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Directed algebraic topology

Space, plus time

Directed Algebraic Topology

Originates (mostly) from computer science questions on
concurrent processes [E. Goubault 95]

. . . interpreted geometrically [E. Dijkstra 68]

. . . also in general relativity (R. Penrose, light cones)

Object of study:

Topological space + notion of time (possibly cyclic)
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PV Processes

Locks ensure access to resource by single process:

Pa blocks until lock a taken

Va releases lock a

Pa VaVbPb

Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V ⇒ forbidden
rectangles

Dipaths must respect order

Dihomotopies of dipaths +
fixed endpoints
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Concurrent processes

Dihomotopy 6= Homotopy

Definition

A dihomotopy h : [0, 1]2 → X
from f to g :

h continuous

h(0, ) = f , h(1, ) = g

For every t, h(t, )
dipath

Note: deformations h( , u)
not required to preserve order.
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Concurrent processes

Dihomotopy 6= Homotopy

Definition

A dihomotopy h : [0, 1]2 → X
from f to g :

h continuous

h(0, ) = f , h(1, ) = g

For every t, h(t, )
dipath

Note: deformations h( , u)
not required to preserve order.

Certainly not true with non-NPC cubical
complexes!

Classical example

bifurcation

Directed homotopy is not classic
homotopy plus fixed extremities

E. Goubault & S. Mimram
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Concurrent processes

What is a geometric model of time+space?

Ordered topological spaces. . .

Examples of geometric semantics

To each program p we associate a d-space (Hp, bp, ep):

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)ú|Pa.Va

bp

ep

bp

ep

bp
ep

E. Goubault & S. Mimram

Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen
08] . . . do not admit colimits [Haucourt 04]

Bad: cannot define meaningful geometric realization functor

Better:

d-spaces [Grandis 09]
streams [Krishnan 08]
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Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category Prestr of prestreams)

A prestream X = topological space X
+ precirculation (vU)U∈O(X ):

vU preorder on U

monotonicity: U ⊆ V , x vU y ⇒ x vV y

Prestream morphisms f : (X , (vU)U∈O(X ))→ (Y , (�V )V∈O(Y )):

continuous

locally monotonic: for each open V of Y ,
x vf −1(V ) y ⇒ f (x) �V f (y)
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Paradigmatic examples 1

Preordered spaces: vU=≤|U for each U

−→
R : t vR

U t ′ iff whole interval [t, t ′] ⊆ U.

U

876543210

Here, 1 vU 2, but 2 6vU 4.6
“Islands of order”
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Prestreams

Paradigmatic examples 2: the directed circle

Definition
−→
S

1
=
−→
R/Z

Quotient by x ≡ y iff
x − y ∈ Z
Prestr is complete and
cocomplete,
in particular has quotients
(see next slide)
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Prestreams

Quotients, colimits, glueing

Prestream quotients

Theorem

Let X = (X , (vU)U∈O(X )),
≡ equivalence relation on X .

There is a
quotient prestream X/≡:

X

q≡
��

X/≡

X

q≡
��

f // Z

X/≡
f ≡

==

(if f compatible with ≡)

Proof. Build
topological quotient X/≡,
quotient map q≡(x) = [x ],
and precirculation:

x ≡ x0

[x]

[y ]
[U]

⇐⇒

U

U

U

x ′n ≡ y

≡ xn−1

x ′1 ≡

x ′0 ≡ x1
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Quotients, colimits, glueing

Colimits, glueing

Fact: coproducts
∐

i∈I Xi exist.

Ex: coproduct of three copies of
−→
S

1
:

Theorem (Colimits)

Prestr is cocomplete (has all colimits).

Proof. (standard) Colimit of diagram ( Xi
fij // Xj )i ,j :

Build big coproduct
∐

i Xi

Glue every xi ∈ Xi with fij(xi ) ∈ Xj , i.e.
build quotient by smallest equivalence relation ≡
such that xi ≡ fij(xi )
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Prestreams

Geometric realization

Cubical sets

Cubical sets will replace simplicial sets in our directed world.

Definition (Cubical set)

Collection of:

sets Kn “n-dimensional cubes”

forward ∂+i and backward ∂−i face maps : Kn → Kn−1

degeneracies si : Kn−1 → Kn

satisfying:

∂αi ∂
β
j = ∂βj−1∂

α
i (i < j)

si∂
β
j = ∂βj+1si (i ≤ j)

∂αi sj =


sj−1∂

α
i (i < j)

id (i = j)
sj∂

α
i−1 (i > j)



Models of directed algebraic topology

Prestreams

Geometric realization

Geometric intuition

time

n = 0 n = 1

∂+1

∂−1

n = 2 n = 3

∂−1 ∂−2

∂+2 ∂+1

∂−1
∂−2

∂−3

∂+3
∂+1∂+2
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Geometric realization

Definition (Geometric realization functor Geom : Cub→ Prestr)

Geom((Kn)n, (∂
α
n )α,n, (sn)n) = (

∐
n Kn · [0, 1]n)/≡ where:

(a, (x1, · · · , 1, · · · , xn)) ≡ (∂+
i a, (x1, · · · , xn))

(a, (x1, · · · , 0, · · · , xn)) ≡ (∂−i a, (x1, · · · , xn))
(a, (x1, · · · , x̂i , · · · xn)) ≡ (sia, (x1, · · · , xn+1))

k
C

B

A

a
a

b

c

d

e

g

h

i

j

`

k

m

n

p

b
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C

p

n
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k
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h

g

e

d

c

b

a
a

A
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Prestreams

Geometric realization

All is well

Conversely, there is a singular cube functor Sing : Prestr→ Cub.
Sing(X) = ((Kn)n, (∂

α
n )α,n, (sn)n) where:

Kn = {prestream morphisms γ : ([0, 1]n,≤)→ X}
∂+i γ : (x1, · · · , xn) 7→ γ(x1, · · · , 1, · · · , xn)

∂−i γ : (x1, · · · , xn) 7→ γ(x1, · · · , 0, · · · , xn)

siγ : (x1, · · · , xn) 7→ γ(x1, · · · , x̂i , · · · , xn)

Theorem

Geom is left adjoint to Sing
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Binary products in Prestr are weird.

Lemma

(X , (vU)U∈O(X ))× (Y , (�V )V∈O(Y )) is X × Y with precirculation:

(x , y) ≤W (x ′, y ′) iff x vπ1[W ] x ′ and y �π2[W ] y ′
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Streams

Definition (One-step cosheafification)

For X = (X , (vU)U∈O(X )), Sh1(X) = (X , (v̂U)U∈O(X )) where:

x v̂U y iff
for every open cover (Ui )i∈I of U. . .

Note: Sh1(X) always finer than X on X .

Definition (Stream)

X stream iff Sh1(X) = X

Defines a full subcategory Str of Prestr.
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Definition (One-step cosheafification)

For X = (X , (vU)U∈O(X )), Sh1(X) = (X , (v̂U)U∈O(X )) where:

x v̂U y iff
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Streams

Paradigmatic examples

Not preordered spaces in general, but their cosheafification OK
(see next slide)

−→
R = cosheafification of (R,≤):

U

876543210

−→
S

1
=
−→
R/Z
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Streams

Cosheafification

Make a stream out of a prestream X: Refine

X→ Sh1(X)→ Sh1(Sh1(X))→ · · ·

Iterate Sh1 transfinitely (!),
⇒ obtain Sh∞(X ), coarsest stream finer than X.

Definition

Sh∞(X) is the cosheafification of X.

Yuck.
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Streams

Str is nice (but complex?)

Theorem

Str is cocomplete: has all colimits,
and they are computed just as in Prestr.

Good!

Theorem

Str is complete: has all limits. . .
which are cosheafifications of the corresponding limits in Prestr.

Yuck.

All this follows from: Sh∞ coreflects Prestr onto Str.
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Theorem
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and they are computed just as in Prestr.

Good!

Theorem
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Yuck.
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Stream products

Understanding stream products

Still, some limits can be made simpler:

Proposition

The product of two streams X, Y is Sh1(X× Y)

I.e., take prestream product
then one-step cosheafification (not Sh∞).

In fact, binary products are particularly nice (see next slide).

(explaining substreams [equalizers] seems almost hopeless)
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Stream products

W

−→
R

−→
R
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Geometric realization revisited

As with prestreams. . . only replace [0, 1]n by
−−→
[0, 1]

n

Definition (Geometric realization functor Geom : Cub→ Str)

Geom((Kn)n, (∂
α
n )α,n, (sn)n) = (

∐
n Kn ·

−−→
[0, 1]

n
)/≡ where:

(a, (x1, · · · , 1, · · · , xn)) ≡ (∂+
i a, (x1, · · · , xn))

(a, (x1, · · · , 0, · · · , xn)) ≡ (∂−i a, (x1, · · · , xn))
(a, (x1, · · · , x̂i , · · · xn)) ≡ (sia, (x1, · · · , xn+1))
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All is well

Conversely, there is a singular cube functor Sing : Str→ Cub.
Sing(X) = ((Kn)n, (∂

α
n )α,n, (sn)n) where:

Kn = {prestream morphisms γ :
−−→
[0, 1]

n
→ X}

∂+i γ : (x1, · · · , xn) 7→ γ(x1, · · · , 1, · · · , xn)

∂−i γ : (x1, · · · , xn) 7→ γ(x1, · · · , 0, · · · , xn)

siγ : (x1, · · · , xn) 7→ γ(x1, · · · , x̂i , · · · , xn)

Theorem

Geom is left adjoint to Sing

Only the beginning of the theory. . . much remains to be done
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Space, plus time
Concurrent processes
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Geometric realization
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Conclusion

Streams are a (the?) right model for space+(cyclic) time

Other nice model: Grandis’s d-spaces. . .
close to streams: adjunction [Haucourt 09]

. . . restricting to an equivalence ⇒ Haucourt streams

Agenda: adapt whatever can be
from (undirected) algebraic topology

Seems much harder than expected
E.g., van Kampen is hard [Goubault, Haucourt 07]
My own current itch (with E. Goubault, J. Dubut):

good theories of directed homology
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