Jean Goubault-Larrecq

ENS Cachan

JMM — Jan. 18, 2014

Context

- **Top** is not Cartesian-closed
- ... but some full subcategories are,

e.g., **k-spaces** [Brown 61, 63; Steenrod 67; Kelley]

- ... an instance of a more general construction
 [Escardò-Lawson-Simpson 04]
- We give a categorical generalization
- ... which we apply to streams [Krishnan 08].

L The Escardò-Lawson-Simpson Construction

Outline

1 The Escardò-Lawson-Simpson Construction

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- The **Map**_C category
- Topological functors
- The **Map**_C category, categorically
- The C_C category

2 Streams, prestreams

- Directed Algebraic Topology
- Prestreams
- CCCs of prestreams
- Streams
- CCCs of streams

3 Conclusion

└─The Map_@ category

The $Map_{\mathcal{C}}$ Category [Escardò-Lawson-Simpson 04]

Fix a class ${\mathfrak C}$ of spaces (e.g., compact Hausdorff spaces).

• C-probe (on X) = continuous map $C \xrightarrow{k} X$, for some $C \in C$ • $f: X \to Y$ is C-continuous iff $f \circ k$ continuous for every C-probe k

Definition $(Map_{\mathcal{C}})$

Objects=topological spaces. Morphisms=C-continuous maps.

Note: Just like **Top**, with relaxed notion of continuity (continuous \Rightarrow C-continuous)

L The Escardò-Lawson-Simpson Construction

└─The Map_C category

The **Map**_C Category

Definition (Strongly productive)

C is *strongly productive* iff:

- every space in C is exponentiable
- C is closed under binary products

Note: the exponentiable spaces are the core-compact spaces

(slight generalization of locally compact)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Escardò, Lawson, Simpson 2004)

If \mathbb{C} is strongly productive, then $Map_{\mathbb{C}}$ is Cartesian-closed.

- The Escardò-Lawson-Simpson Construction

└─The Map_C category

Many CCCs of topological spaces

We shall see that $Map_{\mathcal{C}} \cong Top_{\mathcal{C}}$ CCC of topological spaces:

C = all core-compact spaces
 ⇒ largest such CCC (quotients of core-compact spaces)
 C = compact Hausdorff spaces
 ⇒ quotients of loc. compact spaces
 same as above + (weak) Hausdorff
 k-spaces

•
$$\mathbb{C} =$$
 one-point compactification of \mathbb{N}

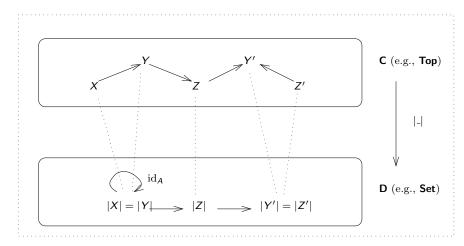
 \Rightarrow sequential spaces

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

etc.

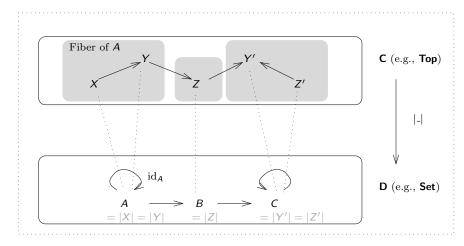
- L The Escardò-Lawson-Simpson Construction
 - └─ Topological functors

Topological functors



- L The Escardò-Lawson-Simpson Construction
 - └─ Topological functors

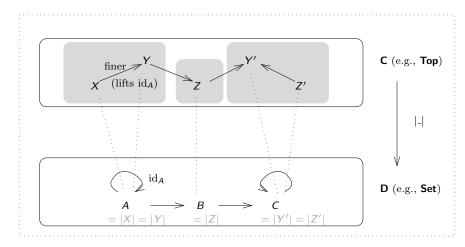
Topological functors



◆□> <□> <=> <=> <=> <=> <=> <=>

- L The Escardò-Lawson-Simpson Construction
 - └─ Topological functors

Topological functors



◆□>
◆□>
●>
●>
●>

- └─ The Escardò-Lawson-Simpson Construction
 - L Topological functors

Topological functors

Definition

- $|_{-}|: \mathbf{C} \rightarrow \mathbf{D}$ is a *topological* functor iff:
 - faithful
 - amnestic

"finer" is antisymmetric

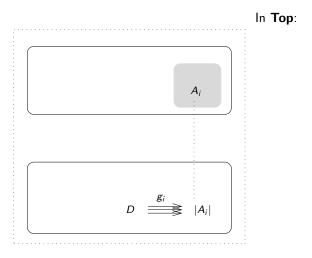
■ and every |_|-source has a |_|-initial lift

(see next slide)

L The Escardò-Lawson-Simpson Construction

└─ Topological functors

Every |_|-source . . .

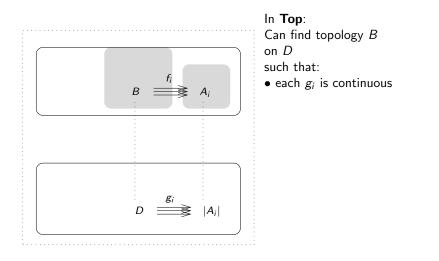


L The Escardò-Lawson-Simpson Construction

- Topological functors

Every |_|-source has a

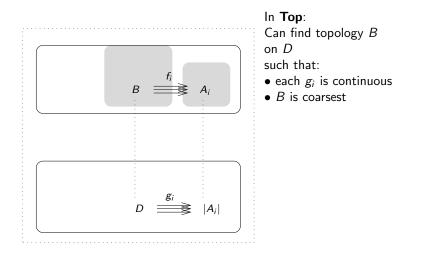
lift



L The Escardò-Lawson-Simpson Construction

└─ Topological functors

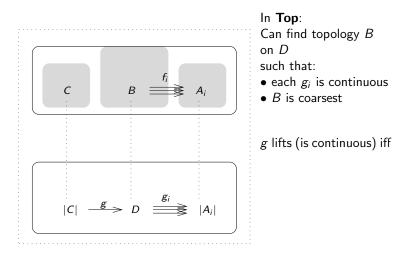
Every |_|-source has a |_|-initial lift



L The Escardò-Lawson-Simpson Construction

└─ Topological functors

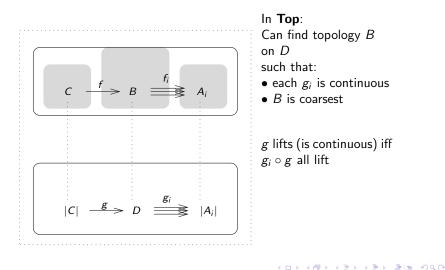
Every |_|-source has a |_|-initial lift



L The Escardò-Lawson-Simpson Construction

└─ Topological functors

Every |_|-source has a |_|-initial lift



- └─ The Escardò-Lawson-Simpson Construction
 - └─ Topological functors

Duality

Topological functors are *self-dual*. Equivalent definition:

Definition $|_-|: \mathbf{C} \to \mathbf{D}$ is a topological functor iff: \square faithful \square amnestic "finer" is antisymmetric

■ and every |_|-*sink* has a |_|-*final* lift

"a finest topology"

- └─ The Escardò-Lawson-Simpson Construction
 - L Topological functors

A few serendipitous facts

- If $|_{-}|$ topological, then:
 - \blacksquare Discrete object functor $_{-0}\dashv |_{-}|\dashv _{-1}$ Indiscrete object functor

- preserves (co)limits
- lifts (co)limits

- └─ The Escardò-Lawson-Simpson Construction
 - └─ Topological functors

A few serendipitous facts, and a subtlety

If $|_{-}|$ topological, then:

- \blacksquare Discrete object functor $__0 \dashv |_| \dashv __1$ Indiscrete object functor
- preserves (co)limits
- lifts (co)limits

Definition

- |_| well-fibered iff
 - every fiber is small
 - $1_0 = 1_1$

"only one topology on terminal object"

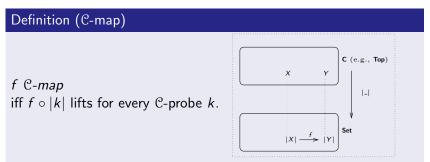
- The Escardò-Lawson-Simpson Construction

The Map_C category, categorically

The $Map_{\mathcal{C}}$ Category, Categorically

 $\mathsf{Fix} \mid_{\scriptscriptstyle{-}} \mid : \mathbf{C} \to \mathbf{Set} \text{ topological}$

and a class ${\mathfrak C}$ of objects of ${\boldsymbol C}$



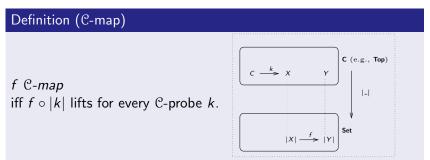
- The Escardò-Lawson-Simpson Construction

The Map_C category, categorically

The **Map**_C Category, Categorically

Fix $|_{\text{-}}| \colon \mathbf{C} \to \mathbf{Set}$ topological

and a class ${\mathfrak C}$ of objects of ${\boldsymbol C}$



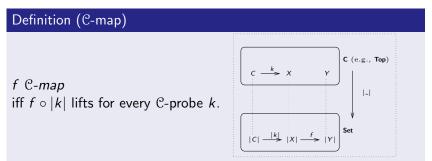
L The Escardò-Lawson-Simpson Construction

└─The Map_C category, categorically

The $Map_{\mathcal{C}}$ Category, Categorically

Fix $|_{\text{-}}| \colon \mathbf{C} \to \mathbf{Set}$ topological

and a class ${\mathfrak C}$ of objects of ${\boldsymbol C}$



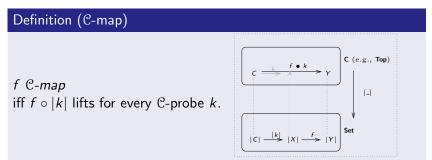
L The Escardò-Lawson-Simpson Construction

└─The Map_C category, categorically

The $Map_{\mathcal{C}}$ Category, Categorically

Fix $|_{\text{-}}| \colon \mathbf{C} \to \mathbf{Set}$ topological

and a class ${\mathfrak C}$ of objects of ${\boldsymbol C}$



L The Escardò-Lawson-Simpson Construction

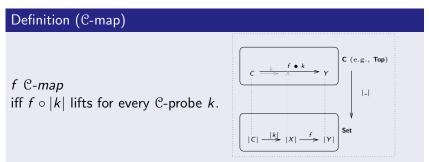
└─The Map_C category, categorically

The $Map_{\mathbb{C}}$ Category, Categorically

Fix $|_{-}| \colon \mathbf{C} \to \mathbf{Set}$ topological

and a class ${\mathfrak C}$ of objects of ${\boldsymbol C}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Definition (**Map**_C)

Objects=those of **C**. Morphisms=C-maps.

Note: every morphism is a C-map.

The Escardò-Lawson-Simpson Construction

└─The Map_C category, categorically

The **Map**_C Category is Cartesian-closed

Theorem

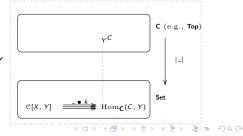
Let $|_{-}|$: $\mathbf{C} \to \mathbf{Set}$ be topological well-fibered. If \mathbb{C} is strongly productive, i.e.,

- objects of C are exponentiable
- C closed under binary products

then $Map_{\mathbb{C}}$ is Cartesian-closed.

Proof. Exponential $[Y^X]_{\mathcal{C}}$ is:

• (in the fiber of) the set C[X, Y] of C-maps : $X \to Y$



The Escardò-Lawson-Simpson Construction

└─The Map_C category, categorically

The **Map**_C Category is Cartesian-closed

Theorem

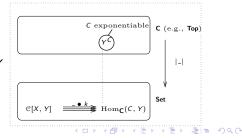
Let $|_{-}|$: $\mathbf{C} \to \mathbf{Set}$ be topological well-fibered. If \mathbb{C} is strongly productive, i.e.,

- objects of C are exponentiable
- C closed under binary products

then $Map_{\mathbb{C}}$ is Cartesian-closed.

Proof. Exponential $[Y^X]_{\mathcal{C}}$ is:

• (in the fiber of) the set C[X, Y] of C-maps : $X \to Y$



The Escardò-Lawson-Simpson Construction

└─The Map_C category, categorically

The $\boldsymbol{Map}_{\mathcal{C}}$ Category is Cartesian-closed

Theorem

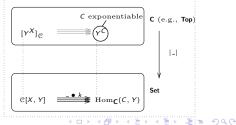
Let $|_{-}|: \mathbf{C} \to \mathbf{Set}$ be topological well-fibered. If \mathbb{C} is strongly productive, i.e.,

- objects of C are exponentiable
- C closed under binary products

then $Map_{\mathcal{C}}$ is Cartesian-closed.

Proof. Exponential $[Y^X]_{\mathcal{C}}$ is:

- (in the fiber of) the set C[X, Y] of C-maps : $X \to Y$
- coarsest so that _ k lifts for every C-probe k:



└─ The C_C category

From $Map_{\mathbb{C}}$ to $\boldsymbol{C}_{\mathbb{C}}$

■ **Map**_C *not* a subcategory of **C**:

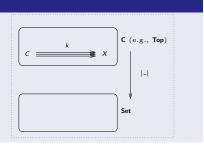
more morphisms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Find equivalent subcategory C_C of C using process equivalent to k-ification.

Definition (C-ification)

CX is finest in the fiber of |X|such that all C-probes $k: C \to X$ lift to $C \to CX$



└─ The C_C category

From $Map_{\mathbb{C}}$ to $\boldsymbol{C}_{\mathbb{C}}$

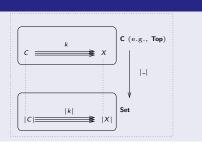
■ **Map**_C *not* a subcategory of **C**:

more morphisms

 Find equivalent subcategory C_C of C using process equivalent to k-ification.

Definition (C-ification)

CX is finest in the fiber of |X|such that all C-probes $k: C \to X$ lift to $C \to CX$



└─ The C_C category

From $Map_{\mathbb{C}}$ to $\boldsymbol{C}_{\mathbb{C}}$

■ **Map**_C *not* a subcategory of **C**:

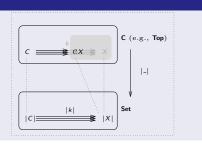
more morphisms

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

 Find equivalent subcategory C_C of C using process equivalent to k-ification.

Definition (C-ification)

CX is finest in the fiber of |X|such that all C-probes $k: C \to X$ lift to $C \to CX$



L The Escardò-Lawson-Simpson Construction

 \Box The **C**^C category

C-generated objects

Definition

X is C-generated iff CX = X.

 $\boldsymbol{C}_{\mathbb{C}}$ is the full subcategory of $\mathbb{C}\text{-generated}$ objects in $\boldsymbol{C}.$

Theorem

$$\mathsf{Map}_{\mathcal{C}} \xrightarrow[]{\mathcal{C}} \mathbf{C}_{\mathcal{C}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is an equivalence of categories.

L The Escardò-Lawson-Simpson Construction

 \Box The C_C category

The Main Theorem

Theorem (Escardò-Lawson-Simpson, JGL)

Let $|_{-}|$: $\mathbf{C} \rightarrow \mathbf{Set}$ be topological well-fibered. If \mathbb{C} is strongly productive, then:

- **C** $_{\mathbb{C}}$ is coreflective in **C**
 - Coreflection $\mathcal{C} \colon \mathbf{C} \to \mathbf{C}_{\mathcal{C}}$
- **C**_C is Cartesian-closed
 - Product $X \times_{\mathfrak{C}} Y$ is $\mathfrak{C}(X \times Y)$
 - Exponential is $C([Y^X]_C)$
- C_C is cocomplete
 - Colimits are computed as in C
 - C-generated \Leftrightarrow colimit of objects of C

Note: the proof of the latter is interesting; rests on colimit of probes $k: C_{X'} \to X$ such that |k| does *not* lift to $C_{X'} \to X'$, for X' in fiber of |X| not coarser than X.

-Streams, prestreams

Outline

1 The Escardò-Lawson-Simpson Construction

- The **Map**_C category
- Topological functors
- The **Map**_C category, categorically
- The C_C category

2 Streams, prestreams

- Directed Algebraic Topology
- Prestreams
- CCCs of prestreams
- Streams
- CCCs of streams

Streams, prestreams

Directed Algebraic Topology

Directed Algebraic Topology

 Originates (mostly) from computer science questions on concurrent processes [E. Goubault 95]

• ... interpreted geometrically [E. Dijkstra 68]

Object of study:

Topological space + notion of **time** (possibly cyclic)

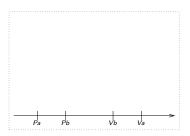
Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:

- Pa blocks until lock a taken
- Va releases lock a



Process 1: Pa; Pb; Vb; Va

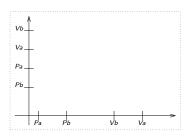
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb

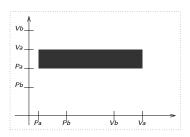
Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

■ P, V ⇒ forbidden rectangles

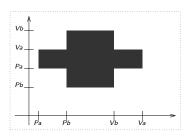
Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

■ P, V ⇒ forbidden rectangles

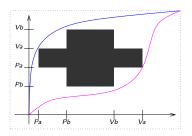
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order

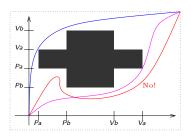
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order

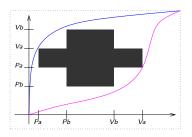
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order
- Dihomotopies of dipaths + fixed endpoints

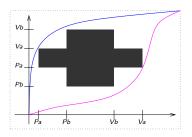
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order
- Dihomotopies of dipaths + fixed endpoints

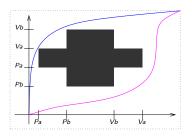
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order
- Dihomotopies of dipaths + fixed endpoints

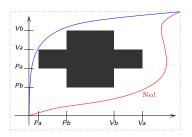
-Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by *single* process:

- Pa blocks until lock a taken
- Va releases lock a



- Process 1: Pa; Pb; Vb; Va
- Process 2: Pb; Pa; Va; Vb
- P, V ⇒ forbidden rectangles
- Dipaths must respect order
- Dihomotopies of dipaths + fixed endpoints

└─ Streams, prestreams

L Directed Algebraic Topology

What is a geometric model of time+space?

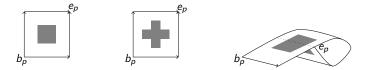
Ordered topological spaces...

└─ Streams, prestreams

Directed Algebraic Topology

What is a geometric model of time+space?

Ordered topological spaces...do not handle cycles
 P_a.V_a|P_a.V_a P_a.P_b.V_b.V_a|P_b.P_a.V_a.V_b P_a.(V_a.P_a)*|P_a.V_a



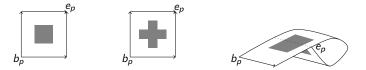
The Escardò-Lawson-Simpson Construction Streams, prestreams

Directed Algebraic Topology

What is a geometric model of time+space?

Ordered topological spaces... do not handle cycles

 $P_a, V_a | P_a, V_a = P_a, P_b, V_b, V_a | P_b, P_a, V_a, V_b = P_a, (V_a, P_a)^* | P_a, V_a$



▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen 08] ... do not admit colimits [Haucourt 04]

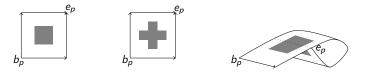
└─ Streams, prestreams

Directed Algebraic Topology

What is a geometric model of time+space?

• Ordered topological spaces...do not handle cycles

 $P_a.V_a|P_a.V_a - P_a.P_b.V_b.V_a|P_b.P_a.V_a.V_b - P_a.(V_a.P_a)^*|P_a.V_a$



 Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen 08] . . . do not admit colimits [Haucourt 04]

Better: d-spaces [Grandis 09], streams [Krishnan 08]

- Prestreams

Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category **Prestr** of prestreams)

A prestream $\mathfrak{X} =$ topological space X

+ precirculation $(\sqsubseteq_U)_{U \in \mathcal{O}(X)}$:

- \sqsubseteq_U preorder on U
- monotonicity: $U \subseteq V, x \sqsubseteq_U y \Rightarrow x \sqsubseteq_V y$

Prestreams

Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category **Prestr** of prestreams)

A prestream $\mathfrak{X} =$ topological space X

+ precirculation $(\sqsubseteq_U)_{U \in \mathcal{O}(X)}$:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• \sqsubseteq_U preorder on U

• monotonicity: $U \subseteq V, x \sqsubseteq_U y \Rightarrow x \sqsubseteq_V y$

Prestream morphisms $f: (X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)}) \to (Y, (\preceq_V)_{V \in \mathcal{O}(Y)})$:

continuous

• locally monotonic: for each open V of Y,

$$x \sqsubseteq_{f^{-1}(V)} y \Rightarrow f(x) \preceq_V f(y)$$

└─ Streams, prestreams

Prestreams

Paradigmatic examples 1

• Preordered spaces: $\sqsubseteq_U = \leq_{|U}$ for each U

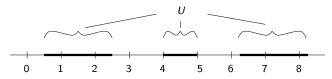
Streams, prestreams

- Prestreams

Paradigmatic examples 1

• Preordered spaces: $\sqsubseteq_U = \leq_{|U}$ for each U

• $\overrightarrow{\mathbb{R}}$: $t \sqsubseteq_U^{\mathbb{R}} t'$ iff whole interval $[t, t'] \subseteq U$.



Here, $1 \sqsubseteq_U 2$, but $2 \not\sqsubseteq_U 4.6$ "Islands of order"

Prestreams

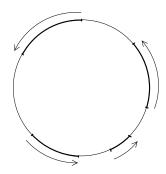
Paradigmatic examples 2: the directed circle

Definition

 $\overrightarrow{S}^1 = \overrightarrow{\mathbb{R}}/\mathbb{Z}$

- Quotient by $x \equiv y$ iff $x y \in \mathbb{Z}$
- Prestr is cocomplete, has quotients

$$\begin{array}{c} [y] & x'_n \equiv y \\ & & & & \\ ||^{[U]} & & & \\ [x] & \longleftrightarrow & & \\ & & x'_1 \equiv \\ & & & \\$$



Streams, prestreams

CCCs of prestreams

Using the Escardò-Lawson-Simpson construction

• The forgetful functor $(X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)}) \mapsto X : \mathbf{Prestr} \to \mathbf{Top}$ is topological

- In the second second
 - consisting of exponentiable objects in Prestr
 - closed under binary products
- What are the *exponentiable prestreams*?

Streams, prestreams

└─ CCCs of prestreams

Exponentiable prestreams

Theorem

The prestream $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$ is exponentiable iff:

X is core-compact(i.e., exponentiable in Top)X is a preordered space(i.e., $\sqsubseteq_U = (\sqsubseteq_X)_{|U}$)

Streams, prestreams

CCCs of prestreams

Many CCCs of prestreams

Prestr^{\mathcal{C}} (C-generated prestreams):

• $\mathcal{C} = all \text{ preordered core-compact spaces}$

 \Rightarrow *largest* such CCC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\mathcal{C} = \text{preordered compact Hausdorff spaces}$

 \Rightarrow prestream quotients of

preordered loc. compact Hausdorff spaces

■ C = compact pospaces

 \Rightarrow prestream quotients of locally compact pospaces

etc.

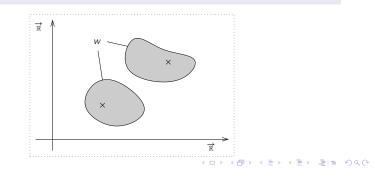
Streams

The issue with prestreams

Binary products in **Prestr** are *weird*.

Lemma

 $(X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)}) \times (Y, (\preceq_V)_{V \in \mathcal{O}(Y)})$ is $X \times Y$ with precirculation: $(x, y) \leq_W (x', y')$ iff $x \sqsubseteq_{\pi_1[W]} x'$ and $y \preceq_{\pi_2[W]} y'$



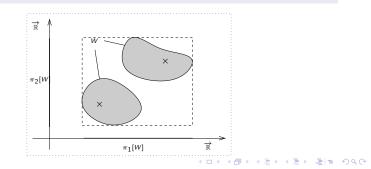
Streams

The issue with prestreams

Binary products in **Prestr** are *weird*.

Lemma

 $(X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)}) \times (Y, (\preceq_V)_{V \in \mathcal{O}(Y)})$ is $X \times Y$ with precirculation: $(x, y) \leq_W (x', y')$ iff $x \sqsubseteq_{\pi_1[W]} x'$ and $y \preceq_{\pi_2[W]} y'$



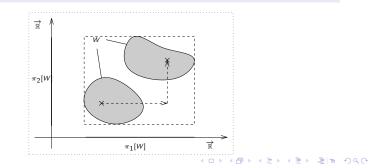
Streams

The issue with prestreams

Binary products in **Prestr** are *weird*.

Lemma

 $(X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)}) \times (Y, (\preceq_V)_{V \in \mathcal{O}(Y)})$ is $X \times Y$ with precirculation: $(x, y) \leq_W (x', y')$ iff $x \sqsubseteq_{\pi_1[W]} x'$ and $y \preceq_{\pi_2[W]} y'$



Streams, prestreams

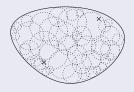
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

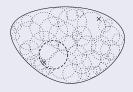
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

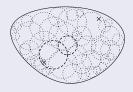
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}

Streams, prestreams

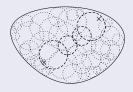
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}

Streams, prestreams

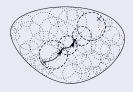
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U_{\cdots}



Streams, prestreams

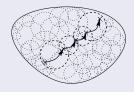
Streams

Streams

Definition (One-step cosheafification)

For $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$, $Sh^1(\mathfrak{X}) = (X, (\widehat{\sqsubseteq}_U)_{U \in \mathfrak{O}(X)})$ where:

 $x \stackrel{\frown}{\sqsubseteq}_U y$ iff for every open cover $(U_i)_{i \in I}$ of U:



Note: $Sh^{1}(\mathcal{X})$ always finer than \mathcal{X} on X.

Definition (Stream)

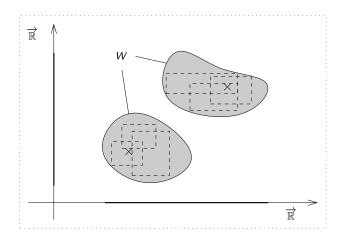
 \mathfrak{X} stream iff $Sh^{1}(\mathfrak{X}) = \mathfrak{X}$

Defines a full subcategory Str of Prestr, topological over Top.

└─ Streams, prestreams

— Streams

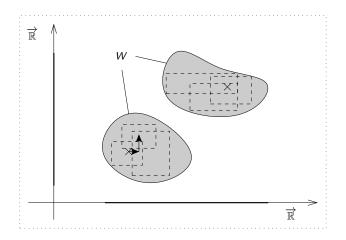
Stream products



└─ Streams, prestreams

— Streams

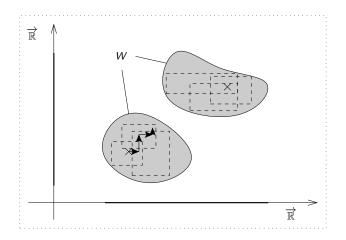
Stream products



└─ Streams, prestreams

— Streams

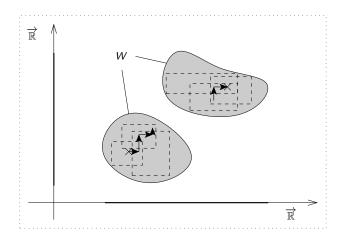
Stream products



└─ Streams, prestreams

— Streams

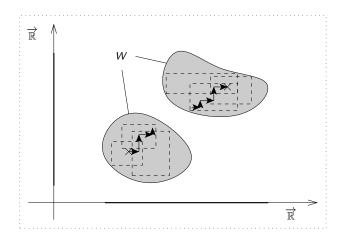
Stream products



└─ Streams, prestreams

— Streams

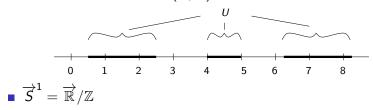
Stream products



Streams, prestreams

Streams

Paradigmatic examples



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Streams, prestreams

└─CCCs of streams

Exponentiable prestreams

Theorem

The prestream $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$ is exponentiable iff:

X is core-compact

(i.e., exponentiable in **Top**)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• \mathfrak{X} is a preordered space

Streams, prestreams

└─CCCs of streams

Exponentiable prestreams

Theorem

- The prestream $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathcal{O}(X)})$ is exponentiable iff:
 - X is core-compact (i.e., exponentiable in **Top**)

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

■ *X* is a preordered space

Streams, prestreams

└─CCCs of streams

Exponentiable streams

Theorem

The stream $\mathfrak{X} = (X, (\sqsubseteq_U)_{U \in \mathfrak{O}(X)})$ is exponentiable iff:

■ X is core-compact

(i.e., exponentiable in **Top**)

Streams, prestreams

CCCs of streams

Many CCCs of streams

 $Str_{\mathbb{C}}$ (C-generated prestreams):

• C = all core-compact streams

 \Rightarrow *largest* such CCC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

etc.

Note: the weak Hausdorff streams of the 2nd kind are Krishnan's *compactly flowing streams*.

- Conclusion

Outline

1 The Escardò-Lawson-Simpson Construction

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- The **Map**_C category
- Topological functors
- The **Map**_C category, categorically
- The C_C category

2 Streams, prestreams

- Directed Algebraic Topology
- Prestreams
- CCCs of prestreams
- Streams
- CCCs of streams

3 Conclusion

Conclusion

- A fairly general, simple construction of CCCs: $Map_{\mathbb{C}} \cong C_{\mathbb{C}}$
- Many CCCs of topological spaces (including k-spaces)
- Many CCCs of prestreams
- Many CCCs of streams (including compactly flowing streams)

What is "Cartesian-closed"?

Definition

X is exponentiable if $_{-} \times X$ is left adjoint. Cartesian-closed = every object is exponentiable.

Right adjoint is the *exponential* $_^X$.

- application App: $Y^X \times X \to Y$
- $(f, x) \mapsto f(x)$ currification $\Lambda(f): Z \to Y^X$ for each $f: Z \times X \to Y$

 $z\mapsto \big(x\mapsto f(x,y)\big)$

satisfying some equations (omitted)

Convenient in algebraic topology:

- homotopies through path functor
- geometric realization preserves finite products

Fundamental in semantics of programming languages

What about replacing topological spaces by filter spaces?

Given filter space X, let $\mathbf{U}X$ be underlying topological space. Not checked, but seems likely:

Definition

A (pre)fream is X filter space + (pre)circulation $(\sqsubseteq_U)_{U \in \mathcal{O}(\mathbf{U}X)}$.

Claim

The exponentiable prefreams are the preordered filter spaces.

 \ldots hence can build CCCs of preordered-generated filter spaces, etc.

Claim

Every fream is exponentiable: the category of freams is Cartesian-closed.

Cosheafification

Fiber of X is a complete lattice. Iterate Sh^1 transfinitely, obtain $Sh^{\infty}(X)$, coarsest stream finer than \mathcal{X} .

Definition

 $Sh^{\infty}(\mathcal{X})$ is the *cosheafification* of \mathcal{X} .

 Sh^∞ is right adjoint to inclusion functor, so:

Theorem

Str is a coreflective subcategory of Prestr, topological over Top.

(General argument on categories of fixed point of deflationary endofunctors that are identity on morphisms, on categories with a fiber-small topological functor.)