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The Escardd-Lawson-Simpson Construction

Context

m Top is not Cartesian-closed

m ... but some full subcategories are,
e.g., k-spaces
[Brown 61, 63; Steenrod 67; Kelley]

m ... an instance of a more general construction
[Escardo-Lawson-Simpson 04]

m We give a categorical generalization

m ... which we apply to streams [Krishnan 08].



The Escardd-Lawson-Simpson Construction

L The Escardd-Lawson-Sim pson Construction

Outline

The Escardo-Lawson-Simpson Construction
m The Map; category
m Topological functors
m The Map; category, categorically
m The Cp category
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The Map. Category [Escardo-Lawson-Simpson 04]

Fix a class C of spaces (e.g., compact Hausdorff spaces).
m C-probe (on X) =
continuous map C *k>X , forsome C € C

mf: X — Y is C-continuous
iff f o k continuous for every C-probe k

Definition (Mape)

Objects=topological spaces. Morphisms=C-continuous maps.

Note: Just like Top, with relaxed notion of continuity
(continuous = C-continuous)
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The Map, Category

Definition (Strongly productive)
C is strongly productive iff:

m every space in C is exponentiable
m C is closed under binary products

Note: the exponentiable spaces are the core-compact spaces

(slight generalization of locally compact)

Theorem (Escardo, Lawson, Simpson 2004)

If € is strongly productive, then Mape is Cartesian-closed.
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Many CCCs of topological spaces

We shall see that Mape = Tope CCC of topological spaces:
m C = all core-compact spaces
= largest such CCC (quotients of core-compact spaces)

m C = compact Hausdorff spaces
= quotients of loc. compact spaces
m same as above + (weak) Hausdorff
k-spaces
m C = one-point compactification of N
= sequential spaces
m etc.
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Topological functors

C (e'g'7 TOP)

B} /Y\Z /Y \2/

id :
@ A D (e.g., Set)

X[ = 1Y 12 lY'|=12|
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Topological functors

Fiber of A

X/ Y\Z et . \2/

C (e'g'7 TOP)

@ 4 O D (e.g., Set)
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Topological functors

C (e'g'7 TOP)

e \ / \

(lifts 1d

@ 4 O D (e.g., Set)
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Topological functors

| |: C — D is a topological functor iff:
m faithful

B amnestic “finer” is antisymmetric

m and every |_|-source has a |_|-initial lift (see next slide)
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Every |_|-source ...

In Top:

8i

D —= Al
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Every |_|-source has a

In Top:

Can find topology B
on D

such that:

fi e each g; is continuous

B —= A

8i

D —= Al
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LTopological functors

Every |_|-source has a |_[|-initial lift

B —= A

8i

D —= Al

In Top:

Can find topology B
on D

such that:

e each g; is continuous
e B is coarsest
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LTopological functors

Every |_|-source has a |_[|-initial lift

8i

Ic| —&= D —= A/

In Top:

Can find topology B
on D

such that:

e each g; is continuous
e B is coarsest

g lifts (is continuous) iff
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LTopological functors

Every |_|-source has a |_[|-initial lift

f;
c =8B == a

8i

Ic| &= D —= A/

In Top:

Can find topology B
on D

such that:

e each g; is continuous
e B is coarsest

g lifts (is continuous) iff
g og all lift
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Duality

Topological functors are self-dual.
Equivalent definition:

Definition

| |: C — D is a topological functor iff:
m faithful

B amnestic “finer” is antisymmetric
m and every |_|-sink has a |_|-final lift “a finest topology”
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A few serendipitous facts

If || topological, then:
m Discrete object functor o - |_| +4 _1 Indiscrete object functor
m preserves (co)limits

m lifts (co)limits
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LTopological functors

A few serendipitous facts, and a subtlety

If || topological, then:
m Discrete object functor o - |_| +4 _1 Indiscrete object functor
m preserves (co)limits

m lifts (co)limits

|| well-fibered iff

m every fiber is small

mlp=1; “only one topology on terminal object”
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The Map, Category, Categorically

Fix |_|: C — Set topological and a class C of objects of C

Definition (C-map)

C (e.g., Top)

f C-map
iff f o |k| lifts for every C-probe k.

f
X| ——= Y|
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The Map, Category, Categorically

Fix |_|: C — Set topological and a class C of objects of C

Definition (C-map)

C (e.g., Top)

f C-map
iff f o |k| lifts for every C-probe k.
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The Map, Category, Categorically

Fix |_|: C — Set topological and a class C of objects of C

Definition (C-map)

C (e.g., Top)

f C-map
iff f o |k| lifts for every C-probe k.

Set

k f
IC| A |X]| ——= Y|
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The Map, Category, Categorically

Fix |_|: C — Set topological and a class C of objects of C

Definition (C-map)

C (e.g., Top)
(e 'f. d =Y
f C-map g
iff f o |k| lifts for every C-probe k.
o4 o |
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The Map, Category, Categorically

Fix |_|: C — Set topological and a class C of objects of C

Definition (C-map)

C (e.g., Top)
(e 'f. d =Y
f C-map g
iff f o |k| lifts for every C-probe k.
o4 o |

Definition (Mape)

Objects=those of C. Morphisms=C-maps.

Note: every morphism is a C-map.
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The Map, Category is Cartesian-closed

Theorem

Let |-|: C — Set be topological well-fibered.
If C is strongly productive, i.e.,

m objects of C are exponentiable
m C closed under binary products

then Mape is Cartesian-closed.

Proof. Exponential [YX]¢ is:

m (in the fiber of) the set
C[X, Y] of C-maps: X —» Y .

C (e.g., Top)
yC

e, v] ==%% Homc(c,Y)
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LThe Mape category, categorically

The Map, Category is Cartesian-closed

Theorem

Let |-|: C — Set be topological well-fibered.
If C is strongly productive, i.e.,

m objects of C are exponentiable
m C closed under binary products

then Mape is Cartesian-closed.

Proof. Exponential [YX]e is: C oxpomentiable

m (in the fiber of) the set
C[X, Y] of C-maps: X —» Y

e, v] ==%% Homc(c,Y)

C (e.g., Top)
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LThe Mape category, categorically

The Map, Category is Cartesian-closed

Theorem

Let |-|: C — Set be topological well-fibered.
If C is strongly productive, i.e.,

m objects of C are exponentiable
m C closed under binary products

then Mape is Cartesian-closed.

Proof. Exponential [YX]e is: C exponentiable
m (in the fiber of) the set e

C[X, Y] of C-maps: X —» Y

m coarsest so that _e k lifts for

every C-probe k: X, v]

-ek
="2= Homc(C, Y)

C (e.g., Top)
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From Map, to Ce

m Map; not a subcategory of C: more morphisms

m Find equivalent subcategory Ce of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest . C (eg., Top)
in the fiber of | X| = =x
such that all C-probes
k: C — X lift

to C — CX set
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From Map, to Ce

m Map; not a subcategory of C: more morphisms

m Find equivalent subcategory Ce of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest . C (eg., Top)
in the fiber of | X| = =x
such that all C-probes
k: C — X lift

to C — €X _—t




The Escardd-Lawson-Simpson Construction

L The Escardd-Lawson-Sim pson Construction

L The C @ category

From Map, to Ce

m Map; not a subcategory of C: more morphisms

m Find equivalent subcategory Ce of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest C (ca., Top)
in the fiber of | X] ¢ T
such that all C-probes
k: C — X lift

to C — €X _—t
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C-generated objects

X is C-generated iff CX = X.
Ce is the full subcategory of C-generated objects in C.

e
Map, —=C¢
|-l

is an equivalence of categories.
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The Main Theorem

Theorem (Escardo-Lawson-Simpson, JGL)

Let |-|: C — Set be topological well-fibered.
If C is strongly productive, then:
m C; is coreflective in C
m Coreflection C: C — Cp
m Ce is Cartesian-closed
®m Product X x¢ Y is C(X x Y)
m Exponential is C([YX]e)
m Ce is cocomplete

m Colimits are computed as in C
m C-generated < colimit of objects of C

Note: the proof of the latter is interesting; rests on colimit of probes
k: Cxr — X such that |k| does not lift to Cxr — X',

for X’ in fiber of | X| not coarser than X.
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Streams, prestreams
m Directed Algebraic Topology
m Prestreams
m CCCs of prestreams
m Streams
m CCCs of streams
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Directed Algebraic Topology

m Originates (mostly) from computer science questions on
concurrent processes [E. Goubault 95]

m ... interpreted geometrically [E. Dijkstra 68|
Object of study:

Topological space + notion of time (possibly cyclic)
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L Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
m Process 1. Pa; Pb; Vb; Va
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
m Process 1. Pa; Pb; Vb; Va

+ m Process 2: Pb; Pa; Va; Vb

Va_|

Vb

Pa_|

Pb_|
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
m Process 1. Pa; Pb; Vb; Va

+ m Process 2: Pb; Pa; Va; Vb

Va_| _ | | P, V = forb|dden

rectangles

Vb

Pa_|

Pb_|
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L Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
m Process 1. Pa; Pb; Vb; Va

m Process 2: Pb; Pa; Va; Vb

m P, V = forbidden
rectangles

Vb_|

Va_|

Pa_|

Pb_|




The Escardd-Lawson-Simpson Construction

L Streams, prestreams

L Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V = forbidden
rectangles

Dipaths must respect order
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rectangles
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V = forbidden
rectangles

Dipaths must respect order

Dihomotopies of dipaths +
fixed endpoints
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
m Process 1. Pa; Pb; Vb; Va

m Process 2: Pb; Pa; Va; Vb

m P, V = forbidden
rectangles

m Dipaths must respect order

m Dihomotopies of dipaths +
fixed endpoints
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V = forbidden
rectangles

Dipaths must respect order

Dihomotopies of dipaths +
fixed endpoints
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PV Processes

Locks ensure access to resource by single process:
m Pa blocks until lock a taken

m Va releases lock a
Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V = forbidden
rectangles

Dipaths must respect order

Dihomotopies of dipaths +
fixed endpoints
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m Ordered topological spaces. . .
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m Ordered topological spaces. . .do not handle cycles

P, Va|Pa Vs PyPp. V. Va|Pp.Ps. V.V P,.(Va.P)*|Pa.V,
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L Directed Algebraic Topology

What is a geometric model of time-+space?

m Ordered topological spaces. . .do not handle cycles

P, Va|Pa Vs PyPp. V. Va|Pp.Ps. V.V P,.(Va.P)*|Pa.V,

e, ey

LI A <

m Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen
08] ... do not admit colimits [Haucourt 04]
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L Directed Algebraic Topology

What is a geometric model of time-+space?

m Ordered topological spaces. . .do not handle cycles

P, Va|Pa Vs PyPp. V. Va|Pp.Ps. V.V P,.(Va.P)*|Pa.V,

e, ey

LI A <

m Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen
08] ... do not admit colimits [Haucourt 04]

m Better: d-spaces [Grandis 09], streams [Krishnan 08]
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Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category Prestr of prestreams)

A prestream X = topological space X
+ precirculation (Tu) yeo(x):
m Cy preorder on U
m monotonicity: UC V xCyy=xCy y
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Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category Prestr of prestreams)

A prestream X = topological space X
+ precirculation (Tu) yeo(x):
m Cy preorder on U
m monotonicity: UC V. xCyy=xCyy
Prestream morphisms f: (X, (EU)UG(‘)(X)) — (Y, (jV)VEO(Y)):
m continuous

m locally monotonic: for each open V of Y,
x Cryy y = f(x) 2v f(y)
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Paradigmatic examples 1

m Preordered spaces: Cuv=<uu for each U
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L Prestreams

Paradigmatic examples 1

m Preordered spaces: Cuv=<uu for each U

n Kt C% ¢/ iff whole interval [t,t'] C U.

T
—n T AN —re
: : : :
o 1 2 3 4 5 6 7 8

Here, 1 Cy 2, but 2 iZy 4.6
“Islands of order”
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Paradigmatic examples 2: the directed circle

S _R/z

m Quotient by x = y iff

x—y€eZl
m Prestr is cocomplete, has /

quotients
[ ] X’; Ey
Wz i
e = Xn—1

X1
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Using the Escardo-Lawson-Simpson construction

m The forgetful functor (X, (EU)er(X)) — X: Prestr — Top
is topological

m ... hence Prestre is Cartesian-closed for any strongly
productive class. Remember:
m consisting of exponentiable objects in Prestr
m closed under binary products

m What are the exponentiable prestreams?
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L cccs of prestreams

Exponentiable prestreams

The prestream X = (X, (Eu)yeo(x)) s exponentiable iff:

m X is core-compact (i.e., exponentiable in Top)

m X is a preordered space (ie., Cy= (EX)|U)
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L cccs of prestreams

Many CCCs of prestreams

Prestre (C-generated prestreams):
m C = all preordered core-compact spaces
= largest such CCC
m C = preordered compact Hausdorff spaces
= prestream quotients of
preordered loc. compact Hausdorff spaces
m C = compact pospaces
= prestream quotients of locally compact pospaces

m etc.
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The issue with prestreams

Binary products in Prestr are weird.

Lemma

(X, (EU)er(X)) x (Y, (jV)VeO(Y)) is X X Y with precirculation:

(X7y) <w (Xlay/) iff x Ewl[W] x and y jﬂ'z[W] }//

| @
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(X, (EU)er(X)) x (Y, (jV)VeO(Y)) is X X Y with precirculation:

(X7y) <w (Xlay/) iff x Ewl[W] x and y jﬂ'z[W] }//

oW
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L Streams

The issue with prestreams

Binary products in Prestr are weird.

Lemma

(X, (EU)er(X)) x (Y, (jV)VeO(Y)) is X X Y with precirculation:

(X7y) <w (Xlay/) iff x Ewl[W] x and y jﬂ'z[W] }//

oW
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Streams

Definition (One-step cosheafification)

For X = (X, (Ev)yeo(x)): ShH(X) = (X, (EU)UGO(X)) where:

X EU y iff
for every open cover (U;);c, of U...
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Definition (One-step cosheafification)

For X = (X, (Ev)yeo(x)): ShH(X) = (X, (EU)UGO(X)) where:

X EU y iff
for every open cover (U;);c, of U...
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Streams

Definition (One-step cosheafification)

For X = (X, (Ev)yeo(x)): ShH(X) = (X, (EU)UGO(X)) where:

X EU y iff
for every open cover (U;);c, of U...
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L Streams

Streams

Definition (One-step cosheafification)

For X = (X, (Ev)yeo(x)): ShH(X) = (X, (EU)UGO(X)) where:

X EU y iff
for every open cover (U;);c, of U:

Note: Sh'(X) always finer than X on X.

Definition (Stream)
X stream iff SA'(X) = X

Defines a full subcategory Str of Prestr, topological over Top.
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Stream products

=
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L Streams

Paradigmatic examples

m Not preordered spaces in general, but their cosheafification OK
%
m R = cosheafification of (R, <):

U
T
S AN e
0 1 2 3 4 5 6 7 8
1
I? :ﬁ)/Z

L~

N~
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L ccCs of streams

Exponentiable prestreams

The prestream X = (X, (Eu)yeo(x)) s exponentiable iff:

m X is core-compact (i.e., exponentiable in Top)

m X /s a preordered space
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L ccCs of streams

Exponentiable prestreams

The prestream X = (X, (EU)UeO(X)) is exponentiable iff:

m X s core-compact (i.e., exponentiable in Top)

m X s a3 preordered space —



The Escardd-Lawson-Simpson Construction
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L ccCs of streams

Exponentiable  streams

The  stream X = (X, (Euv)yeo(x)) is exponentiable iff:

m X is core-compact (i.e., exponentiable in Top)
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Many CCCs of streams

Stre (C-generated prestreams):

m C = all core-compact streams
= largest such CCC

m C = compact Hausdorff streams
= quotients of loc. compact Hausdorff streams

m etc.

Note: the weak Hausdorff streams of the 2nd kind are Krishnan's
compactly flowing streams.
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L Conclusion

Conclusion

A fairly general, simple construction of CCCs: Mape = Ce
Many CCCs of topological spaces (including k-spaces)
Many CCCs of prestreams

Many CCCs of streams (including compactly flowing streams)
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What is “Cartesian-closed” ?

Definition

X is exponentiable if _ x X is left adjoint.
Cartesian-closed = every object is exponentiable.

Right adjoint is the exponential X.
m application App: YX x X = Y
(f,x) — f(x)
m currification A(f): Z — YX foreach f: Zx X = Y
z— (x = f(x,y))
m satisfying some equations (omitted)
Convenient in algebraic topology:
m homotopies through path functor
m geometric realization preserves finite products
Fundamental in semantics of programming languages
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What about replacing topological spaces by filter spaces?

Given filter space X, let UX be underlying topological space.
Not checked, but seems likely:

A (pre)fream is X filter space + (pre)circulation (Eu)yecoux)-

The exponentiable prefreams are the preordered filter spaces.

hence can build CCCs of preordered-generated filter spaces,

Claim

o -
-~ -

Every fream is exponentiable: the category of freams is
Cartesian-closed.
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Cosheafification

Fiber of X is a complete lattice.
Iterate Sh! transfinitely,
obtain Sh*°(X), coarsest stream finer than X.

Definition
Sh*>(X) is the cosheafification of X.

Sh*° is right adjoint to inclusion functor, so:

Theorem

Str is a coreflective subcategory of Prestr, topological over Top.

(General argument on categories of fixed point of deflationary endofunctors that

are identity on morphisms, on categories with a fiber-small topological functor.)
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