A first property of G′v and Gv.

Let σv be a pure memoryless optimal strategy of Max in G′v.
Assume v < fs(v).

Then there exists ε > 0 such that given any strategy τ of Min:
the probability to reach s̃ from s in G′σv,τv is bounded by 1− ε.

Otherwise by a family of strategies τn reaching s̃ with probability at least 1 − 1
n Min can ensure

that fs(v) ≤ v.

So when v < fs(v), for all τ the probability to visit infinitely often s in Gσv,τv is null.

• A second property of G′v and Gv.

Let σv be a pure memoryless optimal strategy of Max in G′v.
Assume v ≤ fs(v).

Let Div be the event: h does not reach s̃. Then for all strategy τ of Min:
(when defined) Eσv,τ

G′v,s
(r(h)|Div) ≥ fs(v)

fs(v) ≤ Eσv,τ
G′v,s

(r(h)) = Prσv,τG′v,s
(Div)Eσv,τ

G′v,s
(r(h)|Div) + (1−Prσv,τG′v,s

(Div))v

So Eσv,τ
G′v,s

(r(h)|Div) ≥ fs(v).
Let Rn be the event: h visits s exactly n times.

Thus if v ≤ fs(v) then for all strategy τ of Min: (when defined) Eσv,τ
Gv,s(r(h)|Rn) ≥ fs(v).
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• A first lower bound.
Let σv be a pure memoryless optimal strategy of Max in G′v.

If v ≤ fs(v) then for all strategy τ of Min:
fs(v) ≤ Eσv,τ

Gv,s(r(h)).

Let R∞ be the event: h visits s infinitely often.

Eσv,τ
Gv,s(r(h)) =

∑
n

Prσv,τGv,s(Rn)Eσv,τ
Gv,s(r(h)|Rn) + Prσv,τGv,s(R∞)v

Recall that Eσv,τ
Gv,s(r(h)|Rn) ≥ fs(v).

Now:

• either fs(v) = v and thus Eσv,τ
s (r(h)) ≥ fs(v);

• or fs(v) > v and implying Prσv,τ (R∞) = 0 implying Eσv,τ
s (r(h)) ≥ fs(v).

• A second lower bound.
There exists a pure memoryless strategy σ of Max in Gv such that:

1. σ is optimal in G′f∞(v);

2. for all τ , Eσ,τ
Gv,s(r(h)) ≥ f∞s (v);

3. for all t, for all τ , Eσ,τ
Gv,t(r(h)) ≥ ft(f∞s (v)).

Proof of 1,2: Case fs(v) ≤ v.
A pure memoryless optimal strategy σf∞s (v) in G′f∞s (v) ensures for s a value f∞s (v) in Gf∞s (v) thus
also in Gv.
Proof of 1,2: Case v < fs(v).
A pure memoryless optimal strategy σv in G′v ensures for s a value fs(v) in Gv. Since for all τ
Prσv,τGv,s(R∞) = 0, σv ensures a value fs(v) in Gv′ for any v′. Let us note a = f∞s (v) the least
fixed point of fs. Observe that v < fs(v) is equivalent to v < a. There is a finite number of pure
memoryless strategies. Consider a strategy σ such for all ε > 0 there is some a− ε < v < a with
σv = σ. Thus σ ensures for s a value a in all Gv′ . Since σ is optimal in G′v′ for v′ as close as
possible to a, σ is optimal in G′a.
Proof of 3.
Since σ is optimal in G′f∞s (v), for all τ , ft(f

∞
s (v)) ≤ Eσ,τ

G′
f∞s (v)

,t(r(h)) Let R be the event h reaches

s̃. Then:

Eσ,τ
G′
f∞s (v)

,t(r(h)) = (1−Prσ,τG′
f∞s (v)

,t(R))Eσ,τ
G′
f∞s (v)

,t(r(h)|Rc) + Prσ,τG′
f∞s (v)

,t(R)f∞s (v)

≤ (1−Prσ,τGv,t(R))Eσ,τ
Gv,t(r(h)|Rc) + Prσ,τGv,t(R)Eσ,τ

Gf∞s (v),t
(r(h)|R)

= Eσ,τ
Gv,t(r(h))

By a similar reasoning, one gets:

There exists a pure memoryless strategy τ of Min in Gv such that:

• τ is optimal in G′f∞s (v);

• for all σ, Eσ,τ
Gv,s(r(h)) ≤ f∞s (v).

• for all t, for all σ, Eσ,τ
Gv,t(r(h)) ≤ ft(f∞s (v)).

which concludes the proof.

q.e.d. (Theorem 4.12) ♦♦♦
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4.3 Computational issues

4.3.1 Complexity results
Using the results on MDP, one straightforwardly gets the following result. In the next subsection,
we establish by a polynomial time reduction the same result for parity games.

Theorem 4.13 Let G be a mean payoff or discounted game and a value v. The decision problem
whether valG(s) ≥ v belongs to NP ∩ coNP.

Proof of Theorem 4.13
This problem is in NP.
Guess a pure memoryless strategy σ of Max. Build the MDP Gσ. Minimize (in polynomial time)
the objective o. Answer yes if o ≥ v.
This problem is in coNP.
Guess a pure memoryless strategy τ of Min. Build the MDP Gτ . Maximize (in polynomial time)
the objective o. Answer no if o < v.

q.e.d. (Theorem 4.13) ♦♦♦

While the exact complexity of these problems is a longstanding open issue, there is a particular
case where it is known to be solvable in polynomial time.

Theorem 4.14 Let G be a discounted game where λ is represented in unary. Then the values and
the optimal strategis can be computed in polynomial time.

Proof of Theorem 4.14

The algorithm proceeds by first computing two values n and d, and then iterating n times the
operator L and d-rounding the final value.

v← 0

For i from 1 to n do v← L(v)

For s ∈ S do valG [s]← [v[s]]d (where [x]d is the rational cd closest to x)

Computation of d.
Let σ and τ be some pure memoryless optimal policies and the DTMC Gσ,τ . Denote:

• P its transition matrix

• r defined by r[s] = r(s, as) where as is the action selected by the owner of s

Then valG [s] = ((Id− λP)−1r)[s]. So:

• one computes β the product of the denominators of the probabilities and rewards occurring
in G and λ in polynomial time;

• one rewrites all values (including 1− λx for appropriate x’s) as α
β ;

• one computes d the product of the α’s in polynomial time.

By analysis of the Cramer’s rule for solving linear equations, one deduces that any valG [s] can be
written as c

d for some c.
Computation of n.
L the contracting operator fulfills ||valG − Ln(0)|| ≤ λn

1−λ . Thus:
[Ln(0)[s]]d = valG [s] when λn

1−λ <
1
2d , i.e. n log2( 1

λ ) > log2( 1
1−λ ) + log2(d) + 1

Write λ = p
q . Then log2( 1

λ ) ≥ log2(1 + 1
p ) ≥ 1

p and log2( 1
1−λ ) ≤ log2(q).
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So any value of n greater than p(log2(q) + log2(d) + 1) implies λn

1−λ <
1
2d .

Complexity analysis.

• log2(d) + 1 is equivalent to the size of the representation of d so polynomial w.r.t. the size
of the problem.

• p is polynomial w.r.t. the size of the problem when λ is specified in unary.

• The operations involve numbers whose denominators are bounded by dn and numerators by
ndn so performed in polynomial time.

q.e.d. (Theorem 4.14) ♦♦♦

4.3.2 Polynomial time reductions
In this part, we show that whatever the objective among discounted reward, mean payoff or
parity, the complexity of solving these games is essentially the same. More precisely, we establish
polynomial time reductions between the problems. When solving problem a with the help of
problem b, polynomial time reduction is a polynomial time algorithm for solving an instance of a
that can use the solutions of one or several instances of b in constant time (as an oracle).

Theorem 4.15 There is polynomial time reduction from the problem of computing the optimal
strategies in mean payoff games to the problem of computing the optimal strategies in discounted
games.

Proof of Theorem 4.15
Let G be a mean payoff game. The proof is based on the computation of an appropriate λ∞ such
that optimal strategies are Blackwell strategies. The search of an appropriate λ∞ is done by an
analysis of the possible zeroes of Eσ,τ

Gλ,s(r(h))−Eσ′,τ ′

Gλ,s (r(h)):

Eσ,τ
Gλ,s(r(h))−Eσ′,τ ′

Gλ,s (r(h)) = (Id− λP)−1r− (Id− λP′)−1r′

for some P, P′, r, r′ with items occurring in G;
Let M be the product of denominators occurring in values of G. and X = 1− λ with X in ]0, 1

2 ].
The coefficients of Id−(1−X)P, Id−(1−X)P′, r and r′ can be written as aX+b with numerators
of a and b bounded by M and denominator M . Looking for zeroes one may omit the common
denominator.

(Id− (1−X)P)−1r− (Id− (1−X)P′)−1r′ =
N

D
− N ′

D′

with N,D,N ′, D′ ∈ Z[X].
Using Cramer’s rule the coefficients of ND′ −N ′D are bounded by:

R = 2n(n!)4M2n

Let P ∈ Z[X] whose coefficients are bounded by R. Then the smallest (if any) root of P in ]0, 1
2 ]

is at least 1
2R . Thus an upper bound of λ∞ is 1− 1

2R+1 . Since R has a polynomial size w.r.t. the
size of G, computing λ∞ can performed in polynomial time.

q.e.d. (Theorem 4.15) ♦♦♦

A reachability objective where w.l.o.g. the target states are absorbing is a very particular case
of parity objective: parity 2 for target states and parity 1 for other states. However it is enough
for the reduction of discounted games.

Theorem 4.16 There is a polynomial time reduction from the problem of computing the optimal
strategies and game values in discounted games to the problem of computing the optimal strategies
and game values in reachability games.
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(1−λ)(1−r(s,a))a
+(1−λ)(1−r(s,b))b

Figure 4.6: From discounted games to reachability games.

Proof of Theorem 4.16
Let G a discounted game with discount λ. One builds a reachability game Gλ with additional
states s+ and s− and reachability target s+ as illustrated in Figure 4.6. Then by a straightforward
examination, for all s, σ and τ :

Eσ,τ
G,s(r(h)) = (1− λ)Prσ,τGλ,s(h reaches s+)

which concludes the proof.

q.e.d. (Theorem 4.16) ♦♦♦

The reduction from parity games to mean payoff games is much more intricate than the previous
ones. It proceeds in two steps:

• Computing the states s for which valG(s) ∈ {0, 1};

• Reducing the parity game to a mean-payoff game once these states are computed.

Let us call a game pure is there is no random choice inside: once an action is selected, there
is a single target state reached with probability 1. So in the graph representation of a pure game,
there is a bijection between actions and egdes. Thus we will sometimes omit to label edges with
actions when it is not necessary. We also sometimes consider that a strategy selects the next state
instead of the action that leads to this state.

In order to show that computing the states s for which valG(s) ∈ {0, 1} can be reduced to
solving to mean payoff games, one also proceeds in two steps:

• Reducing this problem to a pure parity game;

• Reducing a pure parity game to a pure mean-payoff game.

We present the different stages in the reverse order starting by the reduction between pure
games.

Theorem 4.17 There is a polynomial time reduction from the problem of computing the optimal
strategies an game values in pure parity games to the problem of computing the optimal strategies
and game values in pure mean payoff games.

Proof of Theorem 4.17
Let G a pure parity game. One builds a reachability game G′ by defining rewards as follows.

When pri(s) = x in G, r(s, a) = (−m)x in G′ with m = |S|

Such a construction is illustrated in Figure 4.7.
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Figure 4.7: From pure parity games to pure mean payoff games.

Observe that the value of a pure parity game G belongs to {0, 1}. We claim that the mean payoff
game G′ fulfills valG′(s) > 0 iff valG(s) = 1.
• Let σ be a pure optimal strategy of Player Max in G and τ ′ a pure optimal strategy of Player
Min in G′. Gσ,τ ′ is a graph where any vertex has exactly one successor. From s one reaches a
circuit. Let p be the maximal priority occurring in the circuit. If p is even then Eσ,τ ′

G′,s(r(h)) ≥
mp − (m− 1)mp−1 > 0. Thus:

valG(s) = 1 implies valG′(s) > 0

• Let τ be a pure optimal strategy of Player Min in G and σ′ a pure optimal strategy of Player
Max in G′. Gσ′,τ is a graph where any vertex has exactly one successor. From s one reaches a
circuit. Let p be the maximal priority occurring in the circuit. If p is odd then Eσ′,τ

G′,s(r(h)) ≤
−mp + (m− 1)mp−1 < 0; Thus:

valG(s) = 0 implies valG′(s) < 0

q.e.d. (Theorem 4.17) ♦♦♦

We now reduce the problem of computing states s in a parity game G for which valG(s) = 1
to the value problem in a pure parity game G′. Game G′ is built as follows. We call the former
problem “the value 1 problem”. Let pmax be the maximal priority assumed to be even w.l.o.g.
For all s ∈ S with pri(s) = p and a ∈ As:

• Add to SMax: s̃qa with q ≥ p− 1 and q even and ŝqa with q ≥ p and q odd;

• Add to SMin: sa and ŝqa with q ≥ p and q even.

The priority of the new states are the following ones: pri(sa) = pri(s̃qa) = p and pri(ŝqa) = q.
The set of edges (i.e. actions) is:

• (s, sa) and (sa, s̃
q
a) for all s̃qa;

• (s̃qa, ŝ
q
a) and (s̃qa, ŝ

q+1
a ) when defined ;

• (ŝqa, s
′) when p(s′|s, a) > 0.

The construction of G′ is illustrated in Figure 4.8. In a pure parity parity game G′ the winning
set of player Max (resp. Min) is the set {s | valG′(s) = 1} (resp. {s | valG′(s) = 0}). Let E′ (resp.
O′) the winning set of player Max (resp. Min) in G′ and E = E′ ∩ S and O = O′ ∩ S. The next
two lemmas establish the correctness of this construction.

Lemma 4.18 For all s ∈ E, valG(s) = 1.
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Figure 4.8: From parity games to pure parity games.

Proof of 4.18
Let σ be a pure memoryless optimal strategy of Max in G′. We claim that in the MDP Gσ,
one never leaves E. Assume by contradiction that there exists s ∈ E and a ∈ Aσs such that
p(s′|s, a) > 0 and s′ ∈ O. In G′ (after possibly selecting a),

• in sa, Min could select s̃pmax
a ;

• and in ŝpmax
a Min could select s′ ∈ O, a contradiction.

Let τ be a pure memoryless optimal strategy of Min in the MDP Gσ. Consider M the Markov
chain Gσ,τ restricted to E. Assume there exists C a terminal s.c.c. ofM whose maximal priority
is odd, say 2r + 1 for state s0. Let τ ′ be (partially) defined as follows. For all s ∈ C ∩ SMin,
τ ′(s) = τ(s). Let C• = {sa | s ∈ C ∩ S a ∈ As is selected by σ or τ}. For all sa ∈ C•:

• τ ′(sa) = s̃2r
a ;

• if σ(s̃2r
a ) = ŝ2r

a then τ ′(ŝ2r
a ) = s′ with s′ minimizing the distance to s0 in Gσ,τ .

Consider in G′ the set of states S∗ = C ∪ C• ∪ {s2r
a , σ(s2r

a ) | sa ∈ C•}. Observe that for all t ∈ S∗,
pri(t) ≤ 2r+1. Every state in S∗ has exactly one successor defined by σ or τ ′ still in S∗. Consider
any circuit in the induced graph:

• either some state ŝ2r+1
a occurs in the circuit;

• or s0 occurs in the circuit.

Thus S∗ ∩ E′ = ∅ which contradicts the definition ofM.

q.e.d. (4.18) ♦♦♦

Lemma 4.19 For all s ∈ O, valG(s) < 1.

Proof of 4.19
Let τ be a pure memoryless optimal strategy of Min in G′ and consider the MDP Gτ . Let σ be a
pure memoryless optimal strategy of Max in Gτ and consider the DTMC Gσ,τ .
Let H be the graph over S′, the set of vertices, defined by:

• If s ∈ SMax (resp. t ∈ S′Min) then (s, sσ(s)) (resp. (t, τ(t)) is an edge;

• for other t, any edge (t, t′) of G′ is an edge.
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Let s0 ∈ O belonging to a terminal s.c.c. C of H. By construction, C ⊆ O′ and the maximal
priority in C is odd.
We prove by induction that for all s reachable from s0 in Gσ,τ , s ∈ C. Let a ∈ As be selected
either by σ or τ . Then in sa, τ does not select s̃pmax

a . Otherwise ŝpmax
a would belong to C. Let s̃2`

a

be selected by τ . Then ŝ2`+1
a belongs to C and so all s′ with p(s′|s, a) > 0 belongs to C. Thus in

Gσ,τ , s0 belongs to a terminal s.c.c. with all states in O.
We claim that for all s ∈ O, there is a positive probability in Gσ,τ to reach a state s′ ∈ O such
that s′ belongs to a terminal s.c.c. C of H. We prove it by induction on the length of a path from
s along O′ to some s′ ∈ O of a terminal s.c.c. C of H. Assume the path starts by ssas̃raŝ`as′. for
some a selected either by σ or τ , and some r and some `. Then p(s′|s, a) > 0.

Thus, for all s ∈ O there is a positive probability in Gσ,τ
to reach a terminal s.c.c. with all states in O.

Assume there exists C a terminal s.c.c. of Gσ,τ with all states in O whose maximal priority is even,
say 2r for state s0. Let σ′ be (partially) defined as follows. For all s ∈ C ∩SMax, σ′(s) = σ(s). Let
C• = {sa | s ∈ C ∩ S a ∈ As is selected by σ or τ}. For all sa ∈ C•:

• If τ(sa) = s̃2`
a with ` ≥ r then σ′(s̃2`

a ) = ŝ2`
a ;

• If τ(sa) = s̃2`
a with ` < r then σ′(s̃2`

a ) = ŝ2`+1
a and σ′(ŝ2`+1

a ) = s′ with s′ minimizing the
distance to s0 in Gσ,τ .

Consider in G′ the set of states S∗ = C ∪ C• ∪ {τ(sa), σ′(τ(sa)) | sa ∈ C•}. Every state in S∗ has
exactly one successor defined by σ′ or τ still in S∗. Consider the maximal priority of any circuit
in the induced graph:

• either its is 2` for some ` ≥ r and state ŝ2`
a ;

• or it is 2r with s0 occuring in the circuit.

Thus S∗ ∩O′ = ∅ which contradicts the definition of C.

q.e.d. (4.19) ♦♦♦

As an immediate consequence of the lemmas, one gets:

Theorem 4.20 There is a polynomial time reduction from the problem of computing the optimal
strategies for the value 1 problem in parity games to the problem of computing the optimal strategies
in pure parity games.

Before buliding the last step of the reduction from parity games to mean payoff games, one
needs an auxilliary lemma about DTMC.

Lemma 4.21 Let M be an irreducible Markov chain with m states and minimum positive tran-
sition probability δ. Then for all s ∈ S,

π∞(s)
def
= lim

n→∞

1

n

∑
i<n

Pr(Xi = s) ≥ 1

m
δm−1

Proof of 4.21
Consider s0, a state with maximal Cesaro-limit probability π∞(s0) ≥ 1

m . In the M, there is a
path of length ` ≤ m− 1 from s0 to s. Thus:

Pr(Xi+` = s) ≥ δ`Pr(Xi = s0) ≥ δm−1Pr(Xi = s0)

implying:

π∞(s) ≥ π∞(s0)δm−1 ≥ 1

m
δm−1

q.e.d. (4.21) ♦♦♦
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Theorem 4.22 There is a polynomial time reduction from the problem of computing the optimal
strategies in parity games to the problem of computing the optimal strategies in mean payoff games.

Proof of 4.22
Let G be a parity game with m states and δ minimal positive probability: Define:

Si = {s | valG = i} for i ∈ {0, 1}

By Theorems 4.20 and 4.17, these sets and their corresponding optimal strategies can be computed
using a reduction to pure mean payoff games. G′ the mean payoff game with same structure as G
is defined by:

• For all s ∈ S1 and a ∈ As, r(s, a) = 1;

• For all s ∈ S0 and a ∈ As, r(s, a) = −1;

• For all s /∈ S0 ∪ S1 with p = pri(s) and a ∈ As, r(s, a) = ( −2m
δm−1 )p;

Observe that this reduction is performed in polynomial time. We claim that:

For all s ∈ S, valG′(s) = 2valG(s)− 1

Let us prove that valG′(s) ≥ 2valG(s)− 1.
Let σ (resp. τ) be a pure optimal strategy of Player Max (resp. Min) in G and σ′ (resp. τ ′) be a
pure optimal strategy of Player Max (resp. Min) in G′.
Prσ,τ

′

G,s (h reaches S0) ≤ 1−valG(s) Otherwise combining τ and τ ′, Min would ensure a value strictly
less than valG(s).
• Let C be a terminal s.c.c. of Gσ,τ ′ . Then:

• either S1 ∩ C 6= ∅ implying C ⊆ S1 and thus valG′(t) = 1 for all t ∈ C;

• either S0 ∩ C 6= ∅ implying C ⊆ S0 and thus valG′(t) = −1 for all t ∈ C;
Let us denote C0 the union of these s.c.c.

• or C ∩ (S0 ∪ S1) = ∅.

In the latter case, all states t ∈ C fulfill 0 < valG(t) < 1. Thus z ∈ C, a vertex with maximal
priority, fulfills p def

= pri(z) is even.
When p = 0, for all t ∈ C, r(t, a) = 1. So one immediately gets Eσ,τ ′

G,t (r(h)) = 1.
When p > 0, the contribution of z to the mean payoff reward is at least:

1

m
δm−1(

2m

δm−1
)p = 2(

2m

δm−1
)p−1

The accumulated contribution of all t ∈ C \ {z} is at least: −( 2m
δm−1 )p−1. So for all t ∈ C,

Eσ,τ ′

G,t (r(h)) ≥ ( 2m
δm−1 )p−1 ≥ 1. Thus:

valG′(s) ≥ −Prσ,τ
′

G,s (h reaches C0) + (1−Prσ,τ
′

G,s (h reaches C0))

= 1− 2Prσ,τ
′

G,s (h reaches C0)

≥ 1− 2Prσ,τ
′

G,s (h reaches S0)

≥ 1− 2(1− valG(s))

= 2valG(s)− 1

One gets valG′(s) ≤ 2valG(s)− 1 by a similar reasoning about Gσ′,τ .

q.e.d. (4.22) ♦♦♦
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Chapter 5

Probabilistic Automata

5.1 Presentation
Let us consider a MDP modelling a reachability problem, i.e. given some target state, we are
looking for a policy that maximizes the probability to reach this state. Such a problem can be
solved with a linear programming approach and thus it is computable in polynomial time.

Assume now that we are required to give an a priori policy. In order to model it by an MDP,
this entails that for all s, s′ ∈ S one has As = As′

def
= A. W.r.t. the reachability problem, this is

not a restriction since it consists in adding a new absorbing state whatever the action and to add
transitions (with probability 1) to this state when an action was not originally allowed in some
state. Another modification of the problem setting which is much more important, is that the
considered policies are finite. Let us explain why in some context this restriction is meaningful.
Suppose that you plan to go in a foreign country for your holidays, you must choose which train
or plane you will use, you must rent an house or a room in an hotel, you must buy tickets for some
exhibitions, etc. All these actions have a cost and your budget is finite whence the restriction to
a finite sequence of actions over A which can also be seen as a finite word of A∗.

This leads to the definition of probabilistic automata first introduced in [RAB 63]. Observe
that we adopt the usual terminology of automata theory.

Definition 5.1 A probabilistic automaton (PA) A = (Q,A, {Pa}a∈A, π0, F ) is defined by:

• Q, the finite set of states;

• A, the finite alphabet;

• For all a ∈ A, Pa, a probability transition matrix over S;

• π0, the initial distribution over states and F ⊆ Q the final states.

As in Markov chains, when the initial distribution is a Dirac distribution concentrated on q0, one
says that q0 is the initial state.

Example 5.2 (A simple PA) Figure 5.1 depicts a PA with an initial state q0 and a final state
q1. In order to get a compact view of the automaton, an edge from a state to another one is labelled
by a vector of transition probabilities indexed by A. In order to make the state indices explicit,
the vector is denoted by a formal sum. For instance, the transition from q0 to itself is labelled by
1a+ 0.5b meaning that when a (resp. b) is chosen in state q0, the probability that the next state is
q0, Pa[q0, q0] (resp. Pb[q0, q0]), is equal to 1 (resp. 0.5).

When some finite word w
def
= a1 . . . an is selected, we are interested in the probability to be

in a final state using w as a policy. The following definition is straightforwardly justified by the
analysis of MDP’s.
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Figure 5.1: A simple PA

Definition 5.3 Given A a PA and w def
= a1 . . . an ∈ A∗ a word, the acceptance probability of w

by A is defined by:

PrA(w)
def
=
∑
q∈Q

π0[q]
∑
q′∈F

(
n∏
i=1

Pai

)
[q, q′]

Notation. Given a word w def
= a1 . . . an, the probability matrix Pw is defined by Pw

def
=
∏n
i=1 Pai .

In particular Pε = Id. Thus PrA(w) = π0Pw1TF . where 1F is the indicator vector of subset F .
Let us compute in example 5.2, PrA(abba). Since there are only two states, it is enough to keep

the acceptance probability of the prefixes of abba. One starts with the empty word ε, PrA(ε) = 0.
Then:

• PrA(a) = 1
2PrA(ε) = 0,

• PrA(ab) = PrA(a) + 1
2 (1−PrA(a)) = 1

2

• PrA(abb) = PrA(ab) + 1
2 (1−PrA(ab)) = 3

4

• PrA(abba) = 1
2PrA(abb) = 3

8

More generally, the following recursive equations hold:

PrA(wa) =
1

2
PrA(w) and PrA(wb) =

1

2
(1 + PrA(w))

from which one can derive an explicit expression of the acceptance probability:

PrA(a1 . . . an) =

n∑
i=1

2i−1−n · 1ai=b

Observe that sup(PrA(w) | w ∈ A∗) = 1 and this value is not reached by any finite word.
We are interested in useful policies which directly leads to the introduction of stochastic lan-

guages.

Definition 5.4 Let A be a probabilistic automaton, θ ∈ [0, 1] a threshold also called a cut point
and ./ ∈ {<,≤, >,≥,=, 6=} be a comparison operator. Then L./θ(A) is defined by:

L./θ(A) = {w ∈ A∗ | PrA(w) ./ θ}

The stochastic languages of example 5.2 have a simple interpretation. Let us introduce va
def
= 0

and vb
def
= 1. The acceptance probability of a word w1 . . . wn is now the binary number 0.vwn . . . vw1

.
So for instance L≥0.5(A) is the set of representations of binary numbers greater or equal than 0.5.
Of course the representation of a number is not unique due to trailing zeros.

Example 5.5 (Counting with PA) Figure 5.2 depicts a PA over alphabet {a, b}. This is a suc-
cinct representation where we have omitted an absorbing rejecting state and all transitions towards
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Figure 5.2: L=0.5(A) = {anbn | n > 0}

this state. For instance, in q0 reading b one goes to this state with probability 1 and in q2 reading
b one goes to this state with probability 0.5.

Any word z different from ambn with m > 0, n > 0 cannot be accepted and so PrA(z) = 0.
Let w def

= ambn with m > 0, n > 0. w can be accepted by a path q0, q
m
1 , q

n
2 or by a family of

paths q0, q
r
3, q

s
4, q

n
5 with 0 < r, s and r + s = m. The probability of the former path is 1

2n while
the cumulated probability of the latter paths is 1

2 −
1

2m , summing one obtains 1
2 + 1

2n −
1

2m . Thus
L=0.5(A) = {anbn | n > 0}.

One wants to use a PA as input for algorithms and without restrictions on its representation
this cannot be done. So we introduce a subclass of PA.

Definition 5.6 A rational PA is a PA with probability distributions over QQ. A rational stochastic
language is a stochastic language specified by a rational PA and a rational threshold.

Example 5.2 shows that {anbn | n > 0} is a rational stochastic language.

5.2 Properties of stochastic languages

5.2.1 Expressiveness
The first issue of expressiveness is related to the way we define stochastic languages: can we limit
the threshold and the comparison operators while preserving the same expressive power? We first
show that we can always use threshold 1

2 .

Proposition 5.7 Let A be a probabilistic automaton, θ ∈ [0, 1] a threshold and ./ ∈ {<,≤, >,≥
,=, 6=} be a comparison operator. Then there exists a probabilistic automaton A′ such that:

L./ 1
2
(A′) = L./θ(A)

Furthermore if A is a rational probabilistic automaton and θ is rational then A′ is a rational
probabilistic automaton.

Proof
We now show that equality and disequality operators can be omitted.

Proposition 5.8 Let A be a probabilistic automaton. Then there exists a probabilistic automaton
A′ such that:

L= 1
4
(A′) = L≥ 1

4
(A′) = L= 1

2
(A) and so L< 1

4
(A′) = L6= 1

2
(A)

Furthermore if A is a rational probabilistic automaton then A′ is a rational probabilistic automaton.
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Proof
This proposition has an important corollary.

Corollary 5.9 The family of languages {L=θ(A)}A,θ is closed under intersection. This closure
property also holds for rational stochastic languages.

Proof
Finally by complementing the final states, the comparison operator ≤ (resp. <) can be simu-

lated by operator > (resp. ≥).

Proposition 5.10 Let A be a probabilistic automaton and A′ be like A except that F ′ def= Q \ F .
Then:

L≥θ(A′) = L<θ(A) and L>θ(A′) = L≤θ(A)

The second issue is related to the situation of the class of stochastic languages w.r.t. the
standard classes of languages. Consider the languages L>θ(A) where A is the PA presented
in example 5.2. Given θ < θ′ there exists a binary number b such that θ < b < θ′ so that
L>θ′(A) ( L>θ(A). Thus the family of languages {L>θ(A)}0≤θ≤1 is uncountable. Since the
family of recursively enumerable languages is countable, one gets the following proposition.

Proposition 5.11 There exists a non recursively enumerable stochastic language.

This proposition is somewhat unsatisfactory since it uses the uncountability of the reals and
as we will see soon does not hold for rational stochastic langugages.

A deterministic complete finite automaton is particular case of probabilistic automaton where
the distribution associated with s, a have always an atom of probability 1: the destination state
δ(s, a). So the class of regular languages is included in the class of rational stochastic languages.
There is a lot of ways to obtain strict inclusion: for instance the language of example 5.5 is not
regular. In order to show how one can use irrational stochastic languages, we carry on studying
example 5.2.

Lemma 5.12 Let A be the PA of example 5.2. Then L>θ(A) is regular iff θ is rational.

Proof
While the automaton of figure 5.1 uses only values in {0, 1

2 , 1}, the threshold must be irrational
to obtain non regularity. Nevertheless this result is used in the proof of next proposition.

Proposition 5.13 The class of regular languages is strictly included in the class of rational
stochastic languages.

Proof
The two following propositions show that context-free languages and (rational) stochastic lan-

guages are incomparable.

Proposition 5.14 There exists a context-free language that is not a stochastic language. More
precisely L def

= {an1ban2b . . . ankba∗ | k ≥ 2 ∧ ∃i > 1 ni = n1} is not stochastic.

Proof

Proposition 5.15 There exists a rational stochastic language that is not context-free. More pre-
cisely L def

= {anbncn | n > 0} is a rational stochastic language.

Proof
Observe that the membership problem is decidable for rational stochastic languages. Elabo-

rating on it, one gets an interesting inclusion for this class of languages.

Proposition 5.16 The class of rational stochastic languages is strictly included in the class of
context-sensitive languages.
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Proof
We end this section with an interesting result showing that allowing “weights” instead of prob-

abilities does not extend the expressiveness of such automata. First we introduce generalized PA
and their corresponding languages.

Definition 5.17 A generalized PA A = (Q,A, {Pa}a∈A, π0, πf ) is defined by:

• Q, the finite set of states;

• A, the finite alphabet;

• For all a ∈ A, Pa, a real matrix over Q×Q;

• π0, the initial real vector over Q and πf , the final real vector over Q.

Definition 5.18 Given A a generalized PA and w ∈ A∗ a word, the acceptance weight of w by
A is defined by:

PrA(w)
def
= π0Pwπ

T
f

where as before Pw
def
=
∏n
i=1 Pai for w

def
= a1 . . . an.

We define the family of generalized stochastic languages.

Definition 5.19 Let A be a generalized PA, θ ∈ R a threshold and ./ ∈ {<,≤, >,≥,=, 6=} be a
comparison operator. Then L./θ(A) is defined by:

L./θ(A) = {w ∈ A∗ | PrA(w) ./ θ}

In order to keep the proof readable, we proceed by a sequence of lemmas.

Lemma 5.20 Let A be a generalized PA. Then there exists A′ a generalized PA such that for all
a ∈ A, the sum of items of any row or column of P′a is null and for all θ and all ./:

L./θ(A′) = L./θ(A)

Proof

Lemma 5.21 Let A be a generalized PA such that for all a ∈ A, the sum of items of any row or
column of Pa is null. Then there exists A′ a generalized PA such that for all a ∈ A, any items of
P′a is non negative and for all θ and all ./:

L./θ(A′) = L./θ(A)

Proof

Lemma 5.22 Let A be a generalized PA such that for all a ∈ A, any item of Pa is non negative.
Then there exists A′ a generalized PA such that for all a ∈ A, P′a is a probability transition matrix
and for all θ and all ./:

L./0(A′) = L./θ(A)

Proof

Lemma 5.23 Let A be a generalized PA such that for all a ∈ A, Pa is a probability transition
matrix. Then there exists A′ a generalized PA such that π′0 is a distribution, π′f · 1 = 0, for all
a ∈ A, P′a is a probability transition matrix and for all ./:

L./0(A′) = L./0(A)
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Figure 5.3: A PA for {am1b . . . bamkb | 1 < k ∧m1 = mk}

Proof

Lemma 5.24 Let A be a generalized PA such that π0 is a distribution, πf · 1 = 0 and for all
a ∈ A, Pa is a probability transition matrix. Then there exists θ′ > 0 and A′ a generalized PA
such that π′0 is a distribution, π′f is positive, π′f · 1 = |Q′|θ′, for all a ∈ A, P′a is a probability
transition matrix, and for all ./:

L./θ′(A′) = L./0(A)

Proof

Lemma 5.25 Let θ > 0 and A be a generalized PA such that π0 is a distribution, πf is positive,
πf · 1 = |Q|θ and for all a ∈ A, Pa is a probability transition matrix. Then there exists A′ a PA
such that for all ./:

L./ 1
|Q|

(A′) = L./θ(A)

Proof
Combining the previous lemmas we obtain the theorem we are looking for. In addition, observe

that: (1) starting from a rational generalized stochastic language one obtains a rational stochastic
language and (2) that all transformations are performed in polynomial time.

Theorem 5.26 The families of (rational) generalized stochastic languages and (rational) stochas-
tic languages are identical.

5.2.2 Closure
The next proposition shows that as for most of the standard families of languages, stochastic
languages are closed by intersection and union with regular languages. What is interesting here
is that the probabilistic automaton used in the proof has a size linear w.r.t. the size of the two
input automata (contrary to standard synchronized product used in other constructions).

Proposition 5.27 The family of (rational) stochastic languages is closed under intersection and
union with regular languages.

Proof
In order to prove non closure results, we exhibit a particular stochastic language.

Lemma 5.28 Let A be the automaton of figure 5.3. Then:

L= 1
2
(A) = {am1b . . . bamkb | 1 < k ∧m1 = mk}
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Proof

Proposition 5.29 The family of (rational) stochastic languages is not closed under concatenation
with a regular language.

Proof

Proposition 5.30 The family of (rational) stochastic languages is not closed under Kleene star.

Proof

Proposition 5.31 The family of (rational) stochastic languages is not closed under homomor-
phism.

Proof
We end this section with a theorem whose involved proof is beyond the scope of these notes.

Observe that the result does not hold for rational stochastic languages for which closure under
intersection and union remains an open issue.

Theorem 5.32 ([FLI 74]) The family of stochastic languages is not closed under intersection
and union even for a one-letter alphabet.

5.3 Decidability results
In this section we illustrate the tight frontier between decidability and undecidability studying two
close problems: the equivalence of probabilistic automata and the equality of stochastic languages.

Definition 5.33 Let A and A′ be two probabilistic automata over the same alphabet A. A and
A′ are equivalent if for all word w ∈ A∗:

PrA(w) = PrA′(w)

W.l.o.g. we assume that F ∪ F ′ 6= ∅ (why?). Let us describe algorithm 6. It tries to establish
non equivalence by finding a counter-example whose length is increasing starting with word ε. If it
does not succeed then it manages a stack of words w from which it tries to find counter-examples
aw. In order to avoid redundant computations, it also keeps in the stack the pair of vectors
(Pw1F ,P

′
w1F ′).

Without “pruning”, the algorithm would be a semi-algorithm that only terminates when A
and A′ are not equivalent. So it manages Gen a set of independent orthogonal vectors of RQ∪Q′ .
When a word w is not a counter-example, the algorithm checks that the vector (Pw1F ,P

′
w1F ′)

is not in the vector space generated by Gen. It performs this test by producing the orthogonal
projection of the vector on this subspace and then comparing it to the original vector. If the vector
is independent, then the word w is added to the stack, the difference between the vector and its
orthogonal projection is added to Gen thus preserving the property of orthogonality.

By construction, when the algorithm finds a counter-example it has established the non equiva-
lence. More subtle is the proof of equivalence when the algorithm has not found a counter-example.

Proposition 5.34 Algorithm 6 operates in O(|A|n3) where n = |Q|+ |Q′| and decides whether A
and A′ are equivalent.

Proof
Consider the problem of equality of languages L./θ(A) and L./′θ′(A′). Of course if A and A′

are equivalent and ./ θ equals ./ θ′, the languages are equal. Unfortunately this is only a sufficient
condition and the a priori simpler problem of language emptiness is already undecidable.

Let us recall the Post correspondence problem (PCP). Given an alphabet A and two morphisms
ϕ1, ϕ2 from A to {0, 1}+ does there exist a word w ∈ A+ such that ϕ1(w) = ϕ2(w)? This problem
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Algorithm 6: Checking equivalence of two probabilistic automata
Equivalence(A,A′)
Input: A,A′, two PA over alphabet A such that F ∪ F ′ 6= ∅
Output: the status of equivalence with a witness for non equivalence

Data: v,x,y, z vectors of RQ and v′,x′,y′, z′ vectors of RQ′

Data: Stack whose items are pairs of a vector of RQ∪Q′ and a word
Data: Gen, a set of (non null) orthogonal vectors of RQ∪Q′ , a a letter

if π0 · 1F 6= π′0 · 1F ′ then return(false, ε)
Gen← {(1F ,1F ′)}; Push(Stack, ((1F ,1F ′), ε))
repeat

((v,v′), w)← Pop(Stack)
for a ∈ A do

z← Pav; z′ ← P′av
if π0 · z 6= π′0 · z′ then return(false, aw)
y← 0; y′ ← 0
for (x,x′) ∈ Gen do

y← y + z·x
x·xx

y′ ← y′ + z′·x′
x′·x′x

′

end
if (z, z′) 6= (y,y′) then

Push(Stack, ((z, z′), aw))
Gen← Gen ∪ {(z− y, z′ − y′)}

end
end

until IsEmpty(Stack)
return(true)
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is undecidable. We consider here an a priori restricted variation where the images of letters lie in
(10+11)+. In fact this is not a restriction since inserting a 1 before each letter of the image reduces
the former problem to the latter. A word w def

= a1 . . . an ∈ (10+11)+ defines a value val(w) ∈ [0, 1]

by: val(w)
def
=
∑n
i=1

ai
2n−i . Furthermore since every word starts with a 1, val(w) = val(w′) implies

w = w′. We now elaborate on example 5.2 in order to establish the proof of the next proposition.

Proposition 5.35 Given A a rational stochastic automaton, the question L= 1
2
(A) = ∅? is unde-

cidable.

Proof
Using proposition 5.8 we immediately obtain the following corollary.

Corollary 5.36 Given A a rational stochastic automaton and θ a rational number, the question
L≥θ(A) = ∅? is undecidable.

In fact with small work, we also obtain the next corollary.

Corollary 5.37 Given A a rational stochastic automaton and θ a rational number, the question
L>θ(A) = ∅? is undecidable.

Proof

5.4 Proofs

5.4.1 Proofs of section 5.2
Proof of proposition 5.7
Given A and θ 6= 1

2 , one builds A′ as described in figure 5.4. One adds a state q0. The initial

distribution is modified as follows: π′0[q0]
def
= 1 − α and for all q ∈ Q, π′0[q]

def
= απ0[q] where

0 < α < 1. State q0 is an absorbing state whatever the letter chosen.
The value α depends on θ in the following way:

• If θ > 1
2 then q0 /∈ F and α def

= 1
2θ so that for all w ∈ A∗, PrA′(w) = 1

2θPrA′(w).
Thus w ∈ L./ 1

2
(A′) iff w ∈ L./θ(A).

• If θ < 1
2 then q0 ∈ F and α def

= 1
2(1−θ) so that for all w ∈ A+, PrA′(w) = 1−2θ+PrA′ (w)

2(1−θ) .
Thus w ∈ L./ 1

2
(A′) iff w ∈ L./θ(A).

q.e.d. (proposition 5.7) ♦♦♦

Proof of proposition 5.8
We build A′ as follows.

• The set of states Q′ def
= Q×Q;

q q0

0[q]
1

1.A

Figure 5.4: A PA for threshold 1
2
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Figure 5.5: A finite automaton for threshold 5
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• P′a[(q1, q2), (q′1, q
′
2)]

def
= Pa[q1, q

′
1]Pa[q2, q

′
2];

• π′0[q1, q2]
def
= π0[q1]π0[q2] and F ′ def

= F × (Q \ F ).

Once a word w is selected, the two components of the DES behave independently and so:
PrA′(w) = PrA(w)(1−PrA(w))

Consequently PrA′(w) ≤ 1
4 with equality iff PrA(w) = 1

2 .

q.e.d. (proposition 5.8) ♦♦♦

Proof of corollary 5.9
Due to proposition 5.7, we pick two arbitrary languages L= 1

2
(A1) and L= 1

2
(A2). Let A′1 and A′2

be the automata corresponding to proposition 5.8. One builds A as follows:

• The set of states Q def
= Q′1 ×Q′2;

• Pa[(q1, q2), (q′1, q
′
2)]

def
= (P′1)a[q1, q

′
1](P′2)a[q2, q

′
2];

• π′0[q1, q2]
def
= π1,0[q1]π2,0[q2] and F def

= F ′1 × F ′2.

By construction, PrA(w) = PrA′1(w)PrA′2(w). So for all word w, PrA(w) ≤ 1
16 and PrA(w) = 1

16

iff PrA′1(w) = PrA′2(w) = 1
4 . Consequently, L= 1

16
(A) = L= 1

2
(A1) ∩ L= 1

2
(A2).

q.e.d. (corollary 5.9) ♦♦♦

Proof of lemma 5.12
Let uθ

def
= u1u2 . . . be the binary development of θ (when θ is binary we choose the development

that ends with 0ω). A finite word w belongs to L>θ(A) if w̃ > uθ for lexicographic order where
w̃ is the mirror of w. Since the mirror image of a language is regular iff the original language is
regular, we study the language Lθ

def
= {w | w > uθ}.

Assume that θ is rational. Then its binary development is ultimately periodic, i.e. uθ =
u1 . . . uk(uk+1 . . . ul)

ω. For instance, u 5
6

= 1(10)ω. The deterministic automaton that accepts
Lθ is defined as follows.

• The set of states Q = {q0, . . . , ql, true, false} with q0 the initial state and true the single final
state.

• The set of transitions is defined by four subsets.

– for all 0 ≤ i < l, δ(qi, ui+1) = qi+1 and δ(ql, ul+1) = qk+1.

– for all 0 ≤ i ≤ l such that ui+1 = 0, δ(qi, 1) = true.

– for all 0 ≤ i ≤ l such that ui+1 = 1, δ(qi, 0) = false.

– for all q ∈ {true, false}, δ(q, 0) = δ(q, 1) = q.
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We have represented in figure 5.5 the automaton corresponding to θ = 5
6 . We let the reader check

the correctness of this automaton.
Assume that θ is irrational and that Lθ is regular. Let A be a deterministic automaton whose
language is Lθ. Then there is a (single) infinite path q0q1 . . . in A corresponding to the infinite
word uθ. This path never meets a final state (why?) and there is at least one state q that is
infinitely met by the path so that uθ = w0w1 . . . where the wi’s are words and forall i > 0,
δ(q, wi) = q. Since uθ is not ultimately periodic, there exist 0 < i < j with wi 6= wj . Assume that
wi < wj , then w

def
= w0 . . . wi−1wj should be accepted but δ(q0, w) = q. Assume that wi > wj ,

then w′
def
= w0 . . . wj−1wi should be accepted but δ(q0, w

′) = q. So we conclude that Lθ is not
regular.

q.e.d. (lemma 5.12) ♦♦♦

Proof of proposition 5.13
Let L> 1√

2
(A) with A the automaton of example 5.2. This language is non regular. Now build A′

with a construction similar to proof of proposition 5.8.

• The set of states Q′ def
= Q×Q;

• P′a[(q1, q2), (q′1, q
′
2)]

def
= Pa[q1, q

′
1]Pa[q2, q

′
2];

• π′0[(q0, q0)]
def
= 1 and F ′ def

= F × F .

Once a word w is selected, the two components of the DES behave independently and so:
PrA′(w) = PrA(w)2. So L> 1

2
(A′) = L> 1√

2
(A) is non regular.

q.e.d. (proposition 5.13) ♦♦♦

Proof of proposition 5.14
Let L def

= {an1ban2b . . . ankba∗ | ∃i > 1 ni = n1}. L is context-free. Indeed with a counter (i.e.
a stack over one letter), one counts n1 the number of a’s until the first occurrence of b. Then
one guesses an occurrence of b and decrements the counter by the occurrences of a until the next
occurrence of b. If the counter is zero the word is accepted.
Assume that (1) L = L>θ(A) or (2) L = L≥θ(A) for some probabilistic automaton.
Let

∑n
i=0 cix

i be the minimal polynomial of Pa.
Since 1 is an eigenvalue of Pa, one gets

∑n
i=0 ci = 0 and there are positive and negative coefficients.

By definition,
∑n
i=0 ciPai = 0 and so for any word w,

∑n
i=0 ciPaiw = 0.

Let ci1 , . . . , cik be the positive coefficients of this polynomial.
Choose w def

= bai1b . . . baikb.
Case L = L>θ(A). Let 0 ≤ i ≤ n, by definition of L, π0Paiw1TF > θ iff i ∈ {i1, . . . , ik}.
So: 0 =

∑n
i=0 ciπ0Paiw1TF > (

∑n
i=0 ci)θ = 0

leading to a contradiction.
Case L = L≥θ(A). Let 0 ≤ i ≤ n, by definition of L, π0Paiw1TF ≥ θ iff i ∈ {i1, . . . , ik}.
So: 0 =

∑n
i=0 ciπ0Paiw1TF > (

∑n
i=0 ci)θ = 0

leading to a contradiction.

q.e.d. (proposition 5.14) ♦♦♦

Proof of proposition 5.15
Using Ogden’s lemma it can be easily proved that L def

= {anbncn | n > 0} is not context-free (see
for instance [HMU 06]).

We observe that L = L1 ∩ L2 with L1
def
= {anbnc+ | n > 0} and L2

def
= {a+bncn | n > 0}. Using

corollary 5.9, it is sufficient to prove that Li = L= 1
2
(Ai) for some rational probabilistic automaton
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Figure 5.6: L=0.5(A) = {anbnc+ | n > 0}

Ai. Both automata are straightforward variations of example 5.5. We describe in figure 5.6 A1

and let the reader design A2.

q.e.d. (proposition 5.15) ♦♦♦

Proof of proposition 5.16
Context-sensitive languages are exactly the languages for which membership checking can be
performed by a non deterministic procedure in linear space (see for instance [HMU 06]).
In fact we show that we can perform membership checking by a deterministic procedure in linear
space (which is far from being optimal). First one computes the least common multiple, say b, of
denominators of (1) θ, (2) items of matrices {Pa}a∈A and, (3) items of vector π0. This is done in
constant space (i.e. independent of n, the size of the word w

def
= a1 . . . an to be checked). Then

one builds the integer matrices P′a
def
= bPa and integer vector π′0

def
= bπ0 again in constant space.

The membership problem becomes π′0(
∏n
i=1 P′ai)1

T
F ./ θbn+1? Observe that the space needed to

compute θbn+1 is O(n). One also computes v
def
= π′0(

∏n
i=1 P′ai) by initializing v to π′0 and then

iteratively multiply it by P′ai . Observe that at the ith iteration the sum of the coefficients of v is
exactly bi+1. So again this can be performed in space O(n). Finally the comparison only requires
indices for bits to be compared again in space O(n).

q.e.d. (proposition 5.16) ♦♦♦

Proof of lemma 5.20
Let Q′ def

= Q ] {q0, q1}. Then:

• for all q ∈ Q, π′0[q]
def
= π0[q] and π′0[q0]

def
= π′0[q1]

def
= 0;

• for all a ∈ A, for all q ∈ Q′, P′a[q0, q]
def
= 0 and P′a[q, q1]

def
= 0;

• for all a ∈ A, for all q, q′ ∈ Q, P′a[q, q′]
def
= Pa[q, q′] and P′a[q, q0]

def
= −

∑
q′∈Q P′a[q, q′];

• for all a ∈ A, for all q ∈ Q′, P′a[q1, q]
def
= −

∑
q′∈Q P′a[q′, q];

• for all q ∈ Q, π′f [q]
def
= πf [q] and π′f [q0]

def
= π′f [q1]

def
= 0.
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Let w def
= a1 . . . an ∈ A∗, then:

PrA′(w) =
∑
q∈Q′

∑
q′∈Q′ π

′
0[q]π′f [q′]

(∏n
i=1 P′ai

)
[q, q′] =

∑
q∈Q

∑
q′∈Q π

′
0[q]π′f [q′]

(∏n
i=1 P′ai

)
[q, q′]

Observe now that: for all q ∈ Q, and all a ∈ A, Pa[q, q1] = Pa[q0, q] = 0.
Thus PrA′(w) = PrA(w).
By construction, the sum of items of any row and column of all P′a is null.

q.e.d. (lemma 5.20) ♦♦♦

Proof of lemma 5.21
Let δ def

= max(|Pa[q, q′]| | a ∈ A, q, q′ ∈ Q).
Let Q+ def

= {q+ | q ∈ Q}, Q− def
= {q− | q ∈ Q} and Q′ def

= Q+ ]Q− ] {q0, q1}. Then:

• for all q ∈ Q, π′0[q+]
def
= π′0[q−]

def
= π0[q] and π′0[q0]

def
= π0 · πf and π′0[q1]

def
= 0;

• for all a ∈ A, for all q 6= q1, P′a[q0, q]
def
= P′a[q1, q]

def
= 0 and P′a[q0, q1]

def
= P′a[q1, q1]

def
= 1;

• for all a ∈ A, for all q, q′ ∈ Q, P′a[q+, q′
+

]
def
= Pa[q, q′] + δ and P′a[q−, q′

−
]

def
= δ;

• for all a ∈ A, for all q ∈ Q, q′ /∈ Q+ and q′′ /∈ Q−, P′a[q+, q′]
def
= P′a[q−, q′′]

def
= 0;

• for all q ∈ Q, π′f [q+]
def
= πf [q], π′f [q−]

def
= −πf [q], π′f [q0]

def
= 1 and π′f [q1]

def
= 0.

Observe that for all a, P′a is a block-diagonal matrix where the block corresponding to Q+ is
Pa + δ1 (1 is a matrix with all items equal to 1), the block corresponding to Q− is δ1 and the

block corresponding to {q0, q1} is
(

0 1
0 1

)
, an idempotent matrix.

Observe also that for all a, Pa1 = 1Pa = 0 due to the property of matrices Pa.
Thus by induction on n ≥ 1, given w = a1 . . . an, P′w is a block-diagonal matrix where the
block corresponding to Q+ is Pw + δn1, the block corresponding to Q− is δn1 and the block

corresponding to {q0, q1} is
(

0 1
0 1

)
.

So PrA′(w) = π0(Pw + δn1)πf − π0(δn1)πf = PrA(w)
Finally PrA′(ε) = π0πf − π0πf + π0πf = PrA(ε)

q.e.d. (lemma 5.21) ♦♦♦

Proof of lemma 5.22
Let δ def

= 1 + max(
∑
q′∈Q Pa[q, q′] | a ∈ A, q ∈ Q).

Let Q′ def
= Q ] {q0, q1}. Then:

• for all q ∈ Q, π′0[q]
def
= π0[q], π′0[q1]

def
= θ, and π′0[q0]

def
= 0;

• for all a ∈ A, for all q 6= q0, P′a[q0, q]
def
= 0

and P′a[q0, q0]
def
= 1 (q0 is an absorbing state);

• for all a ∈ A, for all q, q′ ∈ Q, P′a[q, q′]
def
= δ−1Pa[q, q′], P′a[q, q0]

def
= 1−

∑
q′∈Q P′a[q, q′] and

P′a[q, q1]
def
= 0;

• for all a ∈ A, for all q /∈ {q1, q0}, P′a[q1, q]
def
= 0, P′a[q1, q1]

def
= δ−1 and P′a[q1, q0]

def
= 1− δ−1;

• for all q ∈ Q, π′f [q]
def
= πf [q], π′f [q1]

def
= −1, and π′f [q0]

def
= 0.
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Let w = a1 . . . an ∈ A∗. Observe that states contributing to PrA′(w) are those of Q and q1. By
construction, for all q, q′ ∈ Q,
P′w[q, q′] = δ−nPw[q, q′], P′w[q1, q1] = δ−n and P′w[q, q1] = P′w[q1, q] = 0.
So PrA′(w) = δ−nPrA(w)− δ−nθ.

q.e.d. (lemma 5.22) ♦♦♦

Proof of lemma 5.23
Let δ def

= 1 + max(|π0[q]| | q ∈ Q) and ρ def
= 2|Q|δ +

∑
q∈Q π0[q].

Let Q+ def
= {q+ | q ∈ Q}, Q− def

= {q− | q ∈ Q} and Q′ def
= Q+ ]Q−. Then:

• for all q ∈ Q, π′0[q+]
def
= ρ−1(π0[q] + δ) and π′0[q−]

def
= ρ−1δ;

• for all a ∈ A, for all q, q′ ∈ Q, P′a[q+, q′
+

]
def
= P′a[q−, q′

−
]

def
= Pa[q, q′]

and P′a[q−, q′
+

]
def
= P′a[q+, q′

−
]

def
= 0;

• for all q ∈ Q, π′f [q+]
def
= πf [q], π′f [q−]

def
= −πf [q].

Observe that for all a, P′a is a block-diagonal matrix where the blocks corresponding to Q+ and
Q− are Pa. So:
PrA′(w) = (ρ−1π0 + ρ−1δ1)Pwπf − ρ−1δ1Pwπf = ρ−1PrA(w)

q.e.d. (lemma 5.23) ♦♦♦

Proof of lemma 5.24
Let θ′ def

= 1 + max(|πf [q]| | q ∈ Q).
Let Q′ def

= Q, π′0
def
= π0 and for all a ∈ A, P′a = Pa.

For all q ∈ Q, π′f [q]
def
= πf [q] + θ′. Then:

PrA′(w) = π0Pw(πf + θ′1)T = PrA′(w) + θ′

q.e.d. (lemma 5.24) ♦♦♦

Proof of lemma 5.25
Let Q′ def

= Q2. Then:

• for all (q1, q2) ∈ Q2, π′0[q1, q2]
def
= π0[q2]

|Q| ;

• for all a ∈ A, for all (q1, q2), (q′1, q
′
2) ∈ Q2, P′a[(q1, q2), (q′1, q

′
2)]

def
=

πf [q′1]
πf ·1 Pa[q2, q

′
2];

• F
def
= {(q, q) | q ∈ Q}.

By induction on n ≥ 1, given w = a1 . . . an, P′w[(q1, q2), (q′1, q
′
2)] =

πf [q′1]
πf ·1 Pw[q2, q

′
2].

So: (π′0P
′
w)[(q′1, q

′
2)] =

∑
(q1,q2)∈Q2

π0[q2]
|Q|

πf [q′1]
πf ·1 Pw[q2, q

′
2] =

∑
q2∈Q

π0[q2]πf [q′1]
πf ·1 Pw[q2, q

′
2].

Thus: PrA′(w) =
∑
q2∈Q

∑
q′2∈Q

π0[q2]πf [q′2]
πf ·1 Pw[q2, q

′
2] = PrA(w)

πf ·1 .
Let us recall that θ

πf ·1 = 1
|Q| . Thus the two languages are identical except possibly w.r.t. the

empty word.
However given a stochastic language L./θ(A), one can easily add or remove the empty word by
the following construction:

• Q0
def
= {(q, 0) | q ∈ Q} and Q′ def

= Q ]Q0;

• π′0[(q, 0)]
def
= π0[q] and π′0[q]

def
= 0;
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• for all a ∈ A, for all q, q′ ∈ Q, P′a[(q, 0), q′]
def
= P′a[q, q′]

def
= Pa[q, q′]

and P′a[(q, 0), (q′, 0)]
def
= P′a[q, (q′, 0)]

def
= 0;

• F ′
def
= F ∪ G where G ⊆ Q0 is appropriately chosen (depending on ./ θ) in order to add or

remove ε.

We let the details to the reader.

q.e.d. (lemma 5.25) ♦♦♦

Proof of proposition 5.27
Let L./θ(A1) be a stochastic regular language (with ./∈ {>,≥}) and L=1(A2) be a regular language
(where A2 is a probabilistic automaton with Dirac distributions). W.l.o.g we assume that ./ θ is
different from > 1. Then A is defined by:

• Q
def
= Q1 ]Q2;

• For all i ∈ {1, 2} and q ∈ Qi, π0(q)
def
= 1

2πi,0(q);

• For all a ∈ A, q1, q
′
1 ∈ Q1, q2, q

′
2 ∈ Q2,

Pa[q1, q
′
1]

def
= P1,a[q1, q

′
1], Pa[q2, q

′
2]

def
= P2,a[q2, q

′
2] and Pa[q1, q

′
2]

def
= Pa[q2, q

′
1]

def
= 0;

• F
def
= F1 ] F2.

We let the reader check that L./ θ2 (A) = L./θ(A1)∪L=1(A2) and L./ 1+θ
2

(A) = L./θ(A1)∩L=1(A2).

q.e.d. (proposition 5.27) ♦♦♦

Proof of lemma 5.28
Let A be the automaton of figure 5.3. For any word w ∈ A∗ \ {am1b . . . bamkb | 1 < k}, one has
PrA(w) = 0.

Let w def
= am1b . . . bamkb with 1 < k. It can be accepted either by a path starting from q0 or by a

path starting from q3.

• When the path starts from q0, in order to be accepted it must stay in q0 for all b’s except
for the one that preceeds amk . Then it must stay in q1 for all a’s. This leads to acceptance
probability of 1

2k+mk
.

• When the path starts from q3, in order to be rejected it must stay in q3 for all a’s that
preceeds the first b and then must stay in q5 when reading the remaining b’s. This leads to
a rejection probability of 1

2k+m1
.

So PrA(w) = 1
2 −

1
2k+m1

+ 1
2k+mk

. Thus w is only accepted when m1 = mk.

q.e.d. (lemma 5.28) ♦♦♦

Proof of proposition 5.29
Let L def

= {am1b . . . bamkb | 1 < k ∧ m1 = mk} the stochastic language of lemma 5.28. Then
LA∗ = {am1bam2b . . . amkba∗ | ∃i > 1 mi = m1} which is not a stochastic language as established
by proposition 5.14.

q.e.d. (proposition 5.29) ♦♦♦

Proof of proposition 5.30
Let L def

= {am1b . . . bamkb | 1 < k∧m1 = mk} the stochastic language of lemma 5.28. Assume that
L∗ = L./θ(A) with ./∈ {>,≥}.
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Figure 5.7: A PA for {am1b . . . bamkbcA∗ | 1 < k ∧m1 = mk}

Let
∑n
i=0 cix

i be the minimal polynomial of Pa.
Since 1 is an eigenvalue of Pa, one gets

∑n
i=0 ci = 0 and there are positive and negative coefficients.

By definition,
∑n
i=0 ciPai = 0 and so for any word w,

∑n
i=0 ciPaiw = 0.

Let ci1 , . . . , cik be the positive coefficients of this polynomial.
Choose w def

= bai1b(ai2b)2 . . . (aikb)2.
Observe that aiw ∈ L∗ iff i ∈ {i1, . . . , ik}.
Case L∗ = L>θ(A). Let 0 ≤ i ≤ n, using the observation π0Paiw1TF > θ iff i ∈ {i1, . . . , ik}.
So: 0 =

∑n
i=0 ciπ0Paiw1TF > (

∑n
i=0 ci)θ = 0

leading to a contradiction.
Case L∗ = L≥θ(A). Let 0 ≤ i ≤ n, using the observation π0Paiw1TF ≥ θ iff i ∈ {i1, . . . , ik}.
So: 0 =

∑n
i=0 ciπ0Paiw1TF > (

∑n
i=0 ci)θ = 0

leading to a contradiction.

q.e.d. (proposition 5.30) ♦♦♦

Proof of proposition 5.31
Let L def

= {am1b . . . bamkbcA∗ | 1 < k ∧m1 = mk} where A def
= {a, b, c}. We let the reader check

that L = L= 1
2
(A) where A is the automaton of figure 5.7.

Define the homomorphism h from A to A′ def
= {a, b} by:

h(a)
def
= a h(b)

def
= b h(c)

def
= ε

Then h(L) = {am1bam2b . . . amkba∗ | ∃i > 1 mi = m1} which is not a stochastic language as
established by proposition 5.14.

q.e.d. (proposition 5.31) ♦♦♦

5.4.2 Proofs of section 5.3
Proof of proposition 5.34
As the dimension of the vector space generated by Gen is at most n, there are at most n iterations
of main loop. The index of the first inner loop ranges over A while the index of the most inner
loop ranges over Gen2. This leads to a time complexity of O(n3|A|).
Assume now that the automata are not equivalent and that the algorithm has returned true. Let
u be a word such that PrA(u) 6= PrA′(u). Thus u has not be examined by the algorithm. Let
u

def
= w′w with w the greatest suffix examined by the algorithm. Among such words u, pick one
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Figure 5.8: a PA for reduction of PCP

word such that |w′| is minimal. We claim that there exists a word w′′ that has been inserted in
the stack before w such that PrA(w′w′′) 6= PrA′(w

′w′′).
Indeed since w has not been inserted in the stack, considering w1, . . . , wk that have been previously
inserted in the stack, there exist λ1, . . . , λk such that:

Pw1F =

k∑
i=1

λiPwi1F and P′w1F ′ =

k∑
i=1

λiP
′
wi1F ′

So:

PrA(w′w)
def
= π0Pw′Pw1F =

k∑
i=1

λiπ0Pw′Pwi1F =

k∑
i=1

λiPrA(w′wi)

Similarly:

PrA′(w
′w) =

k∑
i=1

λiPrA′(w
′wi)

Thus the claim follows.
Let us rewrite w′ def

= w′′′a. Since wi has been inserted in the stack, awi is examined by the
algorithm. So the word u′

def
= w′wi has a decomposition u′

def
= z′z where z the greatest suffix

examined by the algorithm has for suffix awi. So |z′| < |w′| yielding a contradiction.

q.e.d. (proposition 5.34) ♦♦♦

Proof of proposition 5.35
Given a PCP, one builds a PA A such that L= 1

2
(A) = {ε} iff the PCP does not have a solution.

For w ∈ A+ and i ∈ {1, 2}, we define vali(w)
def
= val(ϕi(a)). Then A is defined by:

• Q
def
= {q10, q11, q20, q21};

• π0[q10]
def
= π0[q20]

def
= 1

2 and π0[q11]
def
= π0[q21]

def
= 0;

• For all a ∈ A and i ∈ {1, 2},
Pa[qi0, qi1]

def
= 1−Pa[qi0, qi0]

def
= vali(a),

Pa[qi1, qi1]
def
= 1−Pa[qi1, qi0]

def
= vali(a) + 2−|ϕi(a)|,

and all other items of transition matrices are null;

• F
def
= {q11, q20}.
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Figure 5.9: a PA for reduction of a large inequality to a strict inequality

So for all w ∈ A∗ and a ∈ A

1qi0Pwa1
T
qi1 = 1qi0Pw1Tqi1(vali(a)+2−|ϕi(a)|)+(1−1qi0Pw1Tqi1)vali(a) = vali(a)+2−|ϕi(a)|1qi0Pw1Tqi1

By induction we obtain that for all w def
= a1 . . . an:

1qi0Pw1Tqi1 =

n∑
j=1

vali(aj)2
−

∑
j<k≤n |ϕi(ak)| = vali(w)

So for w ∈ A+: PrA(w) = 1
2 (val1(w)+1−val2(w)). Thus w ∈ L= 1

2
(A) iff val(ϕ1(w)) = val(ϕ2(w))

implying (due to our assumption on images) that ϕ1(w) = ϕ2(w) which means that w is a solution
of the PCP.
In the proof of lemma 5.25, we have built A′ with twice the number of states of A′ such that
L= 1

2
(A′) = L= 1

2
(A) \ {ε}. So L= 1

2
(A′) = ∅ iff the PCP does not have a solution.

q.e.d. (proposition 5.35) ♦♦♦

Proof of corollary 5.37
All the probabilities of the automaton corresponding to the reduction of PCP in the proof of
proposition 5.35 are multiples of 2k for some k depending on the PCP. The transformation of
proposition 5.8 produces an automaton, say A whose probabilities are product of the initial prob-
abilities, so they are multiples of 4k and such that L≥ 1

4
(A) = ∅ iff the corresponding PCP does

not have a solution.
Due to the transition probabilities, for all word w ∈ A+, PrA(w) = d

4k|w|
where d is an integer

depending on w. So PrA(w) ≥ 1
4 iff PrA(w) > 1

4 −
1

4k|w|
.

Let A′ be defined by:

• Q′
def
= Q ∪ {q0, q1};

• foral q ∈ Q, π′0[q]
def
=

π[q]

2 , π′0[q0]
def
= 1

2 and π′0[q1]
def
= 0;

• For all a ∈ A and q, q′ ∈ Q,
P′a[q, q′]

def
= P′a[q, q′],

P′a[q0, q0]
def
= 1−P′a[q0, q1]

def
= 1

4k
,

P′a[q1, q1]
def
= 1 and all other items of transition matrices are null;

• F ′
def
= F ∪ {q0}.
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A′ is represented in figure 5.9.
Thus for all w ∈ A+,

PrA′(w) =
PrA(w)

2
+

1

2× 4k|w|

which can be rewritten as:
PrA(w) = 2PrA′(w)− 1

4k|w|

So PrA(w) > 1
4 −

1
4k|w|

iff PrA′(w) > 1
8 .

So L> 1
8
(A′) = L≥ 1

4
(A) ∪ {ε}.

As previously done, we eliminate ε by doubling the number of states.

q.e.d. (corollary 5.37) ♦♦♦
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