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The Escardò-Lawson-Simpson Construction

Context

Top is not Cartesian-closed

. . . but some full subcategories are,
e.g., k-spaces

[Brown 61, 63; Steenrod 67; Kelley]

. . . an instance of a more general construction
[Escardò-Lawson-Simpson 04]

We give a categorical generalization

. . . which we apply to streams [Krishnan 08].
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The MapC category

The MapC Category [Escardò-Lawson-Simpson 04]

Fix a class C of spaces (e.g., compact Hausdorff spaces).

C-probe (on X ) =

continuous map C
k // X , for some C ∈ C

f : X → Y is C-continuous
iff f ◦ k continuous for every C-probe k

Definition (MapC)

Objects=topological spaces. Morphisms=C-continuous maps.

Note: Just like Top, with relaxed notion of continuity
(continuous ⇒ C-continuous)
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The MapC category

The MapC Category

Definition (Strongly productive)

C is strongly productive iff:

every space in C is exponentiable

C is closed under binary products

Note: the exponentiable spaces are the core-compact spaces

(slight generalization of locally compact)

Theorem (Escardò, Lawson, Simpson 2004)

If C is strongly productive, then MapC is Cartesian-closed.
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The MapC category

Many CCCs of topological spaces

We shall see that MapC
∼= TopC CCC of topological spaces:

C = all core-compact spaces
⇒ largest such CCC (quotients of core-compact spaces)

C = compact Hausdorff spaces
⇒ quotients of loc. compact spaces

same as above + (weak) Hausdorff
k-spaces

C = one-point compactification of N
⇒ sequential spaces

etc.
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Topological functors

Topological functors

C (e.g., Top)

idA

|Y ′| = |Z ′||Z ||X | = |Y |

Z ′

Y ′

Z

Y

X

| |

D (e.g., Set)
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Topological functors

Topological functors

Fiber of A

= |Y ′| = |Z ′|
CB

= |Z |= |X | = |Y |
A

idA

Z ′

Y ′

Z

Y

X

| |

D (e.g., Set)

C (e.g., Top)
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Topological functors

Topological functors

(lifts idA)

finer

= |Y ′| = |Z ′|
CB

= |Z |= |X | = |Y |
A

idA

Z ′

Y ′

Z

Y

X

| |

D (e.g., Set)

C (e.g., Top)



The Escardò-Lawson-Simpson Construction
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Topological functors

Topological functors

Definition

| | : C→ D is a topological functor iff:

faithful

amnestic “finer” is antisymmetric

and every | |-source has a | |-initial lift (see next slide)
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Topological functors

Every | |-source . . .

| |-initial

Ai

gi
|Ai |D

In Top:

Can find topology B
on D
such that:
• each gi is continuous
• B is coarsest

g lifts (is continuous) iff
gi ◦ g all lift
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Topological functors

Every | |-source has a

| |-initial

lift

D |Ai |

AiB

gi

fi

In Top:
Can find topology B
on D
such that:
• each gi is continuous

• B is coarsest

g lifts (is continuous) iff
gi ◦ g all lift
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Topological functors

Every | |-source has a | |-initial lift

D |Ai |

AiB

gi

fi

|C | g

C

In Top:
Can find topology B
on D
such that:
• each gi is continuous
• B is coarsest

g lifts (is continuous) iff

gi ◦ g all lift
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Topological functors

Every | |-source has a | |-initial lift

f
C

g|C |

fi

gi

B Ai

|Ai |D

In Top:
Can find topology B
on D
such that:
• each gi is continuous
• B is coarsest

g lifts (is continuous) iff
gi ◦ g all lift
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Topological functors

Duality

Topological functors are self-dual.
Equivalent definition:

Definition

| | : C→ D is a topological functor iff:

faithful

amnestic “finer” is antisymmetric

and every | |-sink has a | |-final lift “a finest topology”
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Topological functors

A few serendipitous facts

, and a subtlety

If | | topological, then:

Discrete object functor 0 a | | a 1 Indiscrete object functor

preserves (co)limits

lifts (co)limits

Definition

| | well-fibered iff

every fiber is small

10 = 11 “only one topology on terminal object”
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The Escardò-Lawson-Simpson Construction

The MapC category, categorically

The MapC Category, Categorically

Fix | | : C→ Set topological and a class C of objects of C

Definition (C-map)

f C-map
iff f ◦ |k | lifts for every C-probe k .

f
Set

C (e.g., Top)

| |

X

|X| |Y |

Y

Definition (MapC)

Objects=those of C. Morphisms=C-maps.

Note: every morphism is a C-map.
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Fix | | : C→ Set topological and a class C of objects of C

Definition (C-map)

f C-map
iff f ◦ |k | lifts for every C-probe k .

C

Set

C (e.g., Top)

| |

k
X

|X| |Y |

Y

f
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The MapC Category, Categorically

Fix | | : C→ Set topological and a class C of objects of C

Definition (C-map)

f C-map
iff f ◦ |k | lifts for every C-probe k .

|C|
|k|

Set

C (e.g., Top)

| |

k
X

|X| |Y |

Y

f

C

Definition (MapC)

Objects=those of C. Morphisms=C-maps.

Note: every morphism is a C-map.
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The MapC Category, Categorically

Fix | | : C→ Set topological and a class C of objects of C

Definition (C-map)

f C-map
iff f ◦ |k | lifts for every C-probe k .

f • k

|k|
Set

C (e.g., Top)

| |

|X| |Y |

Y

f

C

|C|

k
X
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The Escardò-Lawson-Simpson Construction

The MapC category, categorically
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The MapC category, categorically

The MapC Category is Cartesian-closed

Theorem

Let | | : C→ Set be topological well-fibered.
If C is strongly productive, i.e.,

objects of C are exponentiable

C closed under binary products

then MapC is Cartesian-closed.

Proof. Exponential [Y X ]C is:

(in the fiber of) the set
C[X ,Y ] of C-maps : X → Y

coarsest so that • k lifts for
every C-probe k :

C[X, Y ]

| |

C (e.g., Top)

Set

HomC(C, Y )

YC

• k
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The MapC Category is Cartesian-closed

Theorem

Let | | : C→ Set be topological well-fibered.
If C is strongly productive, i.e.,

objects of C are exponentiable

C closed under binary products

then MapC is Cartesian-closed.

Proof. Exponential [Y X ]C is:
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The MapC category, categorically

The MapC Category is Cartesian-closed

Theorem

Let | | : C→ Set be topological well-fibered.
If C is strongly productive, i.e.,

objects of C are exponentiable

C closed under binary products

then MapC is Cartesian-closed.

Proof. Exponential [Y X ]C is:

(in the fiber of) the set
C[X ,Y ] of C-maps : X → Y

coarsest so that • k lifts for
every C-probe k : HomC(C, Y )

Set

C (e.g., Top)

| |

[YX ]C YC

C exponentiable

C[X, Y ]
• k
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The CC category

From MapC to CC

MapC not a subcategory of C: more morphisms

Find equivalent subcategory CC of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest
in the fiber of |X |
such that all C-probes
k : C → X lift
to C → CX

X

Set

C (e.g., Top)

| |

k

C
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The CC category

From MapC to CC

MapC not a subcategory of C: more morphisms

Find equivalent subcategory CC of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest
in the fiber of |X |
such that all C-probes
k : C → X lift
to C → CX

|X|
Set

C (e.g., Top)

| |

C

|C|

k

|k|

X
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The CC category

From MapC to CC

MapC not a subcategory of C: more morphisms

Find equivalent subcategory CC of C
using process equivalent to k-ification.

Definition (C-ification)

CX is finest
in the fiber of |X |
such that all C-probes
k : C → X lift
to C → CX

|C|

C

| |

C (e.g., Top)

Set

X

k

|X|
|k|

CX
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The CC category

C-generated objects

Definition

X is C-generated iff CX = X .
CC is the full subcategory of C-generated objects in C.

Theorem

MapC

C // CC
| |
oo

is an equivalence of categories.
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The CC category

The Main Theorem

Theorem (Escardò-Lawson-Simpson, JGL)

Let | | : C→ Set be topological well-fibered.
If C is strongly productive, then:

CC is coreflective in C
Coreflection C : C→ CC

CC is Cartesian-closed

Product X ×C Y is C(X × Y )
Exponential is C([Y X ]C)

CC is cocomplete

Colimits are computed as in C
C-generated ⇔ colimit of objects of C

Note: the proof of the latter is interesting; rests on colimit of probes
k : CX ′ → X such that |k| does not lift to CX ′ → X ′,

for X ′ in fiber of |X | not coarser than X .
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Streams, prestreams

Directed Algebraic Topology

Directed Algebraic Topology

Originates (mostly) from computer science questions on
concurrent processes [E. Goubault 95]

. . . interpreted geometrically [E. Dijkstra 68]

Object of study:

Topological space + notion of time (possibly cyclic)
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Streams, prestreams

Directed Algebraic Topology

PV Processes

Locks ensure access to resource by single process:

Pa blocks until lock a taken

Va releases lock a

Pa VaVbPb

Process 1: Pa; Pb; Vb; Va

Process 2: Pb; Pa; Va; Vb

P, V ⇒ forbidden
rectangles

Dipaths must respect order

Dihomotopies of dipaths +
fixed endpoints
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The Escardò-Lawson-Simpson Construction

Streams, prestreams

Directed Algebraic Topology

What is a geometric model of time+space?

Ordered topological spaces. . .

Examples of geometric semantics

To each program p we associate a d-space (Hp, bp, ep):

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)ú|Pa.Va

bp

ep

bp

ep

bp
ep

E. Goubault & S. Mimram

Local pospaces (manifold-like) [Fajstrup, Goubault, Raussen
08] . . . do not admit colimits [Haucourt 04]

Better: d-spaces [Grandis 09], streams [Krishnan 08]
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Prestreams

Prestreams

A prestream is a topological presheaf of preorders:

Definition (Category Prestr of prestreams)

A prestream X = topological space X
+ precirculation (vU)U∈O(X ):

vU preorder on U

monotonicity: U ⊆ V , x vU y ⇒ x vV y

Prestream morphisms f : (X , (vU)U∈O(X ))→ (Y , (�V )V∈O(Y )):

continuous

locally monotonic: for each open V of Y ,
x vf −1(V ) y ⇒ f (x) �V f (y)
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Prestreams

Paradigmatic examples 1

Preordered spaces: vU=≤|U for each U

−→
R : t vR

U t ′ iff whole interval [t, t ′] ⊆ U.

U

876543210

Here, 1 vU 2, but 2 6vU 4.6
“Islands of order”
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Streams, prestreams

Prestreams

Paradigmatic examples 2: the directed circle

Definition
−→
S

1
=
−→
R/Z

Quotient by x ≡ y iff
x − y ∈ Z
Prestr is cocomplete, has
quotients

x ≡ x0

[x]

[y ]
[U]

⇐⇒

U

U

U

x′n ≡ y

≡ xn−1

x′1 ≡

x′0 ≡ x1
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Streams, prestreams

CCCs of prestreams

Using the Escardò-Lawson-Simpson construction

The forgetful functor (X , (vU)U∈O(X )) 7→ X : Prestr→ Top
is topological

. . . hence PrestrC is Cartesian-closed for any strongly
productive class. Remember:

consisting of exponentiable objects in Prestr
closed under binary products

What are the exponentiable prestreams?
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Streams, prestreams

CCCs of prestreams

Exponentiable prestreams

Theorem

The prestream X = (X , (vU)U∈O(X )) is exponentiable iff:

X is core-compact (i.e., exponentiable in Top)

X is a preordered space (i.e., vU= (vX )|U)
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Streams, prestreams

CCCs of prestreams

Many CCCs of prestreams

PrestrC (C-generated prestreams):

C = all preordered core-compact spaces
⇒ largest such CCC

C = preordered compact Hausdorff spaces
⇒ prestream quotients of

preordered loc. compact Hausdorff spaces

C = compact pospaces
⇒ prestream quotients of locally compact pospaces

etc.
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Streams

The issue with prestreams

Binary products in Prestr are weird.

Lemma

(X , (vU)U∈O(X ))× (Y , (�V )V∈O(Y )) is X × Y with precirculation:

(x , y) ≤W (x ′, y ′) iff x vπ1[W ] x ′ and y �π2[W ] y ′

W

−→R

−→R



The Escardò-Lawson-Simpson Construction

Streams, prestreams

Streams

The issue with prestreams

Binary products in Prestr are weird.

Lemma

(X , (vU)U∈O(X ))× (Y , (�V )V∈O(Y )) is X × Y with precirculation:

(x , y) ≤W (x ′, y ′) iff x vπ1[W ] x ′ and y �π2[W ] y ′

π2[W ]

π1[W ]

W

−→R

−→R
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Streams, prestreams

Streams

Streams

Definition (One-step cosheafification)

For X = (X , (vU)U∈O(X )), Sh1(X) = (X , (v̂U)U∈O(X )) where:

x v̂U y iff
for every open cover (Ui )i∈I of U. . .

Note: Sh1(X) always finer than X on X .

Definition (Stream)

X stream iff Sh1(X) = X

Defines a full subcategory Str of Prestr, topological over Top.
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Definition (Stream)
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Streams, prestreams

Streams

Paradigmatic examples

Not preordered spaces in general, but their cosheafification OK
−→
R = cosheafification of (R,≤):

U

876543210

−→
S

1
=
−→
R/Z
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Exponentiable prestreams

Theorem

The prestream X = (X , (vU)U∈O(X )) is exponentiable iff:

X is core-compact (i.e., exponentiable in Top)

X is a preordered space
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Streams, prestreams

CCCs of streams

Exponentiable streams

Theorem

The stream X = (X , (vU)U∈O(X )) is exponentiable iff:

X is core-compact (i.e., exponentiable in Top)
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Streams, prestreams

CCCs of streams

Many CCCs of streams

StrC (C-generated prestreams):

C = all core-compact streams
⇒ largest such CCC

C = compact Hausdorff streams
⇒ quotients of loc. compact Hausdorff streams

etc.

Note: the weak Hausdorff streams of the 2nd kind are Krishnan’s
compactly flowing streams.
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Conclusion

A fairly general, simple construction of CCCs: MapC
∼= CC

Many CCCs of topological spaces (including k-spaces)

Many CCCs of prestreams

Many CCCs of streams (including compactly flowing streams)
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FAQ

What is “Cartesian-closed”?

Definition

X is exponentiable if × X is left adjoint.
Cartesian-closed = every object is exponentiable.

Right adjoint is the exponential X .

application App : Y X × X → Y
(f , x) 7→ f (x)

currification Λ(f ) : Z → Y X for each f : Z × X → Y
z 7→ (x 7→ f (x , y))

satisfying some equations (omitted)

Convenient in algebraic topology:

homotopies through path functor

geometric realization preserves finite products

Fundamental in semantics of programming languages
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FAQ

What about replacing topological spaces by filter spaces?

Given filter space X , let UX be underlying topological space.
Not checked, but seems likely:

Definition

A (pre)fream is X filter space + (pre)circulation (vU)U∈O(UX ).

Claim

The exponentiable prefreams are the preordered filter spaces.

. . . hence can build CCCs of preordered-generated filter spaces,
etc.

Claim

Every fream is exponentiable: the category of freams is
Cartesian-closed.



The Escardò-Lawson-Simpson Construction

FAQ

Cosheafification

Fiber of X is a complete lattice.
Iterate Sh1 transfinitely,
obtain Sh∞(X ), coarsest stream finer than X.

Definition

Sh∞(X) is the cosheafification of X.

Sh∞ is right adjoint to inclusion functor, so:

Theorem

Str is a coreflective subcategory of Prestr, topological over Top.

(General argument on categories of fixed point of deflationary endofunctors that

are identity on morphisms, on categories with a fiber-small topological functor.)
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