
https://books.google.at/books?id=YmpqAAAAMAAJ&hl=de

PR1NC1PLES OF

DATABASE AND

KNOWLEDGE -BASE

SYSTEMS
VOLUME

Jeffrey D. U 11 man

\ SHORTCUTS Jj

OBJECT

BASE

TWO-

PHASe

LOCKING

\ KNOWLEDGE -

BASE

THIRD

NORMAL

FORM

DATABASE

FIRST-

ORDER

LOGIC

PRINCIPLES OF

DATABASE AND

KNOWLEDGE -BASE

SYSTEMS
VOLUME I

PRINCIPLES OF COMPUTER SCIENCE SERIES

ISSN 0888-2096

Series Editors

Alfred V. Aho, Bell Telephone Laboratories, Murray Hill, New Jersey

Jeffrey D. Ullman, Stanford University, Stanford, California

1. Algorithms for Graphics and Image Processing*

Tneo Pavlidis

2. Algorithmic Studies in Mass Storage Systems*

C. K. Wong

3. Theory of Relational Databases*

Jeffrey D. Ullman

4. Computational Aspects of VLSI*

Jeffrey D. Ullman

5. Advanced C: Food for the Educated Palate*

Narain Gehani

6. C: An Advanced Introduction*

Narain Gehani

7. C for Personal Computers: IBM PC, AT&T PC 6300, and Compatibles*

Narain Gahani

8. Principles of Computer Design*

Leonard R. Marino

9. The Theory of Database Concurrency Control*

Christos Papadimitriou

10. Computer Organization*

Michael Andrews

1 1 . Elements of Artificial Intelligence Using LlSP

Steven Tanimoto

12. Trends in Theoretical Computer Science

Egon Borger, Editor

13. An Introduction to Solid Modeling

Martti Mantyla

14. Principles of Database and Knowledge Base Systems, Volume I

Jeffrey D. Ullman

•These previously-published books are in the Principles of Computer Science Series but they are not

numbered within the volume itself. All future volumes in the Principles of Computer Science Series

will be numbered.

OTHER BOOKS OF INTEREST

Jewels of Formal Language Theory

Arto Salomaa

Principles of Database Systems

Jeffrey D. Ullman

Fuzzy Sets, Natural Language Computations, and Risk Analysis

Kurt J. Schmucker

LISP: An Interactive Approach

Stuart C. Shapiro

PRINClPLES OF

DATABASE AND

KNOWLEDGE -BASE

SYSTEMS
VOLUME I

Jeffrey D. Ullman

STANFORD DIVERSITY

COMPUTER SCIENCE PRESS

Copyright® 1988 Computer Science Press, Inc.

Printed in the United States of America.

All rights reserved. No part of this book may be reproduced in any form

including photostat, microfilm, and xerography, and not in information storage

' I and retrieval systems, without permission in writing from the publisher, except

by a reviewer who may quote brief passages in a review or as provided in the

Copyright Act of 1976.

Computer Science Press

1803 Research Boulevard

Rockville, Maryland 20850

123456 Printing Year 93 92 91 90 89 88

Library of Congress Cataloging-in-Publication Data

Ullman, Jeffrey D., 1942-

Principles of database and knowledgebase systems.

(Principles of computer science series, ISSN 0888-2096 ; 14-)

Bibliography: p.

Includes index.

1. Data base management. 2. Expert systems (Computer science) I. Title.

II. Series. Principles of computer science series; 14, etc.

QA76.9.D3U443 1988 005.74 87-38197

ISBN 0-88175-188-X (v. 1)

PREFACE

This book is the first of a two-volume set that is intended as a replacement

for my earlier book Principles of Database Systems (Ullman [1982] in the refer

ences). Since the latter book was written, it became clear that what I thought

of as "database systems" formed but one (important) point in a spectrum of

systems that share a capability to manage large amounts of data efficiently,

but differ in the expressiveness of the languages used to access that data. It

has become fashionable to refer to the statements of these more expressive lan

guages as "knowledge," a term I abhor but find myself incapable of avoiding.

Thus, in the new book I tried to integrate "classical" database concepts with

the technolgy that is just now being developed to support applications where

"knowledge" is required along with "data."

The first volume is devoted primarily to classical database systems. How

ever, knowledge, as represented by logical rules, is covered extensively in Chap

ter 3. From that chapter, only the material on relational calculus, a "classical"

database topic, is used extensively in this volume. We shall return to the topic

of logic as a user interface language in the second volume, where it is one of

the major themes. We also find in the first volume a discussion of "object-

oriented" database systems, which, along with "knowledge-base systems," is an

important modern development.

Chapter 1 introduces the terminology for database, object-base, and

knowledge-base systems; it attempts to explain the relationships among these

systems, and how they fit into an unfolding development of progresssively more

powerful systems. Chapters 2 and 3 introduce us to data models as used in

these three classes of systems; "data models" are the mathematical abstrac

tions we use to represent the real world by data and knowledge. In Chapter

4 we meet several important query languages that are based on the relational

data model, and in Chapter 5 we meet languages that are based on one of

several "object-oriented" models.

Chapter 6 covers physical organization of data and the tricks that are

used to answer, efficiently, queries posed in the languages of Chapters 4 and

5. Then, in Chapter 7 we discuss some of the theory for relational database

systems, especially how one represents data in that model in ways that avoid

redundancy and other problems. Chapter 8 covers security and integrity aspects

of database systems, and in Chapter 9 we discuss concurrency control, the

techniques that make it possible for many processes to operate on one database

vi PREFACE

simultaneously, without producing paradoxical results. Finally, in Chapter 10

we consider techniques for dealing with distributed database systems.

It is expected that the second volume will cover query optimization tech

niques, both for "classical" database systems (chiefly relational systems) and

for the new class of "knowledge-base" systems that are presently under devel

opment, and which will rely heavily on the optimization of queries expressed

in logical terms. We shall also find a discussion of some of these experimental

systems. Finally, Volume II will cover "universal relation" systems, a body of

techniques developed to make sense of queries that are expressed in natural

language, or in a language sufficiently informal that the querier does not have

to know about the structure of the database.

Mapping the Old Book to the New

Readers familiar with Ullman [1982] will find most of that material in this vol

ume. Only the chapters on optimization and on universal relations are deferred

to Volume II, and a few sections of the old book have been excised. The mate

rial in the old Chapter 1 has been divided between the new Chapters 1 and 2.

Sections 1.1 and 1.2 remain in Chapter 1, while Sections 1.3 and 1.4 form the

core of Chapter 2 (data models) in the new book. Chapter 2 of the old (phys

ical organization) now appears in Chapter 6, along with material on physical

organization that formerly appeared in Sections 3.2, 4.2, and 5.1. Some of the

material in the old Section 2.8 (partial-match queries) has been excised.

The remainders of Chapters 3 and 4 (network and hierarchical languages)

appear in the new Chapter 5 (object-oriented langauges), along with new ma

terial on OPAL, which is a true, modern object-oriented language for database

systems. The old Chapter 5, on the relational model, has been dispersed. Sec

tion 5.1, on physical structures, moves to Chapter 6, Section 5.2, on relational

algebra, moves to Chapter 2 (data models), while Section 5.3, on relational

calculus, moves to Chapter 3 (logic and knowledge). The old Chapter 6 (rela

tional languages) becomes the new Chapter 4. The discussion of the language

SQUARE has been omitted, but the language SQL is covered much more exten

sively, including an example of how SQL can be interfaced with a host language,

C in particular.

Only Chapter 7 (relational theory) remains where it was and remains rela

tively unchanged. A discussion of the Tsou-Fischer algorithm for constructing

Boyce-Codd normal form schemes is included, as well as a pragmatic discus

sion of the virtues and dangers of decomposition or "normalization." Chapters

8 (query optimization) and 9 (universal relation systems) are deferred to the

second volume. Chapter 10 (security and integrity) becomes Chapter 8. The

discussion on statistical databases is excised, but more examples, drawn from

SQL and OPAL, are included. Chapter 11 (concurrency) becomes Chapter 9,

and is expanded in several ways. Chapter 12 (distributed systems) is divided

PREFACE vii

in two. The first half, on query optimization for distributed systems, is moved

to Volume II, while the second half forms the core of the new Chapter 10; the

latter includes not only distributed locking, but also covers other issues such as

distributed agreement ("distributed commit").

Exercises

Each chapter, except the first, includes an extensive set of exercises, both to

test the basic concepts of the chapter and in many cases to extend these ideas.

The most difficult exercises are marked with a double star, while exercises of

intermediate difficulty have a single star.

Acknowledgements

The following people made comments that were useful in the preparation of

this volume: David Beech, Bernhard Convent, Jim Cutler, Wiebren de Jonge,

Michael Fine, William Harvey, Anil Hirani, Arthur Keller, Michael Kifer, Hans

Kraamer, Vladimir Lifschitz, Alberto Mendelzon, Jaime Montemayor, Inder-

pal Mumick, Mike Nasdos, Jeff Naughton, Meral Ozsoyoglu, Domenico Sacca,

Shuky Sagiv, Yatin Saraiya, Bruce Schuchardt, Mary Shaw, Avi Silberschatz,

Leon Sterling, Rodney Topor, Allen Van Gelder, Moshe Vardi, and Elizabeth

Wolf.

Alberto Mendelzon, Jeff Naughton, and Shuky Sagiv also served as the

publisher's referees.

My son Peter Ullman developed some of the TgX macros used in the prepa

ration of this manuscript.

The writing of this book was facilitated by computing equipment con

tributed to Stanford University by ATT Foundation and by IBM Corp.

Old Debts

The two editions of Ullman [1982] acknowleged many people who contributed

to that book, and many of these suggestions influenced the present book. I

thank in this regard: Al Aho, Brenda Baker, Dan Blosser, Martin Brooks,

Peter deJong, Ron Fagin, Mary Feay, Shel Finkelstein, Vassos Hadzilacos, Kevin

Karplus, Zvi Kedem, Arthur Keller, Hank Korth, Keith Lantz, Dave Maier, Dan

Newman, Mohammed Olumi, Shuky Sagiv, Charles Shub, Joe Skudlarek, and

Joseph Spinden.

Gerree Pecht, at Princeton, typed the first edition of the old book; vestiges

of her original troff can be found in the IgX source of this volume. Luis Trabb-

Pardo assisted me in translation of Ullman [1982] from troff to TgX.

J. D. U.

Stanford CA

TABLE OF CONTENTS

Chapter 1: Databases, Object Bases, and Knowledge Bases

1.1: The Capabilities of a DBMS 2

1.2: Basic Database System Terminology 7

1.3: Database Languages 12

1.4: Modern Database System Applications 18

1.5: Object-base Systems 21

1.6: Knowledge-base Systems 23

1.7: History and Perspective 28

Bibliographic Notes 29

Chapter 2: Data Models for Database Systems 32

2.1: Data Models 32

2.2: The Entity-relationship Model 34

2.3: The Relational Data Model 43

2.4: Operations in the Relational Data Model 53

2.5: The Network Data Model 65

2.6: The Hierarchical Data Model 72

2.7: An Object-Oriented Model 82

Exercises 87

Bibliographic Notes 94

Chapter 3: Logic as a Data Model 96

3.1: The Meaning of Logical Rules 96

3.2: The Datalog Data Model 100

3.3: Evaluating Nonrecursive Rules 106

3.4: Computing the Meaning of Recursive Rules 115

3.5: Incremental Evaluation of Least Fixed Points 124

3.6: Negations in Rule Bodies 128

3.7: Relational Algebra and Logic 139

3.8: Relational Calculus 145

3.9: Tuple Relational Calculus 156

3.10: The Closed World Assumption 161

Exercises 164

Bibliographic Notes 171

viii

TABLE OF CONTENTS

Chapter 4: Relational Query Languages 174

4.1: General Remarks Regarding Query Languages 174

4.2: ISBL: A "Pure" Relational Algebra Language 177

4.3: QUEL: A Tuple Relational Calculus Language 185

4.4: Query-by-Example: A DRC Language 195

4.5: Data Definition in QBE 207

4.6: The Query Language SQL 210

4.7: Data Definition in SQL 223

4.8: Embedding SQL in a Host Language 227

Exercises 235

Bibliographic Notes 238

Chapter 5: Object-Oriented Database Languages 240

5.1: The DBTG Data Definition Language 240

5.2: The DBTG Query Language 246

5.3: The DBTG Database Modification Commands 258

5.4: Data Definition in IMS 262

5.5: A Hierarchical Data Manipulation Language 264

5.6: Data Definition in OPAL 271

5.7: Data Manipulation in OPAL 278

Exercises 288

Bibliographic Notes 292

Chapter 6: Physical Data Organization 294

6.1: The Physical Data Model 295

6.2: The Heap Organization 304

6.3: Hashed Files 306

6.4: Indexed Files 310

6.5: B-trees 321

6.6: Files with a Dense Index 328

6.7: Nested Record Structures 330

6.8: Secondary Indices 339

6.9: Data Structures in DBTG Databases 342

6.10: Data Structures for Hierarchies 346

6.11: Data Structures for Relations 351

6.12: Range Queries and Partial-match Queries 354

6.13: Partitioned Hash Functions 358

6.14: A Search Tree Structure 361

Exercises 368

Bibliographic Notes 374

TABLE OF CONTENTS

Chapter 7: Design Theory for Relational Databases 376

7.1: What Constitutes a Bad Database Design? 377

7.2: Functional Dependencies 379

7.3: Reasoning About Functional Dependencies 382

7.4: Lossless-Join Decomposition 392

7.5: Decompositions That Preserve Dependencies 398

7.6: Normal Forms for Relation Schemes 401

7.7: Lossless-Join Decomposition Into BCNF 403

7.8: Dependency-preserving 3NF Decompositions 409

7.9: Multivalued Dependencies 413

7.10: Fourth Normal Form 420

7.11: Generalized Dependencies 423

Exercises 435

Bibliographic Notes 441

Chapter 8: Protecting the Database Against Misuse 446

8.1: Integrity 447

8.2: Integrity Constraints in Query-by-Example 452

8.3: Security 456

8.4: Security in Query-by-Example 458

8.5: Security in SQL/RT 460

8.6: Security in OPAL/GEMSTONE 462

Exercises 464

Bibliographic Notes 466

Chapter 9: Transaction Management 467

9.1: Basic Concepts 468

9.2: A Simple Transaction Model 477

9.3: The Two-phase Locking Protocol 484

9.4: A Model with Read- and Write-Locks 486

9.5: Lock Modes 490

9.6: A Read-Only, Write-Only Model 492

9.7: Concurrency for Hierarchically Structured Items 502

9.8: Handling Transaction Failures 508

9.9: Aggressive and Conservative Protocols 511

9.10: Recovery From Crashes 516

9.11: Timestamp-based Concurrency Control 524

Exercises 535

Bibliographic Notes 540

TABLE OF CONTENTS XI

Chapter 10: Distributed Database Management 543

10.1: Distributed Databases 543

10.2: Distributed Locking 546

10.3: Distributed Two-phase Locking 555

10.4: Distributed Commitment 557

10.5: A Nonblocking Commit Protocol 564

10.6: Timestamp-based, Distributed Concurrency 573

10.7: Recovery of Nodes 575

10.8: Distributed Deadlocks 576

Exercises 582

Bibliographic Notes 585

Bibliography 588

Index 616

CHAPTER 1

Databases,

Object Bases,

and

Knowledge Bases

A database management system (DBMS) is an important type of programming

system, used today on the biggest and the smallest computers. As for other

major forms of system software, such as compilers and operating systems, a well-

understood set of principles for database management systems has developed

over the years, and these concepts are useful both for understanding how to

use these systems effectively and for designing and implementing DBMS's. In

this book we shall study the key ideas that make database management systems

possible. The first three sections of this chapter introduce the basic terminology

and viewpoints needed for the understanding of database systems.

In Section 1.4, we discuss some of the newer applications for which the

classical form of database management system does not appear to be adequate.

Then, we discuss two classes of enhanced DBMS's that are of rising impor

tance. In Section 1.5 we mention "object-base" systems and discuss how they

solve the problems posed by the new applications. Section 1.6 introduces us to

"knowledge systems," which are generally systems implementing logic, in one

or another form, as a programming language. A "knowledge-base management

system" (KBMS) is then a programming system that has the capabilities of

both a DBMS and a knowledge system. In essence, the highly touted "Fifth

Generation" project's goal is to implement a KBMS and the hardware on which

it can run efficiently. The relationships among these different kinds of systems

are summarized in Section 1.7.

The reader may find some of the material in this chapter difficult to follow

at first. All important concepts found in Chapter 1 will be covered in greater

detail in later chapters, so it is appropriate to skim the material found here at

a first reading.

DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

1.1 THE CAPABILITIES OF A DBMS

There are two qualities that distinguish database management systems from

other sorts of programming systems.

1. The ability to manage persistent data, and

2. The ability to access large amounts of data efficiently.

Point (1) merely states that there is a database which exists permanently; the

contents of this database is the data that a DBMS accesses and manages. Point

(2) distinguishes a DBMS from a file system, which also manages persistent

data, but does not generally help provide fast access to arbitrary portions of

the data. A DBMS's capabilities are needed most when the amount of data is

very large, because for small amounts of data, simple access techniques, such as

linear scans of the data, are usually adequate. We shall discuss this aspect of a

DBMS briefly in the present section; in Chapter 6 the issue of access efficiency

is studied in detail.

While we regard the above two properties of a DBMS as fundamental,

there are a number of other capabilities that are almost universally found in

commercial DBMS's. These are:

a) Support for at least one data model, or mathematical abstraction through

which the user can view the data.

b) Support for certain high-level languages that allow the user to define the

structure of data, access data, and manipulate data.

c) Transaction management, the capability to provide correct, concurrent ac

cess to the database by many users at once.

d) Access control, the ability to limit access to data by unauthorized users,

and the ability to check the validity of data.

e) Resiliency, the ability to recover from system failures without losing data.

Data Models

Each DBMS provides at least one abstract model of data that allows the user

to see information not as raw bits, but in more understandable terms. In fact,

it is usually possible to see data at several levels of abstraction, as discussed in

Section 1.2. At a relatively low level, a DBMS commonly allows us to visualize

data as composed of files.

Example 1.1: A corporation would normally keep a file concerning its em

ployees, and the record for an employee might have fields for his first name,

last name, employee ID number, salary, home address, and probably dozens of

other pieces of information. For our simple example, let us suppose we keep in

the record only the employee's name and the manager of the employee. The

record structure would look like:

1.1 THE CAPABILITIES OF A DBMS

record

name : char [30] ;

manager : char [30] ;

end

The file itself is a sequence of records, one for each employee of the company.

D

In many of the data models we shall discuss, a file of records is abstracted

to what is often called a relation, which might be described by

EMPLOYEES(NAME, MANAGER)

Here, EMPLOYEES is the name of the relation, corresponding to the file men

tioned in Example 1.1. NAME and MANAGER are field names; fields are often

called attributes, when relations are being talked about.

While we shall, in this informal introductory chapter, sometimes use "file"

and "relation" as synonyms, the reader should be alert to the fact that they

are different concepts and are used quite differently when we get to the details

of database systems. A relation is an abstraction of a file, where the data type

of fields is generally of little concern, and where order among records is not

specified. Records in a relation are called tuples. Thus, a file is a list of records,

but a relation is a set of tuples.

Efficient File Access

The ability to store a file is not remarkable; the file system associated with

any operating system does that. The capability of a DBMS is seen when we

access the data of a file. For example, suppose we wish to find the manager

of employee "Clark Kent." If the company has thousands of employees, it is

very expensive to search the entire file to find the one with NAME = "Clark

Kent". A DBMS helps us to set up "index files," or "indices," that allow us

to access the record for "Clark Kent" in essentially one stroke, no matter how

large the file is. Likewise, insertion of new records or deletion of old ones can

be accomplished in time that is small and essentially constant, independent of

the file's length. An example of an appropriate index structure that may be

familiar to the reader is a hash table with NAME as the key. This and other

index structures are discussed in Chapter 6.

Another thing a DBMS helps us do is navigate among files, that is, to

combine values in two or more files to obtain the information we want. The

next example illustrates navigation.

Example 1.2: Suppose we stored in an employee's record the department for

which he works, but not his manager. In another file, called DEPARTMENTS,

we have records that associate a department's name with its manager. In the

style of relations, we have:

DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

EMPLOYEES(NAME, DEPT)

DEPARTMENTS(DEPT, MANAGER)

Now, if we want to find Clark Kent's manager, we need to navigate from

EMPLOYEES to DEPARTMENTS, using the equality of the DEPT field in

both files. That is, we first find the record in the EMPLOYEES file that has

NAME - "Clark Kent", and from that record we get the DEPT value, which we

all know is "News". Then, we look into the DEPARTMENTS file for the record

having DEPT = "News", and there we find MANAGER = "Perry White". If

we set up the right indices, we can perform each of these accesses in some small,

constant amount of time, independent of the lengths of the files. D

Query Languages

To make access to files easier, a DBMS provides a query language, or data

manipulation language, to express operations on files. Query languages differ in

the level of detail they require of the user, with systems based on the relational

data model generally requiring less detail than languages based on other models.

Example 1.3: The query discussed in Example 1.2, "find the manager of Clark

Kent," could be written in the language SQL, which is based on the relational

model of data, as shown in Figure 1.1. The language SQL will be taught begin

ning in Section 4.6. For the moment, let us note that line (1) tells the DBMS

to print the manager as an answer, line (2) says to look at the EMPLOYEES

and DEPARTMENTS relations, (3) says the employee's name is "Clark Kent,"

and the last line says that the manager is connected to the employee by being

associated (in the DEPARTMENTS relation) with the same department that

the employee is associated with (in the EMPLOYEES relation).

(1) SELECT MANAGER

(2) FROM EMPLOYEES, DEPARTMENTS

(3) WHERE EMPLOYEES. NAME = 'Clark Kent1

(4) AND EMPLOYEES. DEPT = DEPARTMENTS . DEPT ;

Figure 1.1 Example SQL query.

In Figure 1.2 we see the same query written in the simplified version of the

network-model query language DML that we discuss in Chapter 5. For a rough

description of what these DML statements mean, lines (1) and (2) together tell

the DBMS to find the record for Clark Kent in the EMPLOYEES file. Line

(3) uses an implied "set" structure EMP-DEPT that connects employees to

their departments, to find the department that "owns" the employee ("set"

and "owns" are technical terms of DML's data model), i.e., the department

1.1 THE CAPABILITIES OF A DBMS

to which the employee belongs. Line (4) exploits the assumption that there is

another set structure DEPT-MGR, relating departments to their managers. On

line (5) we find and print the first manager listed for Clark Kent's department,

and technically, we would have to search for additional managers for the same

department, steps which we omit in Figure 1.2. Note that the print operation

on line (5) is not part of the query language, but part of the surrounding "host

language," which is an ordinary programming language.

The reader should notice that navigation among files is made far more ex

plicit in DML than in SQL, so extra effort is required of the DML programmer.

The difference is not just the extra line of code in Figure 1.2 compared with

Figure 1.1; rather it is that Figure 1.2 states how we are to get from one record

to the next, while Figure 1.1 says only how the answer relates to the data. This

"declarativeness" of SQL and other languages based on the relational model

is an important reason why systems based on that model are becoming pro

gressively more popular. We shall have more to say about declarativeness in

Section 1.4. D

(1) EMPLOYEES. NAME := "Clark Kent"

(2) FIND EMPLOYEES RECORD BY CALC-KEY

(3) FIND OWNER OF CURRENT EMP-DEPT SET

(4) FIND FIRST MANAGER RECORD IN CURRENT DEPT-MGR SET

(5) print MANAGER. NAME

Figure 1.2 Example query written in DML.

Transaction Management

Another important capability of a DBMS is the ability to manage simultane

ously large numbers of transactions, which are procedures operating on the

database. Some databases are so large that they can only be useful if they

are operated upon simultaneously by many computers; often these computers

are dispersed around the country or the world. The database systems used by

banks, accessed almost instantaneously by hundreds or thousands of automated

teller machines, as well as by an equal or greater number of employees in the

bank branches, is typical of this sort of database. An airline reservation system

is another good example.

Sometimes, two accesses do not interfere with each other. For example,

any number of transactions can be reading your bank balance at the same

time, without any inconsistency. But if you are in the bank depositing your

salary check at the exact instant your spouse is extracting money from an

automatic teller, the result of the two transactions occurring simultaneously

DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

and without coordination is unpredictable. Thus, transactions that modify a

data item must "lock out" other transactions trying to read or write that item

at the same time. A DBMS must therefore provide some form of concurrency

control to prevent uncoordinated access to the same data item by more than

one transaction. Options and techniques for concurrency control are discussed

in Chapter 9.

Even more complex problems occur when the database is distributed over

many different computer systems, perhaps with duplication of data to allow

both faster local access and to protect against the destruction of data if one

computer crashes. Some of the techniques useful for distributed operation are

covered in Chapter 10.

Security of Data

A DBMS must not only protect against loss of data when crashes occur, as

we just mentioned, but it must prevent unauthorized access. For example,

only users with a certain clearance should have access to the salary field of an

employee file, and the DBMS must be able to associate with the various users

their privileges to see files, fields within files, or other subsets of the data in the

database. Thus, a DBMS must maintain a table telling for each user known to

it, what access privileges the user has for each object. For example, one user

may be allowed to read a file, but not to insert or delete data; another may not

be allowed to see the file at all, while a third may be allowed to read or modify

the file at will.

To provide an adequately rich set of constructs, so that users may see parts

of files without seeing the whole thing, a DBMS often provides a view facility,

that lets us create imaginary objects defined in a precise way from real objects,

e.g., files or (equivalently) relations.

Example 1.4: Suppose we have an EMPLOYEES file with the following fields:

EMPLOYEES(NAME, DEPT, SALARY, ADDRESS)

and we wish most people to have access to the fields other than SALARY,

but not to the SALARY field. In the language SQL, we could define a view

SAFE-EMPS by:

CREATE VIEW SAFE-EMPS BY

SELECT NAME, DEPT, ADDRESS

FROM EMPLOYEES;

That is, view SAFE-EMPS consists of the NAME, DEPT, and ADDRESS fields

of EMPLOYEES, but not the SALARY field. SAFE-EMPS may be thought of

as a relation described by

SAFE-EMPS(NAME, DEPT, ADDRESS)

1.2 BASIC DATABASE SYSTEM TERMINOLOGY

The view SAFE-EMPS does not exist physically as a file, but it can be queried

as if it did. For example, we could ask for Clark Kent's department by saying

in SQL:

SELECT DEPARTMENT

FROM SAFE-EMPS

WHERE NAME = ' Clark Kent ' ;

Normal users are allowed to access the view SAFE-EMPS, but not the relation

EMPLOYEES. Users with the privilege of knowing salaries are given access to

read the EMPLOYEES relation, while a subset of these are given the privilege

of modifying the EMPLOYEES relation, i.e., they can change people's salaries.

D

Security aspects of a DBMS are discussed in Chapter 8, along with the re

lated question of integrity, the techniques whereby invalid data may be detected

and avoided.

1.2 BASIC DATABASE SYSTEM TERMINOLOGY

In this section we shall catalog several different ways in which database sys

tems can be viewed, and we shall develop some of the terminology that we use

throughout the book. We shall begin by discussing three levels of abstraction

used in describing databases. We shall also consider the scheme/instance di

chotomy, that is, the distinction between the structure of a thing and the value

that the thing currently has. In the next section we discuss the different kinds

of languages used in a database system and the different roles they play.

Levels of Abstraction in a DBMS

Between the computer, dealing with bits, and the ultimate user dealing with

concepts such as employees, bank accounts, or airline seats, there will be many

levels of abstraction. A fairly standard viewpoint regarding levels of abstraction

is shown in Figure 1.3. In the world of database systems, we generally have no

reason to concern ourselves with the bit or byte level, so we begin our study

roughly at the level of files, i.e., at the "physical" level.

The Physical Database Level

A collection of files and the indices or other storage structures used to access

them efficiently is termed a physical database. The physical database resides

permanently on secondary storage devices, such as disks, and many different

physical databases can be managed by the same database management sys

tem software. Chapter 6 covers the principal data structures used in physical

database systems.

DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

user group 1

user group 2

view 1

view 2

user group n

I view n

definition and

mapping written

in subscheme

data definition

language

CH I^3\

conceptual

database

physical

database

definition and

mapping written

in data defini

tion language

implemented

on physical

devices

Figure 1.3 Levels of abstraction in a database system.

The Conceptual Database Level

The conceptual database is an abstraction of the real world as it pertains to

the users of the database. A DBMS provides a data definition language, or

DDL, to describe the conceptual scheme and the implementation of the concep

tual scheme by the physical scheme. The DDL lets us describe the conceptual

database in terms of a "data model." For example, we mentioned the relational

model in Section 1.1. In that model, data is seen as tables, whose columns are

headed by attributes and whose rows are "tuples," which are similar to records.

Another example of a suitable data model is a directed graph, where nodes

represent files or relations, and the arcs from node to node represent associations

between two such files. The networJc model, which underlies the program of

Figure 1.2, is a directed-graph model. That program dealt with nodes (files)

for employees, for departments, and for managers, and with arcs between them:

EMP-DEPT between EMPLOYEES and DEPARTMENTS, and DEPT-MGR

between DEPARTMENTS and MANAGERS.1 Chapter 2 discusses data models

in general, with the relational model described in Sections 2.3 and 2.4 and the

network model described in Section 2.5. Logic as a data model is introduced in

Chapter 3.

The conceptual database is intended to be a unified whole, including all

the data used by a single organization. The advent of database management

systems allowed an enterprise to bring all its files of information together and to

see them in one consistent way—the way described by the conceptual database.

1 The DEPARTMENTS node was never mentioned explicitly, being referred to only as

"owner of current EMP-DEPT set" in line (3) of Figure 1.2.

1.2 BASIC DATABASE SYSTEM TERMINOLOGY

This bringing together of files was not a trivial task. Information of the same

type would typically be kept in different places, and the formats used for the

same kind of information would frequently be different.

Example 1.5: Different divisions of a company might each keep information

about employees and the departments to which they were assigned. But one

division might store employee names as a whole, while another had three fields,

for first, middle, and last names. The translation of one format into the other

might not be difficult, but it had to be done before a unified conceptual database

could be built.

Perhaps more difficult to reconcile are differences in the structure of data.

One division might have a record for each employee and store the employee's

department in a field of that record. A second division might list departments

in a file and follow each department record by a list of records, one for each

employee of that department. The difference is that a department suddenly

devoid of employees disappears in the first division's database, but remains

in the second. If there were such an empty department in each division, the

query "list all the departments" would give different answers according to the

structures of the two divisions. To build a conceptual scheme, some agreement

about a unified structure must be reached; the process of doing so is called

database integration, D

The View Level

A view or subschema is a portion of the conceptual database or an abstraction of

part of the conceptual database. Most database management systems provide

a facility for declaring views, called a subscheme data definition language and

a facility for expressing queries and operations on the views, which would be

called a subscheme data manipulation language. In a sense, the construction of

views is the inverse of the process of database integration; for each collection

of data that contributed to the conceptual database, we may construct a view

containing just that data. Views are also important for enforcing security in a

database system, allowing subsets of the data to be seen only by those users

with a need or privilege to see it; Example 1.4 illustrated this use of views.

As an example of the general utility of views, an airline provides a com

puterized reservation service, including a collection of programs that deal with

flights and passengers. These programs, and the people who use them, do not

need to know about personnel files, lost luggage, or the assignment of pilots

to flights, information which might also be kept in the database of the airline.

The dispatcher may need to know about flights, aircraft, and aspects of the

personnel files (e.g., which pilots are qualified to fly a 747), but does not need

to know about employee salaries or the passengers booked on a flight. Thus,

there may be one view of the database for the reservations department and

10 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

another, very different one for the dispatcher's office.

Often a view is just a small conceptual database, and it is at the same

level of abstraction as the conceptual database. However, there are senses in

which a view can be "more abstract" than a conceptual database, as the data

dealt with by a view may be constructible from the conceptual database but

not actually present in that database.

For a canonical example, the personnel department may have a view that

includes each employee's age. However, it is unlikely that ages would be found

in the conceptual database, as ages would have to be changed each day for

some of the employees. More likely, the conceptual database would store the

employee's date of birth. When a user program, which believed it was dealing

with a view that held age information, requested from the database a value

for an employee's age, the DBMS would translate this request into "current

date minus date of birth," which makes sense to the conceptual database, and

the calculation would be performed on the corresponding data taken from the

physical database.

Example 1.6: Let us emphasize the difference between physical, conceptual,

and view levels of abstraction by an analogy from the programming languages

world. In particular, we shall talk about arrays. On the conceptual level, we

might describe an array by a declaration such as

integer array .4[1..n; 1..m] (1.1)

while on the physical level we might see the array A as stored in a block of

consecutive storage locations, by the rule:

A[i, j] is in location OQ + 4(m(i — 1) +j - l) (1.2)

A view of the array A might be formed by declaring a function /(t) to be

the sum from j — 1 to m of .A[t,j]. In this view, we not only see A in a related

but different form, as a function rather than an array, but we have obscured

some of the information, since we can only see the sums of rows, rather than

the rows themselves. D

Schemes and Instances

In addition to the gradations in levels of abstraction implied by Figure 1.3,

there is another, orthogonal dimension to our perception of databases. When

the database is designed, we are interested in plans for the database; when it

is used, we are concerned with the actual data present in the database. Note

that the data in a database changes frequently, while the plans remain the same

over long periods of time (although not necessarily forever).

The current contents of a database we term an instance of the database.

The terms extension of the database and database state also appear in the

literature, although we shall avoid them here. However, the term extensional

1.2 BASIC DATABASE SYSTEM TERMINOLOGY 11

database will be used when speaking of knowledge-base systems in Chapter 3

to describe something quite close to the "current database."

Plans for a database tell us of the types of entities that the database deals

with, the relationships among these types of entities, and the ways in which the

entities and relationships at one level of abstraction are expressed at the next

lower (more concrete) level. The term scheme is used to refer to plans, so we

talk of a conceptual scheme as the plan for the conceptual database, and we

call the physical database plan a physical scheme. The plan for a view is often

referred to simply as a subscheme. The term intention is sometimes used for

"scheme," although we shall not use it when talking of database systems.

Example 1.7: We can continue with the array analogy of Example 1.6. The

description of arrays and functions given in that example was really schema

information.

1. The physical scheme is the statement (1.2), that the array A is stored

beginning at location GO, and that A[i, j] appears in word

2. The conceptual scheme is the declaration (1.1); A is an integer array with

n rows and m columns.

3. The subscheme is the definition of the function /, that is,

As an example of an instance of this conceptual scheme, we could let

n = m = 3

and let A be the "magic square" matrix:

8 1 6

357

492

Then, the physical instance would be the nine words starting at location OQ,

containing, in order, 8, 1, 6, 3, 5, 7, 4, 9, 2. Finally, the view instance would be

the function /(1) = /(2) = /(3) = 15. n

Data Independence

The chain of abstractions of Figure 1.3, from view to conceptual to physical

database, provides two levels of "data independence." Most obviously, in a

well-designed database system the physical scheme can be changed without

altering the conceptual scheme or requiring a redefinition of subschemes. This

independence is referred to as physical data independence. It implies that

12 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

modifications to the physical database organization may affect the efficiency

of application programs, but it will never be required that we rewrite those

programs just because the implementation of the conceptual scheme by the

physical scheme has changed. As an illustration, references to the array A

mentioned in Examples 1.6 and 1.7 should work correctly whether the physical

implementation of arrays is row-major (row-by-row, as in those examples) or

column-major (column-by-column). The value of physical data independence is

that it allows "tuning" of the physical database for efficiency while permitting

application programs to run as if no change had occurred.

The relationship between views and the conceptual database also provides

a type of independence called logical data independence. As the database is

used, it may become necessary to modify the conceptual scheme, for example,

by adding information about different types of entities or extra information

about existing entities. Many modifications to the conceptual scheme can be

made without affecting existing subschemes, and other modifications to the

conceptual scheme can be made if we redefine the mapping from the subscheme

to the conceptual scheme. Again, no change to the application programs is

necessary. The only kind of change in the conceptual scheme that could not

be reflected in a redefinition of a subscheme in terms of the conceptual scheme

is the deletion of information that corresponds to information present in the

subscheme. Such changes would naturally require rewriting or discarding some

application programs.

1.3 DATABASE LANGUAGES

In ordinary programming languages the declarations and executable statements

are all part of one language. In the database world, however, it is common to

separate the two functions of declaration and computation into two different

languages. The motivation is that, while in an ordinary program data exists

only while the program is running, in a database system, the data persists

and may be declared once and for all. Thus, a separate definition facility

often makes sense. We shall also see that work is divided between specialized

database languages and an ordinary, or "host," language. The reason why

database systems commonly make this partition is discussed in Section 1.4.

Data Definition Languages

As we have mentioned, the conceptual scheme is specified in a language, pro

vided as part of a DBMS, called the data definition language. This language

is not a procedural language, but rather a notation for describing the types of

entities, and relationships among types of entities, in terms of a particular data

model.

1.3 DATABASE LANGUAGES 13

Example 1.8: We might define a relation describing the flights run by an

airline with the data definition:

CREATE TABLE FLIGHTS (NUMBER: INT, DATE:CHAR(6) ,

SEATS: INT, FROM:CHAR(3) , TO:CHAR(3));

CREATE INDEX FOR FLIGHTS ON NUMBER;

This code is an example of the data definition language of SQL. The first two

lines describe the relation, its attributes, and their physical implementation

as integers and character strings of fixed length. The third line states that

an index on the flight number is to be created as part of the physical scheme,

presumably to make the lookup of information about nights, given their number,

more efficient than if we had to search the entire file of flights. For example,

the DDL compiler might choose a hash table whose key was the integer in the

NUMBER field, and it might store FLIGHTS records in buckets according to

the hashed value of the flight number. If there were enough buckets so that

very few records are placed in any given bucket on the average, then finding a

flight record given its number would be very fast. D

The data definition language is used when the database is designed, and it

is used when that design is modified. It is not used for obtaining or modifying

the data itself. The data definition language has statements that describe, in

somewhat abstract terms such as those of Example 1.8, what the physical layout

of the database should be. Detailed design of the physical database is done by

DBMS routines that "compile" statements in the data definition language.

The description of subschemes and their correspondence to the conceptual

scheme requires a subschema data definition language, which is often quite sim

ilar to the data definition language itself. Sometimes, the subscheme language

uses a data model different from that of the data definition language; there

could, in fact, be several different subscheme languages, each using a different

data model.

Data Manipulation Languages

Operations on the database require a specialized language, called a data ma

nipulation language (DML)2 or query language, in which to express commands

such as:

1. Retrieve from the database the number of seats available on flight 999 on

July 24.

2. Decrement by 4 the number of seats available on flight 123 on August 31.

3. Find all nights from ORD (O'Hare airport in Chicago) to JFK (Kennedy

airport in New York) on August 20.

2 Do not confuse the general notion of "a DML" with the particular language DML (more

properly "the CODASYL DML") that we introduced by example in Figure 1.2.

14 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

4. Enter (add to the database) flight 456, with 100 seats, from ORD to JFK

on August 21.

Items (1) and (3) illustrate the querying of the database, and they would

be implemented by programs like those of Figures 1.1 and 1.2. Item (2) is an

example of an update statement, and it would be implemented by a program

such as the following lines of SQL.

UPDATE FLIGHTS

SET SEATS = SEATS - 4

WHERE NUMBER = 123 AND DATE = 'AUG 31' ;

Item (4) illustrates insertion of a record into the database, and it would be

expressed by a program (in SQL) like:

INSERT INTO FLIGHTS

VALUES(456, 'AUG 21', 100, 'ORD', 'JFK');

The term "query language" is frequently used as a synonym for "data

manipulation language." Strictly speaking, only some of the statements of

a DML are "queries"; these are the statements, like (1) and (3) above, that

extract data from the database without modifying anything in the database.

Other statements, like (2) and (4), do modify the database, and thus are not

queries, although they can be expressed in a "query language."

Host Languages

Often, manipulation of the database is done by an application program, written

in advance to perform a certain task. It is usually necessary for an application

program to do more than manipulate the database; it must perform a variety

of ordinary computational tasks. For example, a program used by an airline to

book reservations does not only need to retrieve from the database the current

number of available seats on the flight and to update that number. It needs

to make a decision: are there enough seats available? It might well print the

ticket, and it might engage in a dialog with the user, such as asking for the

passenger's "frequent flier" number.

Thus, programs to manipulate the database are commonly written in a

host language, which is a conventional programming language such as C or

even COBOL. The host language is used for decisions, for displaying questions,

and for reading answers; in fact, it is used for everything but the actual querying

and modification of the database.

The commands of the data manipulation language are invoked by the host-

language program in one of two ways, depending on the characteristics of the

DBMS.

1. The commands of the data manipulation language are invoked by host-

language calls on procedures provided by the DBMS.

1.3 DATABASE LANGUAGES 15

Program in ordinary

programming language

CALL GET(B)

A := B+l

CALL STORE(A)

Program in extended

programming language

##GET(B)

A := B+l

##STORE(A)

Figure 1.4 Two styles of host language.

2. The commands are statements in a language that is an extension of the host

language. Possibly there is a preprocessor that handles the data manipula

tion statements, or a compiler may handle both host and data manipulation

language statements. The commands of the data manipulation language

will thereby be converted into calls to procedures provided by the DBMS,

so the distinction between approaches (1) and (2) is not a great one.

The two forms of program are illustrated in Figure 1.4. In the second

column, the double #'s are meant to suggest a way to mark those statements

that are to be preprocessed.

Local

Data A | Database

i
1 1

i
i

Causes

Figure 1.5 The data seen by an application program.

Figure 1.5 suggests how the application program interacts with the data

base. There is local data belonging to the application program; this data is

manipulated by the program in the ordinary way. Embedded within the appli

cation program are procedure calls that access the database. A query asking for

data causes the answer to be copied from the database to variables in the local

data area; if there is more than one answer to be retrieved (e.g., "find all flights

from ORD to JFK"), then these solutions are retrieved one at a time, when

a "fetch" procedure is called by the application program. When inserting or

16 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

modifying data, values are copied from the local data variables to the database,

again in response to calls to the proper procedures. For example, the request

to decrement by 4 the number of seats on a certain flight could be performed

by:

1. Copying the number of seats remaining on that flight into the local data

area,

2. Testing if that number was at least 4, and if so,

3. Storing the decremented value into the database, as the new number of

seats for that flight.

Database System Architecture

In Figure 1.6 we see a diagram of how the various components and languages

of a database management system interact. On the right, we show the de

sign, or database scheme, fed to the DDL compiler, which produces an internal

description of the database. The modification of the database scheme is very

infrequent, compared to the rate at which queries and other data manipulations

are performed. In a large, multiuser database, this modification is normally the

responsibility of a database administrator, a person or persons with respon

sibility for the entire system, including its scheme, subschemes (views), and

authorization to access parts of the database.

We also see in Figure 1.6 the query-language processor, which is given data

manipulation programs from two sources. One source is user queries or other

data manipulations, entered directly at a terminal. Figure 1.1 is an example

of what such a query would look like if SQL were the data manipulation lan

guage. The second source is application programs, where database queries and

manipulations are embedded in a host language and preprocessed to be run

later, perhaps many times. The portions of an application program written

in a host language are handled by the host language compiler, not shown in

Figure 1.6. The portions of the application program that are data manipula

tion language statements are handled by the query language processor, which is

responsible for optimization of these statements. We shall discuss optimization

in Chapter 11 (Volume II), but let us emphasize here that DML statements,

especially queries, which extract data from the database, are often transformed

significantly by the query processor, so that they can be executed much more

efficiently than if they had been executed as written. We show the query pro

cessor accessing the database description tables that were created by the DDL

program to ascertain some facts that are useful for optimization of queries, such

as the existence or nonexistence of certain indices.

Below the query processor we see a database manager, whose role is to

take commands at the conceptual level and translate them into commands at

the physical level, i.e., the level of files. The database manager maintains and

1.3 DATABASE LANGUAGES 17

User

Query

Authorization

Tables

(Concurrent,

Access

Tables

Application

Program

Database

Scheme

Database

Description |

Tables

Figure 1.6 Diagram of a database system.

accesses tables of authorization information and concurrency control informa

tion. Authorization tables allow the database manager to check that the user

has permission to execute the intended query or modification of the database.

Modification of the authorization table is done by the database manager, in

response to properly authorized user commands.

If concurrent access to the database by different queries and database ma

nipulations is supported, the database manager maintains the necessary infor

mation in a specialized table. There are several forms the concurrency control

table can take. For example, any operation modifying a relation may be granted

a "lock" on that relation until the modification is complete, thus preventing si

multaneous, conflicting modifications. The currently held locks are stored in

what we referred to as the "concurrent access tables" in Figure 1.6.

The database manager translates the commands given it into operations on

files, which are handled by the file manager. This system may be the general-

purpose file system provided by the underlying operating system, or it may be

a specialized system modified to support the DBMS. For example, a special-

purpose DBMS file manager may attempt to put parts of a file that are likely

to be accessed as a unit on one cylinder of a disk. Doing so minimizes "seek

18 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

time," since we can read the entire unit after moving the disk head once.

As another example of a possible specialization of the file manager, we

indicated in Figure 1.6 that the file manager may use the concurrent access

tables. One reason it might be desirable to do so is that we can allow more

processes to access the database concurrently if we lock objects that are smaller

than whole files or relations. For example, if we locked individual blocks of

which a large file was composed, different processes could access and modify

records of that file simultaneously, as long as they were on different blocks.

1.4 MODERN DATABASE SYSTEM APPLICATIONS

The classical form of database system, which we surveyed in the first three

sections, was designed to handle an important but limited class of applications.

These applications are suggested by the examples we have so far pursued: files

of employees or corporate data in general, airline reservations, and financial

records. The common characteristic of such applications is that they have large

amounts of data, but the operations to be performed on the data are simple.

In such database systems, insertion, deletion, and retrieval of specified records

predominates, and the navigation among a small number of relations or files,

as illustrated in Example 1.3, is one of the more complex things the system is

expected to do.

This view of intended applications leads to the distinction between the

DML and the host language, as was outlined in the previous section. Only

the DML has the built-in capability to access the database efficiently, but the

expressive power of the DML is very limited. For example, we saw in Section

1.1 how to ask for Clark Kent's manager, and with a bit more effort we could

ask for Clark Kent's manager's manager's manager, for example. However, in

essentially no DBMS commercially available in the late 1980's, could one ask in

one query for the transitive closure of the "manages" relationship, i.e., the set of

all individuals who are managers of Clark Kent at some level of the managerial

hierarchy.3

The host language, being a general-purpose language, lets us compute man

agement chains or anything else we wish. However, it does not provide any as

sistance with the task that must be performed repeatedly to find the managers

of an individual at all levels; that task is to answer quickly a question of the

form "who is X's manager?"

The DML/host language dichotomy is generally considered an advantage,

rather than a deficiency in database systems. For example, it is the limited

power of the DML that lets us optimize queries well, transforming the algo

rithms that they express in sometimes surprising, but correct, ways. The same

3 Some commercial DBMS's have a built-in facility for computing simple recursions, like

managerial hierarchies, but they cannot handle any more complex recursion.

1.4 MODERN DATABASE SYSTEM APPLICATIONS 19

queries, written in a general purpose language, could not be optimized in such

radical ways by known techniques. However, there are some new applications

of database systems that do not follow the older paradigms, and in these appli

cations, the integration of the data manipulation and host languages becomes

important.

Typical applications in this class include VLSI design databases, CAD

(computer-aided design) databases, databases of graphic data, and software

engineering databases, i.e., databases that manage multiple versions of large

programs. These applications are characterized by the need for fast retrieval

and modification of data, as were the earliest DBMS applications, but they are

also characterized by a need to do considerably more powerful operations on

data than was required by the earlier applications. The following example is a

simplification of, but in the spirit of, many applications in this class.

Example 1.9: Suppose we wish to use a database system to store visual images

composed of cells and to construct images from recursively defined cells. For

simplicity, we shall assume that images are black-and-white. A cell is composed

of a collection of bits (pixels), each of which is either white (set) or black (reset).

A cell also can contain copies of other cells, whose origins are translated to a

specified point in the coordinate system of the containing cell.

For example, Figure 1.7 shows a cell, Celll, containing two copies of Cell2;

the latter is a picture of a man. The origin of Cell2, which we shall assume

is the lower left corner, is translated for each copy, relative to the origin of

Cell1. Thus, we might suppose that the figure on the left has its origin at (x, y)

coordinate (100, 150) of Celll's coordinate system, while the figure on the right

might have its origin at (500, 50). In addition, Celll contains a copy of another

cell, not shown, with a picture of a tree. Finally, Celll has the pixels of the

horizon line set directly, not as part of any subcell.

Cell2 and the cell for the tree may be defined recursively as well. For

example, Cell2 may consist of copies of cells for the arms, leg, body, and face;

the cell for the face may consist of copies of cells for eyes, mouth, and so on.

The database stores only the immediate constituents of each cell. Thus, to find

the status of all pixels in Celll, we must query the database for all the pixels set

directly in that cell, then query the database to find the points set in each of the

constituent cells of Cell1. Those queries cause queries about the constituents

of the constituents, and so on. D

As mentioned earlier, recursions are not generally handled by single queries

to a conventional database system. Thus, we are forced to use the host language

to store the image as we construct it. The DML is used to query the database

repeatedly for the constituents of cells at progressively lower levels.

Storing the image is not hard for a typical 1000 x 1000 black-and-white

graphic image; a bitmap representation of the drawing easily fits in main mem

20 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

Cell2

Celll

Figure 1.7 Cells in a drawing database.

ory. However, VLSI images can be 100 times as large, and multicolored as well.

A page of text, such as the one you are reading, can have more data still, when

printed on a high-quality printer. When an image has that much data, the host

language program can no longer store a bitmap in main memory. For efficiency,

it must store the image on secondary storage and use a carefully designed al

gorithm for exploring the contents of cells, to avoid moving large numbers of

pages between main and secondary storage. This is exactly the sort of task that

a data manipulation language does well, but when written in the host language,

the programmer has to implement everything from scratch. Thus, for graphics

databases and many similar applications, the DML/host language separation

causes us great difficulty.

Integration of the DML and Host Language

There are two common approaches to the problem of combining the fast access

capability of the DML with the general-purpose capability of the host language.

1. The "object-oriented" approach is to use a language with the capability

of denning abstract data types, or classes. The system allows the user to

embed data structures for fast access in those of his classes that need it.

Thus, the class "cell" for Example 1.9, might be given indices that let us

find quickly the constituents of a given cell, and the cells of which a given

cell is a constituent.

2. The "logical" approach uses a language that looks and behaves something

like logical (if • • • then) rules. Some predicates are considered part of the

conceptual scheme and are given appropriate index structures, while others

are used to define views, as if they were part of a subscheme. Others may

1.5 OBJECT-BASE SYSTEMS 21

be used as if they were part of a single application program.

We shall discuss the object-oriented approach further in the next section.

Chapter 5 includes a discussion of OPAL, a data manipulation language that fol

lows the principles outlined in (1). Section 1.6 introduces the logical approach,

which is discussed in more detail in Chapter 3. The discussion of systems built

along these lines is deferred to the second volume.

Declarative Languages

There is a fundamental difference between the object-oriented and logical ap

proaches to design of an integrated DML/host language; the latter is inherently

declarative and the former is not. Recall, a declarative language is a language in

which one can express what one wants, without explaining exactly how the de

sired result is to be computed. A language that is not declarative is procedural.

"Declarative" and "procedural" are relative terms, but it is generally accepted

that "ordinary" languages, like Pascal, C, Lisp, and the like, are procedural,

with the term "declarative" used for languages that require less specificity re

garding the required sequence of steps than do languages in this class. For

instance, we noticed in Example 1.3 that the SQL program of Figure 1.1 is

more declarative than the Codasyl DML program of Figure 1.2. Intuitively,

the reason is that the DML program tells us in detail how to navigate from

employees to departments to managers, while the SQL query merely states the

relationship of the desired output to the data.

The declarativeness of the query language has a significant influence on

the architecture of the entire database system. The following points summarize

the observed differences between systems with declarative and procedural lan

guages, although we should emphasize that these assertions are generalizations

that could be contradicted by further advances in database technology.

1. Users prefer declarative languages, all other factors being equal.

2. Declarative languages are harder to implement than procedural languages,

because declarative languages require extensive optimization by the system

if an efficient implementation of declaratively-expressed wishes is to be

found.

3. It appears that true object-orientedness and declarativeness are incompat

ible.

The interactions among these factors is explored further in Section 1.7.

1.5 OBJECT-BASE SYSTEMS

The terms "object base" and "object-oriented database management system"

(OO-DBMS) are used to describe a class of programming systems with the ca

pability of a DBMS, as outlined in Section 1.1, and with a combined DML/host

language having the following features.

22 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

1. Complex objects, that is, the ability to define data types with a nested

structure. We shall discuss in Section 2.7 a data model in which data

types are built by record formation and set formation, which are the most

common ways nested structures are created. For example, a tuple is built

from primitive types (integers, etc.) by record formation, and a relation is

built from tuples by set formation; i.e., a relation is a set of tuples with

a particular record format. We could also create a record one of whose

components was of type "set of tuples," or even more complex structures.

2. Encapsulation, that is, the ability to define procedures applying only to

objects of a particular type and the ability to require that all access to

those objects is via application of one of these procedures. For example,

we might define "stack" as a type and define the operations PUSH and

POP to apply only to stacks (PUSH takes a parameter—the element to be

pushed).

3. Object identity, by which we mean the ability of the system to distinguish

two objects that "look" the same, in the sense that all their components of

primitive type are the same. The primitive types are generally character

strings, numbers, and perhaps a few other types that have naturally asso

ciated, printable values. We shall have more to say about object identity

below.

A system that supports encapsulation and complex objects is said to sup

port abstract data types (ADT's) or classes. That is, a class or ADT is a def

inition of a structure together with the definitions of the operations by which

objects of that class can be manipulated.

Object Identity

To see the distinction between systems that support object identity and those

that do not, consider Example 1.2, where we discussed a file or relation

EMPLOYEES(NAME, DEPT)

consisting of employee-department pairs. We may ask what happens if the

News department has two employees named Clark Kent. If we think of the

database as a file, we simply place two records in the file; each has first field

"Clark Kent" and second field "News" . The notion of a file is compatible with

object identity, because the position of a record distinguishes it from any other

record, regardless of its printable values.

However, when we view the data as a relation, we cannot store two tuples,

each of which has the value

("Clark Kent", "News")

The reason is that formally, a relation is a set. A tuple cannot be a member of

a set more than once. That is, there is no notion of "position" of a tuple within

1.6 KNOWLEDGE-BASE SYSTEMS 23

a relation the way records have a position within a file.

A system that supports object identity will sometimes be referred to as

"object-oriented," even though that term generally implies support for abstract

data types as well. Systems that do not support object identity will be termed

value-oriented or record-oriented. All systems based on the relational model of

data are value-oriented, as are systems based on logic. However, most of the

earliest database systems were object-oriented in the limited sense of supporting

object identity. For example, network-model systems are object-oriented in this

sense.

One might naturally suppose that object-orientation is preferable to value-

orientation, since the former implies one has an "address" or 1-value for objects,

from which one can obtain the object itself, that is, its r-value.4 Going the other

way, finding the 1-value of an object given its r-value, is not generally possible.

However, one can often fake object identity in a value-oriented system by use

of a "surrogate," which is a field that serves as a serial number for objects. For

example, employees usually are given unique ID numbers to distinguish them

in the database. That is how two Clark Kent's in the News department would,

in fact, be distinguished in a relational system.

In favor of value-orientation, it appears that object-identity preservation

does not mesh well with declarativeness. Furthermore, encapsulation, which is

another characteristic of object-oriented systems, appears antithetical to declar

ativeness, as well. We shall not try to argue here that these relationships must

hold, but we observe in Section 1.7 how history supports these contentions.

1.6 KNOWLEDGE-BASE SYSTEMS

"Knowledge" is a tricky notion to define formally, and it has been made trick

ier by the fact that today, "knowledge" sells well. It appears that attributing

"knowledge" to your software product, or saying that it uses "artificial intelli

gence" makes the product more attractive, even though the performance and

functionality may be no better than that of a similar product not claimed to

possess these qualities.

When examined, it appears that the term "knowledge" is used chiefly as

an attribute of programming systems that support some form of declarative

language. Further, it appears that declarative languages are universally some

form of logic. For example, the SQL program of Figure 1.1 may appear to

have nothing at all to do with logic, yet we shall see in Chapter 4 that SQL is

really a syntactic sugaring of a form of logic called "relational calculus," which

is introduced in Chapter 3.

4 The 1-value/r-value distinction refers to the difference in meaning between a variable

occurring on the left and right of an assignment. In a statement like -1 := It- the value

of variable B, that is, its r-value, is required, while for A, we require its location, or

l-value, to perform the assignment.

24 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

We shall therefore sidestep the philosophical question of what "knowledge"

is and use the term to refer to systems with declarative, logic-based languages.

We shall distinguish between a knowledge system and a knowledge-base man

agement system (KBMS). A KBMS is a system that

1. Provides what a DBMS provides (support for efficient access, transaction

management, etc.), and

2. Provides a single, declarative language to serve the roles played by both

the data manipulation language and the host language in a DBMS.

A knowledge system, on the other hand, is a system that supports only (2); i.e.,

it is a programming system with a declarative language.

In the late 1980's, there are no commercial KBMS's in the sense just given,

although several systems in the design phase are mentioned in the bibliographic

notes, and some of those will be described in Volume II. However, there are a

variety of knowledge systems, at least if one accepts that declarativeness is

a relative term and regards logic-based or rule-based systems as sufficiently

declarative to qualify. These systems are variously known as "expert system

shells," "production system languages," "logic programming languages," and

by several other names. Knowledge systems will not be addressed in this book,

although we shall focus on Prolog, probably the best-known knowledge system,

to provide the notation for logic as knowledge that we use throughout the book.

The reader who is familiar with Prolog is aware that this language can

be viewed as purely procedural, since it has a well-defined order in which the

Prolog interpreter performs actions designed to answer queries posed logically.

However, it is also possible, in many cases, to think of Prolog programs as if

they were purely declarative, and database system applications provide many

of the best examples. In this book, we shall take the "pure" or declarative

viewpoint regarding what logical rules mean, evn though they are expressed in

the syntax of Prolog.

Logical Rules

We shall give a brief introduction to the Prolog notation for logical rules here,

deferring a more formal treatment for Section 3.1. To begin, Prolog statements

are composed of "atomic formulas," which consist of a predicate symbol ap

plied, as if it were a procedure name, to arguments. These arguments may

be composed of constants (called atoms), variables, and function symbols; the

latter are applied to arguments just as we would call a function in an ordinary

programming language. Predicate symbols should be thought of as producing

true or false as a result; i.e., they are Boolean-valued functions. Function sym

bols, on the other hand, may be thought of as producing values of any type one

wishes.

Following Prolog conventions, predicate symbols, function symbols, and

1.6 KNOWLEDGE-BASE SYSTEMS 25

constants begin with a lower-case letter, with the exception that constants

are also permitted to be integers. Variables must begin with a capital letter.

Logical statements, often called rules, will usually be written in the form of

Horn clauses, which are statements of the form: "if A\ and A^ and • • • An are

true, then B is true." The Prolog syntax for such a statement is:5

B :- Ai & A2 & • • • & An.

The symbol :- can generally be read "if." Note the terminal period, which serves

as an endmarker for the rule. If n = 0, then the rule asserts B unconditionally,

and we write it

B.

Example 1.10: The following two rules can be interpreted as an inductive

definition of addition, if we attribute the proper meanings to the predicate

symbol sum and the function symbol s. That is, sum(X, Y, Z) is true exactly

when Z is the sum of X and Y, while s(X) is the successor of X, that is, the

integer which is one more than X. Then the rules:

sum(X,0,X).

sum(X,s(Y),s(Z)) :- sum(X,Y,Z).

say that X + 0 = X, and that if X + Y = Z, then X + (Y + 1) = (Z + I). D

Example 1.11: We are more often interested in logical rules expressing in

formation about the data in a database. We should appreciate the similarity

between the logical notion of a predicate with its arguments and a relation

name with its attributes. That is, we can think of a predicate as true for its

arguments if and only if those arguments form a tuple of the corresponding

relation. For instance, we can define a view SAFE-EMPS as we did in Example

1.4, by the logical rule:

safe-emps(N,D,A) :- employees (N.D.S, A) .

In order to interpret the above rule, we must remember that EMPLOYEES

has four fields, the NAME, DEPT, SALARY, and ADDRESS. The rule says

that for all employee names N, departments D, and addresses A, (N, D, A) is a

fact of the safe-emps predicate if there exists a salary 5, such that (N, D, S, A)

is a fact of the employees predicate. Note that in general, a variable like S,

appearing on the right side of the :- symbol but not on the left, is treated as

existenti&lly quantified; informally, when reading the rule we say "there exists

some 5" after saying the "if that corresponds to the :- symbol.

For another example of how information about data can be expressed in

logical terms, let us suppose that we have our earlier EMPLOYEES relation,

whose only attributes are NAME and DEPT, and let us also use the DEPART-

Moet Prolog versions use a comma where we use the ampersand.

26 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

MENT relation, with attributes DEPT and MANAGER, as we did in Example

1.2. Then we could define the predicate manages(E,M), with the intuitive

meaning that manager M manages employee E, by:

manages(E,M) :- employees (E,D) ft departments (D, M) . (1.3)

That is, (F, M) is a manages fact if there exists a department D such that

(E, D) is an employees fact and (D, M) is a departments fact. In essence, we

have used the above logical rule to create view, manages, which looks like a

relation with attributes name and manager. The queries shown in Figures 1.1

and 1.2, to find Clark Kent's manager, could be expressed in terms of this view

quite simply:

manages ('Clark Kent', X) (1.4)

The value or values of X that make (1.4) true are found by an algorithm es

sentially the same as the one that would answer Figure 1.1 or 1.2, but the

logical rule (1.3) plays an important part in allowing the system to interpret

what the query means. In a loose sense, we might suppose that (1.3) represents

"knowledge" about the manages relationship. D

Expressiveness of Logic

We mentioned in Section 1.4 that SQL and similar data manipulation languages

do not have enough power to compute transitive closures, such as managerial

hierarchies.6 Logical rules using function symbols have all the power of a Tur

ing machine; i.e., they can express any computation that can be written in

conventional programming languages. Even logical rules without function sym

bols (a language we shall call "datalog" in Chapter 3) have power to express

computations beyond that of conventional DML's, as the next example will

suggest.

Example 1.12: Suppose we have a relation (or predicate) manages(E,M),

intended to be true exactly when employee E reports directly to manager M.

We may wish to define another predicate boss(E, B), intending it to be true

whenever B is E's manager, or his manager's manager, or his manager's man

ager's manager, and so on; i.e., boss is the transitive closure of manages. The

predicate boss can be expressed in Horn clauses as

(1) boss(E.M) :- manages (E,M) .

(2) boss(E.M) :- boss(E.N) ft manages(N.M) .

The above is a typical example of how logical rules can be used recursively,

that is, used to define a predicate like boss in terms of itself. To argue that a

6 Formally, the transitive closure of a binary relation r is the smallest relation 3 that

includes r and is transitive, i.e., s(X, Y) and s(Y, Z) imply s(X, Z).

1.6 KNOWLEDGE-BASE SYSTEMS 27

collection of logical rules defines something in particular, we need to formalize

the meaning of rules, and we shall do so in Chapter 3. For the moment, the

following intuitive argument should give the reader the flavor of the semantics

of logical rules.

To begin, we must show that whenever the rules (1) and (2) tell us boss(e, b)

is true, then b really is what we intuitively regard as a boss of e. That is, we

must show there is a management chain from e to b, i.e., a sequence of two

or more individuals c\, . . . ,0«, where e = c\, b = Cn, and manages(ci,Cj+i) is

true for all t, 1 < t < n. If we discover boss(e,b) by rule (1), it must be that

manages(e, b) is true, so surely 6 is a boss of e; that is, there is a management

chain with n = 2. Otherwise, we must discover boss(e, b) by rule (2). Then there

is some individual c such that we already discovered boss(e, c) (and therefore,

c is in the management chain above e), and also manages(c, b) is a fact. Then

b is likewise in the management chain above e, so our inference of 6oss(e, 6) is

correct.

Conversely, we must show that whenever 6 is in the management chain

above e, we can infer boss(e,b). The proof is by induction on the length of the

management chain e = ci,. .. ,cn = b. For the basis, which is n = 2, if 6 is the

immediate manager of e, then we can make the inference by rule (1). For the

induction, if there is a chain of length more than one from e to b, say

then by the inductive hypothesis, we can infer 6oss(e,cn_i), and we also are

given manages(cn-i,b). Thus, we may use rule (2) to infer boss(e,b). D

Example 1.13: The following rules solve the problem posed in Section

1.4, of expanding the recursive definition of cells. We shall suppose the

database stores a predicate set(I, X, Y), meaning that the pixel with coor

dinates (X, Y) is set (has value 1) in the cell named /. Also stored is the

predicate contains(I, J, X, Y), meaning that cell / contains a copy of cell J,

with the origin of the copy at position (X, Y) of cell /. Then we can define the

predicate on(I, X, Y) to mean that point (X, Y) is set in cell /, either directly

or through one of /'s constituent cells.

onU.X.Y) :- set(I,X,Y).

onU.X.Y) :- containsU, J.U.V) ft on(J,W,Z) ft

X = U+W ft Y = V+Z.

The first rule says a point is on if it is directly set. The second says that

(X, Y) is set in / if there exists a cell J such that a copy of J appears in /

with origin translated to point (U, V), the point (W, Z) is on in J, and the

translation from the origin of / to point (U, V), and from there to the relative

point (W, Z) takes us to (X, Y) of the coordinate system of cell /. D

28 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

1.7 HISTORY AND PERSPECTIVE

Figure 1.8 shows the development of database systems from their origin in

the early 1960's, through the present. It incorporates the decade of the 1990's,

which, we predict, will be the decade in which true knowledge-base management

systems first become available. We also summarize three important character

istics of these systems:

1. Whether they are object-oriented or value-oriented.

2. Whether they support declarative query languages.

3. Whether they separate the DML from the host language or integrate the

two.

It was our contention in Section 1.4 that (1) and (2) are linked; only value-

oriented systems can support declarative languages. So far, at least, the rela

tionship has held.

Decade Systems Orientation Declarative? DML/host

1960's Network, hier- Object No Separate

archical model

as in Sects. 2.5,

2.6, 5.1-5.5

1970's Relational, as Value Yes Separate

in Sects. 2.3,

2.4, Ch. 4

1980's OO-DBMS's, as Object No Integrated

in Sects. 2.7,

5.6, 5.7

1990's KBMS's Value Yes Integrated

Figure 1.8 Past and future history of database systems.

The earliest true DBMS's appeared in the 1960's, and they were based on

either the network or the hierarchical data models, which we discuss in Sections

2.3, and 2.4. Languages based on these models appear in Chapter 5. These

systems provided efficient access to massive amounts of data, but they neither

integrated the DML and host languages, nor did they provide query languages

that were significantly declarative. They were object-oriented in the sense that

they supported object identity, although they did not support abstract data

types.

BIBLIOGRAPHIC NOTES 29

The 1970's saw the advent of relational systems, following Codd's seminal

paper (Codd [1970]). A decade of development was needed, with much of the

research devoted to the techniques of query optimization needed to execute the

declarative languages that are an essential part of the relational idea. As we

mentioned, relational systems are declarative and value-oriented, but they do

not easily allow us to integrate the DML and host languages.

We see the 1980's as the decade of object-oriented DBMS's in the true

sense of the term; i.e., they support both object identity and abstract data

types. These are the first systems to provide well-integrated data manipulation

and host languages. However, in one sense, they represent a retrograde step:

they are not declarative, the way relational systems are.

Our prediction is that in the 1990's, true KBMS's will supplant the OO-

DBMS's just as the relational systems have to a large extent supplanted the ear

lier DBMS's. These systems will provide both declarativeness and integration of

the DML/host language. We predict that they will be inherently value-oriented

and logic-based. It also appears that there is much to be learned about query

optimization before it is possible to implement commercial KBMS's. Much of

Volume II is devoted to this technology of optimization.

BIBLIOGRAPHIC NOTES

Most of the topics introduced in this chapter will be taken up again in later

chapters, and we defer the references in those areas until they are studied more

deeply. Here, we mention a few odd topics and give some references regard

ing knowledge-base systems that would otherwise not appear until the second

volume.

Three-Level Architecture

The three levels of abstraction—physical, conceptual, and view—appear in

the "DBTG report" (CODASYL [1971]). They are also a feature of the

"ANSI/SPARC report" (ANSI [1975]), where they are called internal, con

ceptual, and external, respectively. Tsichritzis and Klug [1978] is an informal

introduction to a revised version of that report.

Database Integration

We mentioned in Section 1.1 that the process of "database integration" is needed

when files from several sources are combined to form a single database. El Masri

and Wiederhold [1979] and Litwin [1984] give notations to assist in the process.

30 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

DML/Host Language Dichotomy

Stonebraker and Rowe [1977] discuss the classical architecture of a DBMS that

interfaces a data manipulation language to a host language, as was discussed

in Section 1.3.

Object-Oriented Systems

Baroody and DeWitt [1981] is an early discussion of object-oriented concepts

in the context of database systems. Khoshafian and Copeland [1986] discusses

object identity in database systems. Maier, Stein, Otis, and Purdy [1986] dis

cusses the GEMSTONE OO-DBMS and Fishman et al. [1986] covers the IRIS

00-DBMS.

Maier [1986] is an attempt to integrate a logic-based language into an

object-oriented setting. The relationship between object- and value-oriented

database systems is explored in Wiederhold [1986] and Ullman [1987].

A problem with object-oriented systems that we have not discussed is what

happens when one allows types that are subtypes of several incompatible types.

Strategies for resolving the resulting conflicts (e.g., what does the procedure

insert mean if two supertypes define that operation in different ways?) are

discussed and unified by Minsky and Rozenshtein [1987].

Knowledge-Base Systems

For a discussion of knowledge systems in artificial intelligence the reader may

consult Tanimoto [1987] or Genesereth and Nilsson [1987], e.g. Frost [1986] is

a text attempting to integrate database and knowledge-base concepts.

Brodie and Mylopoulos [1986] surveys recent work on the development of

knowledge-base management systems. The design and development of certain

systems in this class are described in Dayal and Smith [1986] (PROBE), Morris,

Ullman, and Van Gelder [1986] and Morris et al. [1987] (NAIL!), Stonebraker

and Rowe [1986a, b] (POSTGRES), and Tsur and Zaniolo [1986] (LDL).

Prolog-Based Systems

Kowalski [1974] is a fundamental paper on Prolog, and Clocksin and Mellish

[1981] is a popular tutorial on the language. We also recommend Maier and

Warren [1988] for a discussion of the language and its implementation.

Some efforts to develop KBMS's have concentrated on interfacing a Prolog

interpreter with a database management system. The original paper along these

lines is Warren [1981].

Other works include Jarke, Clifford, and Vassiliou [1984], Bocca [1986],

Moffat and Gray [1986], Walker [1986], and Sciore and Warren [1986]. The

logic/data interface is also discussed by Kunifuji and Yokuta [1982] and Kellogg,

O'Hare, and Tra--

BIBLIOGRAPHIC NOTES 31

General Sources

The bibliography by Kambayashi [1981] is getting out-of-date but is an exten

sive compendium of work in database systems prior to its publication. Date

[1986], Korth and Silberschatz [1986], and Wiederhold [1983] contain large,

general bibliographies; the latter also catalogs commercial database systems.

Bernstein, Hadzilacos, and Goodman [1987] has extensive references on con

currency control and distributed systems. Wiederhold [1987] provides a large

bibliography on file structures and physical design.

CHAPTER 2

Data Models

for

Database Systems

We now consider the principal models used in database systems. Section 2.2

introduces the entity-relationship model, which is used primarily as a database

design tool. The relational model is discussed in Sections 2.3 and 2.4; the

network model in Section 2.5, and the hierarchical model, which is based on

collections of tree structures, in Section 2.6. In Section 2.7 we introduce the

"object model," which is a synthesis of several models based on complex objects.

Chapter 3 is devoted to one particular data model, based on logic. This

"datalog" data model plays an important role in most knowledge systems and

KBMS's, and aspects of that model are also central to the relational model

for database systems. We shall also meet, in Chapters 4 and 5, certain query

languages based on the models we discuss here.

2.1 DATA MODELS

A data model is a mathematical formalism with two parts:

1. A notation for describing data, and

2. A set of operations used to manipulate that data.

Chapter 1 made brief mention of two important models. One is the rela

tional model, where the notation for describing data is a set of names, called

attributes, for the columns of tables. Another is the network model, which uses

directed graphs to describe data. For neither of these models did we discuss the

operations used to manipulate data, although examples were given in Figures

1.1 and 1.2.

Distinctions Among Data Models

One might naturally ask whether there is one "best" data model for database

systems. The multiplicity of models in use suggests not. Below, we list some

32

2.1 DATA MODELS 33

of the differences among models that influence where and when they are best

used.

1 . Purpose. Most data models are intended to serve as the notation for data

in a database and as a notation underlying the data manipulation language.

The entity-relationship model, on the other hand, is intended as a notation

for conceptual scheme design, prior to an implementation in the model

of whatever DBMS is used. This model is therefore missing a notion of

operations on data (although some have been proposed), and one could

even argue that it should not be classified as a data model at all.

2. Object- or Value-Orientedness. Recall our discussion in Section 1.7. We

believe that value-oriented models, in effect the relational and logical mod

els, allow declarativeness, with a profound effect on the kind of languages

those models support. Nondeclarative models require less optimization,

so systems based on these models are often available years before similar

systems with value-oriented models. The network, hierarchical, and object

models each provide object identity, and therefore can be called "object-

oriented." The entity-relationship model likewise may be seen as requiring

object identity.

3. Dealing with Redundancy. All models have some way of helping the user to

avoid storing the same fact more than once. Not only does such redundancy

waste space, but it may cause the data to become inconsistent, because a

fact gets changed one place but not another. Object-oriented models are

generally better at dealing with redundancy, because one can create a single

copy of an object and refer to it by pointers from many different places.

A major theme in Chapter 7 is how one copes with redundancy in the

relational model, through careful database scheme design.

4. Dealing with Many-Many Relationships. Often a database system needs to

store a "many-many" relationship, in which each of one group of elements

is related to "many" of another group (i.e., to zero, one, or more of that

group) and vice versa. A canonical example is the relationship between

courses and students, where a typical student takes several courses, and the

typical course is taken by several students. The problem is that designing

a storage structure so that one can answer efficiently queries of the form

"what courses is a given student taking" and "what students are taking

a given course" is not trivial. Each model we shall discuss has a way of

coping with this potential efficiency problem. For example, the relational

model throws the problem onto the physical design level, as we discuss

in Section 6.11, and the network model outlaws many-many relationships,

requiring that we factor them in a way we discuss in Section 2.5.

34 DATA MODELS FOR DATABASE SYSTEMS

2.2 THE ENTITY-RELATIONSHIP MODEL

The purpose of the entity-relationship model is to allow the description of the

conceptual scheme of an enterprise to be written down without the attention

to efficiency or physical database design that is expected in most other models.

It is normally assumed that the "entity-relationship diagram" thus constructed

will be turned later into a conceptual scheme in one of the other models, e.g., the

relational model, upon which real database systems are built. The transforma

tion from entity-relationship diagram to, say, a network is fairly straightforward

using constructions we shall give in this chapter, but obtaining the conceptual

scheme that offers the most efficiency can be quite difficult and requires an

understanding of design issues in the target model.

Entities

The term "entity" defies a formal definition, much as the terms "point" and

"line" in geometry are defined only implicitly by axioms that give their proper

ties. Suffice it to say an entity is a thing that exists and is distinguishable; that

is, we can tell one entity from another. For example, each person is an entity,

and each automobile is an entity. We could regard each ant as an entity if we

had a way to distinguish one from another (say paint little numbers on their

backs).

The notion of distinguishability of entities is very close to object identity,

which we discussed in Section 1.5. For this reason, the entity-relationship model

is generally regarded as an object-oriented model.

Entity Sets

A group consisting of all "similar" entities forms an entity set. Examples of

entity sets are

1. All persons.

2. All red-haired persons.

3. All automobiles.

Notice from examples (1) and (2), persons and red-haired persons, that the

term "similar entities" is not precisely defined, and one can establish an infinite

number of different properties by which to define an entity set. One of the

key steps in selecting a scheme for the real world, as it pertains to a particular

database, is choosing the entity sets. As we shall see below, it is necessary to

characterize all members of an entity set by a collection of characteristics called

"attributes." Thus, "similarity" at least requires that a set of characteristics

common to all members of the entity set can be found.

The notion of "entity set" is a scheme-level notion, in the terminology of

Section 1.2. The corresponding instance-level notion is the current subset of all

2.2 THE ENTITY-RELATIONSHIP MODEL 35

members of a given entity set that are present in the database.

Example 2.1: The California Department of Motor Vehicles may design its

database scheme to have an entity set AUTOMOBILES. In the current instance

of that entity set are all the automobiles presently registered in California, not

all automobiles in the world or all the automobiles that could ever exist. D

Attributes and Keys

Entity sets have properties, called attributes, which associate with each entity

in the set a value from a domain of values for that attribute. Usually, the

domain for an attribute will be a set of integers, real numbers, or character

strings, but we do not rule out other types of values. For example, the entity

set of persons may be declared to have attributes such as name (a character

string), height (a real number), and so on.

The selection of relevant attributes for entity sets is another critical step in

the design of a conceptual database scheme. An attribute or set of attributes

whose values uniquely identify each entity in an entity set is called a key for

that entity set. In principle, each entity set has a key, since we hypothesized

that each entity is distinguishable from all others. But if we do not choose, for

an entity set, a collection of attributes that includes a key, then we shall not be

able to distinguish one entity in the set from another. Often an arbitrary serial

number is supplied as an attribute to serve as a key.

Example 2.2: An entity set that included only U.S. nationals could use the sin

gle attribute "Social Security number" as a key. However, suppose we wished to

identify uniquely members of an entity set including citizens of many countries.

We could not be sure that two countries do not use the same identification

numbers, so an appropriate key would be the pair of attributes ID-NO and

COUNTRY. D

Isa Hierarchies

We say A isa B, read "A is a B" if entity set B is a generalization of entity set

A, or equivalently, A is a special kind of B. The primary purpose of declaring

isa relationships between entity sets A and B is so A can inherit the attributes

of B, but also have some additional attributes that don't make sense for those

members of B that are not also members of A. Technically, each entity a in

set A is related to exactly one entity b in set B, such that a and f' are really

the same entity. No b in B can be so related to two different members of A,

but some members of B can be related to no member of A. The key attributes

for entity set A are actually attributes of entity set B, and the values of those

attributes for an entity a in A are taken from the corresponding b in B.

Example 2.3: A corporation might well have an entity set EMPLOYEES,

with attributes such as ID_NO, NAME, and SALARY. If the corporation were

36 DATA MODELS FOR DATABASE SYSTEMS

a baseball team, certain of the employees, the players, would have other im

portant attributes, like BATTING-AVG or HOME-RUNS, that the other em

ployees would not have. The most sensible way to design this scheme is to

have another entity set PLAYERS, with the relationship PLAYERS isa EM

PLOYEES. Attributes like NAME, belonging to EMPLOYEES, are inherited

by PLAYERS, but only PLAYERS have attributes like BATTING_AVG. D

Relationships

A relationship among entity sets is an ordered list of entity sets. A particular

entity set may appear more than once on the list. This list of entity sets is the

scheme-level notion of a relationship. If there is a relationship "R. among entity

sets EI, E2, • • • , Ek, then the current instance of "R. is a set of fc-tuples. We call

such a set a relationship set. Each fc-tuple (6i,62,. .. ,6^) in relationship set H

implies that entities ei,62,...,6fc, where e\ is in set EI, e2 is in set E2, and

so on, stand in relationship H to each other as a group. The most common

case, by far, is where k = 2, but lists of three or more entity sets are sometimes

related.

Example 2.4: Suppose we have an entity set PERSONS and we have a rela

tionship MOTHER-OF, whose list of entity sets is PERSONS, PERSONS. The

relationship set for relationship MOTHER-OF consists of all and only those

pairs (pi,p2) such that person pz is the mother of person p\.

An alternative way of representing this information is to postulate the

existence of entity set MOTHERS and relationship MOTHERS isa PERSONS.

This arrangement would be more appropriate if the database stored values for

attributes of mothers that it did not store for persons in general. Then the

relationship MOTHER-OF would be the list of entity sets

PERSONS, MOTHERS

To get information about a person's mother as a person, we would compose (in

the sense of ordinary set-theoretic relations) the relationships MOTHER-OF

and isa. D

Borrowed Key Attributes

We mentioned in connection with isa relationships that if A isa B, then the key

for A would naturally be the key attributes of B, and those attributes would not

appear as attributes of entity set A. Thus, in Example 2.3, the key for entity

set PLAYERS would most naturally be the attribute IDJMO of EMPLOYEES.

Then a player would be uniquely identified by the ID_NO of the employee that

is him.

There are times when we want the key for one entity set A to be attributes

of another entity set B to which A is connected by a relationship TL other than

2.2 THE ENTITY-RELATIONSHIP MODEL 37

isa. It is only necessary that H provide, for each entity a in A, a unique b in B

to which a is related. For instance, we assumed in Example 2.2 that individuals

had attribute COUNTRY that, with ID_NO, formed a key for individuals. It

is just as likely that the database design would include countries as another

entity set, and there would be a relationship CITIZEN-OF relating individuals

to countries. Then the key for individuals would be their ID_NO and the name

of the country to which they were related by CITIZEN-OF.

Note that when "borrowing" key attributes, it is essential that the rela

tionship to be followed leads to a unique entity in the target entity set. That

must be the case when following an isa relationship, but it need not be the

case in general; e.g., can individuals be citizens of two countries? Shortly, we

shall investigate the matter of functionality of relationships, which tells us when

an entity of one entity set is related, via a particular relationship, to a unique

member of another entity set.

Entity-Relationship Diagrams

It is useful to summarize the information in a design using entity-relationship

diagrams, where:

1. Rectangles represent entity sets.

2. Circles represent attributes. They are linked to their entity sets by (undir

ected) edges. Sometimes, attributes that are part of the key for their entity

set will be underlined. As a special case regarding attributes, we sometimes

identify an entity set having only one attribute with the attribute itself,

calling the entity set by the name of the attribute. In that case, the entity

set appears as a circle attached to whatever relationships the entity set is

involved in, rather than as a rectangle.

3. Diamonds represent relationships. They are linked to their constituent en

tity sets by edges, which can be undirected edges or directed edges (arcs);

the use of arcs is discussed later when we consider functionality of rela

tionships. The order of entity sets in the list for the relationship can be

indicated by numbering edges, although the order is irrelevant unless the

same entity set appears more than once on a list.

Example 2.5: Figure 2.1(a) shows a simple entity-relationship diagram, with

three entity sets, EMPS, DEPTS, and MANAGERS. The first two are related

by relationship ASSIGNED_TO and the second and third are related by MAN

AGES. For the present, we should ignore the arrows on some of the edges

connecting the relationship diamonds to the entity-set rectangles. We show

three attributes, NAME, PHONE, and SALARY, for EMPS; NAME is taken

to be the key.1 Departments have attributes NAME (of the department) and

1 While we shall often imagine that "names" of entities can serve as keys for their entity

38 DATA MODELS FOR DATABASE SYSTEMS

PHONE I EMPS C ASSIGNED

(b)

Figure 2.1 Examples of entity-relationship diagrams.

LOCATION, while MANAGERS has only the attribute name.2

In Figure 2.1(b) we see an entity set PERSONS and we see a relationship

PARENT-OF between PERSONS and PERSONS. We also notice two edges

from PARENT-OF to PERSONS; the first represents the child and the second

the parent. That is, the current value of the PARENT-OF relationship set is

the set of pairs (pi,pz) such that p2 is known to be a parent of p\. D

Functionality of Relationships

To model the real world adequately, it is often necessary to classify relationships

according to how many entities from one entity set can be associated with how

many entities of another entity set. The simplest and rarest form of relationship

on two sets is one-to-one, meaning that for each entity in either set there is at

most one associated member of the other set. For example, the relationship

MANAGES between DEPTS and MANAGERS, in Figure 2.1 (a), might be

declared a one-to-one relationship. If so, then in the database we never can find

more than one manager for a department, nor can one person manage two or

more departments. It is possible that some department has no manager at the

sets, it is very likely that two entities with the same name can exist. Surely there could

be two employees with the same name. In practice, many entity sets, such as EMPS,

would be given artificial keys, such as an employee ID number. However, we shall

frequently pretend that "names" are unique to simplify the set of necessary attributes.

2 An alternative formulation of this structure would give MANAGERS no attributes and

have an isa relationship from MANAGERS to EMPLOYEES. We see this treatment of

employees and managers in Example 2.6.

2.2 THE ENTITY-RELATIONSHIP MODEL

moment, or even that someone listed in the database as a manager currently

has no department to manage.

Note that the one-to-oneness of this relationship is an assumption about the

real world that the database designer could choose to make or not to make. It

is just as possible to assume that the same person could head two departments,

or even that a department could have two managers. However, if one head

for one department is the rule in this organization, then it may be possible to

take advantage of the fact that MANAGES is one-to-one, when designing the

physical database.

Many-One Relationships

In a many-one relationship, one entity in set E^ is associated with zero or more

entities in set EI, but each entity in EI is associated with at most one entity

in E2. This relationship is said to be many-one from EI to E2. That is, the

relationship is a (partial) function from EI to EI. For example, the relationship

between EMPS and DEPTS in Figure 2.1 (a) may well be many-one from EMPS

to DEPTS, meaning that every employee is assigned to at most one department.

It is possible that some employees, such as the company president, are assigned

to no department.

The concept of a many-one relationship generalizes to relationships among

more than two entity sets. If there is a relationship fi among entity sets

Ei,E2,...,Ek, and given entities for all sets but Eit there is at most one related

entity of set Ei, then we say H is many-one from E\,. .., Ei-i,Ei+i, ...,Ffc to

Ei.

Many-Many Relationships

We also encounter many-many relationships, where there are no restrictions

on the sets of fc-tuples of entities that may appear in a relationship set. For

example, the relationship PARENT_OF in Figure 2.1 is many-many, because

we expect to find two parents for each child, and a given individual may have

any number of children. The relationship of enrollment between courses and

students, mentioned in Section 2.1, is another example of a many-many rela

tionship, because typically, many students take each course and many courses

are taken by each student.

While many-many relationships appear frequently in practice, we have to

be careful how these relationships are expressed in the conceptual scheme of the

actual database.3 Many data models do not allow direct expression of many-

many relationships, instead requiring that they be decomposed into several

3 Recall that the entity-relationship design is not the conceptual scheme, but rather a

sketch of one, and we need to translate from entities and relationships into the data

model of the DBMS that is used.

40 DATA MODELS FOR DATABASE SYSTEMS

many-one relationships by techniques we shall cover later in this chapter. As we

indicated in the previous section, the reason is that no efficient data structures

are available in these models for implementing many-many relationships. The

relational model permits direct expression of many-many relationships, but the

problem of efficient implementation is merely pushed down to the physical level.

Indicating Functionality in Entity-Relationship Diagrams

In entity-relationship diagrams we use arcs, that is, edges with a direction

indicated by an arrow, to indicate when a relationship is many-one or one-one.

In the simplest case, a many-one relationship 72 from A to B, we place an

arc from the diamond for 72 to the rectangle for B. As an example, we may

suppose that employees are assigned to at most one department, which explains

the arrow from ASSIGNED-TO to DEPTS in Figure 2.1 (a). More generally,

if 72 involves three or more entity sets and is many-one to some entity set A,

we draw an arc to A and undirected edges to the other sets. More complicated

mappings that are many-one to two or more entity sets will not be represented

by an edge convention.

If 72 is one-one between A and B, we draw arrows from 72 to both A

and B. For example, we may suppose that managers may manage only one

department, and departments may have only one manager. That justifies the

arcs from MANAGES to both DEPTS and MANAGERS in Figure 2.1(a). As

an exception, if A isa B, we draw an arc only to B.

Example 2.6: Let us introduce the example of a database that will reappear

at many points throughout the book. In the town of Yuppie Valley, a small

supermarket, the Yuppie Valley Culinary Boutique (YVCB) has purchased a

microcomputer and is about to design a database system that will hold the in

formation the store needs to conduct its business. After due consideration, the

database administrator for the system, Sally Hacker, a Sophomore at Calvin

Klein Senior High School in Yuppie Valley, who works in the store every Thurs

day afternoon, developed the entity-relationship diagram shown in Figure 2.2.

We shall consider the reasoning that lies behind this diagram in the following

paragraphs.

One important aspect of the YVCB business is dealing with suppliers.

Thus, Sally decided that the database should have an entity set SUPPLIERS.

In our example, we'll use only two attributes, SNAME, the key, and SADDR.4

In practice, there would probably be several more attributes stored about sup

pliers, e.g., their phone number.

4 Several entity sets will have an attribute that could logically be called "NAME." There is

nothing preventing us from giving them all an attribute NAME, but we shall distinguish

the different kinds of names by using attributes SNAME (supplier name), CNAME

(customer name), and so on.

2.2 THE ENTITY-RELATIONSHIP MODEL 41

INCLUDES >-»K QUANTITY

PLACED >-*. CUSTOMERS

BALANCEJ) (CADDR

Figure 2.2 Entity-relationship diagram for the YVCB database.

One important fact about suppliers that cannot be stored conveniently as

an attribute is the set of items that each supplies. Thus, Sally specified an

entity set ITEMS, with two attributes, INAME and ITEM#, either of which

can serve as the key. To connect items and suppliers there is a many-many

relationship SUPPLIES, with the intent that each item is related to all the sup

pliers that can supply the item, and each supplier is related to the items it can

supply. However, a third entity set, which we call PRICES, is involved in the

relationship. Each supplier sets a price for each item it can supply, so we prefer

to see the SUPPLIES relationship as a ternary one among ITEMS, SUPPLI

ERS, and PRICES, with the intent that if the relationship set for SUPPLIES

contains the triple (i, s,p), then supplier s is willing to sell item •/" at price p.

If we look at Figure 2.2 we see a circle around entity set PRICES, rather

than the customary rectangle. The reason is that PRICES presumably has

only one attribute, the price itself. Thus, our exception to the way entity sets

are represented applies, and we draw PRICES as if it were an attribute of the

42 DATA MODELS FOR DATABASE SYSTEMS

relationship SUPPLIES. That arrangement makes some sense if we view SUP

PLIES as representing item supplier pairs, and the price as telling something

about that pair.

Notice also that SUPPLIES has an arc to PRICES, reminding us that this

relationship is many-one from ITEMS and SUPPLIERS to PRICES, i.e., given

a supplier and an item, there is a unique price at which the supplier will sell

the item. Also observe that we cannot normally break SUPPLIES into two

or three binary relationships. For example, if we had one relationship between

SUPPLIERS and ITEMS and another between SUPPLIERS and PRICES, then

a supplier would be compelled to sell all items it sold at the same price; that

is, we could not figure out which price goes with which item.

The YVCB is organized into departments, each of which has a manager

and some employees. The attributes of entity set DEPTS are DNAME and

DEPT#. Each department is responsible for selling some of the items, and

store policy requires that each item be sold by only one department. Thus,

there is a many-one relationship CARRIES from ITEMS to DEPTS.

The employees are represented by entity set EMPS, and there is a many-

one relationship WORKSJN from EMPS to DEPTS, reflecting the policy that

employees are never assigned to two or more departments. The managers of

departments are represented by another entity set MANAGERS. There is a one-

to-one relationship MANAGES between MANAGERS and DEPTS; the one-to-

one-ness reflects the assumption that in the YVCB there will never be more than

one manager for a department, nor more than one department managed by one

individual. Finally, since managers are employees, we have an isa relationship

from MANAGERS to EMPS. To access the salary or name of a manager, we

follow the isa relationship to the employee entity that the manager is, and find

that information in the attributes SALARY and ENAME of EMPS.

Now, let us consider the bottom part of Figure 2.2. There we see another

important entity set of the enterprise, the customers. The attributes of the

entity set CUSTOMERS are CNAME, CADDR, and BALANCE. The first is

the key, the customer's name. The second is the customer's address, and the

third is the balance on the customer's charge account.

Customers place orders for food items, which are delivered by the YVCB.

An order consists of a list of items and quantities placed by one customer. At

tributes of the entity set ORDERS are O# (Order number) and DATE, but the

actual content of the order is represented by a relationship INCLUDES among

ORDERS, ITEMS, and QUANTITY. The latter is a trivial entity set whose

entities are the integers. Since a quantity has only its value as an attribute, we

show it as a circle attached to the relationship INCLUDES. That relationship

is many-one from ITEMS and ORDERS to QUANTITY, since each order can

have only one quantity of any given item. Finally, the many-one relationship

PLACED-BY from ORDERS to CUSTOMERS tells who placed each order. D

2.3 THE RELATIONAL DATA MODEL 43

2.3 THE RELATIONAL DATA MODEL

The relational model, although not the data model used in the first database

management systems, has grown slowly in importance since its exposition by

E. Codd in 1970, to the point where it is generally the model of choice for the

implementation of new databases. Perhaps the most important reason for the

model's popularity is the way it supports powerful, yet simple and declarative

languages with which operations on data are expressed. We may trace these

capabilities to the fact that, unlike competing models, the relational model is

value-oriented. That fact, in turn, leads to our ability to define operations

on relations whose results are themselves relations. These operations can be

combined and cascaded easily, using an algebraic notation called "relational

algebra," which we introduce in the next section.

In comparison, we shall see in Chapter 5 that languages based on the

object-oriented models do not have operations that can be composed easily.

The reason is twofold.

1. Whatever the data model, relations are a useful way to express answers.

Since relations do not support object identity, the result of an operation

cannot itself be of the same type as the database in an object-oriented

model. Thus, operations in such models cannot apply to the result of

other operations.

2. Models that support abstract data types present another obstacle. The

result of a useful operation is often of a new type. Such a type needs

to have operations defined for it, so it cannot become immediately the

operand of another operation.

The Set-Theoretic Notion of a Relation

The mathematical concept underlying the relational model is the set-theoretic

relation, which is a subset of the Cartesian product of a list of domains. For

mally, a domain is simply a set of values, not unlike a data type. For example,

the set of integers is a domain. So are the set of character strings, the set of

character strings of length 20, the real numbers, and the set {0, 1}, for additional

examples. The Cartesian product (or just product) of domains DI, D2, . . . , D^,

written DI x D2 x • • • x Dfc, is the set of all fc-tuples (v\, v2, • • . , «fc) such that

t»i is in DI, «2 is in DI, and so on. For example, if we have k = 2, DI = {0, 1},

andD2 = {o,6,c}, then A x D2 is {(0,a), (0,6),(0,c),(l,a), (l,b),(l,c)}.

A relation is any subset of the Cartesian product of one or more domains.

As far as databases are concerned, it is generally pointless to discuss infinite

relations, so we shall assume that a relation is finite unless we state otherwise.

For example, {(0, a), (0, c), (1,6)} is a relation, a subset of the product DI x DI

mentioned above. The empty set is another example of a relation.

The members of a relation are called tuples. Each relation that is a subset

44 DATA MODELS FOR DATABASE SYSTEMS

of some product D\ x D2 x • • • x Dfc of k domains is said to have arity k;

another term for arity is degree. A tuple («i, v2, . . . , Vk) has k components; the

tth component is «j. A tuple with k components is sometimes called a k-tuple.

Often we use the shorthand v\V2 • • • t)fc to denote the tuple («i, «2, . . . , «/b)-

It helps to view a relation as a table, where each row is a tuple and each

column corresponds to one component. The columns are often given names,

called attributes. The set of attribute names for a relation is called the relation

scheme. If we name a relation REL, and its relation scheme has attributes

AI, AZ, ..., Ak, we often write the relation scheme as REL(>1i, A2, ...,Ak).

Example 2.7: In Figure 2.3 we see a relation whose attributes are CITY,

STATE, and POP. The arity of the relation is three. For example,

(Miami, Oklahoma, 13880)

is a tuple. The relation scheme for this relation is {CITY, STATE, POP}; if

the relation were named CITYINFO, we might write the relation scheme as

CITYINFO(CITY, STATE, POP). D

CITY STATE POP

San Diego

Miami

Pittsburg

Texas

Oklahoma

Iowa

4490

13880

509

Figure 2.3 A relation.

An Alternative Formulation of Relations

The mathematical, or "set-of-lists" notion of a relation is not the only one of

importance for database systems. If we attach attribute names to columns

of a relation, then the order of the columns becomes unimportant. Thus, it

is possible to view tuples as mappings from attributes' names to values in

the domains of the attributes. This change in viewpoint makes certain tables

represent the same relation, while representing different relations under the

mathematical definition of a relation.

Example 2.8: Figure 2.4 shows two versions of the same relation in the set-

of-mappings point of view. For example, as a mapping n, the tuple

(Buffalo, W. Va., 831)

is defined by /i(CITY) = Buffalo, /i(STATE) = W. Va., and A«(POP) = 831.

Note that the order in which the tuples are listed makes no difference in either

viewpoint. However, in the traditional view of a tuple as a list of values, the

2.3 THE RELATIONAL DATA MODEL 45

tuples (Buffalo, W. Va., 831) and (W. Va., 831, Buffalo) would not be the same,

and the two relations of Figure 2.4 would not be considered the same. D

CITY STATE POP

Buffalo

Providence

Las Vegas

W. Va.

Utah

N. M.

831

1608

13865

STATE POP CITY

Utah

W. Va.

1608

831

13865

Providence

Buffalo

Las VegasN.M.

Figure 2.4 Two presentations of the same (set-of-mappings) relation.

As existing relational database systems allow the printing of columns of a

relation in any order, we shall take the set-of-mappings definition of relations

as the standard one. However, there are situations, such as when we discuss

relational algebra in the next section, where we shall want to use the set-of-lists

definition for relations. Fortunately, there is an obvious method for converting

between the two viewpoints. Given a relation in the set-of-lists sense, we can

give arbitrary attribute names to its columns, whereupon it can be viewed as a

set of mappings. Conversely, given a relation in the set-of-mappings sense, we

can fix an order for the attributes and convert it to a set of lists.

If n is a tuple and X is a set of attributes, we shall use n[X] to stand

for the components of n in the attributes of X. Thus, if fi is the particular

tuple from Example 2.8, then /i[{CITY, POP}] is the tuple (Buffalo, 831), or

more properly, under the mapping interpretation of tuples, the tuple v such

that i/(CITY) = Buffalo and i/(POP) = 831.

Representing Entity-Relationship Diagrams in the Relational Model

The collection of relation schemes used to represent information is called a (re-

lational) database scheme, and the current values of the corresponding relations

form the (relational) database. We are, of course, free to create relations with

any set of attributes as a relation scheme, and we can place any interpretation

we wish on tuples. However, there is a typical usage pattern, which we observe

when we convert entity-relationship diagrams to relational database schemes.

The data of an entity-relationship diagram is represented by two sorts of rela

tions.

1. An entity set E can be represented by a relation whose relation scheme

consists of all the attributes of the entity set. Each tuple of the relation

represents one entity in the current instance of E. For example, the entity

set CUSTOMERS in Figure 2.2 is represented by the relation

CUSTOMERS(CNAME, CADDR, BALANCE)

46 DATA MODELS FOR DATABASE SYSTEMS

If E is an entity set whose entities are identified through a relationship with

some other entity set F, then the relation scheme also has the attributes

of F that are needed for the key of E. Thus, in Figure 2.2, the relation for

entity set MANAGERS has only one attribute, ENAME, which is the key

for MANAGERS. The value of ENAME for a given manager is the name

of the employee entity that is this manager.

2. A relationship "R. among entity sets E\ , E2, . . . , Ek is represented by a rela

tion whose relation scheme consists of the attributes in the keys for each of

E\,E2, ..., Ek- By renaming attributes if necessary, we make certain that

no two entity sets in the list have attributes with the same name, even if

they are the same entity set. A tuple p, in this relation represents a list of

entities ei,e2, . . . ,Ck, where Ci is a member of set Ei, for each i. That is,

ei is the unique entity in Ei whose attribute values for the key attributes

of Ei are found in the components of tuple p, for these attributes. The

presence of tuple n in the relation indicates that the list of entities

(ei,e2,...,efc)

is in the current relationship set for "R..

Example 2.9: Let us convert the entity-relationship diagram of Figure 2.2 to

a relational database scheme. We shall here carry out the conversion mechani

cally. Later, we discuss some of the modifications one might make to simplify

and improve the scheme. The following are the relation schemes for the entity

sets; each comes from the entity set with the same name as the relation.

EMPS(ENAME, SALARY)

MANAGERS(ENAME)

DEPTS(DNAME, DEPT#)

SUPPLIERS(SNAME, SADDR)

ITEMS(INAME, ITEM#)

ORDERS(O#, DATE)

CUSTOMERS(CNAME, CADDR, BALANCE)

The special case of MANAGERS, where the only attribute is the key bor

rowed from EMPS, was discussed above. In the other six relations we have

simply taken the attributes of the entity set and made them the attributes of

the relation.

Now let us consider the relationships in Figure 2.2. We shall not create

a relation for the isa relationship, since it would just consist of the ENAME

attribute repeated (and renamed in one repetition), and would hold exactly the

same information as the MANAGES relation; that is, it would list the names

of all those employees who are managers. The other six relationships yield the

following relation schemes:

2.3 THE RELATIONAL DATA MODEL 47

WORKSJN(ENAME, DNAME)

MANAGES(ENAME, DNAME)

CARRIES(INAME, DNAME)

SUPPLIES(SNAME, INAME, PRICE)

INCLUDES(O#, INAME, QUANTITY)

PLACED-BY(O#, CNAME)

In each case, the set of attributes is the set of keys for the entity sets

connected by the relationship of the same name as the relation. For exam

ple, SUPPLIES connects SUPPLIERS, ITEMS, and PRICE, which have keys

SNAME, INAME, and PRICE, respectively, and it is these three attributes we

see in the scheme for SUPPLIES. Fortunately, there were no coincidences among

the names of the key attributes, so none had to have their names changed.

The two relations MANAGES and WORKSJN have the same set of at

tributes, but of course their meanings are different. We expect that tuple (e,d)

in MANAGES means that e manages department d, while the same tuple in

WORKSJN means that e is an employee in department d.

These thirteen relations are not an ideal design for the YVCB relational

database scheme. We shall consider how to improve the scheme in the remainder

of this section. Chapter 7 covers the design of relational database schemes from

a more formal point of view. D

Keys of Relations

Like entity sets, relations have sets of one or more attributes that serve as a

keys. For relations we can give a definition of "key" that is more formal than the

informal notion of a set of attributes that "distinguish" members of an entity

set. We say that a set 5 of attributes of a relation R is a key if

1. No instance of R that represents a possible state of the world can have two

tuples that agree in all the attributes of S, yet are not the same tuple, and

2. No proper subset of 5 has property (1).

Example 2.10: In the relation SUPPLIES, from Example 2.9, SNAME and

INAME together form a key. If there were two tuples (s,i,pi) and (s,i,p2) in

SUPPLIES, then supplier a would apparently sell item i both at price pi and

at price p2, a situation that means our data is faulty. This observation justifies

condition (1). To check (2) we have to consider the proper subsets, that is,

SNAME alone and INAME alone. Neither should satisfy condition (1). For

example, it is quite possible that we find the two tuples

(Acme, Brie, 3.50)

(Acme, Perrier, 1.25)

in SUPPLIES at the same time, and although they agree on SNAME, they are

48 DATA MODELS FOR DATABASE SYSTEMS

not the same tuple. Similarly, we might find

(Acme, Brie, 3.50)

(Ajax, Brie, 3.95)

in the current instance of SUPPLIES, showing that INAME alone does not

satisfy condition (1). D

It is important to remember that keyness depends on the scheme, not

the current instance of a relation. Thus, INAME would not become a key for

SUPPLIES just because at some moment in time, there was no item supplied

by two different suppliers, provided there was no reason in principle why there

could not in the future be an item supplied by two or more suppliers.

Also, observe that a relation may have more than one key. For example,

consider DEPTS(DNAME, DEPT#) from Example 2.9. We do not expect

to give two departments the same name, and we do not expect to give two

departments the same number, so we may declare that DNAME is a key and

DEPT# is a different key. Whether this expectation holds in practice, of course,

depends on design decisions made by the database designer. If we believe

DNAME and DEPT# are both keys, then the physical database scheme might

be designed so that it is impossible to store two tuples that have the same

DNAME or that have the same DEPT#; thus, such design decisions should

not be taken lightly. Again, the reader should remember that assertions about

keyness cannot be deduced or discovered from more basic principles; they are

made by the designers of the database scheme after deliberation about their

data and their beliefs about the constraints that data should obey.

Often, when a relation has two or more keys, it is useful to select one of

them and regard it as the only key; for example, many physical storage struc

tures expect there to be a unique key, or at least other keys are not supported

by the structure. Therefore, the term primary key will be used to refer to the

key selected from among several choices, all of which are called candidate keys.

When relations come from an entity-relationship diagram, it is usually easy

to tell what the keys for the relations are. The following rules suffice if the keys

selected for the entity sets are minimal; i.e., no subset of a chosen key would

serve as a key.

1. If a relation comes from an entity set, a set of attributes is a key for that

relation if it is a key for the entity set.

2. If a relation comes from a many-many relationship, then the key for the

relation is normally the set of all the attributes.

3. If a relation comes from a one-to-one relationship between entity sets E and

F, then the key for E and the key for F are both keys for the relation. Note

that relations, like entity sets, can have more than one set of attributes that

is a candidate key.

2.3 THE RELATIONAL DATA MODEL 49

4. If a relation comes from a relationship that is many-one from EI, .

to Ek, then the set of attributes that is the union of the keys for

EI, . . . , Ek-i is normally a key for the relation.

Example 2.11: Figure 2.5 lists the thirteen relations from Example 2.9. The

set of attributes forming the primary key of each relation is indicated by bold

face letters. Where there is another candidate key, that is indicated by slanted

letters. The reader should note the difference between a situation like that in

SUPPLIES, where the lone key consists of two attributes, and that of DEPTS,

where their are two candidate keys, each consisting of one attribute. The expla

nation for SUPPLIES is given by rule (4) above, since the relationship supplies

is many-one from SUPPLIERS and ITEMS to PRICE, and the first two entity

sets have keys SNAME and INAME, respectively. Thus, {SNAME, INAME}

forms a key for relation SUPPLIES. The explanation regarding DEPTS is more

ad-hoc. We know that DNAME is the key for entity set DEPTS, but we might

well decide that DEPT# also should be a key, since the YVCB probably does

not intend to give two departments the same number. D

(1) EMPS(ENAME, SALARY)

(2) MANAGERS(ENAME)

(3) DEPTS(DNAME, DEPT#)

(4) SUPPLIERS(SNAME, SADDR)

(5) ITEMS(INAME, ITEM#)

(6) ORDERS(0#, DATE)

(7) CUSTOMERS(CNAME, CADDR, BALANCE)

(8) WORKSJN(ENAME, DNAME)

(9) MANAGES(ENAME, DNAME)

(10) CARRIES(INAME, DNAME)

(11) SUPPLIES(SNAME, INAME, PRICE)

(12) INCLUDES(0#, INAME, QUANTITY)

(13) PLACED-BY(O#, CNAME)

Figure 2.5 Table of relations and keys.

Relations with Common Keys

When two relations have a candidate key in common, we can combine the

attributes of the two relation schemes and replace the two relations by one

whose set of attributes is the union of the two sets. One advantage to doing

so is that we save the storage space needed to repeat the key values in the two

relations. A second is that queries talking about attributes of the two relations

can sometimes be answered more quickly if the two relations are combined.

50 DATA MODELS FOR DATABASE SYSTEMS

Example 2.12: Relations DEPTS and MANAGES from Figure 2.5 each have

DNAME as a candidate key; in one case it is the primary key and in the other

not. We may thus replace DEPTS and MANAGES by one relation

DEPTS(DNAME, DEPT#, MGR)

Notice that we have decided to call the new relation DEPTS. The attributes

DNAME and DEPT# are intended to be the same as the attributes of the same

name in the old DEPTS relation, while MGR is intended to be the attribute

ENAME from MANAGES. There is nothing wrong with changing the names

of attributes, as long as we carry along their intuitive meaning.

In Figure 2.6(a) we see two possible instances for the old relation DEPTS

and MANAGES. Figure 2.6(b) shows them combined into one relation, the new

DEPTS. Notice that the twelve entries in the two relations have been combined

into nine in the single relation, saving a small amount of space. Also, a query

like "what is the number of the department that Harry Hamhock manages?"

can be answered by consulting the one relation in Figure 2.6(b), while in the

database of Figure 2.6(a) we would have to combine the two relations by a

possibly expensive operation called the join, discussed in the next section. D

DNAME

Produce

Cheese

Meat

DEPT#

12

31

5

ENAME DNAME

Esther Eggplant

Larry Limburger

Harry Hamhock

Produce

Cheese

Meat

DEPTS MANAGES

(a) Old relations.

DNAME DEPT# MGR

Produce

Cheese

Meat

12

31

5

Esther Eggplant

Larry Limburger

Harry Hamhock

(b) New relation DEPTS.

Figure 2.6 Combination of relations with common keys.

Dangling Tuples

When we combine two or more relations like those in Example 2.12, there is a

problem that must be overcome, a problem that if not solved or denned away

2.3 THE RELATIONAL DATA MODEL 51

prevents us from combining the relations despite the advantages to doing so. In

Example 2.12 we made the hidden assumption that the set of departments was

the same in both relations DEPTS and MANAGES. In practice that might not

be the case. For example, suppose the YVCB has a Wine department, whose

number is 16, but that temporarily has no manager. Then we could add the

tuple (Wine, 16) to the old DEPTS relation, in Figure 2.6(a), but there seems

to be no way to add a tuple to the new DEPTS in Figure 2.6(b), because such

tuples need some value for the MGR attribute. Similarly, if Tanya Truffle were

appointed to head the new Gourmet department, but we had not yet assigned

that department a number, we could insert our new fact into MANAGES, but

not into the DEPTS relation of Figure 2.6(b).

Tuples that need to share a value with a tuple in another relation, but find

no such value, are called dangling tuples. One possible way to avoid the problem

of dangling tuples is to add to the database scheme information about existence

constraints, that is, conditions of the form "if a value « appears in attribute A of

some tuple in relation R, then v must also appear in attribute B of some tuple

in relation 5." For example, if we guaranteed that every department appearing

in the DNAME attribute of the old DEPTS appeared in the DNAME field

of MANAGES, and vice-versa, then this problem of dangling tuples would be

defined away. We would thus be free to combine the two relations, knowing

that no information could be lost thereby.

Of course these existence constraints put some severe limitations on the

way we insert new tuples into the two relations of Figure 2.6(a) or the one

relation of Figure 2.6(b). In either case, we cannot create a new department

name, number, or manager without having all three. If that is not satisfactory,

we also have the option of storing null values in certain fields. We shall represent

a null value by _L. This symbol may appear as the value of any attribute that

is not in the primary key,5 and we generally take its meaning to be "missing

value." When looking for common values between two or more tuples, we do

not consider two occurrences of ± to be the same value; i.e., each occurrence

of ± is treated as a symbol distinct from any other symbol, including other

occurrences of J..

Example 2.13: If we added the Wine department and added manager Truffle

of the Gourmet department, we could represent this data with null values in

the relation DEPTS of Figure 2.6(b) by the relation of Figure 2.7. D

If we assume that problems of dangling tuples are defined away by existence

constraints or handled by allowing nulls in nonkey attributes, then we can

combine relations whenever two or more share a common candidate key.

5 In Chapter 6 we discuss storage structures for relations, and we shall then see why null

values in the primary key often cause significant trouble.

52 DATA MODELS FOR DATABASE SYSTEMS

DNAME DEPT# MGR

Produce

Cheese

Meat

Wine

Gourmet

12

31

Esther Eggplant

Larry Limburger

Harry Hamhock

1

Tanya Truffle

5

16

J_

Figure 2.7 Relation with nulls to preserve dangling tuples.

Example 2.14: The process of combining relations considerably simplifies the

list of Figure 2.5. The new list appears in Figure 2.8. There, we indicate the

relations of Figure 2.5 from which each combined relation was derived. Certain

attribute names have been changed in an obvious way when the relations were

combined.

EMPS(ENAME, SALARY, DEPT) 1, 8

DEPTS(DNAME, DEPT#, MGR) 2, 3, 9

SUPPLIERS(SNAME, SADDR) 4

ITEMS(INAME, ITEM#, DEPT) 5, 10

ORDERS(O#, DATE, CUST) 6, 13

CUSTOMERS(CNAME, CADDR, BALANCE) 7

SUPPLIES(SNAME, INAME, PRICE) 11

INCLUDES(O#, INAME, QUANTITY) 12

Figure 2.8 Improved relational database scheme design.

We again indicate primary keys by boldface. The other candidate keys are

generally not candidate keys for the combined relation, because the possibility

of dangling tuples means that there could be a null in an attribute belonging

to a candidate key. For example, in Figure 2.7 we saw nulls in both DEPT#

and MGR, which prevents these attributes from being keys.

The selection of the DEPTS relation in Figure 2.8 requires some additional

thought. We have chosen it to represent the unary relation MANAGERS, as

well as the relations DEPTS and MANAGES from Figure 2.5, which shared the

common candidate key DNAME. However, MANAGERS, with key (and only

attribute) ENAME, does not share a common candidate key with these. First,

we should note that the ENAME of MANAGERS is not the same as ENAME in

the relations EMPS and WORKSJN; in the latter two it represents the entity

set of employees, while in MANAGERS it represents the subset of these em

ployees that are managers. Thus, we clearly should not combine MANAGERS

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 53

with EMPS and WORKSJN. However, what is the justification for combining

MANAGERS with DEPTS, with which it does not even share an attribute, let

alone a key? In explanation, recall that MANAGES is a one-to-one relation

ship between ENAME (representing managers) and DNAME. Hence, these two

attributes are in a sense equivalent, and we may regard MANAGERS as if its

attribute were DNAME rather than ENAME.

There is, however, one special problem with our choice to combine relations

in this way. Even with nulls, we cannot handle all situations with dangling

tuples. For example, if there were a manager m mentioned in MANAGERS,

but not in MANAGES, we would want to insert into the new DEPTS relation a

tuple (-L, -L, m). But this tuple would have a null value in the key, DEPTS, and

as we mentioned, there are reasons concerning the physical storage of relations

why this arrangement is frequently not acceptable.

Incidentally, one might wonder why one cannot further combine relations

like SUPPLIES and SUPPLIERS, since the key of the latter is a subset of the

key of the former. The reason is that in a combined relation with attributes

SNAME, SADDR, INAME, and PRICE, we would find that each supplier's ad

dress was repeated once for each item that the supplier sold. That is not a fatal

problem, but it does lead to wasted space and possible inconsistencies (Acme's

address might be different according to the tuples for two different items Acme

sells). The matter of relational database scheme design, called "normalization"

provides considerable intellectual mechanics that can be brought to bear on is

sues like whether SUPPLIES and SUPPLIERS should be combined; we develop

this theory in Chapter 7. D

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL

In the previous section we introduced the mathematical notion of a relation,

which is the formalism underlying the relational data model. This section in

troduces the family of operations usually associated with that model. There

are two rather different kinds of notations used for expressing operations on

relations:

1 . Algebraic notation, called relational algebra, where queries are expressed

by applying specialized operators to relations, and

2. Logical notation, called relational calculus, where queries are expressed by

writing logical formulas that the tuples in the answer must satisfy.

In this section, we shall consider relational algebra only. This algebra

includes some familiar operations, like union and set difference of relations, but

it also includes some that probably are not familiar. Logical notations will

be introduced in Chapter 3, after we discuss logical languages for knowledge-

base systems. One of the interesting facts about these notations for relational

databases is that they are equivalent in expressive power; that is, each can

54 DATA MODELS FOR DATABASE SYSTEMS

express any query that the other can express, but no more.

Limitations of Relational Algebra

The first thought we might have on the subject of operations for the relational

model is that perhaps we should simply allow any program to be an operation

on relations. There might be some situations where that makes sense, but there

are many more where the advantages of using a well-chosen family of operations

outweigh the restrictions on expressive power that result. Recall from Section

1.2 that one important purpose of a conceptual scheme, and hence of its data

model, is to provide physical data independence, the ability to write programs

that work independently of the physical scheme used. If we used arbitrary

programs as queries, the programmer would

a) Have to know everything about the physical data structures used, and

b) Would have to write code that depended on the particular structure se

lected, leaving no opportunity for the physical structure to be tuned as we

learned more about the usage of the database.

As a result, it is almost universally preferred in database systems that the

query language should have dictions that speak only of the data model, not of

any particular physical implementation of the model. But as soon as we agree

to use a query language that operates only on relations, which is the structure

that represents data in the relational model, we face another problem. We want

the operations of the relational data model to have implementations that are

efficient; they must be efficient, because people turn to DBMS's when they want

fast response to queries on large quantities of data. Yet if we permit too rich a

set of queries to ask, it is likely that we shall be able to ask queries for which

the DBMS's query processor will be unable to find an efficient implementation,

even though one exists.

For example, the language Prolog, whose syntactic style was introduced in

Section 1.6, and which will be discussed in more detail in Chapter 3, is a logical

language, whose predicates could well be thought of as relations. Thus, Prolog

could be accepted as a language suitable for expressing the operations of the

relational data model. However, Prolog, in its most general form, can simulate

a Turing machine, like any other general-purpose programming language, so its

optimization problem is undecidable. Thus, we cannot hope to find optimal

implementations of arbitrary Prolog programs.

Hence, relational algebra and all the other languages for the relational

model, whether real or abstract, have opted for limited expressive power, but

chosen a subset of all possible queries (essentially the same subset in each case)

that

1. Allows the optimization problem to be solved satisfactorily, yet

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 55

2. Provides a rich enough language that we can express enough things to make

database systems useful.

We mentioned, in Section 1.4, the approximate point at which the power of

relational languages fails; they cannot, in general, express the operation that

takes a binary relation and produces the transitive closure of that relation.

Another limitation we face in relational languages, less cosmic perhaps,

but of practical importance, is the finiteness of relations. Recall that we have

assumed relations are finite unless we explicitly state otherwise; this convention

is sound because infinite relations cannot be stored explicitly. The constraint

of finiteness introduces some difficulties into the definition of relational algebra

and other relational languages. For example, we cannot allow the algebraic

operation of complementation, since the complement of R is an infinite relation,

the set of all tuples not in R.

Operands and Operators of Relational Algebra

Recall that a relation is a set of fc-tuples for some k, called the arity of the

relation. In general, we give names (attributes) to the components of tuples,

although some of the operations mentioned below, such as union, difference,

product, and intersection, do not depend on the names of the components.

These operations do depend on there being a fixed, agreed-upon order for the

attributes; i.e., they are operations on the list style of tuples, rather than the

mapping (from attribute names to values) style. Of course they can be ap

plied to relations that are viewed in the mapping style (as most real relational

DBMS's do) by fixing an order for the attributes before performing the opera

tion and by specifying attribute names for the result relation.

The operands of relational algebra are either constant relations or variables

denoting relations of a fixed arity. The arity associated with a variable will be

mentioned only when it is important. There are five basic operations that serve

to define relational algebra. After introducing them we shall mention a few more

operations that do not add to the set of functions expressible in the language,

but serve as useful shorthand.

1. Union. The union of relations R and 5, denoted R U S, is the set of tuples

that are in R or S or both. We may only apply the union operator to

relations of the same arity, so all tuples in the result have the same number

of components. As mentioned above, the attribute names for the operand

relations are ignored when taking the union, and the result relation can

be given attributes arbitrarily. The order of attributes in the operands is

respected when taking the union. The same remarks apply to the other

operators as well.

2. 5et difference. The difference of relations R and 5, denoted R — 5, is the

set of tuples in R but not in S. We again require that R and S have the

56 DATA MODELS FOR DATABASE SYSTEMS

same arity.

3. Cartesian product. Let R and S be relations of arity ki and k2, respectively.

Then R x S, the Cartesian product of R and 5, is the set of all possible

(ki + fc2)-tuples whose first fci components form a tuple in R and whose

last &2 components form a tuple in S.

4. Projection. The idea behind this operation is that we take a relation R,

remove some of the components (attributes) and/or rearrange some of the

remaining components. If R is a relation of arity k, we let iri,,ia,...,tm(fi),

where the ij's are distinct integers in the range 1 to fc, denote the projection

of R onto components ti, 12, • • • , tm, that is, the set of m-tuples 0102 • • • am

such that there is some fc-tuple 61 62 •••'1fc in R for which a, = 6^ for

j = 1, 2, . . . , m. For example, T^J (R) is computed by taking each tuple n

in R and forming a 2-tuple from the third and first components of n, in that

order. If R has attributes labeling its columns, then we may substitute at

tribute names for component numbers, and we may use the same attribute

names in the projected relation. Thus, if relation R is R(A, B, (7, D), then

KC,A(R) is the same as jr3,i(R), and the resulting relation has attribute C

naming its first column and attribute A naming its second column.

5. Selection. Let F be a formula involving

t) Operands that are constants or component numbers; component i is

represented by $t,

ii) The arithmetic comparison operators <, =, >, <, ^, and >, and

Hi) The logical operators A (and), V (or), and -' (not).

Then af(R) is the set of tuples n in R such that when, for all t, we

substitute the tth component of /i for any occurrences of $i in formula

F, the formula F becomes true. For example, <7$2>$3(-#) denotes the set

of tuples /, in H such that the second component of /i exceeds its third

component, while <7$i='smith'v$i='Jones'(-#) is the set of tuples in R whose

first components have the value 'Smith' or 'Jones'. As with projection, if

a relation has named columns, then the formula in a selection can refer to

columns by name instead of by number.

A B C

a

d

b

a

b

c

c

f

d

D E F

b

d

g

a

a

(a) Relation R (b) Relation 5

Figure 2.9 Two relations.

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 57

Example 2.15: Let R and 5 be the two relations of Figure 2.9. In Figure

2.10(a) and (b), respectively, we see the relations R U S and R - S. Note

that we can take unions and differences even though the columns of the two

relations have different names, as long as the relations have the same number

of components. However, the resulting relation has no obvious names for its

columns. Figure 2.10(c) shows R x 5. Since R and 5 have disjoint sets of

attributes, we can carry the column names over to R x 5. If R and 5 had

a column name in common, say G, we could distinguish the two columns by

calling them R.G and S.G. Figure 2.10(d) shows irA,c(R), and Figure 2.10(e)

Shows &B=b(R)- D

a

d

c

b

b

a

b

g

c

f
d

a

(a) R U 5 (b) R-S

A B C D E F

a b c b g a

a b c d a f

d a f b g a

d a f d a f

c b d b g a

c b d d a f

(c) R x 5

a

d

c

c

f
d

A B C

a

c

b

b

c

d

(e) aB=b(R)

Figure 2.10 Results of some relational algebra operations.

Some Additional Algebraic Operations

There are some other useful operations on relations that can be expressed in

terms of the five basic operations above. The simplest example is that any

system closed under set difference is also closed under intersection, because

58 DATA MODELS FOR DATABASE SYSTEMS

R n 5 is equivalent to R — (R — S). Thus, we can use intersection as if it were

one of the basic relational algebra operators, knowing it can be replaced by two

applications of the set difference operator. Some additional operations that can

be expressed in terms of the five basic operators follow.

Quotient

Let R and 5 be relations of arity r and s, respectively, where r > a, and S ^ 0.

Then the quotient of R and 5, denoted R -=- 5, is the set of (r - s)-tuples

0i,... ,<•>-, such that for all s-tuples ar-,+1, . . . ,ar in 5, the tuple 01,. . . ,ar

is in R. To express R -f- 5 using the five basic relational algebra operations, let

T stand for iri,2,...,r-,(R). Then (T x S) — R is the set of r-tuples that are not

in R, but are formed by taking the first r — s components of a tuple in R and

following it by a tuple in 5. Then let

V = in,2 r-.((TxS)-R)

V is the set of (r — s)-tuples 01, . . . , a?-, that are the first r - s components

of some tuple in fl, and for some s-tuple ar_a+i, . . . , ar in 5, 01, . . . , ar is not

in R. Hence, T - V is R -j- 5. We can write R -~ S as a single expression in

relational algebra by replacing T and V by the expressions they stand for. That

is,

R -5- S = iri'2 ,-.(£) - 7r,,3,,..,f-.((lT1,2 r-.(R) X S) - R)

Example 2.16: Let R and 5 be the relations shown in Figure 2.11(a) and (b).

Then R-rS is the relation shown in Figure 2.11(c). Tuple ab is in R-rS because

abcd and abef are in R, and tuple ed is in R + S for a similar reason. Tuple bc,

which is the only other pair appearing in the first two columns of R, is not in

R -r 5 because bccd is not in R. D

o b c d

a b e f

6 c e f

e d c d

e d e f

a b d e

(a) Relation R (b) Relation 5 (c) R + S

Figure 2.11 Example of a quotient calculation.

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 59

Join

The 9-join of R and 5 on columns t and j, written R M 5, where 0 is an arith-

i8j

m,,tii comparison operator (=, <, and so on), is shorthand for <7ie(T.+j)(flx 5),

if fl is of arity r. That is, the #-join of R and S is those tuples in the Cartesian

product of R and 5 such that the ith component of R stands in relation 0 to

the jth component of S. If 9 is =, the operation is often called an equijoin.

Example 2.17: Let R and S be the relations given in Figure 2.12(a) and (b).

Then R tx\ S is given in Figure 2.12(c). As with all algebraic operations,

B<D

when columns have names we are free to use them. Thus ix] is the same as

B<D

x in this case.

2<1

Incidentally, note that tuple (7,8,9) of R does not join with any tuple of

5, and thus no trace of that tuple appears in the join. Tuples that in this

way fail to participate in a join are called dangling tuples. Recall that we first

met the notion of "dangling tuples" in the previous section, when we discussed

combining relations with a common key. What we tacitly assumed there was

that the correct way to form the combined relation was to take the equijoin

in which the key attributes were equated. There is a good reason for this

assumption, which we shall cover in Chapter 7. D

A B C

1

4

7

2 3

6

9

5

8

D E

(a) Relation R (b) Relation 5

Figure 2.12 Example of a <-join.

A B C D E

1 2 3 3 1

1 2 3 6 2

4 5 6 6 2

(c) R ex 5

B<D

Natural Join

The natural join, written R ixi S, is applicable only when both R and S have

columns that are named by attributes. To compute R >i S we

1. Compute R x 5.

2. For each attribute A that names both a column in R and a column in 5

select from R x S those tuples whose values agree in the columns for R.A

and S.A. Recall that R.A is the name of the column of R x S corresponding

to the column A of R, and 5.A is defined analogously.

60 DATA MODELS FOR DATABASE SYSTEMS

3. For each attribute A above, project out the column S.A, and call the

remaining column, R.A, simply A.

Formally then, if A\, A2, . . . , AI, are all the attribute names used for both R

and 5, we have

Rtx} S = Kit,i1,...,im(rR.Ai=S.AiA-AR.Ak=S.Ak(R x S)

where ii,t2, . . . ,im is the list of all components of R x 5, in order, except the

components S.A\, . . . , S.Ai,.

Example 2.18: Let R and 5 be the relations given in Figure 2.13(a) and (b).

Then

R CXI 5 = KA,R.B,R.C,D<7R.B=S.BAR.C=S.C(R x S)

To construct R txi 5, we consider each tuple in R to see which tuples of 5 agree

with it in both columns B and C. For example, abc in R agrees with bcd and

bce in 5, so we get abcd and abce in R txi 5. Similarly, dbc gives us dbcd and

dbce for R txi 5. Tuple bbf agrees with no tuple of 5 in columns B and C", so

we obtain no tuple in R tx 5 that begins with bbf. Lastly, cad matches adb, so

we get tuple cadb. D

A B C

a b c

d b c

b b f

c a d

B C D

b c d

b c e

a d b

A B C D

a b c d

a b c e

d b c d

d b c e

c a d b

(a) Relation R (b) Relation S (c) R txi S

Figure 2.13 Example of a natural join.

Semyoin

The semijoin of relation R by relation 5, written R X S, is the projection onto

the attributes of R of the natural join of R and S. That is,

R X 5 = KR(R M S)

Note the useful convention that a relation name, such as R, stands for the

set of attributes of that relation in appropriate contexts, such as in the list

of attributes of a projection. In other contexts, R stands for the value of the

relation R. An equivalent way of computing R X S is to project S onto the

set of attributes that are common to R and S, and then take the natural join

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 61

of R with the resulting relation. Thus, an equivalent formula for the semijoin

is R X S — R txi KRns(S), as the reader may prove. Note that the semijoin is

not symmetric; i.e., RX S / 5 X R"m general.

Example 2.19: Let R and 5 be the relations of Figure 2.13(a) and (b), respec

tively. Then R X S is the projection of Figure 2.13(c) onto attributes A, B,

and C, that is, the relation of Figure 2.14(a). Another way to obtain the same

result is first to project 5 onto {B,C}, the attributes shared by the relation

schemes for R and 5, yielding the relation of Figure 2.14(b), and then joining

this relation with R. D

A B C

a b c

d b c

c a d

(a) R X S

B C

b

a

c

d

(b)

E F G H I

a d b c d

a d b c e

(c) S(E,F,G)t*S(G,H,I).

Figure 2.14 Joins and semijoins.

When we use the natural join and semijoin operations, the attributes of

the relations become crucial; that is, we need to see relations from the set-

of-mappings viewpoint rather than the set-of-lists viewpoint. Thus, to make

explicit what attributes we are assuming for a relation R, we shall write

R(A\,...,An) explicitly. We can even use the same relation in the mathe

matical sense as several arguments of a join with different attributes assigned

to the columns in different arguments.

For example, suppose we had relation 5 of Figure 2.13(b), but ignored

the attributes B, C, and D for the moment. That is, see 5 only as a ternary

relation with the three tuples bcd, bce, and adb. The natural join

S(E,F,G)t*S(G,H,I)

takes this relation and joins it with itself, as an equijoin between the third

column of the first copy and the first column of the second copy. The only

value these columns have in common is 6, so the result would be the relation of

Figure 2.14(c).

62 DATA MODELS FOR DATABASE SYSTEMS

We shall summarize the arguments made above, regarding extensions to

the relational algebra, in our first theorem.

Theorem 2.1: If R and 5 are variables standing for relations, there are ex

pressions of relational algebra using only R and S as operands and only the five

basic operations of relational algebra (U, — , x, <7, ir) equivalent to the follow

ing operations: (a) R D 5, (b) R -=- 5, (c) R tx 5, (d) R txt 5, and (e) R X 5.

D

Algebraic Laws

Like many other algebras, there are laws that the operators of relational algebra

obey. The reader is probably familiar with the fact that U is associative

[R U (5 U T) = (R U 5) U T]

and commutative [R U S = S U R]. Likewise, Cartesian product is asso

ciative, but not commutative because the order in which the columns appear

is important in the set-of-lists viewpoint. The natural join has a number of

useful properties, including associativity and commutativity, which we prove as

an example.

Theorem 2.2: In the set-of-mappings viewpoint:

a) R txi (S xi T) = (R txi S) txi T.

b) R txi 5 = 5 txi R.

Proof: The result depends on the fact that natural join is taken on relations

with the database viewpoint; that is, tuples are regarded as mappings from

attributes to values, and order of attributes is unimportant. To prove associa

tivity, let n be a tuple in R txi (5 txi T). Then there is a tuple HR in R and a

tuple v in S txi T, that each agree with fi on the attributes they have in common

with /i; i.e., PR — n[R] and v = n[S U T]. Similarly, there must be tuples us

and HT in S and T respectively, that agree with v when they share attributes,

and therefore they too agree with fi on attributes they share with fi.

Since n is defined on all the attributes in R U S U T, it follows that fiR,

/is, and fiT agree whenever they have an attribute in common. Thus, when we

compute R txi S, we get a tuple p that agrees with HR and /is, and therefore

agrees with /i. When we then join R tx S with T, tuples p and HT produce

a tuple that agrees with // on all attributes. Thus, assuming that n is in

R M (5 M T), we have shown that /i is also in (R txi 5) txi T. That is, the left

side of (a) is contained in the right side. An almost identical proof shows that

the right side is contained in the left side, so we have proven equality (a), the

associative law for tx).

Part (b), the commutative law, is proven in a similar way, and we leave it

as an exercise for the reader. D

2.4 OPERATIONS IN THE RELATIONAL DATA MODEL 63

A consequence of Theorem 2.2 is that we can characterize the natural join

of any set of relations quite simply; this result is stated in the following corollary.

Corollary 2.1: Suppose R = RI tx • • • ex ft,,.6 Then R is the set of tuples n

such that for all i, 1 < t < n, n restricted to the attributes of flj, i.e., n[Ri], is

a tuple in relation It,

Proof: It is an easy induction on n that any tuple in R must have the property

that it agrees with some tuple of each relation. For the converse, suppose that

/i is such a tuple; i.e., it agrees with a tuple of Ri for all t. If n = 2, p, is in R by

the definition of the natural join. For the induction, let v be fi[Ri U • • • U Rn-i]

and let p be /<[/^,,]. Then by the inductive hypothesis, v is in Ri ix • • • tx Rn-i,

and by the definition of the join, /i is in (Ri ex • • • ex Rn-i) ex Rn since it agrees

with v and p on the attributes it shares with them. By Theorem 2.2, this join

is R\ tx • • • txi Rn. D

The 0-join is not commutative, because as we denned it, the order of

columns matters. However, it is "associative," if we write the associativity

law to take into account the fact that component numbers change as we apply

the 0-join operator. Specifically, if &i and 02 are arithmetic comparison opera

tors, R is a relation of arity r, and j is no larger than the arity of relation 5,

then

R txi (S tx T) = (R ex S) EX T

The proof of this and some other algebraic laws for relational algebra are left

as exercises for the reader. Also, in Chapter 11, when we discuss query opti

mization, we shall catalog a number of other "laws" involving combinations of

the relational operators.

Relational Algebra as a Query Language

We can use selection and projection to ask many natural questions about single

relations.

Example 2.20: Consider the relation SUPPLIES of Figure 2.8. If we want to

know which suppliers supply Brie, we can say

TSNAME(<7lNAME='Brie' (SUPPLIES)) (2.1)

That is, the selection focuses us on those tuples that talk about item "Brie,"

and the projection lets us see only the supplier name from those tuples. The

algebraic expression (2.1) thus evaluates to a relation of arity 1, and its value

will be a list of all the suppliers of Brie.

6 By Theorem 2.2, the order in which the flj's are joined does not affect the result and

need not be specified.

64 DATA MODELS FOR DATABASE SYSTEMS

If we wanted to know what items supplier "Acme" sells for less than $5,

and the prices of each, we could write:

7rlNAME,PRICE(^SNAME='Acme'APRICE<5.0o(SUPPLIES))

D

Navigation Among Relations

Many more queries are expressed by navigating among relations, that is, by

expressing connections among two or more relations. It is fundamental to the

relational data model that these connections are expressed by equalities (or

sometimes inequalities) between the values in two attributes of different rela

tions. It is both the strength and weakness of this model that connections are

expressed that way. It allows more varied paths among relations to be followed

than in other data models, where, as we shall see in the next sections, particular

pathways are favored by being "built in" to the scheme design, but other paths

are hard or impossible to express in the languages of these models.

Example 2.21: We again refer to the relations of Figure 2.8. Suppose we wish

to determine which customers have ordered Brie. No one relation tells us, but

INCLUDES gives us the order numbers for those orders that include Brie, and

ORDERS tells us for each of those order numbers what customer placed that

order. If we take the natural join of INCLUDES and ORDERS, we shall have

a relation with set of attributes

(O#, INAME, QUANTITY, DATE, CUST)

and a tuple (o,i,q,d,c) in this relation can be interpreted as saying that order

o includes quantity q of item i, and the order was placed on date d by customer

c.7 We are only interested in orders for Brie, so we can apply a selection to this

relation for INAME = 'Brie'. Finally, we want only to know the customer's

name, so we can project the result onto CUST. The algebraic expression for

this query is thus:

irCUST(<7lNAME='Brie' (INCLUDES 04 ORDERS)) (2.2)

D

Efficiency of Joins

Join is generally the most expensive of the operations in relational algebra.

The "compare all pairs of tuples" method for computing the join, suggested

by Example 2.18, is not the way to compute the join in reality; it takes O(n2)

7 We would not generally wish to have a relation with this set of attributes in the database

scheme because of redundancy of the type discussed in Example 2.14. That is, we would

have to repeat the date and customer for every item on the given order.

2.5 THE NETWORK DATA MODEL 65

time on relations of size (number of tuples) n.8 We shall discuss other methods

in Chapter 11, but for the moment, observe one way to compute equijoins or

natural joins is to sort both relations on the attribute or attributes involved

in the equality, and then merge the lists, creating tuples of the join as we go.

This approach takes time O(m + nlogn) on relations of size n, where m is

the number of tuples in the result of the join. Typically m is no more than

O(nlogn), although it could be as high as n2.

However, a better idea in many cases is to avoid doing joins of large rela

tions at all. By transforming an algebraic expression into an equivalent one that

can be evaluated faster, we frequently save orders of magnitude of time when

answering queries. It is the development of such query optimization techniques

that made DBMS's using the relational model feasible.

Example 2.22: Consider expression (2.2) from Example 2.21. Rather than

compute the large relation INCLUDES ex ORDERS, then reduce it in size by

selection and projection, we prefer to do the selection, and as much of the

projection as we can as soon as we can. Thus, before joining, we select on the

INCLUDES relation for those tuples with INAME = 'Brie' and then project

this relation onto O#, to get only the set of order numbers that include Brie.

Presumably, this will be a much smaller set than the entire INCLUDES relation.

Now we would like to select the tuples in ORDERS with this small set of

order numbers, to get the desired set of customers. The whole process can be

expressed by a semijoin:

TTCUST (ORDERS tx <71NAME='Brie'(INCLUDES)) (2.3)

If there is an index on attribute INAME of INCLUDES, we can find the orders

for Brie in time proportional to the number of these orders.9 Then if this

set is small and ORDERS has an index on O#, we can find the customers

placing these orders in time proportional to their number. Thus, expression

(2.3) can be evaluated in time that is typically much smaller than the size of

the INCLUDES and ORDERS relations, and therefore much smaller than the

time taken for even a sophisticated, but direct evaluation of (2.2). D

2.5 THE NETWORK DATA MODEL

Roughly, the network data model is the entity-relationship model with all re

lationships restricted to be binary, many-one relationships. This restriction

8 O(/(n)), for any function /(n), is read "big oh of / of n" and, informally, stands for

"some function that is at most c/(n) for some constant c and all sufficiently large n."

The reader not familiar with "big oh" notation should consult Aho, Hopcroft, and

Ullman [1983].

' Index structures and the speed of access they provide are discussed in Chapter 6; for

the moment, we simply assume that there is a magical way to find exactly the tuples

we want from a relation in time proportional to the number of tuples retrieved.

DATA MODELS FOR DATABASE SYSTEMS

allows us to use a simple directed graph model for data. In place of entity sets,

the network model talks of logical record types.10 A logical record type is a

name for a set of records, which are called logical records. Logical records are

composed of Reids, which are places in which elementary values such as integers

and character strings can be placed. The set of names for the fields and their

types constitute the logical record format.

Record Identity

One might suppose there is a close analogy between these terms for networks

and the terms we used for relations, under the correspondence

Logical record format : Relation scheme

Logical record : Tuple

Logical record type : Relation name

However, there is an important distinction between tuples of relations and

records of a record type. In the value-oriented relational model, tuples are

nothing more than the values of their components. Two tuples with the same

values for the same attributes are the same tuple. On the other hand, the net

work model is object-oriented, at least to the extend that it supports object

identity. Records of the network model may be viewed as having an invisible

key, which is in essence the address of the record, i.e., its "object identity."

This unique identifier serves to make records distinct, even if they have the

same values in their corresponding fields. In fact, it is feasible to have record

types with no fields at all.

The reason it makes sense to treat records as having unique identifiers,

independent of their field values, is that physically, records contain more data

than just the values in their fields. In a database built on the network model

they are given physical pointers to other records that represent the relationships

in which their record type is involved. These pointers can make two records

with the same field values different, and we could not make this distinction if

we thought only of the values in their fields.

Links

Instead of "binary many-one relationships" we talk about links in the network

model. We draw a directed graph, called a network, which is really a simplified

entity-relationship diagram, to represent record types and their links. Nodes

correspond to record types. If there is a link between two record types TI and

T2, and the link is many-one from TI to T2, then we draw an arc from the node

10 We drop the word "logical" from "logical record," or "logical record type/format" when

ever no confusion results.

2.5 THE NETWORK DATA MODEL 67

for TI to that for T2,n and we say the link is from T\ to T2. Nodes and arcs

are labeled by the names of their record types and links.

Representing Entity Sets in the Network Model

Entity sets are represented directly by logical record types; the attributes of an

entity set become fields of the logical record format. The only special case is

when an entity set E forms its key with fields of some entity set F, to which E is

related through relationship 72. We do not need to place those fields of F in the

record format for E, because the records of E do not need to be distinguished

by their field values. Rather, they will be distinguished by the physical pointers

placed in the records of E to represent the relationship H, and these pointers

will lead from a record e of type E to the corresponding record of type F that

holds the key value for e.

Alternatively, when the relationship concerned is isa, and the subset has

no field that the superset does not have, (as between MANAGERS and EMPS

in Figure 2.2), we could eliminate the record type for the subset, e.g. MAN

AGERS, altogether, and let the relationships between MANAGERS and other

entity sets (besides EMPS) be represented in the network model by links in

volving EMPS. The isa relationship itself could be represented by a one-bit

field telling whether an employee is a manager. Another choice is to represent

the isa implicitly; only EMPS records that represent managers will participate

in relationships, such as MANAGES, that involve the set of managers.

Representing Relationships

Among relationships, only those that are binary and many-one (or one-one as

a special case) are representable directly by links. However, we can use the

following trick to represent arbitrary relationships. Say we have a relationship

R among entity sets E\,E^, . .. ,Ek- We create a new logical record type T

representing fc-tuples (e\,e2, . . . , efc) of entities that stand in the relationship

R. The format for this record type might be empty. However, there are many

times when it is convenient to add information-carrying fields in the format for

the new record type T. In any event, we create links LI, L2, . . . , Lfc. Link Lj

is from record type T to the record type for entity set Ei, which we shall also

call Ef. The intention is that the record of type T for (ei,e2, • • • ,£k) is linked

to the record of type Ei for Ci, so each link is many-one.

As a special case, if the relationship is many-one from EI,..., Ek-i to Ek,

and furthermore, the entity set Ek does not appear in any other relationships,

• Some works on the subject draw the arc in the opposite direction. However, we chose

this direction to be consistent with the notion of functional dependency discussed in

Chapter 7. Our point of view is that arrows mean "determines uniquely." Thus, as each

record of type T1 is linked to at most one record of type Tj, we draw the arrow into Tj.

68 DATA MODELS FOR DATABASE SYSTEMS

then we can identify the record type T with Ek, storing the attributes of E^

in T. For example, the relationship SUPPLIES of Figure 2.2 is many-one from

SUPPLIERS and ITEMS to PRICE, and PRICE participates in no relationship

but this one. We may therefore create a type T with links to ITEMS and

SUPPLIERS, and containing PRICE as a field. We shall discuss this matter

further when we convert the full entity-relationship diagram of Figure 2.2 to a

network, in Example 2.24. For the moment, we consider a simpler example.

Example 2.23: We mentioned in Section 2.1 a common example of a purely

many-many relationship, that between courses and students with the intended

meaning that the student is taking the course. To represent this relationship in

the network model, we would use two entity sets, COURSES and STUDENTS,

each with appropriate fields, such as

COURSES(DEPT, NUMBER, INSTRUCTOR)

STUDENTS(ID#, NAME, ADDRESS, STATUS)

To represent the relationship between these entity sets, we need to in

troduce a new record type, say ENROLL, that represents single pairs in the

relationship set, i.e., one course and one student enrolled in that course. There

might not be any fields in ENROLL, or we might decide to use ENROLL records

to store information that really does refer to the pair consisting of a course and

a student, e.g., the grade the student receives in the course, or the section in

which the student is enrolled. Thus, we might use record format

ENROLL(SECTION, GRADE)

Notice that two or more enrollment records may look the same, in the sense

that they have the same values in their SECTION and GRADE fields. They

are distinguished by their addresses, i.e., by their "object identity."

We also need two links, one from ENROLL to COURSES, which we shall

call E-COURSE, and one from ENROLL to STUDENTS, which we shall call

E-STUDENT. The network for these record types and links is shown in Figure

2.15(a).

The link E-COURSE associates with each ENROLL record a unique

COURSES record, which we take to be the course in which the enrollment is

made. Likewise, EJ3TUDENT associates with each ENROLL record a unique

STUDENTS record, that of the student who is thereby enrolled. As we shall

discuss in Chapter 5, when we consider the DBTG network language in detail,

the notion of ownership is used to help describe the relationship enforced by

the links. If a link, such as E-STUDENT is from ENROLL to STUDENTS,

then each student record is said to own the enrollment records which the link

associates to that student.

In Figure 2.15(b) we see a simple example of three COURSES records, five

ENROLL records, and four STUDENT records. The ENROLL records each

2.5 THE NETWORK DATA MODEL

COURSES

E-COURSE

ENROLL

E-STUDENT

STUDENTS

(a) The network.

E-COURSE

E-STUDENT

EE200

5;|3|A

L/I/VXI
Nerd

(b) Physical connections representing links.

Figure 2.15 Network for courses and students.

show fields for the section and grade; the fields of STUDENTS and COURSES

are not shown. The unique identifiers for ENROLL records, which are in essence

addresses, are shown as integers outside the records. The fact that records 1 and

4 have identical field values is of no concern. Evidently, they are distinguished

by the differences in their links. For example, ENROLL record 1 represents

only the fact that student Grind is enrolled in CS101.

We can say that the record for Grind owns ENROLL records 1 and 2.

Weenie owns 4 and 5, while Jock owns no enrollment records. It is also true

that CS101 owns ENROLL records 1 and 3. There is no conflict with the fact

that Grind also owns record 1, because their ownership is through different

links. That is, Grind is the owner of 1 according to the E-STUDENT link, and

CS101 the owner of that record according to the E-COURSE link. D

Example 2.24: Let us design a network for the YVCB database scheme whose

70 DATA MODELS FOR DATABASE SYSTEMS

entity-relationship diagram was given in Figure 2.2. We start with logical record

types for the six entity sets that remain after excluding MANAGERS, which

as we mentioned above, can be represented by the logical record type for its

superset, EMPS. Thus, we have logical record formats:

EMPS(ENAME, SALARY)

DEPTS(DNAME, DEPT#)

SUPPLIERS(SNAME, SADDR)

ITEMS(INAME, ITEM#)

ORDERS(O#, DATE)

CUSTOMERS(CNAME, CADDR, BALANCE)

These are, except for MANAGERS, the same as the relations we started with

initially in Example 2.9.

We need two more record types, because two of the relationships, SUP

PLIES and INCLUDES, are not binary, many-one relationships. Let us use

record type ENTRIES to represent order-item-quantity facts. It makes sense

to store the quantity in the entry record itself, because the relationship IN

CLUDES is many-one from ORDERS and ITEMS to QUANTITY. Thus, we

need only links from ENTRIES to ITEMS and ORDERS, which we call EJTEM

and E-ORDER, respectively.

WORKSJN

DEPTS |*4 ITEMS

CARRIES _

EJTEM

| ENTRIES

E-ORDER

Figure 2.16 Network for the YVCB database scheme.

Similarly, a new record type OFFERS can serve to represent the facts of

the SUPPLIES relation. We prefer to store PRICE as a field of OFFERS,

2.5 THE NETWORK DATA MODEL 71

for the same reason as was discussed above concerning QUANTITY. We shall

use OJTEM and OJ3UPPLIER, as the links from OFFERS to ITEMS and

SUPPLIERS, respectively. The last two record types for our network are thus:

ENTRIES(QUANTITY)

OFFERS(PRICE)

The relationships in Figure 2.2, other than SUPPLIES and INCLUDES, are

many-one and binary. Thus, they are directly representable by links. The only

special remark needed is that the relationship MANAGES, originally between

DEPTS and MANAGERS, will now be between DEPTS and EMPS, since we

agreed to use EMPS to represent managers. Since this relationship is one-one,

we could have it run in either direction, and we have chosen to have it run from

EMPS to DEPTS. The complete network is shown in Figure 2.16. D

Comparison of Networks and Relation Schemes: Link-Following Op

erations on Networks

The distinction between tuples and records tells us a great deal about the ways

in which each of the two data models, relational and network, excels. Recall

that tuples are nothing but the values of their components but records can have

built-in, invisible pointers that represent certain declared links. The relational

model gives us the ability to use component values in arbitrary ways, whether

or not they are the ways that were expected by the database designer when the

scheme was first created. For example, one day YVCB owner Simon DeLamb

gets curious and wants to know whether some customer has a balance that

exactly equals the price of some item. He has only to say

7rCNAME(CUSTOMERS txi SUPPLIES)

BALANCE=PRICE

in relational algebra. However, in the network model, whose languages only

allow us to follow links, there is really no convenient way to compare customers'

balances with items' prices.

On the other hand, when we do follow links, the network model provides

a more succinct way to express these paths than does relational algebra. For

example, if we had a language in which links could be followed, in either direc

tion, by applying their names as functions to the record type at either end, we

could relate customers to the items they have ordered by an expression like

PLACEDJBY(E-ORDER(EJTEM(ITEMS)))

In comparison, relational languages have to specify the equality of values needed

to navigate between the relations INCLUDES and ORDERS. Line (2.2) in Ex

ample 2.21 was a similar query expressed in relational algebra. There, the

requirement for equality of values between the 0# fields of INCLUDES and

ORDERS was hidden by our use of the natural join. However, natural join can

72 DATA MODELS FOR DATABASE SYSTEMS

only be used where, fortuitously, the attributes have the same name in the rela

tion schemes; real relational DBMS's do not generally support the natural join

directly, requiring it to be expressed as an equijoin, with the explicit equality

of values spelled out.

It is probably a matter of taste which style one prefers: cascade of functions

or equalities among values. However, there is one important advantage to the

relational model that doesn't depend upon such matters of diction. The result

of an operation on relations is a relation, so we can build complex expressions

of relational algebra easily. However, the result of operations on networks is

not generally a network, or even a part of one. It has to be that way, because

the invisible pointers and unique identifiers for records cannot be referred to

in network query languages. Thus, new networks cannot be constructed by

queries; they must be constructed by the data definition language. While we

can obtain some compounding of operations by following sequences of many

links in one query, we are limited, in the network model, to following those

links. Again, it is a matter of judgment whether the links we select for a

database scheme design are adequate to the task of supporting all the queries

we could reasonably wish to ask.

There is an additional distinction between the network and relational mod

els in the way they treat many-many relationships. In the network model, these

are forbidden, and we learned in Examples 2.23 and 2.24 how to replace many-

many relationships by several many-one relationships. The reason framers of

the network model forbade many-many relationships is that there is really no

good way to store directly a many-many relationship between entity sets E and

F so that given an entity of E we can find the associated F's efficiently and

vice-versa. On the physical level, we are forced to build a structure similar to

that implied by the breakup of a many-many relationship into some many-one

relationships, although there are a substantial number of choices of structure

available.

Presumably, the authors of the network model took the position that

databases were so large that direct implementation of many-many relationships

always lead to unacceptable performance. In relational systems, the philoso

phy is to provide the database designer with a DDL in which he can create

the index structures needed to use a relation that is a many-many relationship

with adequate efficiency. However, it is also permissible, and indeed may be

preferable in small databases, to use a relation that is a many-many relationship

(i.e., it has no key but its full set of attributes) without the data structure that

supports efficient access.

2.6 THE HIERARCHICAL DATA MODEL

A hierarchy is simply a network that is a forest (collection of trees) in which

all links point in the direction from child to parent. We shall continue to use

2.6 THE HIERARCHICAL DATA MODEL 73

the network terminology "logical record type," and so on, when we speak of

hierarchies.

Just as any entity-relationship diagram can be represented in the relational

and network models, such a diagram can always be represented in the hierar

chical model. However, there is a subtlety embodied in our use of the vague

term "represented." In the previous two models, the constructions used to con

vert entity-relationship diagrams had the property that relationships could be

followed easily by operations of the model, the join in the relational case and

link-following in the network case. The same is true in the hierarchical model

only if we introduce "virtual record types."

A Simple Network Conversion Algorithm

Let us first see what happens if we attempt to design hierarchies by simply

splitting networks apart into one or more trees. Recall that in a hierarchy,

all links run from child to parent, so we must start at a node with as many

incoming links as possible and make it the root of a tree. We attach to that

tree all the nodes that can be attached, remembering that links must point

to the parent. When we can pick up no more nodes this way, we start with

another, unattached node as root, and attach as many nodes to that as we can.

Eventually, each node will appear in the forest one or more times, and at this

point we have a hierarchy. The formal construction is shown in Figure 2.17.

procedure BUILD (n);

make n selected;

for each link from some node m to n do begin

make m a child of n;

if m is not selected then BUILD (m)

end

end

/* main program */

make all nodes unselected;

while not all nodes are selected do begin

pick an unselected node n;

/* prefer a node n with no links to unselected nodes,

and prefer a node with many incoming links */

BUILD (n)

end

Figure 2.17 Simple hierarchy-building procedure.

74 DATA MODELS FOR DATABASE SYSTEMS

Example 2.25: Consider the network of Figure 2.16. DEPTS is a good can

didate to pick as the first root, because it has three incoming links, two from

EMPS and one from ITEMS. We then consider EMPS, but find it has no

incoming links. However, ITEMS has incoming links from ENTRIES and OF

FERS. These have no incoming links, so we are done building the tree with root

DEPTS. All the above mentioned nodes are now selected.

The remaining nodes with no outgoing links are CUSTOMERS and SUP

PLIERS. If we start with CUSTOMERS, we add ORDERS as a child and

ENTRIES as a child of ORDERS, but can go no further. From SUPPLIERS

we add OFFERS as a child and are done. Now, all nodes are selected, and we

are finished building the forest. The resulting forest is shown in Figure 2.18.

The only additional point is that of the two children of DEPTS that come

from node EMPS, we have changed one, that representing the manager of the

department, to MGR. D

DEPTS CUSTOMERS SUPPLIERS

EMPS MGR ITEMS ORDERS OFFERS

ENTRIES OFFERS ENTRIES

Figure 2.18 First attempt at a hierarchy for the YVCB database scheme.

Database Records

Hierarchies of logical record types, such as that in Figure 2.18, are scheme level

concepts. The instances of the database corresponding to a scheme consist of a

collection of trees whose nodes are records; each tree is called a database record.

A database record corresponds to some one tree of the database scheme, and

the root record of a database record corresponds to one entity of the root record

type. If T is a node of the scheme, and S is one of its children, then each record

of type T in the database record has zero or more child records of type 5.

Example 2.26: Figure 2.19(a) shows one database record for the DEPTS

tree of Figure 2.18. This database record's root corresponds to the Produce

Department, and it should be understood that the entire database instance

has database records similar to this one for each department. The instance

also includes a database record for each customer, with a structure that is an

expansion of the middle tree in Figure 2.18, and it includes a database record

for every supplier, with the structure implied by the rightmost tree of Figure

2.6 THE HIERARCHICAL DATA MODEL 75

Emp

Sharon

Sloth

Emp

George

Greed

Emp

Arnold

Avarice

Mgr

Esther

Eggplant

(a) One database record for DEPTS.

(b) One database record for SUPPLIERS.

Figure 2.19 Example database records.

2.18. An example, for supplier Ajax, is shown in Figure 2.19(b).

Let us examine the database record of Figure 2.19(a). We see the Produce

Department record at the root. Corresponding to the child EMPS of DEPTS in

Figure 2.18, there are three children of the Produce Department record, for the

three employees of that department, Sloth, Greed, and Avarice. Corresponding

to the child MGR of DEPTS is one child of Produce, that for Esther Eggplant,

the manager of the department. While we expect to find many employee chil

dren, there would normally be only one manager record, even though there is

nothing in the scheme of Figure 2.18 that tells us the DEPTS-MGR relationship

is one-to-one. Finally, we see two children of the produce record corresponding

to items sold: lettuce and tomatoes. In reality, there would be more items, of

course.

Each ITEMS record has some ENTRIES children and some OFFERS chil

dren. We have shown two of each for lettuce, but none for tomatoes, as much to

save space in the figure as to remind the reader that a node in the hierarchical

scheme can translate into zero records of that type in a given database record.

76 DATA MODELS FOR DATABASE SYSTEMS

For records representing entries and offers, we have indicated the unique iden

tifier that distinguishes each such record from all others of the same type; e.g.,

ENTRIES record 121 has QUANTITY 1. Recall that entries have only a quan

tity, and offers only a price as real data, and thus we cannot differentiate among

records of these types by field values alone. Other types of records must also

have unique identifiers, but we have not shown these because our assumptions

let us expect that records for departments, employees, and so on, are uniquely

identified by the values in their fields. As in networks, these unique identifiers

may be thought of as the addresses of the records. D

Record Duplication

As we may notice from Figure 2.18, certain record types, namely ENTRIES and

OFFERS, appear twice in the hierarchical scheme. This duplication carries over

to the instance, where an offer record by supplier s to sell item i appears both

as a child of the ITEMS record for i and as a child of the SUPPLIER record for

a. For example, OFFERS record 293 appears twice in Figure 2.19, and we can

deduce thereby that this offer is an offer by Ajax to sell lettuce at $.69. This

duplication causes several problems:

1. We waste space because we repeat the data in the record several times.

2. There is potential inconsistency, should we change the price in one copy of

the offer, but forget to change it in the other.

As we mentioned in Section 2.1, the avoidance of such problems is a recur

ring theme in database design. We shall see how the network model deals with

it in Chapter 5, via the mechanism known as virtual fields, and in Chapter 7 we

shall investigate the response of the relational model, which is the extensive the

ory of database design known as "normalization." In the hierarchical model,

the solution is found in "virtual record types" and pointers, which we shall

discuss immediately after discussing another reason such pointers are needed.

Operations in the Hierarchical Model

While the links in the network model were regarded as two-way, allowing us to

follow the link forward to the owner record or backward to the owned records,

in the hierarchical model, links are presumed to go only one way, from parent to

child, i.e., from owner to owned records. The reason for this difference will be

understood when we discuss the natural physical implementations of networks

and hierarchies in Chapter 6. For the moment, let us take for granted that one

can only follow links from parent to child unless there is an explicit pointer to

help us travel in the other direction.

For example, in Figure 2.19 we can, given a record for an item like lettuce,

find all its OFFERS children, but we cannot, given OFFERS record 293 deter

mine that it is a child of the lettuce ITEMS record, and therefore it is an offer

2.6 THE HIERARCHICAL DATA MODEL 77

to sell lettuce at the price, $.69, given in record 293. If that is so, how could we

determine what items Ajax offers to sell? We can find the SUPPLIERS record

for Ajax, because another operation generally found in hierarchical systems is

the ability to find the root of a database record with a specified key, such as

"Ajax." We can then go from Ajax to all its offers. But how do we find what

items are offered for sale? In principle we can do so. Take a unique identifier

for an OFFERS record, say 293, and examine the entire collection of DEPTS

database records, until we find an item that has offer 293 as a child. How

ever, that solution is evidently too time consuming, and we need to augment

the hierarchical scheme by pointers that lead directly where we decide they are

needed.

Virtual Record Types

We can solve all three problems mentioned above, redundancy, potential in

consistency, and the inability to follow paths upwards in trees, by the same

mechanism. In each scheme, we insist on having only one occurrence of any

record type. Any additional places where we would like that record type to

appear, we place instead a virtual record of that type. In an instance, instead

of a physical record, we place a pointer to the one occurrence of that physical

record in the database. For example, the ENTRIES node in the tree for CUS

TOMERS and the OFFERS node in the tree for SUPPLIERS of Figure 2.18

will be replaced by virtual ENTRIES and virtual OFFERS, respectively, and

in database trees, they will point to the corresponding record in the tree for

DEPTS. Thus, in place of the record 293 in Figure 2.19(b) would be a pointer

to the record 293 in Figure 2.19(a). This modification immediately removes the

redundancy of records, and since we now have only one copy of any record to

update, it removes the inconsistency, as well.

To avoid duplicating logical record types in hierarchical schemes we must

modify the procedure BUILD of Figure 2.17 so it checks whether a new node m

was previously selected, before adding m to a particular point in the hierarchical

scheme. If it was selected already, then add a "virtual" m in the place it belongs.

The details are given in Figure 2.20, and this version of BUILD must be coupled

with the main routine in Figure 2.17 to make a complete program converting

networks to hierarchies.

Example 2.27: Figure 2.21 shows the result of repeating Example 2.25 using

the BUILD procedure of Figure 2.20 in place of that in Figure 2.17. One dif

ference is that in the CUSTOMERS and SUPPLIERS trees, the nodes labeled

ENTRIES and OFFERS in Figure 2.18 are replaced by virtual versions of them

selves, because they represent the second time each of these logical record types

was encountered in the forest. The nodes labeled ENTRIES and OFFERS in

the DEPTS tree remain as they were, because those nodes represent the first

78 DATA MODELS FOR DATABASE SYSTEMS

procedure BUILD (n)

make n selected;

for each link from some node m to n do

if m is not selected then begin

make m a child of n;

BUILD (m)

end

else /* m was previously selected */

make virtual m be a child of n

end

Figure 2.20 Hierarchy-building procedure using virtual record types.

times these record types are encountered by the BUILD procedure.

A second difference is that we have replaced the MGR node by virtual

EMPS. Recall that the node we called MGR in Figure 2.18 was really a second

copy of EMPS, and we renamed it to help tell the difference between the DEPT

children. Using a pointer to an employee record in place of a manager record

makes excellent sense, since managers have no fields of their own; we merely

need a reference to a particular employee record to mark which employee is the

manager of the department. D

DEPTS CUSTOMERS SUPPLIERS

EMPS Virtual ITEMS ORDERS Virtual

EMPS OFFERS

ENTRIES OFFERS Virtual /

^•^ X^ ENTRIES /

Figure 2.21 Second attempt at a hierarchy for the YVCB database.

Representation of Bidirectional Relationships

Virtual record types also solve the problem of traversing links in both directions.

If we have a many-one relationship from record type R to record type 5, we can

make R be a child of 5, and then make virtual 5 be a child of R. If we have

a many-many relationship between R and S, we cannot make either a child of

the other, but we can let R and S each take their natural position in the forest.

2.6 THE HIERARCHICAL DATA MODEL 79

and then create a child of each that is a virtual version of the other.

Example 2.28: Reconsider Example 2.23, which discussed a many-many re

lationship between courses and students. Instead of creating a new record type

to interpose between COURSES and STUDENTS, as we did in that example,

in the hierarchical model we may create a scheme with the two trees of Figure

2.22.

COURSES STUDENTS

\ ,<

X
Virtual Virtual

STUDENTS COURSES

Figure 2.22 Representing a many-many relationship.

In Figure 2.23 we see an instance of the scheme of Figure 2.22; this instance

is the same one that was represented as a network in Figure 2.15. Given a course,

such as CS101, we can find the students enrolled as follows.

1. Find the courses record for CS101. Recall that finding a root record, given

its key, is one of the typical operations of a hierarchical system.

2. Find all the virtual STUDENTS children of CS101. In Figure 2.23, we

would find pointers to the STUDENT records for Grind and Nerd, but at

this point, we would not know the names or anything about the students

to whose records we have pointers.

3. Follow the pointers to find the actual student records and the names of

these students.

Similarly, given a student, we could perform the analogous three steps and

find the courses the student was taking. D

Combined Record Types

To solve the third problem, that is, to navigate quickly along arbitrary paths

that the database scheme designer believes will be taken in practice, we often

need combined records consisting of some ordinary fields, holding data, and

other fields that are pointers to other record types. As with all virtual record

types, if we are at a record r that contains a field of type "virtual T" we may

follow that pointer as if a record of type T were a child of r.

80 DATA MODELS FOR DATABASE SYSTEMS

I \

CS101 MATH40 EE200

\
4 J

\\

\

\

\

V

\

to

Grind

to
/

to

Grind

to

Weenie

to

Weenie

1
1

1
Nerd

\

\

\

1

I

\

\

\

.--X
! [<*-

\ '

]

(•

Grind /

\ /

1 Nerd Weenie | Jock

\

\ \
to

CS101

to

MATH40

to

CS101

to

MATH40

to

EE200

Figure 2.23 Physical connections representing virtual records.

Example 2.29: Suppose we want to store grades in the enrollment records

that interpose between student and course records. We can modify the scheme

of Figure 2.22 by replacing the Virtual COURSE child of STUDENTS by a

combined record that has a Virtual COURSE field as well as a GRADE field.

The new scheme is shown in Figure 2.24, and to make matters clearer, we have

shown the fields of the record types explicitly. We also adopt the convention

that *T stands for a virtual record of type T.

STUDENTS(NAME, ADDR) , NUMBER)

ENROLL(*COURSE, GRADE) ^STUDENTS

Figure 2.24 Scheme with combined record type.

To find all the grades issued in CS101, we have to find the root of the

COURSES database record for CS101, then follow all the virtual student point

ers and from them, find their enrollment children. Only some of these enroll

ments will be for CS101, exactly one per student investigated.

2.6 THE HIERARCHICAL DATA MODEL 81

If that is too inefficient, there are several other schemes we could use.

One thing we don't want to do is duplicate enrollments as children of both

STUDENTS and COURSES. However, we could use the scheme of Figure 2.25.

There, we can go directly from the CS101 record to its enrollments, and find

the grades directly. On the other hand, to find all the students taking CS101

we need to go first to ENROLL, then to STUDENTS, via two virtual record

pointers. In comparison, Figure 2.24 lets us go from courses to students in one

hop. Which is better depends on what paths are more likely to be followed.

If we were willing to pay the space penalty, we could even use both sets of

pointers. D

STUDENTS(NAME, ADDR)

f

I

\

COURSES(DEPT, NUMBER)

ENROLL(*STUDENTS, *COURSES, GRADE) *ENROLL

Figure 2.25 Another scheme for courses and students.

Example 2.30: In Figure 2.26 we see a better design for the YVCB database.

Entries, with their quantities, and offers, with their prices, are handled by

the trick of the previous example, using combined records. We have also added

virtual ORDERS as a child of ITEMS, to facilitate finding the orders for a given

item, and we have similarly added virtual SUPPLIERS as a child of ITEMS to

help find out who supplies a given item.

DEPTS

EMPS *EMPS/ / ITEMS

/

*ORDERS

CUSTOMERS

ORDERS

\
N

SUPPLIERS

*ITEMS/

/ PRICE

- ^ *ITEMS/

X QUANTITY/"

Figure 2.26 Improved design for YVCB database.

82 DATA MODELS FOR DATABASE SYSTEMS

We have not chosen to add virtual DEPTS as a child of either EMPS or

MGR, even though that would help us find the department a given employee

was in or what department a manager managed. We could have added these

pointers if we chose, of course, paying additional space to speed navigation

along a particular path. The reason we chose not to was that as the structure

stands, the only way to reach EMPS or MGR records is through their DEPT,

and therefore, we shall "know" the department anyway, without needing to

follow a pointer. D

2.7 AN OBJECT-ORIENTED MODEL

There are a large number of proposals, and some implementations, of models

that capture the essentials of object-oriented query languages; they go by vari

ous names such as "semantic," "functional," or "format" data models, as well

as by several other names. Their common thread is that they support

1. Object identity. The elements with which they deal are typically records

with unique addresses, just as in the network and hierarchical models.

2. Complex objects. Typically, they allow construction of new types by record

formation and set formation.

3. Type hierarchy. They allow types to have subtypes with special properties.

In what follows, we shall introduce a notation for defining object structures,

i.e., the formats for types. We shall later discuss how type hierarchies can be

constructed, and we shall give an example notation.

Object Structure

The set of object structures definable in our model is very close to the set

of possible schemes for database records in the hierarchical model. We can

define the set of allowable object types, together with their intended physical

implementation, recursively by:

1. A data item of an elementary type, e.g., integer, real, or character string

of fixed or varying length, is an object type. Such a type corresponds to

the data type for a "field" in networks or hierarchies.

2. If T is an object type, then SETOF(T) is an object type. An object of

type SETOF(T) is a collection of objects of type T. However, since objects

must preserve their identity regardless of their connections to other objects,

we do not normally find the member objects physically present in the

collection; rather the collection consists of pointers to the actual objects

in the set. It is as though every child record type in a hierarchy were a

virtual record type, and every logical record type in the hierarchy were a

root of its own tree.

2.7 AN OBJECT-ORIENTED MODEL 83

3. If 7i,...,7fc are object types, then RECORDOF(7\,.. . ,Tk) is an object

type. As with sets, an object of this type really consists of pointers to one

object of each of the k types in the record. However, if object type Tj is an

elementary type, then the value of the object itself appears in the record.

Example 2.31: Let us translate our running example into the above terms.

We shall, for simplicity, assume that the only elementary types are string and

int. Then the type of an item can be represented by the record

ItemType = RECORDOF (name: string, I#:int)

Notice the convention that a field of a record is represented by the pair

(<fieldname>: <type>).

To handle orders, we need to represent item/quantity pairs, as we did in

Figure 2.26. Thus, we need another object type

IQType = RECORDOF (it em: ItemType, quantity:int)

Here, the first field is an object of a nonelementary type, so that field should

be thought of as a pointer to an item.

Now we can define the type of an order to be:

OrderType = RECORDOF (O#:int, includes :SETOF(IQType))

Here, we have embedded the definition of another object type, SETOF(/QType),

within the definition of OrderType. That is equivalent to writing the two

declarations:

SIQType = SETOF(IQType)

OrderType = RECORDOF (O#:int, includes: SIQType)

Either way, the field includes of OrderType is a representation of a set of

pointers to objects of type IQType, perhaps a pointer to a linked list of pointers

to those objects.

Customers can be represented by objects of the following type:

CustType = RECORDOF (name: string, addr: string,

balance : int , orders : SETOF (OrderType))

while departments may be given the following declaration:

DeptType = RECORDOF (name: string, dept#:int,

emps : SETOF (EmpType) , mgr : EmpType ,

items : SETOF (ItemType))

Notice that this declaration twice makes use of a type EmpType, for employees,

once as a set and once directly. In both cases, it is not the employees or man

ager of the department that appear there, but pointers to the actual employee

objects. Those objects have the following type:

84 DATA MODELS FOR DATABASE SYSTEMS

EmpType = RECORDOF (name: string,

salary :int, dept :DeptType)

Here, we should notice that DeptType is the type of a field of EmpType, just as

EmpType and SETOF(EmpType) are types of fields of DeptType. That appar

ent mutual recursion causes no problems because the references are by pointers,

rather than physical presence, exactly as we used virtual record pointers in the

hierarchical model to represent many-many relationships, e.g., in Figure 2.22.

The last feature of our YVCB example that we need to incorporate is sup

pliers and the prices of the items they sell. There, we need a type representing

item-price pairs, analogous to the item-quantity pairs we used earlier. The

entire definition of types for our example is given in Figure 2.27.

ItemType = RECORDOF (name: string, I#:int)

IQType = RECORDOF (it em: ItemType, quantity :int)

OrderType = RECORDOF (O#: int, includes :SETOF(IQType))

CustType = RECORDOF (name: string, addr: string,

balance : int , orders : SETOF (OrderType))

DeptType = RECORDOF (name: string, dept#:int,

emps : SETOF (EmpType) , mgr : EmpType ,

i tems : SETOF (I1emType))

EmpType = RECORDOF (name: string,

salary : int , dept : DeptType)

IPType = RECORDOF(item:ItemType, price:int)

SupType = RECORDOF (name: string, addr: string,

supplies: SETOF (IPType))

Figure 2.27 Object types for the YVCB database.

The database scheme in Figure 2.27 is similar to, but not identical to

the scheme of Figure 2.26. For example, Figure 2.27 includes a pathway from

employees to their departments, since the field dept of EmpType is a pointer

to the department. However, in Figure 2.27 we do not have a way to get from

items to their orders or suppliers. There is nothing inherent in either model that

forces these structures. We could just as well chosen to add a virtual pointer

child of EMPS in Figure 2.26 that gave the department of the employee, and

in Figure 2.27 we could have added the additional pointers to item records by

declaring

2.7 AN OBJECT-ORIENTED MODEL 85

ItemType = RECORDOF (name: string, I#:int,

sups:SETOF(SupType) , orders :SETOF(OrderType))

An additional difference between the two schemes is that in Figure 2.27, the

manager of the department is an object, not a set, and therefore there can be

only one manager of a department. However, in Figure 2.26, there could, in

principle, be more than one manager for a department. D

Classes and Methods

An object-oriented data model is not limited to the notion of an object type.

The basic notion is really the class, which is an object type for the underlying

data structure, and a set of methods, which are operations to be performed on

the objects with the object-structure of that class.12

For example, we could construct a class of all objects with the structure of

EmpType of Figure 2.27. For this class we might create a set of methods like

those in Figure 2.28. In practice, there would probably be many more methods,

since each field access must be performed by a declared method.

GetName :

return (name)

Raise (X):

salary := salary + X

Figure 2.28 Example methods.

Class Hierarchies

Another essential ingredient in the object model is the notion of subclasses

and hierarchies of classes, a formalization of "isa" relationships. There are two

common approaches to the definition of class hierarchies.

1. In addition to record and set constructors for types, allow a third con

structor, type union. Objects of type U(7\,T2) are either type T\ objects

or type TI objects.

2. Define a notion of subtype for given types.

The first approach is used in programming languages like C and Pascal. In

object-oriented database systems, it is preferable to use the second approach,

because

11 This book also uses the term "method" to refer to the body of an algorithm. The

meanings are not the same, but not altogether unrelated either. We trust no confusion

will result.

86 DATA MODELS FOR DATABASE SYSTEMS

a) It does not allow the union of unrelated types to be considered a type,

a capability that is useful in programming languages when defining data

structures, but is counterproductive when trying to develop a meaningful

database scheme.

b) It extends naturally from object structures to classes, i.e., from types to

types with methods.

Suppose we have a class C, and we wish to define a subclass D. We begin

with the same object structure for D as for C, and with the same methods for

D as for C. We may then modify the class D as follows.

1. If the structure for C is a record type, i.e., of the form

RECORDOF(7\,...,rfc)

then we may add additional components to the record structure.

2. We may create new methods that apply only to subclass D.

3. We may redefine methods of class C to have a new meaning in D.

Example 2.32: Following our example in Figure 2.27, it would be natural

to define MgrType as a subclass of EmpType. We might give MgrType the

additional field rank, so the structure for MgrType would be

MgrType = RECORDOF (name: string, salary :int,

dept : DeptType , rank:int)

We might also create a method for MgrType that returned the rank. We

could even create a method for MgrType that returned the department. If this

method were not defined for the class of employees, then we could not use it

on objects that were not of the manager class, even though the method "made

sense," since all employee objects have a dept field.

Notice that each employee, whether or not a manager, corresponds to ex

actly one object of class EmpType. If the employee happens to be a manager,

then that object has extra fields and methods, but there are not two objects

for this employee. D

Operations in the Object Model

Methods, being arbitrary procedures, can perform any operation on data what

soever. However, in order to access data efficiently, it is useful to limit the

operations that may be performed to something like what is possible in the

hierarchical model. It is essential to allow navigation from an object O to the

objects pointed to by fields of O; this operation corresponds to movement from

parent to child, or along a pointer in a virtual field in the hierarchical model.

It is also very useful to allow selection, as in the relational model, on fields that

are sets of objects. Thus, we can navigate from an object O to a designated

subset of the objects found in some set-valued field of O.

EXERCISES 87

In Chapter 5, we shall discuss OPAL, a language whose data model in

cludes the features discussed in this section, as well as some generalizations.

We shall see that OPAL allows arbitrary code in methods, but distinguishes

between database objects and user objects. The former must be accessed only

in limited ways, as outlined above, if access is to be efficient. User objects can

be manipulated by arbitrary methods. In essence, the OPAL language serves

as both the DML (when manipulating database objects) and as the host lan

guage (when manipulating user objects). As we discussed in Section 1.5, this

integration of the DML and host language is one of the elements that give

object-oriented languages like OPAL their power.

Representing Entity-Relationship Diagrams in the Object Model

We mentioned above that the object model embeds the hierarchical model, in

the sense that given any hierarchical scheme, one can mimic it in the object

model by regarding children of a node n (including children that are virtual

record types) in a hierarchical scheme as fields in an object structure corre

sponding to n. The object structures for the children of n have their children

as fields, and so on. Thus, the object model can express whatever the entity-

relationship model can express, at least in principle; as we saw in Section 2.6,

direct constructions of hierarchies from entity-relationship diagrams, via net

works, often present the user with awkward access paths, in which the infor

mation of the original entity-relationship diagram is present but not efficiently

accessible. We shall leave as an exercise a translation from entity-relationship

diagrams, networks, or hierarchies that makes the information of those schemes

easily accessible in the object structures.

EXERCISES

2.1: Many ordinary programming languages can be viewed as based on a par

ticular data model. For example SNOBOL can be said to use a character

string model of data. Can you think of any other programming languages

that use a particular data model? What data models do they use? Are

any of them well suited to database implementation?

2.2: Use the entity-relationship model to describe the data connected with an

organization with which you are familiar, such as a school or business.

2.3: Give an entity-relationship diagram for a database showing fatherhood,

motherhood, and spouse relationships among men and women.

2.4: Convert your answer to Exercise 2.3 into database schemes in the following

models: (a) relational (b) network (c) hierarchical (d) object model (as in

Section 2.7).

88 DATA MODELS FOR DATABASE SYSTEMS

2.5: The beer drinkers database consists of information about drinkers, beers,

and bars, telling

i) Which drinkers like which beers,

it) Which drinkers frequent which bars.

iii) Which bars serve which beers.

Represent the scheme for the beer drinkers database in the (a) entity-

relationship (b) relational (c) network (d) hierarchical (e) object models.

2.6: In Figure 2.29 we see the entity-relationship diagram of an insurance com

pany. The keys for EMPLOYEES and POLICIES are EMP# and P#,

respectively; SALESMEN are identified by their isa relationship to EM

PLOYEES. Represent this diagram in the (a) relational (b) network (c)

hierarchical (d) object models.

EMP#) C NAME) (SALARY

POLICIES

x' \

BENEFICIARY) C NAME

Figure 2.29 An insurance company database.

2.7: Figure 2.30 shows a genealogy database, with key attributes NAME and

LIC#. The intuition behind the diagram is that a marriage consists of

two people, and each person is the child of a marriage, i.e., the marriage

of his mother and father. Represent this diagram in the (a) relational (b)

network (c) hierarchical (d) object models.

EXERCISES

LIC#) (DATE

•—

Figure 2.30 A genealogy database.

2.8: The recipe for moo shoo roe includes bamboo shoots, sliced pork, wood

ears, golden needles, and assorted vegetables. Hot and sour soup is made

from wood ears, bean curd, and golden needles, while family style bean

curd is made from bean curd, sliced pork, and assorted vegetables.

a) Suppose we wish to store this information in a relation

RECIPE(DISH, INGREDIENT)

Show the current value of the relation as a table (use suitable abbre

viations for the dishes and ingredients).

b) Suppose we wish to represent the above information as a network with

record types DISH, INGREDIENT and DUMMY, where a DUMMY

record represents a pair consisting of one ingredient for one dish. Sup

pose also that there are links USES from DUMMY to DISH and

PART-OF from DUMMY to INGREDIENT. Draw the INGREDI

ENT, DISH, and DUMMY record occurrences and represent the links

USES and PART-OF for this database instance.

2.9: An "adventure" game is based on a map with a set of nodes representing

locations. There is a set of directions (which you should not assume is

limited to N, E, S, and W; there could be NE, UP, and so on). Given

any node n and any direction d, there is at most one other node that one

reaches by going in direction d from n.

a) Give an entity-relationship diagram representing the map. Indicate

the functionality of relationships.

b) Design a network scheme for maps. Avoid redundancy whenever pos

sible.

90 DATA MODELS FOR DATABASE SYSTEMS

c) Convert your network to a hierarchy using the algorithm of Figure

2.17, but with the BUILD procedure of Figure 2.20.

d) Does your answer to (c) allow you to find the next node, given a node

and a direction, efficiently? If not, find another hierarchy that does.

* 2.10: Consider the entity-relationship diagram of Figure 2.31. The intent is that

PART-OF is a ternary relationship among PARTS, PARTS, and QUAN

TITY, with (p, s, q) in the relationship if and only if part s appears q > 1

times as a subpart of part p. It is to be expected that a given part ap

pears in both the first and second components of this relationship; i.e., a

subpart may itself have subparts. Note: since the entity set QUANTITY

has only one attribute, we conventionally show this entity set as if it were

an attribute of PART-OF.

QUANTITY WTPART-OF

2

Figure 2.31 Part hierarchy database.

We wish to design database schemes in various data models that represent

the information in Figure 2.31. It is desired that the scheme avoids redun

dancy and that it is possible to answer efficiently the following two types

of queries.

t) Given a part, find its subparts and the quantity of each (no recursion

is implied; just find the immediate subparts).

it) Given a part, find all the parts of which it is a subpart.

Design suitable schemes in the (a) relational (b) network (c) hierarchical

(d) object models.

* 2.11: Suppose we wish to maintain a database of students, the courses they have

taken, and the grades they got in these courses. Also, for each student, we

want to record his name and address; for each course we record the course

name and the department that offers it. We could represent the scheme in

various models, and we have several options in each model. Some of those

schemes will have certain undesirable properties, among which are

A) The inability to determine, given a student, what courses he has taken,

without examining a large fraction of the database.

B) The inability to determine, given a course, what students have taken

it, without examining a large fraction of the database.

EXERCISES 91

C) The inability to determine, by any means, the grade a given student

received in a given course.

D) Redundancy, such as the repetition of name-department facts for

courses, student-course-grade facts, or name-address facts for students.

Below are several suggested schemes. For each indicate which subset of

{A,B, C, D} the scheme suffers from.

a) The relation scheme

(COURSE, DEPT, STUDENT, ADDR, GRADE)

with indices on STUDENT and COURSE that let us find the tuples

for a given student or a given course without looking at other tuples.

b) The relation schemes (COURSE, DEPT, GRADE) and

(COURSE, STUDENT, ADDR)

with an index on course in each relation.

c) A network with logical record types COURSE(NAME, DEPT), giving

a course name and its department, and

SAG(NAME, ADDR, GRADE)

giving the name of a student, his address, and a grade. The network

has link CSG from SAG to COURSE, with the intent that a COURSE

record owns a set of SAG records (s,a, g), one for each student s that

took the course; a is the student's address and g is the grade he got

in the course.

d) The hierarchy of Figure 2.32(a).

e) The hierarchy of Figure 2.32(b).

f) The object model scheme that has an object of type SETOF(C<ype)

to represent courses and an object of type SETOF(Stype) to represent

students. These types are defined by:

Ctype = RECORDOF (name: string, students :SETOF(Stype))

Stype = RECORDOF (name: string, transcript :Ttype)

Ttype = SETOF (RECORDOF (course: Ctype, grade : string))

* 2.12: We mentioned in Section 2.4 that two tables represent the same relation

if one can be converted to the other by permuting rows and/or columns,

provided the attribute heading a column moves along with the column. If

a relation has a scheme with m attributes and the relation has n tuples,

how many tables represent this relation?

2.13: Let R and S be the relations shown in Figure 2.33. Compute

a) R U 5.

b) R — S (ignore attribute names in the result of union and difference).

92 DATA MODELS FOR DATABASE SYSTEMS

COURSE(NAME, DEPT)

STUDENT(NAME, ADDR, GRADE)

(a) Hierarchy for Exercise 2.11(d).

COURSE(NAME,

\

\

STUDENT(NAME, ADDR) I

GRADE *COURSE

(b) Hierarchy for Exercise 2.11(e).

Figure 2.32 Two hierarchies.

c) R t>o S.

d) *A(R).

e) aA=c(R x S).

f) S X R.

g) S -T {b,c} (note {6, c} is a unary relation, that is, a relation of arity

1)-

h) R txi 5 (take < to be alphabetic order on letters).

B<C

a b be

c b e a

d e b d

(a) R (b) S

Figure 2.33 Example relations.

* 2.14: The transitive closure of a binary relation R, denoted R+, is the set of

pairs (a, b) such that for some sequence ci, 02, . . . , cni

t) ci = o.

it) c« = 6.

tit) for i = 1, 2, . . . , n - 1, we have (cj, Cj+i) in R.

EXERCISES 93

Prove that there is no expression of relational algebra equivalent to the

transitive closure operation on finite relations. Note this result is easy for

infinite relations, if we use the compactness theorem of first-order logic.

* 2.15: Show that the five relational algebra operators (union, difference, selec

tion, projection, and Cartesian product) are independent, meaning that

none can be expressed as a formula involving only the other four opera

tors. Hint: For each operator you need to discover a property that is not

possessed by any expression in the other four operators. For example, to

show independence of union, suppose there were an expression E(R, S)

that used only difference, selection, projection, and product, but was equal

to R U S for any R and S. Let RQ consist of the single tuple (a, 6) and So

of the single tuple (c, d), where a,b,c, and d do not appear as constants in

E. Show by induction on the number of operators used in any subexpres

sion F of E that the relation that is the value of F(Ro, So) cannot have a

component in which one tuple has a and another tuple has c. Since RO U SQ

has such a component, it follows that E(Ro, So) ¥• RO U So-

* 2.16: Prove the following algebraic identities. In each case, assume the set-

of-mappings viewpoint, in which columns of all relations have attribute

names.

a) Rc*S = StxR (Theorem 2.2(b)).

c) <TF(R x 5) = (CTF(R) x S), provided that condition F mentions only

attributes in the scheme for R.

d) (TF(^S(R)) — irs(ffF(R)), provided that F mentions only attributes

in the set S.

* 2.17: Show that, in the set-of-lists viewpoint,

R M (S I* T) = (R tx S)

where r is the arity of R and j is at most the arity of S.

» 2.18: We defined the semijoin R X S to be nR(R tx S). Prove that R X S can

also be computed by the expression R tx (nRns(S))-

2.19: In relational algebra, the empty relation, 0, and the relation {e}, which is

the set containing only the empty tuple (tuple with no components), act

very much like the constants 0 and 1, respectively, in ordinary arithmetic.

Show the following laws.

a) R\J9 = <1>(JR = R.

b) flx0 = 0xfl = 0.

c) R x {e} = {e} x R = R.

d) ir\(R) is {e} if R / 0 and is 0 if R = 0. Here, A stands for the empty

list of attributes.

94 DATA MODELS FOR DATABASE SYSTEMS

* 2.20: Show how every (a) network scheme and (b) hierarchical scheme can be

translated into a collection of type definitions in the object model of Section

2.7, in such a way that traversing any link (in the network), or parent-to-

child or virtual pointer (in the hierarchy) can be mimicked by following

pointers in the fields of objects.

* 2.21: Show how every object model scheme can be expressed as an entity-

relationship diagram.

BIBLIOGRAPHIC NOTES

At an early time in the development of database systems, there was an estab

lished view that there were three important data models: relational, network,

and hierarchical. This perspective is found in Rustin [1974], Sibley [1976], and

the earliest edition of Date [1986], published in 1973; it is hard to support this

view currently, although these models still have great influence. Kerschberg,

Klug, and Tsichritzis [1977], Tsichritzis and Lochovsky [1982], and Brodie, My-

lopoulos, and Schmidt [1984] survey the variety of data models that exist.

Bachman [1969] is an influential, early article proposing a data model, now

called "Bachman diagrams." CODASYL [1971] is the accepted origin of the

network model, and Chen [1976] is the original paper on the entity-relationship

model.

The Relational Model

The fundamental paper on the relational model, including the key issues of re

lational algebra and relational database design (to be discussed in Chapter 7),

is Codd [1970].

There are a number of earlier or contemporary papers that contain some

ideas of the relational model and/or relational algebra. The paper by Bosak et

al. [1962] contains an algebra of files with some similarity to relational algebra.

Kuhns [1967], Levien and Maron [1967], and Levien [1969] describe systems with

relational underpinnings. The paper by Childs [1968] also contains a discussion

of relations as a data model, while Filliat and Kranning [1970] describe an

algebra similar to relational algebra.

Extensions to the Relational Model

There is a spectrum of attempts to "improve" the relational model, ranging

from introduction of null values, through structures that are closer to object-

oriented models than they are to the value-oriented relational model.

Attempts to formalize operations on relations with null values have been

made by Codd [1975], Lacroix and Pirotte [1976], Vassiliou [1979, 1980], Lipski

[1981], Zaniolo [1984], Imielinski and Lipski [1984], Imielinski [1986], Vardi

[1986], and Reiter [1986].

BIBLIOGRAPHIC NOTES 95

Some languages more powerful than relational algebra, for use with the

relational model, have been considered by Aho and Ullman [1979], Cooper

[1980], and Chandra and Harel [1980, 1982, 1985]. The complexity of such

languages, i.e., the speed with which arbitrary queries can be answered, is

discussed by Vardi [1982, 1985].

Some early attempts to enhance the relational model involve providing

"semantics" by specializing the roles of different relations. Such papers include

Schmid and Swenson [1976], Furtado [1979], Codd [1979], Sciore [1979], and

Wiederhold and El Masri [1980].

Object-Oriented Models

There is a large family of "semantic" data models that support object-identity;

some of them also involve query languages with value-oriented features. Hull

and King [1987] is a survey of such models. The semantic model of Hammer

and McLeod [1981] and the functional model of Shipman [1981] are early efforts

in this direction. More recent efforts are found in Abiteboul and Hull [1983],

Heiler and Rosenthal [1985] and Beech [1987].

The paper by Bancilhon [1986] is an attempt to integrate an object-oriented

data model with logic programming, but although it supports abstract data

types, it finesses object-identity.

Complex Objects

The fundamental paper on complex objects, built from aggregation (record

formation) and generalization (type hierarchies) is Smith and Smith [1977].

Notations for complex objects have been developed in Hull and Yap [1984],

Kuper and Vardi [1984, 1985], Zaniolo [1985], Bancilhon and Koshafian [1986],

and Abiteboul and Grumbach [1987].

Minsky and Rozenshtein [1987] present a scheme for defining class hierar

chies, including collections of classes that do not form a tree, but rather a class

can have several incomparable superclasses.

There is also a family of papers that build complex objects in a value-

oriented context, chiefly by allowing attributes of relations to have types with

structure. These are called "non-first-normal-form" relations, following Codd

[1970], who called a relation "in first-normal-form" if the types of attributes

were elementary types, e.g., integers. Papers in this class include Jaeschke and

Scheck [1982], Fischer and Van Gucht [1984], Roth, Korth, and Silberschatz

[1984], Ozsoyoglu and Yuan [1985], and Van Gucht and Fischer [1986].

Notes on Exercises

A solution to Exercise 2.14 can be found in Aho and Ullman [1979]. A result

on operator independence similar to Exercise 2.15 was proved by Beck [1978].

CHAPTER 3

Logic

as a

Data Model

We now begin a study of first-order (predicate) logic as a way to represent

"knowledge" and as a language for expressing operations on relations. There is

a hierarchy of data models, each with a notion of data like that of the relational

model, but with progressively more powerful, logic-based languages for express

ing the permitted operations on data. The simplest model, called "datalog,"

is introduced in Section 3.2. There and in Sections 3.3-3.5 we show how to

implement this language as a sequence of steps in relational algebra. Section

3.6 introduces an extended form of datalog, in which the negation operator

can be used. The extension that includes function symbols in arguments, as in

Example 1.10, is deferred to Chapter 12 (Volume II).

In Section 3.7 we relate the expressive power of datalog to the power of

relational algebra. The next two sections discuss two restricted forms of dat

alog, called "domain relational calculus" and "tuple relational calculus," that

are equivalent in power to relational algebra and form the basis for most com

mercial query languages in relational systems. Finally, Section 3.10 mentions

the "closed world assumption," which justifies some of the decisions we make

about how logical rules relate to database operations.

3.1 THE MEANING OF LOGICAL RULES

Let us recall our informal introduction to if • • • then logical rules in Section 1.6.

For example, we discussed the pair of rules

(1) boss(E.M) :- manages (E,M).

(2) boss(E.M) :- boss(E.N) ft manages(N,M) .

in Example 1.12. There we attributed an intuitive meaning to these rules, which

is that whenever we substitute constants for the variables E, N, and M, if the

substitution makes the right side true, then the left side must also be true. In

96

3.1 THE MEANING OF LOGICAL RULES 97

general, rules define the true instances of certain predicates, boss in this case,

in terms of certain other predicates that are defined by database relations, e.g.,

manages.

There are three alternative ways to define the "meaning" of rules. In sim

ple cases, such as the one above, all these methods yield the same answer. As

we permit more complicated kinds of logical rules, we are faced with different

approaches that result in different answers, because logical rules, being declara

tive in nature, only state properties of the intended answer. In hard cases, there

is no guarantee that a unique answer is defined, or that there is a reasonable

way to turn the declarative program into a sequence of steps that compute the

answer.

Proof-Theoretic Interpretation of Rules

The first of the three interpretations we can give to logical rules is that of axioms

to be used in a proof. That is, from the facts in the database, we see what other

facts can be proved using the rules in all possible ways. This interpretation is

the one we gave to the rules in Example 1.12, where we showed that the boss

facts that could be proved from the rules (1) and (2) above, plus a given set

of manages facts were exactly what one would expect if "boss" were given the

interpretation "somewhere above on the management hierarchy."

In simple cases like Example 1.12, where all the axioms are if ••• then

rules, and there are no negations in the rules or the facts, then it is known

that all facts derivable using the rules are derivable by applying the rules as we

did in that example. That is, we use the rules only by substituting proved or

given facts in the right side and thereby proving the resulting fact on the left.1

It turns out that when there are negations, the set of provable facts often is

not what we intuitively want as a meaning for the logical rules anyway. Thus,

we shall here define the "proof-theoretic meaning" of a collection of rules to

be the set of facts derivable from given, or database facts, using the rules in

the "forward" direction only, that is, by inferring left sides (consequents, or

conclusions) from right sides (antecedents or hypotheses).

Model-Theoretic Interpretation of Rules

In this viewpoint, we see rules as defining possible worlds or "models." An

interpretation of a collection of predicates assigns truth or falsehood to ev

ery possible instance of those predicates, where the predicates' arguments are

chosen from some infinite domain of constants. Usually, an interpretation is

1 Note that if there are negations in our axioms or facts, this statement is false. For

example, if we have rule q :- p and the negative fact -'q, we can derive -'p by applying

the rule "backwards, i.e., given that the left side is false we can conclude that the right

side is false.

98 LOGIC AS A DATA MODEL

represented by its set of true instances. To be a model of a set of rules, an

interpretation must make the rules true, no matter what assignment of values

from the domain is made for the variables in each rule.

Example 3.1: Consider the rules

(1) p(X) :- q(X).

(2) q(X) :- r(X).

and suppose the domain of interest is the integers. These rules say that when

ever r is true of a certain integer then q is also true, and whenever q is true, p

is true as well.

One possible model, which we call Mi, makes r(l), q(l), p(l), 9(2), p(2),

and p(3) true, and makes p, 9, and r false for all other arguments. To see

that MI is a model, note that when we substitute X = 1 in rule (1), both the

antecedent and consequent become true, so the statement "if q(l) then p(l)"

is true. Likewise, when we substitute X = 1 in rule (2), both sides are true.

When we substitute X — 2 in rule (1), again both sides are true, but when we

let X = 2 in rule (2), the antecedent is false and the consequent true. That

is another way of making an if • • • then statement true, so again rule (2) is

satisfied. The same observation applies if we substitute X = 3 in rule (1).

When we substitute X = 3 in rule (2), or we substitute any value besides

1, 2, or 3 in either rule, we get a situation where both antecedent and conse

quent are false. Again the if • • • then statement is made true. Thus whatever

substitution we make, the rules are true, and therefore we have a model.

On the other hand, if we make r(l) true and make the three predicates

false for all other values, then we do not have a model. The reason is that when

we substitute X — 1 in rule (2), we have a true antecedent and false consequent;

that is the one combination that makes an if • • • then statement false. D

When we use rules to define operations on a database, we assume an in

stance of a database predicate is true if and only if the corresponding relation

holds that fact as a tuple. We then try to extend the database to a model on all

the predicates, and we may think of any such model as a possible world defined

by the rules. For example, we might assume that r is a database predicate in

Example 3.1, while p and q are defined in terms of r. We might also suppose

that r(l) is true, while r(X) is false for X ^ 1. Then the model

described in Example 3.1, is a possible world consistent with this database.

However, there is another consistent model MI = {r(l),9(l),p(l)}, in

which p(l), 9(1), and r(l) are true and everything else is false; in fact there

are an infinite number of models consistent with a database that has only r(l)

true. M2 is special, because it is a minimal model; i.e., we cannot make any

true fact false and still have a model consistent with the database {r(l)J. Note

3.1 THE MEANING OF LOGICAL RULES 99

that MI does not have this property. For example, we could change p(3) from

true to false in MI and still have a model.

Moreover, M2 is the unique minimal model consistent with the database

{r(l)}. This model also happens to be what we get if we use the proof-theoretic

definition of meaning for rules. That is, starting with the rules (1) and (2) of

Example 3.1 and the one fact r(l), we can prove q(l), p(l), and no other

predicate instances. These happy coincidences will be seen true for "datalog"

rules in general, as long as they do not involve negation. When negation is

allowed as an operator, we shall see in Section 3.6, then_there need not be a

unique minimal model, and none of the minimal models necessarily corresponds

to the set of facts that we can prove using the rules. For some rules we can get

around this problem by defining a preferred minimal model, but in general, the

issue of what sufficiently complicated rules mean gets murky very quickly.

Computational Definitions of Meaning

The third way to define the meaning of logical rules is to provide an algorithm

for "executing" them to tell whether a potential fact (predicate with constants

for its arguments) is true or false. For example, Prolog defines the meaning of

rules this way, using a particular algorithm that involves searching for proofs

of the potential fact. Unfortunately, the set of facts for which Prolog finds a

proof this way is not necessarily the same as the set of all facts for which a

proof exists. Neither is the set of facts Prolog finds true necessarily a model.

However, in many common cases, Prolog will succeed in producing the unique

minimal model for a set of rules when those rules are run as a Prolog program.

In this book, we shall take another approach to treating rules as computa

tion. We shall translate rules into sequences of operations in relational algebra,

and for datalog rules without negation, we can show that the program so pro

duced always computes the unique minimal model and (therefore) the set of

facts that can be proved from the database. When negation is allowed, we

shall consider only a limited case called "stratified" negation, and then we shall

show that what our program produces is a minimal model, although it is not

necessarily the only minimal model. There is, however, some justification for

selecting our minimal model from among all possible minimal models.

Comparison of "Meanings"

We might naturally ask which is the "best" meaning for a logic program. A

logician would not even take seriously the computational meaning of rules, but

for those wishing to implement knowledge-base systems, efficient computation

is essential. We cannot use logical rules as programs unless we have a way of

computing their consequences, and an efficient way of doing so, at that.

On the other hand, a purely operational definition of meaning for rules,

100 LOGIC AS A DATA MODEL

"the program means whatever it is that this interpreter I've written does," is

not acceptable either. We don't have a preference between the proof-theoretic

and model-theoretic meanings, as long as these meanings are reasonably clear

to the user of the logic-based language. In practice, it seems that the model-

theoretic approach lets us handle more powerful classes of rules than the proof-

theoretic approach, although we shall start out with the proof-theoretic meaning

in Section 3.3. Whichever meaning we choose, it is essential that we show its

equivalence to an appropriate computational meaning.

3.2 THE DATALOG DATA MODEL

In this section, we introduce the basic terminology needed to discuss the logic-

based data model we call "datalog." The name "datalog" was coined to suggest

a version of Prolog suitable for database systems. It differs from Prolog in

several respects.

1. Datalog does not allow function symbols in arguments. For example, the

function symbol s used to define addition in Example 1.10 is not permit

ted in datalog. Rather, datalog allows only variables and constants as

arguments of predicates.

2. The "meaning" of datalog programs follows the model-theoretic point of

view discussed in the previous section, or when equivalent, the proof-

theoretic approach. Prolog, however, has a computational "meaning,"

which, as we discussed, can deviate in some cases from either the model-

theoretic or proof-theoretic meanings.

The underlying mathematical model of data for datalog is essentially that of

the relational model. Predicate symbols in datalog denote relations. However,

as in the formal definition of relational algebra, these relations do not have

attributes with which to name their columns. Rather they are relations in

the set-of-lists sense, where components appear in a fixed order, and reference

to a column is only by its position among the arguments of a given predicate

symbol. For example, ifp is a predicate symbol, then we may refer to p(X, Y, Z),

and variable X will denote the first component of some tuple in the relation

corresponding to predicate p.

Extensional and Intensional Predicates

Another distinction between the relational and datalog models is that in data-

log, there are two ways relations can be defined. A predicate whose relation is

stored in the database is called an extensional database (EDB) relation, while

one defined by logical rules is called an intensional database (IDB) relation. We

assume that each predicate symbol either denotes an EDB relation or an IDB

relation, but not both.

3.2 THE DATALOG DATA MODEL 101

In the relational model, all relations are EDB relations. The capability to

create views (see Section 1.2) in models like the relational model is somewhat

analogous to the ability in datalog to define IDB relations. However, we shall

see in Chapter 4 that the view-definition facility in relational DBMS's does not

compare in power with logical rules as a definition mechanism.

Atomic Formulas

Datalog programs are built from atomic formulas, which are predicate symbols

with a list of arguments, e.g., p(A\, . . . , An), where p is the predicate symbol.

An argument in datalog can be either a variable or a constant. As mentioned

in Section 1.6, we use names beginning with lower case letters for constants and

predicate names, while using names beginning with upper case letters for vari

ables. We also use numbers as constants. We shall assume that each predicate

symbol is associated with a particular number of arguments that it takes, and

we may use p^ to denote a predicate of arity k.

An atomic formula denotes a relation; it is the relation of its predicate

restricted by

1. Selecting for equality between a constant and the component or compo

nents in which that constant appears, and

2. Selecting for equality between components that have the same variable.

For example, consider the YVCB database relations of Figure 2.8. The atomic

formula

customers(joe, Address, Balance)

represents the relation CT$1=joe(CUSTOMERS). Atomic formula

includes(X, Item, X)

denotes CT$1=$3(INCLUDES), that is, the tuples where the order number hap

pens to be equal to the quantity ordered.

Notice that although there are no names for attributes in the datalog model,

selecting suggestive variable names like Address help remind us what is going

on. However, as in relational algebra, we must remember the intuitive meaning

of each position in a list of arguments.

Built-in Predicates

We also construct atomic formulas with the arithmetic comparison predicates,

=, <, and so on; these predicates will be referred to as built-in predicates.

Atomic formulas with built-in predicates will be written in the usual infix no

tation, e.g., X < Y instead of <(X, Y). Other atomic formulas and their

predicates will be referred to as ordinary when a distinction needs to be made.

Built-in predicates do not necessarily represent finite relations. We could

102 LOGIC AS A DATA MODEL

think of X < Y as representing the relation of all tuples (x, y) such that x < y,

but this approach is unworkable because this set is infinite, and it is not even

clear over what domain x and y should be allowed to range. We shall therefore

require that whenever a rule uses an atomic formula with a built-in predicate,

any variables in that formula are limited in range by some other atomic formula

on the right side of the rule. For example, a variable might be limited by

appearing in an atomic formula with an EDB predicate. We shall then find that

built-in atomic formulas can be interpreted as selections on a single relation or

on the join of relations. The details will be given when we discuss "safe" rules

at the end of this section.

Clauses and Horn Clauses

A literal is either an atomic formula or a negated atomic formula; we denote

negated atomic formulas by -<p(A\, . . . , An) or p(A\, . . . , An). A negated atomic

formula is a negative literal; one that is not negated is a positive literal. A clause

is a sum (logical OR) of literals. A Horn clause is a clause with at most one

positive literal. A Horn clause is thus either

1. A single positive literal, e.g., p(X, Y), which we regard as a fact,

2. One or more negative literals, with no positive literal, which is an integrity

constraint, and which will not be considered in our discussion of datalog,

or

3. A positive literal and one or more negative literals, which is a ruie.

The reason Horn clauses of group (3) are considered rules is that they have

a natural expression as an inference. That is, the Horn clause

piV-••VpnV9 (3.1)

is logically equivalent to p\ A • • • A pn —» q. To see why, note that if none of the

p's are false, then to make (3.1) true, q is forced to be true. Thus, if pi, . . . ,pn

are all true (and therefore none of the p's are true), q must be true. If at least

one of the p's is false, then no constraint is placed on q; it could be true or false.

We shall follow Prolog style for expressing Horn clauses, using

q :- pi & • • • & pn.

for the Horn clause pi A • • • A pn —» q. We call q the head of the rule and

pi& • • • &pn the body. Each of the pj's is said to be a subgoal. A collection of

Horn clauses is termed a logic program.

When writing Horn clauses as implications, either in the style

pi A • • • A pn -» q

or in the Prolog style, variables appearing only in the body may be regarded

as quantified existentially within the body, while other variables are universally

quantified over the entire rule. For example, rule (1) in Figure 3.1 says "for all

3.2 THE DATALOG DATA MODEL 103

X and Y, X is a sibling of Y if there exists Z such that Z is a parent of both X

and y, and X and Y are not the same individual." However, it is also correct

and logically equivalent, to regard all the variables as universally quantified for

the entire rule. Thus, rule (1) of Figure 3.1 may also be read as "for all X, Y,

and Z, if Z is a parent of both X and y, and X is not Y, then X is a sibling

(1) sibling(X.Y) :- parent(X,Z) ft parent(Y.Z) ft X/Y.

(2) cousin (X.Y) :- parent (X.Xp) ft parent (Y.Yp) ft

sibling(Xp.Yp) .

(3) cousin(X.Y) :- parent(X.Xp) ft parent(Y.Yp) ft

cousin(Xp.Yp) .

(4) related(X.Y) :- sibling(X.Y) .

(5) related(X.Y) :- related(X.Z) ft parent(Y.Z).

(6) related(X.Y) :- related(Z.Y) ft parent(X.Z).

Figure 3.1 Example logic program.

Dependency Graphs and Recursion

We frequently need to discuss the way predicates in a logic program depend

on one another. To do so, we draw a dependency graph, whose nodes are the

ordinary predicates. There is an arc from predicate p to predicate q if there is

a rule with a subgoal whose predicate is p and with a head whose predicate is

q. A logic program is recursive if its dependency graph has one or more cycles.

Note that a cycle consisting of one arc from a node to itself makes the program

recursive, and in fact, one-node cycles are more common than multinode cycles.

All the predicates that are on one or more cycles are said to be recursive

predicates. A logic program with an acyclic dependency graph is nonrecursive.

Clearly, all predicates in a nonrecursive program are nonrecursive; we also call

a predicate nonrecursive if it is in a recursive program but is not part of any

cycle in the dependency graph.

Example 3.2: Suppose parent is an EDB relation, and parent(C, P) means

that P is a parent of C. We define IDB relations sibling, cousin, and related

in Figure 3.1. Siblings are persons with a common parent, but we must rule out

the possibility that sibling(a, a) is true for any individual a, which explains the

subgoal X / Y in rule (1). Cousins are people with a common ancestor who is

the same number of generations away from each, and at least two generations

104 LOGIC AS A DATA MODEL

away, i.e., they cannot be siblings or be the same individual.2

Rules (4)-(6) define X and Y to be "related" if they have a common

ancestor that is neither X nor Y. That is, rule (4) says that siblings are related

in this sense, since their common parent is a common ancestor that cannot be

either of the siblings themselves. Then rules (5) and (6) tell us that related

persons are also related to each other's descendants.

The dependency graph for Figure 3.1 is shown in Figure 3.2. For example,

rule (1) induces an arc from parent to sibling. Note that we do not use nodes

for the built-in predicates like ^. Rule (2) justifies the existence of an arc from

parent to cousin and an arc from sibling to cousin. Rule (3) justifies arcs

from parent to cousin and from cousin to cousin. The latter arc is a cycle and

indicates that the logic program of Figure 3.1 is recursive. The remaining arcs

are justified by rules (4)-(6).

Figure 3.2 Dependency graph for Figure 3.1.

In Figure 3.2, there are two cycles, one involving only cousin and the other

involving only related. Thus, these predicates are recursive, and the predicates

parent and sibling are nonrecursive. Of course, every EDB relation, such as

parent, must be nonrecursive. In fact, the EDB predicates are exactly those

whose nodes have no incoming arc, which implies they cannot be recursive. The

program of Figure 3.1 is recursive, because it has some recursive predicates. D

Safe Rules

There are constraints that must be placed on the form of datalog rules if they

are to make sense as operations on finite relations. One source of infiniteness

is a variable that appears only in a built-in predicate, as we mentioned earlier.

Another is a variable that appears only in the head of a rule. The following

example illustrates the problems.

2 Strictly speaking, rules (2) and (3) define a person to be his own cousin if his parents

are brother and sister. Perhaps that's right, but if we're worried, we can add a subgoal

X yt Y to the rules for cousin. Similarly, related(a,a) can be true if certain unusual

matings occur.

3.2 THE DATALOG DATA MODEL 105

Example 3.3: The rule

biggerThan(X.Y) :- X>Y.

defines an infinite relation, if X and Y are allowed to range over the integers,

or any infinite set. The rule

loves(X.Y) :- lover(Y) .

i.e., "all the world loves a lover," also defines an infinite set of pairs loves(X, Y),

even if the relation lover is a finite set, as long as the first argument of loves

ranges over an infinite set. D

One simple approach to avoiding rules that create infinite relations from

finite ones is to insist that each variable appearing in the rule be "limited."

The intuitive idea is that we assume all the ordinary (non-built-in) predicates

appearing in the body correspond to finite relations. After making that as

sumption, we need assurance that for each variable X, there is a finite set of

values Vx such that in any assignment of values to the variables that makes

the body true, the value of X must come from Vx • We formally define limited

variables for a given rule as follows.

1. Any variable that appears as an argument in an ordinary predicate of the

body is limited.

2. Any variable X that appears in a subgoal X = a or a = X, where a is a

constant, is limited.

3. Variable X is limited if it appears in a subgoal X = Y or Y = X, where

Y is a variable already known to be limited.

Note that (1) and (2) form a basis for the definition, and (3) can be applied

repeatedly to discover more limited variables.

We define a rule to be safe if all its variables are limited. The critical

issue is whether variables appearing in the head and variables appearing in

subgoals with built-in predicates either appear in some subgoal with an ordinary

predicate, are equated to constants, or are equated to other limited variables

through the recursive use of (3).

Example 3.4: The first rule of Example 3.3 is not safe because none of its

variables are limited. The second is not safe because, although Y is limited by

its occurrence in the subgoal lover(Y), there is no way to limit X. In general,

a variable appearing only in the head of a rule cannot be limited, so its rule

cannot be safe.

Rule (1) of Figure 3.1 is safe because X, V, and Z are limited by their

occurrences in the two parent subgoals. Note that the built-in predicate X ^ Y

cannot result in an infinite number of siblings, because X and Y are already

limited to be individuals that appear in the first component of the parent

relation. All the other rules in Figure 3.1 are likewise safe.

106 LOGIC AS A DATA MODEL

For a more complex example, consider the rule

p(X,Y) :- q(X,Z) ft W=a ft Y=W.

X and Z are limited by rule (1), because of the first subgoal in the body. W is

limited by the rule (2), because of the second subgoal, and therefore (3) tells us

Y is limited because of the third subgoal. As all variables are limited, the rule

is safe. Note that it computes p to be the relation ni(q) x {a}, which is surely

finite if the relation corresponding to q is finite. D

3.3 EVALUATING NONRECURSIVE RULES

From here, until Section 3.6, we shall deal with only safe datalog rules that

have no negation, and the term "datalog" will now refer only to rules in this

class. We begin by studying nonrecursive datalog programs. For this simple

class (and for the corresponding class of recursive programs as well), all three

possible meanings mentioned in Section 3.1 coincide. We shall see that there is

a way to convert nonrecursive datalog rules to expressions of relational algebra;

these expressions yield relations for the IDB predicates that are at once the

unique minimal model of the rules and the set of IDB facts deducible from the

rules and the database. In this section we shall begin with the proof-theoretic

point of view, but we shall see that the meaning we ascribe to rules is also the

unique minimal model for the rules.

If our rules are not recursive, we may order the nodes of the dependency

graph pi, . . . ,pn so that if there is an arc pi —» PJ then t < j. Then, we may

compute the relation for the predicates of pi, . . . ,pn in that order, knowing that

when we work on pi the relations for all predicates that appear in the bodies of

the rules for pi have already been evaluated. The computation of the relation

for pi will be divided into two steps.

1. For each rule r with pj at the head, compute the relation corresponding to

the body of the rule. This relation has one component for each variable of

r. To compute the relation for the body of r, we essentially take the natural

join of the relations corresponding to the various subgoals of r, treating the

attributes of these relations as the variables appearing in the corresponding

positions of the subgoals. Because our rules are nonrecursive, we may

assume that relations for the subgoals are already computed.

2. We compute the relation for pi itself by, in essence, projecting the relation

for each of pj 's rules onto the components corresponding to the variables

of the head, and taking the union over all rules with p^ in the head.

In each of these steps, the computation is somewhat more complicated than

joins and projections. We must take into account constants appearing as ar

guments, and we must consider situations in which one variable appears in

several arguments of one subgoal or of the head. These details will be covered

in Algorithms 3.1 and 3.2, below.

3.3 EVALUATING NONRECURSIVE RULES 107

The Relation Defined by a Rule Body

Our first step is to examine the set of values that we may substitute for the

variables of a rule to make the body true. In proofs using the rule, it is exactly

these substitutions that let us conclude that the head, with the same substitu

tion, is true. Therefore, we define the relation for a rule r to have the scheme

X\, . . . , Xm, where the Xi's are the variables of the body of r, in some selected

order. We want this relation to have a tuple (01, . . . ,om) if and only if, when

we substitute oj for Xi, 1 < i < m, all of the subgoals become true.

More precisely, suppose that p\,...,pn is the list of all predicates appearing

in the body of rule r, and suppose PI , . . . , Pn are relations, where Pi consists of

all those tuples (ai, . . . , afc) such that p(ai, . . . , afc) is known to be true. Then

a subgoal 5 of rule r is made true by this substitution if the following hold:

t) If S is an ordinary subgoal, then 5 becomes p(b\, . . . ,bk) under this sub

stitution, and (&i,..., 6fc) is a tuple in the relation P corresponding to

P-

ii) If 5 is a built-in subgoal, then under this substitution 5 becomes Me, and

the arithmetic relation b0c is true.

Example 3.5: The following is an informal example of how relations for rule

bodies are constructed; it will be formalized in Algorithm 3.1, to follow. Con

sider rule (2) from Figure 3.1. Suppose we have relations P and S computed for

predicates parent and sibling, respectively. We may imagine there is one copy

of P with attributes X and Xp and another with attributes Y and Yp. We

suppose the attributes of 5 are Xp and Yp. Then the relation corresponding

to the body of rule (2) is

R(X, Xp, Y, Yp) = P(X, Xp) M P(Y, Yp) M S(Xp, Yp) (3.2)

Recall that by Theorem 2.2, txi is an associative and commutative operator,

so the order in which we group the predicates is irrelevant. Also, notice that

when taking natural joins, it is important to indicate, as we have done in (3.2),

what the attribute name corresponding to each component of each relation is.

Finally, we should appreciate the close connection between attribute names for

relation schemes and variables in logical rules, which we exploited in (3.2).

By Corollary 2.1, an equivalent way to express the formula (3.2) is by saying

that we want a relation R(X, Xp, Y, Yp), consisting of every tuple (a, 6, c, d)

such that:

1. (a, 6) is in P,

2. (c, d) is in P, and

3. (b, d) is in 5.

This relation is exactly the set of tuples (a, 6, c, d) that, when substituted for

(X, Xp, Y, Yp) in that order, make the body of the rule true. Thus, (3.2) is the

relation for the body of rule (2) of Figure 3.1.

108 LOGIC AS A DATA MODEL

For another example, consider rule (1) of Figure 3.1. Here, we need to

join two copies of P and then select for the arithmetic inequality X / Y. The

algebraic expression for rule (1) is thus

Q(X, Y, Z) = ax±Y (P(X, Z) ix P(Y, Z)) (3.3)

The relation Q(X, Y, Z) computed by (3.3) consists of all tuples (x, y, z) such

that:

1. (x, z) is in P,

2. (y, z) is in P, and

3. x*y.

Again, it is easy to see that these tuples (x, y, z) are exactly the ones that make

the body of rule (1) true. Thus, (3.3) expresses the relation for the body of rule

(1).

Finally, let us examine an abstract example that points out some of the

problems we have when computing the relation for the body of a rule. Consider

p(X,Y) :- q(a,X) ft r(X,Z,X) ft s(Y,Z) (3.4)

Suppose we already have computed relations Q, R, and 5 for subgoals q, r, and

s, respectively. Since the first subgoal asks for only those tuples of Q that have

first component o, we need to construct a relation, with attribute X, containing

only the second components of these tuples. Thus, define relation

We also must restrict the relation R so that its first and third components, each

of which carries variable X in the second subgoal, are equal. Thus define

Then the relation for the body of rule (3.4) is defined by expression:

This expression defines the set of tuples (x, y, z) that make the body of (3.4)

true, i.e., the set of tuples (x, y, z) such that:

1. (a,x) is in Q,

2. (x, z,x) is in R, and

3. (y, z) is in 5.

D

We shall now describe how to construct an expression of relational algebra

that computes the relation for a rule body.

3.3 EVALUATING NONRECURSIVE RULES 109

Algorithm 3.1: Computing the Relation for a Rule Body, Using Relational

Algebra Operations.

INPUT: The body of a datalog rule r, which we shall assume consists of subgoals

S\, . . . ,Sn involving variables Xi, . . . , Xm. For each 5i = pi(Au, . . . , Aik,) with

an ordinary predicate, there is a relation Ri already computed, where the A's

are arguments, either variables or constants.

OUTPUT: An expression of relational algebra, which we call

EVAL-RULE(r, RI, . .

that computes from the relations RI,.. ., R^3 a relation R(Xi,. . . , Xm) with

all and only the tuples (ai, . . . ,am) such that, when we substitute Oj for Xj,

1 < j < m, all the subgoals 5i , . . . , 5n are made true.

METHOD: The expression is constructed by the following steps.

1. For each ordinary 5i, let Qi be the expression irv,(^F,(Rt))- Here, V, is a

set of components including, for each variable X that appears among the

arguments of 5i, exactly one component where X appears. Also, Fj is the

conjunction (logical AND) of the following conditions:

a) If position k of 5i has a constant a, then Fj has the term $k = a.

b) If positions k and / of 5j both contain the same variable, then FJ has

the term $fc = $J.4

As a special case, if 5i is such that there are no terms in Fi, e.g., 5i =

p(X, Y), then take Fj to be the identically true condition, so Qi = Ri.

2. For each variable X not found among the ordinary subgoals, compute an

expression DX that produces a unary relation containing all the values

that X could possibly have in an assignment that satisfies all the subgoals

of rule r. Since r is safe, there is some variable Y to which X is equated

through a sequence of one or more = subgoals, and Y is limited either by

being equated to some constant a in a subgoal or by being an argument of

an ordinary subgoal.

a) If Y = a is a subgoal, then let DX be the constant expression {a}.

b) If Y appears as the jth argument of ordinary subgoal 5i, let DX be

3 Technically, not all n relations may be present as arguments, because some of the sub-

goals may have built-in predicates and thus not have corresponding relations.

4 It is not necessary to add this term for all possible pairs k and /, just for enough pairs

that all occurrences of the same variable are forced to be equal. For example, if X

appears in positions 2, 5, 9, and 14, it suffices to add terms $2 = $5, 15 = $9, and

19 = 114.

110 LOGIC AS A DATA MODEL

3. Let E be the natural join of all the Qi's defined in (1) and the DX'S defined

in (2). In this join, we regard Qi as a relation whose attributes are the

variables appearing in 5i, and we regard D\ as a relation with attribute

X.5

4. Let EVAL-RULE(r, #1,... ,fln) be af(E), where F is the conjunction of

XOY for each built-in subgoal XOY appearing among pi, . . . ,pn, and E is

the expression constructed in (3). If there are no built-in subgoals, then

the desired expression is just E. D

Example 3.5 illustrates the construction of this algorithm. For instance, the

expression T(X) = K2(<r$i=a(Q)) is what we construct by step (1) of Algorithm

3.1 from the first subgoal, q(a,X), of the rule given in (3.4); that is, T(X) in

Example 3.5 is Qi here. Similarly, U(X, Z) = iri,2(<7$i=$3(-#)) in Example 3.5 is

Q2' constructed from the second subgoal, r(X, Z, X). Q3, constructed from the

third subgoal, S(Y, Z), is S(Y, Z) itself. There are no built-in subgoals, so no

extra domains need be constructed in step (2), and no selection is needed in step

(4). Thus, the expression T(X) txi U(X, Z) txt S(Y, Z) is the final expression

for the body of the rule (3.4). In Example 3.7 we shall give a more extensive

example of how EVAL-RULE is computed when there are built-in subgoals.

Theorem 3.1: Algorithm 3.1 is correct, in the sense that the relation R pro

duced has all and only those tuples (ai, . . . ,am) such that, when we substitute

each a,j for Xj, every subgoal Si is made true.

Proof: Suppose (oi,...,am) makes every Si true. By (i) in the definition

of "made true"6 and step (1) of Algorithm 3.1, there is a tuple Hi in Qi that

has Oj in its component for Xj, for every variable Xj appearing in subgoal 5j.

Step (2) tells us there is a (unary) tuple vxt — QI in Dxt, for every variable

Xi that appears in no ordinary subgoal. Then step (3) of the algorithm takes

the natural join of the Qi's and DX's. At each step of the join, the tuples

Hi agree on any variables in common, so they join together into progressively

larger tuples, each of which agrees with (a\, . . . , am) on the attributes they have

in common.

Finally, the join of all the /Vs and i/'s is (ai, . . . ,am) itself. Furthermore,

by (it) in the definition of "made true," the tuple (ai, . . . , am) satisfies condition

F in step (4), so Algorithm 3.1 puts (ai, . . . ,am) in relation R.

Conversely, suppose (ai, . . . ,am) is put in R by the algorithm. Then this

tuple must satisfy F of step (4), and therefore condition (ii) of "made true"

is met. Also, (ai, . . . ,om) must be in the relation defined by E of step (3), so

each Qi has a tuple Hi whose component for variable Xj has value a,-, for each

Xj that appears in subgoal 5j. An examination of step (1) tells us that the

5 Since any X for which D\ is constructed cannot be an attribute of any Qi, the natural

join really involves the Cartesian product of all the DX 's, if any.

6 The formal definition of "made true" appears just before Example 3.5.

3.3 EVALUATING NONRECURSIVE RULES 111

only way fii could be in Qi is if there is a tuple pi in Ri that:

a) Has constant a in position k if Si has a in position fc, and

b) Has dj in all positions where Si has variable Xj.

But Pi(pi) is exactly what Si becomes when we substitute Oj for Xj, 1 < j < m.

Since pi is in Ri, condition (t) of the "made true" definition is satisfied. D

Rectified Rules

We must now consider how the relations for rule bodies are combined into

relations for predicates. As we mentioned, the basic idea is that we consider all

the rules with p in the head, compute the relations for these rules, project onto

the variables appearing in the heads, and take the union. However, we have

trouble when some of the heads with predicate p have constants or repeated

variables, e.g., p(a, X, X). Thus, we define the rules for predicate p to be

rectified if all their heads are identical, and of the form p(X\ , . . . , Xk) for distinct

variables X\ , . . . , Xk.

It is easy to rectify rules; the "trick" is to introduce new variables for each

of the arguments of the head predicate, and introduce built-in subgoals into

the body to enforce whatever constraints the head predicate formerly enforced

through constants and repetitions of variables. Suppose we have a rule r with

head p(Yi,...,Yk), where the Y's may be variables or constants, with repeti

tions allowed. We replace the head of r by p(Xi, . . . , Afc), where the X's are

each distinct, new variables, and to r we add the subgoals Xi = Yi for all i. If

Yi is a variable, we may eliminate the subgoal Xi = Yi and instead substitute

Xi for Yi wherever it is found.7

Example 3.6: All of the rules in Figure 3.1 are already rectified. For another

example, consider the predicate p defined by the rules

p(a,X,Y) :- r(X,Y).

p(X,Y,X) :- r(Y,X).

We rectify these rules by making both heads be p(U, V, W) and adding subgoals

as follows.

p(U,V,W) :- r(X,Y) ft U=a ft V=X ft W=Y.

p(U,V,W) :- r(Y,X) ft U=X ft V=Y ft W=X.

If we substitute for X and Y one of the new variables U, V, or W, as

appropriate, we get

p(U,V,W) :- r(V,W) ft U=a.

p(U,V,W) :- r(V,U) ft W=U.

7 Note that when we make such a substitution for Yi, we cannot later make another

substitution for the same variable V*.

112 LOGIC AS A DATA MODEL

That is, in the first rule, X is replaced by V and Y is replaced by W, while in

the second, X is replaced by U and Y is replaced by V. D

Lemma 3.1: Suppose r is a rule, and the result of rectifying r is a rule r'.

Then

a) If r is safe, so is r'.

b) Rules r and r' are equivalent, in the sense that, given relations for the

predicates of their subgoals, there is a substitution for the variables of r

that makes all its subgoals true and makes the head become p(CI, . . . ,Cn)

if and only if there is some substitution for the variables of r' that makes

the head of r' become p(CI, . . . , c,,).

Proof: First, assume that when transforming r to r', we do not eliminate any

variables by substituting X for Y if X = Y is a subgoal. Then (a) is easy; the

variables of r are limited since r is safe, and the introduced variables X\ , . . . , Xk

are limited because they are all equated to variables of r.

Part (b) is also straightforward. If an assignment of constants to the vari

ables of r makes the head of r, which is p(Yi,. . . , Yk), become p(OI, . . . , a^),

then we can find an assignment to the variables of r' that yields the same head.

Recall that the head of r' is p(X\,. . . , Xkk), and the X's are all new variables.

Choose the same value for Xi as the given assignment of constants uses for Yi.

Then the subgoal Xi = Yi will be made true, and the head of r' will become

p(OI, . . . ,an). Conversely, if an assignment of constants to the variables of r'

yields head p(b\, . . . , 6fc), then this assignment must give the same value to X»

and Yi for all i, or else the subgoal Xi = Yi of r' is not made true. Thus, the

same assignment, restricted to the variables that appear in r, will also yield

head p(6i, . . • , 6fc) when applied to r.

The final step in the proof is to observe that if we modify r' by substituting

some X for Y, where X — Y is a subgoal, then we do not make the rule unsafe

if it was safe, and we do not change the set of facts that the head of the rule

yields. These observations are left as an exercise. D

In all that follows, we shall assume rules are rectified without formally

stating that presumption.

Computing the Relations for Nonrecursive Predicates

Once we have rectified the rules, we have only to project the relation for each

rule body onto the variables of the head and, for each predicate, take the union

of the relations produced from each of its rules.

Algorithm 3.2: Evaluating Nonrecursive Rules Using Relational Algebra Op

erations.

INPUT: A nonrecursive datalog program and a relation for each EDB predicate

appearing in the program.

3.3 EVALUATING NONRECURSIVE RULES 113

OUTPUT: For each IDB predicate p, an expression of relational algebra that gives

the relation for p in terms of the relations Ri, . . . , Rm for the EDB predicates.

METHOD: Begin by rectifying all the rules. Next, construct the dependency

graph for the input program, and order the predicates p\, . . . ,pn, so that if the

dependency graph for the program has an arc from pi to PJ, then i < j. We can

find such an order because the input program is nonrecursive, and therefore the

dependency graph has no cycles. Then for i = 1, 2, ... n, form the expression

for relation Pi (for pi) as follows.

If pi is an EDB predicate, let Pi be the given relation for pJ. In the opposite

case, suppose pi is an IDB predicate. Then:

1. For each rule r having pi as its head, use Algorithm 3.1 to find an expression

Er that computes the relation Rr for the body of rule r, in terms of relations

for the predicates appearing in r's body.

2. Because the program is nonrecursive, all the predicates appearing in the

body of r already have expressions for their relations in terms of the EDB

relations. Substitute the appropriate expression for each occurrence of an

IDB relation in the expression Er to get a new expression Fr.

3. Renaming variables, if necessary, we may assume that the head of each rule

for pj is pi(Xi, . . . , Xk). Then take the expression for Pi to be the union

over all rules r for pJ, of irx,,...,xt(Fr)- D

Example 3.7: Let us take an abstract example that illustrates the mechanics

of Algorithm 3.2. Suppose we have the four rules:

(1) p(a,Y) :- r(X,Y).

(2) p(X,Y) :- s(X,Z) ft r(Z,Y).

(3) q(X,X) :- p(X,b).

(4) q(X,Y) :- p(X,Z) t s(Z,Y).

Here, r and a are EDB predicates, which we may suppose have given relations

R and 5. Predicates p and q are IDB predicates, for which we want to compute

relations P and Q.

We begin by rectifying the rules, which requires modification to (1) and

(3). Our new set of rules is:

(1) p(X,Y) :- r(X,Y) ft X=a.

(2) p(X,Y) :- s(X,Z) ft r(Z,Y).

(3) q(X,Y) :- p(X,b) ft X=Y.

(4) q(X,Y) :- p(X,Z) ft s(Z,Y).

The proper order is to work on p first, then q, because q depends on p,

but not vice-versa. The relation for the body of rule (1) is, by Algorithm

3.1, <Tx=a(R(X,Y)), and that for rule (2) is S(X,Z) exi R(Z,Y). Both these

expressions must be projected onto the list of attributes X, Y before the union

114 LOGIC AS A DATA MODEL

is taken. As a special case, no projection is needed for the first of these. Thus,

the expression for P is

) = <rx=a(R(X,Y)) U *x,Y(S(X,Z)*iR(Z,Y))

Next, we consider q. The relation for rule (3) is computed as follows. By

Algorithm 3.1, the expression for the subgoal p(X, b) is

Here, Z is an arbitrarily chosen variable that disappears in the projection. This

expression yields a relation over attribute X only, and we need an expression

that generates all the possible values of Y, since Y appears nowhere else. As

Y is equated to X, we know that only values of X can be values of Y, so we

can take an argument where X appears, namely the first argument of P, as the

domain for Y. This domain is thus expressed by 7ry(P(y, W)); W is another

arbitrarily chosen variable. After we take the cross product of the expression

for p(X, b) with the domain for Y, we select for X = Y because of the subgoal

X = Y in rule (3). Thus, the expression for the body of rule (3) is

X7ry|»-v v , '(P(YW))

Finally, the expression for rule (4) is P(X, Z) M S(Z, Y) so the expression

for Q is

Q(X,Y)=ax=YUx(ffz=b(P(X,Z))) x KY(P(Y, W)) J U

Technically, we must first substitute for P the expression we constructed for P,

in order to get Q in terms of the database relations R and 5 only. D

Theorem 3.2: Algorithm 3.2 correctly computes the relation for each predi

cate, in the sense that the expression it constructs for each IDB predicate yields

both:

1. The set of facts for that predicate that can be proved from the database,

and

2. The unique minimal model of the rules.

Proof: Recall our comment at the end of Section 3.1 that, when our axioms are

all datalog rules with no negation, and our given facts are nonnegated literals

(the EDB facts), then the only IDB facts that can be proven are those that

can be derived by applying rules the way we have, i.e., from antecedent to

consequent. Given this fact, it is an easy induction on the order in which the

expressions for the predicates are constructed, that each expression yields all

3.4 COMPUTING THE MEANING OF RECURSIVE RULES 115

and only the facts that are provable from the EDB facts and rules.

To see that the set of EDB and IDS facts thus constructed is the unique

minimal model, we again perform an induction on the order in which the predi

cates are handled. The claim this time is that any model for the facts and rules

must contain all the facts constructed by the expressions. Thus, the model

consisting of the union of the relations for each of the predicates produced by

Algorithm 3.2 is a subset of any model whatsoever. It is itself a model, since

any substitution into one of the rules that makes the body true surely makes

the head true. Thus, what we construct is the only possible minimal model.

D

3.4 COMPUTING THE MEANING OF RECURSIVE RULES

Algorithm 3.2 does not apply to recursive datalog programs, because there is

no order for the predicates that allows the algorithm to be applied. That is,

whenever there is a cycle in the dependency graph, the first predicate on that

cycle which we try to evaluate will have a rule with a subgoal whose expression

is not yet available.

However, the proof-theoretic approach still makes sense if we remember

that it is permissible to derive some facts using a rule, and later use newly

derived facts in the body to derive yet more facts. If we start with a finite

database, and we use only datalog rules, then there are only a finite number

of different facts that could possibly be derived; they must be of the form

P(OI, . . . ,0fc), wherep is an IDB predicate mentioned in the rules, and 0i, . . . , afc

are constants appearing in the database.

Consider a datalog program with given EDB relations RI , . . . , Rk and with

IDB relations Pi, . . . , Pm to be computed. For each t, 1 < i < m, we can express

the set of provable facts for the predicate pi (corresponding to IDB relation Pi)

by the assignment

Pi := EVALfo, fl,, flfc, PL Pm)

where EVAL is the union of EVAL-RULE (as defined in Algorithm 3.1) for each of

the rules for pJ. If we start with all Pj's empty, and we execute an assignment

such as this for each i, repeatedly, we shall eventually reach a point where no

more facts can be added to any of the Pj's.8 Now, the assignment symbol

becomes equality; that is, the set of IDB facts that can be proved satisfies the

equations

Pi = EVAL(pi,fli, . . . ,flfc,Pi, . . . ,Pm)

8 We shall show later in this section that when the rules have no negative subgoals, EVAL

is "monotone"; that is, the P^a can only grow, and once in Pi, a fact will continue to

be there every time Pi is recomputed.

116 LOGIC AS A DATA MODEL

for all i. We shall call equations derived from a datalog program in this manner

datalog equations.

Example 3.8: The rules of Figure 3.1 can be viewed as the following equations.

We use P, 5, C, and R for the relations corresponding to parent, sibling,

cousin, and related, respectively.

S(X, Y) = 7rX,y (<rx*Y (P(X, Z) M P(Y, Z)))

C(X, Y) = nx,Y(P(X, Xp) IM P(Y, Yp) tx, S(Xp, Yp)) U

7rx.y (P(X, Xp) M P(Y, Yp) M C(Xp, Yp))

R(X, Y) = S(X, Y) U 7rX,y (R(X, Z) M P(Y, Z)) U

D

Fixed Points of Datalog Equations

The replacement of the "if symbol, :-, in datalog rules by an equality to

form datalog equations is justified by the intuition that the "meaning" of the

rules is no more nor less than what can be proved using the rules. It would be

nice if there were a unique solution to a set of datalog equations, but generally

there are many solutions. Given a set of relations for the EDB predicates, say

RI, . . . , Rk, a fixed point of the datalog equations (with respect to RI, . . . , Rk),

is a solution for the relations corresponding to the IDB predicates of those

equations.

A fixed point P\,. . . , Pm, with respect to given EDB relations JRi, . . . , Rk,

together with those relations, forms a model of the rules from which the datalog

equations came. In proof, let M be the model in which only the facts that are

tuples in PI, . . . , Pm and Ri,...,Rk are true. Then any assignment of constants

to the variables that makes the body of some rule r true must also make the

head of r true. For if that head is, say, p(a1t . . . ,an), then tuple (ai, . . . ,an)

must be in the relation for IDB predicate p, or else the chosen IDB relations

are not a fixed point of the equations.

However, it is not true that every model of a set of datalog rules is a fixed

point of the corresponding datalog equations, because the model may have "too

many" facts, and some of them appear on the left sides of equations but not on

the right. We shall see an example of this phenomenon shortly. On the other

hand, we shall continue to be interested primarily in fixed points and models

that are minimal, in the sense that they have no proper subset of facts that

is also a fixed point. We leave as an exercise the observation that the IDB

portions of minimal models are always fixed points, and in fact, minimal fixed

points.

3.4 COMPUTING THE MEANING OF RECURSIVE RULES 117

It turns out that datalog programs each have a unique minimal model

containing any given EDB relations, and this model is also the unique minimal

fixed point, with respect to those EDB relations, of the corresponding equations.

Moreover, as we shall see, just as in the nonrecursive case, this "least fixed

point" is exactly the set of facts one can derive, using the rules, from a given

database.

More formally, let the variables of the equations be PI, . . . , Pm, correspond

ing to IDB predicates pi,...,pm, and let us focus our attention on particu

lar relations Ri,...,Rk assigned to the EDB predicates ri,...,rfc. A solu

tion, or fixed point, for the EDB relations Ri,...,Rk assigns to Pi,...,Pm

particular relations P\ , ...,Pm , such that the equations are satisfied. If

5i = P^1\...,P^ and 52 = Pi2),. . . ,Pm} are two solutions to a given set

of equations, we say that 5i < 52 if relation P/ is a subset of relation P,

for all i, 1 < t < m. Then So is the least fixed point of a set of equations, with

respect to the EDB relations fli, . . . , Rk, if for any solution 5, we have .So < S.

More generally, SQ is a minimal fixed point if there is no other fixed point S

such that S < So- Notice that if there is a least fixed point, then that is the

only minimal fixed point. However, there may be several minimal fixed points

that are not comparable by <, and in that case there is no least fixed point.

Example 3.9: Let us consider the common problem of computing the transitive

closure of a directed graph. If the graph is represented by an EDB predicate

arc such that arc(X, Y) is true if and only if there is an arc from node X to

node Y, then we can express the paths in the graph by rules:

(1) path(X.Y) :- arc(X.Y).

(2) path(X.Y) :- path(X.Z) ft path(Z.Y).

That is, the first rule says that a path can be a single arc, and the second says

that the concatenation of any two paths, say one from X to Z and another from

Z to V , yields a path from X to Y. This pair of rules is not necessarily the best

way we can define paths, but they are probably the most natural way. Note the

analogy between path and ore here and the predicates boss and manages in

Example 1.12. There, we used another, simpler way of computing the transitive

closure of a relation.

We can turn these rules into a single equation for the relation P that cor

responds to the path predicate. The equation assumes there is a given relation

A corresponding to predicate arc.

P(X, Y) = A(X, Y) U 7rx,y (P(X, Z) M P(Z, Y)) (3.5)

Suppose that the nodes are {1,2,3} and A represents the arcs 1 —» 2 and

2 -» 3; that is, A = {(1,2), (2,3)}. The first rule for path tells us that (1,2)

and (2,3) are in P, and the second rule implies that (1,3) is in P. However,

118 LOGIC AS A DATA MODEL

we are not required to deduce the existence of any more paths, because P =

{(1,2), (2,3), (1,3)} is a solution to Equation (3.5). That is,

{(1,2), (2,3), (1,3)} = {(1,2), (2,3)}U

7rx>r({(l,2), (2,3), (1,3)} M {(1,2), (2,3), (1,3)})

is an equality. In interpreting the above, we have to remember that the left

operand of the join is a relation over attribute list X, Z, and its right operand is

a relation over attributes Z, Y. Thus, the expression irx,Y (P(X' Z) txi P(Z, y))

can be thought of as the composition of the relation P with itself, and its value

here is {(1,3)}.

This solution is the proof-theoretic meaning of the rules, because we derived

from the EDB relation A exactly what the rules allowed us to prove. It is also

easy to see it is the minimal model of the rules or least fixed point of the

equation (3.5) [with respect to the given relation A], because every derived fact

can be shown to be in every model or fixed point containing the EDB relation

A,

However, there are other solutions to (3.5). Suppose we arbitrarily decided

that (1,1) was also in P. The rules do not imply any more paths, given that

A = {(1,2), (2,3)} and P = {(1,1), (1,2), (2,3), (1,3)}. Notice how (1,1)

"proves" itself if we let X = Y = Z = 1 in rule (2). Thus, another solution to

(3.5) is:

{(1,1), (1,2), (2,3), (1,3)} = {(1,2), (2,3)} U

.), (1,2), (2,3), (1,3)} i* {(1,1), (1,2), (2,3), (1,3)})

Similarly, we could let P consist of all nine pairs (i, j), where 1 < t, j < 3, and

that value would also satisfy (3.5). On the other hand, not every value of P

satisfies (3.5). For example, still assuming A = {(1,2), (2,3)}, we cannot let

P = {(1,2), (2,3), (1,3), (3, 1)}, because the resulting substitution into (3.5),

which is

{(1,2), (2,3), (1,3), (3, !)} = {(!, 2), (2,3)} U

jrx,y({(l,2), (2,3), (1,3), (3,1)} ixi {(1,2), (2,3), (1,3), (3,1)})

is not an equality. The join on the right yields, for example, tuple (3, 1,2) over

attribute list X, Z, Y, which after projection is (3, 2), a tuple that is not on the

left.

As a final example, let us see a model that is not a fixed point. Let A = 0

and P = {(1,2)}. Then the rules are made true. In rule (1), there is no way

to make the body, arc(X, Y) true, so the rule is true no matter what constants

are substituted for the variables. In rule (2), there is no value we can substitute

for Z that will make both (X, Z) and (Z, Y) be tuples of P, so again the body

cannot be made true and the rule must always be true. We conclude that the

set of facts consisting of path(l, 2) alone is a model of the given datalog rules.

3.4 COMPUTING THE MEANING OF RECURSIVE RULES 119

However, (3.5) is not made true; its left side is {(1, 2)} and its right side is

0 for the given A and P. Thus, P = {(1, 2)} is not a fixed point of the equations

with respect to EDB A = 0. D

Solving Recursive Datalog Equations

We can solve a set of datalog equations by assuming initially that all the Pi 's are

empty, and the #j's are whatever is given. We then apply EVAL to the current

values of the IDB relations and the permanent values of the EDB relations,

to get new values for the IDB relations. This process repeats, until at some

point, none of the Pj's change. We know the IDB relations must converge in

this sense, because the EVAL operation is "monotone," a property that we shall

define more formally later, but which essentially means that when you add more

tuples to some of the arguments of the operation, the result cannot lose tuples.

Algorithm 3.3: Evaluation of Datalog Equations.

\

INPUT: A collection of datalog rules with EDB predicates r\ , . . . , rfc and IDB

predicates pi, . . . ,pm. Also, a list of relations RI, . . . , Rk to serve as values of

the EDB predicates.

OUTPUT: The least fixed point solution to the datalog equations obtained from

these rules.

METHOD: Begin by setting up the equations for the rules. These equations have

variables PI, . . . , Pm corresponding to the IDB predicates, and the equation for

Pi is Pj = EVAL(pj, RI, . . . , Rk, PI, . . . , Pm). We then initialize each Pj to the

empty set and repeatedly apply EVAL to obtain new values for the Pj's. When

no more tuples can be added to any IDB relation, we have our desired output.

The details are given in the program of Figure 3.3. D

for i := 1 to m do

Pi := 0;

repeat

for i := 1 to m do

Qi := Pt; I* save old values of Pj's */

for t := 1 to m do

Pj := EVAL(pj,fli,...,flfc,Qi,...,Qm);

until PJ = Qi for all t, 1 < i < m;

output Pj's

Figure 3.3 Simple evaluation algorithm.

120 LOGIC AS A DATA MODEL

Example 3.10: Consider the rules of Figure 3.1 and the particular relation

P for the EDB predicate parent shown in Figure 3.4. In that figure, an edge

downward from x to y means that x is a parent of y; i.e., parent(y,x) is true.

The EVAL formulas for predicates sibling, cousin, and related, or equivalently

their relation variables 5, C, and R, are the formulas given on the right sides

of the equations in Example 3.8. When we apply Algorithm 3.3, the relation P

remains fixed; it contains the tuples ca, da, and so on, indicated by Figure 3.4.

[Note we use the compact notation for tuples here, ca instead of (c, a), and so

on.]

Figure 3.4 The relation P for predicate parent.

We see in Figure 3.5 the tuples added to the relations S, C, and R, for

sibling, cousin, and related, respectively. The tuples are grouped by the round

(of the repeat-loop of Figure 3.3) in which they are added. After each round,

the value of each relation is the set of tuples added at that round and at previous

rounds. However, as all three relations are symmetric, i.e., they contain tuple

xy if and only if they contain yx, we have listed only those tuples whose first

component precedes the second component alphabetically. Thus, after round

1, the relation 5 really contains ten tuples, cd, dc, and so on.

Initially, S = C = R — 0, so on the first round, only S can get some tuples.

The reason is that for the other two relations, each join includes one of the IDB

relations, which are currently empty. For instance, as we saw in Example 3.8,

the expression EVAL(cousin, P, S, C, R) contains two joins, the first involving

two copies of P and one occurrence of 5, the second involving two P's and a

C. Since S and C are each currently empty, and the join of anything with an

empty relation is empty, the new value of C is 0.

On the second round, S will get no more tuples, because the relation P on

which it depends is an EDB relation and therefore has not changed. Rule (2)

of Figure 3.1, for cousin, now has nonempty relations for each of its subgoals,

so on the second round it gets some tuples. For example, the sibling pair cd

implies that all the children of c, namely / and g, are cousins of the children of

d, namely h and t. Thus, we add fh, fi, gh, and gi to C. By symmetry, the

3.4 COMPUTING THE MEANING OF RECURSIVE RULES 121

R

cdde 0 0

fghi

fi

1

fh fi cd de

gh gi fg hi

hi jk fi

2

df dg ch

ci eh ei

df di gj

3

fk hk ij

fh dj gh

gi dk cj

ck ej ek

4

fj hj gk

Figure 3.5 Application of the algorithm of Figure 3.3.

sibling pair dc causes the reverses of each of these pairs to be placed in C, but

we don't list these pairs because of our convention (just as we did not explicitly

show that dc is in S).

In the third round, rule (3) for cousin could cause more tuples to be added

to C. For example, the fact that h and i were discovered to be cousins in round

2 (they are children of siblings d and e) tells us in round 3 that ./ and k are

cousins. However, we already discovered that fact in round 2.

Rules (4)-(6) for related are similarly applied starting at round 2. It takes

until round 5 for all the tuples in R to be deduced. For example, the fact that

/ and j are related is not deduced until that round.9 D

Monotonicity

To prove that Algorithm 3.3 converges at all, let alone that it converges to

the least fixed point, requires establishing that repeated application of EVAL

produces for each IDB predicate a sequence of relations that are progressively

larger, until at some point they stop growing and remain fixed. We need the

9 Note that parenthood does not imply a relationship between / and j by rules (4)-(6).

Rather, / and j are related because c and d are siblings, / is a descendant of c and / is

a descendant of d.

122 LOGIC AS A DATA MODEL

terminology of "monotonicity" to express formally this property of functions

such as EVAL: when you give them arguments no smaller than you gave them

before, they give you no less as a result.

Formally, let /(Pi, . . . , Pm) be a function whose arguments and result are

each relations. Let

• .- p(2) p(2)

be two assignments of relations to the relation variables of /. Suppose S\ <

/2\

52; that is, each relation P^ is a superset (not necessarily proper) of the

corresponding relation Jy . Then we say / is monotone if for any Si and $2

as above, /(5i) C f(S2). Monotone functions are quite common in relational

database theory, since of the basic relational algebra operations, only difference

fails to be monotone.

Theorem 3.3: The operations union, select, project, and product are mono

tone.

Proof: The proof in each case is very simple; we shall give the proof for

selection only, leaving the rest for an exercise. Consider a selection OF , where

F is an arbitrary condition, and let R^ C R^ be two relations to which aF

applies. Let n be a tuple in fff(R^)- Then p, must be in R^, and therefore p,

is in R^. Moreover, /i satisfies condition F, so we conclude n is in aF (R^).

Since this reasoning applies to an arbitrary tuple in aF(R^), we conclude that

Corollary 3.1: Natural joins and 0-joins are monotone functions.

Proof: These operations are compositions of operations we proved monotone

in Theorem 3.3. The reader may, as an easy exercise, show that the composition

of monotone functions is itself monotone.

Corollary 3.2: The operation EVAL is a monotone function.

Proof: An inspection of Algorithms 3.1 and 3.2 confirms that we use only the

operations of union, natural join, selection, projection, and product in com

puting the function EVAL. Since these are monotone functions, so is EVAL.

D

We are now able to prove the correctness of Algorithm 3.3. We show that

it produces the least fixed point of the equations. As we observed, this solution

is also the unique minimal model of the corresponding datalog program. It is

also easy to observe that the least fixed point is the set of facts provable from

the database given the rules; we leave this proof as an exercise.

Theorem 3.4: Algorithm 3.3 produces the least fixed point of the equations

to which it is applied, with respect to the given EDB relations.

3.4 COMPUTING THE MEANING OF RECURSIVE RULES 123

Proof: We need to do several inductions on the number of times we go through

the repeat-loop of Figure 3.3. We refer to these iterations as "rounds."

The first observation is that the tuples placed in Pj consist of symbols

that are either in the EDB relations or in the rules themselves. The proof is by

induction on the rounds. Before round 1, each Pj — 0, so surely the claim holds.

For the induction, each application of EVAL uses only union, selection, natural

join, projection, and product. None of these operations introduce symbols not

present in their arguments.

Next, we observe that for each t, the value of Pj produced on round j is a

superset (not necessarily proper) of the value for that relation produced on the

previous round. Again, the result is an induction on the round. For round 1,

the previous value is 0, so the claim holds. For the induction, note that EVAL

is monotone, by Corollary 3.2. On round j > 1, the arguments of EVAL in the

algorithm of Figure 3.3 are the fl's, which do not change, and the Q's, which

are the values of the P's that were produced on round j — 1. In comparison,

the arguments of EVAL on round j — I were the same fl's and the values of the

P's produced on round j — 2 (if j = 2, these P's are all 0). By the inductive

hypothesis, the values of the P's produced on round j — 1 are supersets of the

corresponding values produced on round j — 2. By monotonicity of EVAL, the

value of each Pi produced on round j is a superset of the value of Pi on round

j — 1. That observation gives us the induction, and we conclude that each PJ

takes on a sequence of values Vji, Vj2, • • . that is a nondecreasing sequence; i.e.,

ViiCVj2C....

Now, notice that for a given set of rules, there is an upper limit on the

arity of the IDB predicates, say a. Also, for a given list of relations for the EDB

predicates, there are a finite number of symbols that appear in the database

and the rules, say 6. Then there are at most ba different tuples that can appear

in any relation. Consequently, no one of the Pj's can increase in size on more

than ba different rounds. As there are m IDB predicates, there can be no more

than mba rounds on which some Pi increases in size. Thus, after no more than

m6° "rounds there will be a round on which no Pj changes, and hence Algorithm

3.3 will halt.

We must now show that when the algorithm halts, it does so at the least

fixed point. First, it is an easy induction on the number of rounds that if a

tuple /i is ever put into any Pj, then /i is in Pj in every solution to the equations.

The reason is that the equation for Pj is exactly the assignment to Pj in Figure

3.3, that is,

PJ = EVAL(pj , fli , . . . , Rk , Qi , . . . , Qm)

If every tuple in every relation on the right has already been proven to be there

in every solution, then any tuple appearing on the left must likewise be in Pj

in every solution.

124 LOGIC AS A DATA MODEL

Thus, if So is the list of relations produced by Algorithm 3.3, we have

shown that So < S for any solution S. To complete the proof that 5o is the

least fixed point, we have only to observe that So is a solution. That claim

follows from the fact that when the algorithm terminates, the Pj's are equal

to their corresponding Qj's. Hence, the assignments to the Pj's in Figure 3.3

can be replaced by equalities, and therefore, the Pj's form a solution to the

equations. D

3.5 INCREMENTAL EVALUATION OF LEAST FIXED POINTS

Notice from Example 3.10 that when computing new values of the Pj's in Figure

3.3 we instinctively focussed on the question of what tuples had been added to

IDB relations on the previous round, and we asked what new tuples these

yielded for their own relation or for another IDB relation. That restriction of

the problem is valid, because when we evaluate the assignment

Pi :=EVAL(pj, Ri,..., Rk,Qi,-..,Qm)

we care only about the tuples in the expression on the right that are not already

known to be in Pj.

It is important to notice that when we perform the EVAL procedure, for

each tuple n that is produced we can identify one particular rule for pi, from

which n comes.10 Moreover, for each subgoal of that rule, we can identify one

tuple of the relation for that subgoal that is used to help produce n.

Example 3.11: Let us reconsider the data of Example 3.10. The tuple fh

added to C in round 2 comes from rule (2) of Figure 3.1 for cousin, and in

particular, from the tuples fc in parent(X, Xp), hd in parent(Y, Yp), and cd in

sibling(Xp, Yp). No tuple in the relation for sibling besides cd is needed, and

the only reason we care about two different tuples in the relation for parent is

because there are two subgoals in rule (2) with the parent predicate. Only one

tuple for each subgoal contributes to the proof that fh is in C. D

The new tuples produced by each rule can thus be found if we substitute the

full relation for all but one of the subgoals and substitute only the incremental

tuples, i.e., the tuples found on the previous round, for the remaining subgoal.

The reason is that if tuple /i is not added until the ith round, then there must

be at least one subgoal 5, with a tuple v that p. needs, such that v was not

added to the relation for 5 until round i — 1. Hence, v is an incremental tuple

on round i, and when we use the incremental tuples for S (and the full relations

for the other subgoals) we shall generate fi.

In principle, we must do this substitution using each subgoal in turn as the

subgoal with the incremental relation, and then take the union of the resulting

10 There may be more than one rule that produces this tuple. We shall focus on any one

of these rules.

3.5 INCREMENTAL EVALUATION OF LEAST FIXED POINTS 125

relations. However, since there can be no incremental tuples for EDB relations,

we may take the union over the subgoals with IDB predicates only, except

on the first round. On the first round, we must use the full relations for all

predicates. However, since the IDB predicates have empty relations on round

1, we in effect use only the EDB relations on round 1.

Let us define more formally the operation of incremental evaluation of

the relations associated with rules and predicates. Let r be a rule with ordi

nary subgoals 5i ,...,5n; we exclude from this list any subgoals with built-in

predicates. Let Ri , . . . , Rn be the current relations associated with subgoals

5i, . . . , 5n, respectively, and let A/Zi, . . . , A#,, be the list of corresponding in

cremental relations, the sets of tuples added to RI ,...,#n on the most recent

round. Recall that EVAL-RULE(r, T\,. .. ,Tn) is the algebraic expression used

by Algorithm 3.1 to compute the relation for the body of rule r, when that

algorithm uses relation Ti as the relation for subgoal Si (Ti is /Zj in Algorithm

3.1). Then the incremental relation for rule r is the union of the n relations

EVAL-RULE(r, RI,..., Ri-i, A^, Ri+1, ...,#n)

for 1 < t < n. That is, in each term, exactly one incremental relation is

substituted for the full relation. Formally, we define:

EVAL-RULE-INCR(r, R1t . . . , R

Remember that all rules are assumed rectified, so the union is appropriate here,

just as it was in Algorithm 3.3.

Now, suppose we are given relations Ri,...,Rk for the EDB predicates

•"i, • - - ,TV For the IDB predicates pi, . . . ,pm we are given associated relations

Pi,-••,Pm and associated incremental relations APi,...,APm. Let p be an

IDB predicate. Define:

EVAL-INCR(p, Ri,...t Rk, Pi, ..., Pm, AP1, . . . , APm)

to be the union of what EVAL-RULE-INCR produces for each rule for p. In

each application of EVAL-RULE-INCR, the incremental relations for the EDB

predicates are 0, so the terms for those subgoals that are EDB predicates do

not have to appear in the union for EVAL-RULE-INCR.

Example 3.12: Consider the rules of Figure 3.1 again. Let P, S, C, and R

be the relations for parent, sibling, cousin, and related, as before, and let A5,

AC, and Afl be the incremental relations for the last three of these predicates,

which are the IDB relations. Since sibling is defined only in terms of the EDB

relation parent, we find

EVAL-INCR(stWm0, P) = 0

That is, EVAL-RULE-INCR for rule (1) is a union over an empty set of subgoals

126 LOGIC AS A DATA MODEL

that have IDB predicates. This situation is not alarming, since we saw in

Example 3.10 that 5 will get all the tuples it is ever going to get on the first

round [and incremental evaluation starts by applying EV\L(sibling, P) once].

Predicate cousin is defined by rules (2) and (3), and these rules each have

only one IDB predicate: sibling in (2) and cousin in (3). Thus, for each of

these rules EVAL-RULE-INCR has only one term, and the formula for cousin has

the union of the terms for each of the two rules:

EVAL-INCR(cousm, P, S, C, A5, AC) =

7rx,y (P(X, Xp) M P(Y, Yp) M A5(Xp, Yp)) U

*x,Y (P(X, Xp) M P(Y, Yp) ix AC(Xp, Yp))

Finally, the incremental evaluation formula for related is built in a similar

way from rules (4)-(6); it is:

EVAL-INCR(re/a*ed, P, R, S, Afl, A5) = A5(X, Y) U

)) U nx,Y(&R(Z,Y) M P(X,Z))

Semi-Naive Evaluation

These definitions are used in the following improvement to Algorithm 3.3. The

algorithm below, taking advantage of incremental relations, is sometimes called

"semi-naive," compared with the simpler but less efficient Algorithm 3.3, which

is called "naive." In Chapter 13 (Volume II) we shall examine some algorithms

that are more efficient still, and do not warrant the approbation "naive."

Algorithm 3.4: Semi-Naive Evaluation of Catalog Equations.

INPUT: A collection of rectified datalog rules with EDB predicates n , . . . , T>

and IDB predicates pi, . . . ,pm. Also, a list of relations Ri,...,Rk to serve as

values of the EDB predicates.

OUTPUT: The least fixed point solution to the relational equations obtained

from these rules.

METHOD: We use EVAL once to get the computation of relations started, and

then use EVAL-INCR repeatedly on incremental IDB relations. The computation

is shown in Figure 3.6, where for each IDB predicate pJ, there is an associated

relation Pi that holds all the tuples, and there is an incremental relation APj

that holds only the tuples added on the previous round. D

Example 3.13: Let us continue with Example 3.12. On the first round, which

is the initial for-loop of Figure 3.6, we use the ordinary EVAL operation. As

we saw in Example 3.10, only relation 5 for sibling gets any tuples on this

round, because only that predicate has a rule without IDB predicates in the

body. Thus, on the second round, 5 and A5 are both the complete relation for

sibling, while all other IDB relations and incremental relations are empty.

3.5 INCREMENTAL EVALUATION OF LEAST FIXED POINTS 127

for i := 1 to m do begin

APi :OBVALO*, H,,... .lh, I,....!);

Pi := APi

end;

repeat

for t := 1 to m do

AQi := AP^ /* save old AP's */

for t := 1 to m do begin

APi := EVAL-INCR(pi, Ri,...,Rk,Pi,...JPm,

AQi,...,AQm);

APj := APi — Pi /* remove "new" tuples

that actually appeared before */

end;

for i := 1 to m do

P, := Pi U APj

until APi = 0 for all i;

output Pj's

Figure 3.6 Semi-naive evaluation of datalog programs.

On the second round, i.e., the first time through the repeat-loop of Figure

3.6, A5 becomes equal to 0, since this is what EVAL-INCR returns, as discussed

in Example 3.12. The terms from rules (2) and (4) now contribute some tuples

to AC and Afi, respectively, and these tuples then find their way into C and

R at the end of the repeat-loop. That is, on round 2 we compute:

C = AC = KX,Y (P(X, Xp) ix P(y, Yp) tx A5(Ap, Yp))

R = Afl = A5

On the third round, since A5 is empty, rules (2) and (4) can no longer

yield new tuples, but as AC and A# now have some tuples, rules (3), (5), and

(6) may. We thus compute:

AC = TTX.X (P(X, Xp) txj P(Y, Yp) M AC(Xp, Yp))

Afl = 7rx,x(Afl(A-,Z)*iP(y,Z)) U *x,Y(&R(Z,Y) ixi P(X,Z))

The values of AC and Afl are accumulated into C and R, respectively, and

provided both were not empty, we repeat another round in the same way. D

Theorem 3.5: Algorithm 3.4 correctly computes the least fixed point of its

given rules and given EDB relations.

Proof: We shall show that Algorithms 3.3 and 3.4 compute the same sets of

tuples for each of the IDB relations on each round. Since Algorithm 3.3 was

shown to compute the least fixed point, we shall thus conclude that Algorithm

128 LOGIC AS A DATA MODEL

3.4 does so too. The actual inductive hypothesis we need is that a tuple added

to some IDB relation P in round j by Algorithm 3.3, not having been placed

in that relation on any prior round, will be placed in both P and AP on round

j by Algorithm 3.4. The basis, round 1, is immediate, since the same formulas,

given by EVAL, are used by both algorithms.

For the induction, one has only to notice that if a tuple n is added to some

IDB relation P on round i, and n was not previously in P, then there must

be some rule r for predicate p (the predicate corresponding to relation P) and

tuples in the relations for all the subgoals of r such that

1. The tuples for the subgoals together yield n, and

2. At least one of these tuples, say V, was added to its relation, say T, on

round t — 1.

By the inductive hypothesis with j = i - 1 and observation (2) above, v is in

AT when we start round i of Algorithm 3.4. Therefore the term of EVAL-INCR

that uses AT (or rather its copy into some AQ^) will produce p,, since that

term uses full relations for subgoals other than the one that supplies f, and v

will be supplied by AT. D

3.6 NEGATIONS IN RULE BODIES

There are frequent situations where we would like to use negation of a predicate

to help express a relationship by logical rules. Technically, rules with negated

subgoals are not Horn clauses, but we shall see that many of the ideas developed

so far apply to this broader class of rules. In general the intuitive meaning of

a rule with one or more negated subgoals is that we should complement the

relations for the negated subgoals, and then compute the relation of the rule

exactly as we did in Algorithm 3.1.

Unfortunately, the "complement" of a relation is not a well-defined term.

We have to specify the relation or domain of possible values with respect to

which the complement is taken. That is why relational algebra uses a set-

difference operator, but not a complementation operator. But even if we specify

the universe of possible tuples with respect to which we compute the comple

ment of a relation, we are still faced with the fact that this complement will

normally be an infinite relation. We cannot, therefore, apply operations like

selection or join to the complement, and we cannot perform Algorithm 3.1 on

a rule with negation in a straightforward manner.

It turns out that one critical issue we face when trying to define the meaning

of rules with negated subgoals is whether the variables appearing in the negated

subgoals also appear in nonnegated, ordinary (non-built-in) subgoals. In the

next example, we see what happens when things work right, and then we see

where problems arise when variables appear only in negated subgoals. Later,

we examine another problem that comes up when some subgoals are negated:

3.6 NEGATIONS IN RULE BODIES 129

there is not necessarily a least fixed point for a logic program. Furthermore,

since we have no mechanism for proving negated facts, the proof-theoretic point

of view does not help us, and we are forced to select one of the minimal models

as the "meaning" of the logic program.

Example 3.14: Suppose we want to define "true cousins" to be individuals

who are related by the cousin predicate of Figure 3.1 but who are not also

related by the sibling relationship. We might write

trueCousin(X.Y) :- cousin(X.Y) & -.sibling(X.Y) .

This rule is very much like an application of the difference operator of relational

algebra, and indeed we can compute T = C — S, where T is the relation for

trueCousin, and C and 5 are the relations for cousin and sibling, computed

as in the previous section.

The formula T = C — S is easily seen to give the same relation as

where 5 is the "complement" of 5 with respect to some universe U that includes

at least the tuples of C.11 For example, we might let U be the set of individuals

that appear in one or more tuples of the parent relation, i.e., those individuals

mentioned in the genealogy. Then, 5 would be U x U — S, and surely C is a

subset of U x [/. D

Unfortunately, not all uses of negation are as straightforward as the one

in Example 3.14. We shall investigate some progressively harder problems con

cerning what rules with negation mean, and then develop a set of restraints on

the use of negation that allow datalog rules with this limited form of negation

to be given a sensible meaning. The first problem we encounter is what happens

when variables appear only in negated subgoals.

Example 3.15: Consider the following rule:

bachelor(X) :- male(X) & -.married (X,Y) . (3.6)

Here, we suppose that male is an EDB relation with the obvious meaning, and

married(X, Y) is an EDB relation with the meaning that X is the husband of

Y.

One plausible interpretation of (3.6) is that X is a bachelor if he is male and

there does not exist a Y such that Y is married to X. However, if we computed

the relation for this rule by joining the relation male(X) with the "complement"

of married, that is, with the set of (X, Y) pairs such that X is not married

to Y, we would get the set of pairs (X, Y) such that X is male and Y is not

married to X. If we then project this set onto X, we find that "bachelors" are

11 Notice that the natural join is an intersection when the sets of attributes are the same,

and intersection with the complement is the same as set difference.

130 LOGIC AS A DATA MODEL

males who are not married to absolutely everybody in the universe; that is,

there exists some Y such that Y is not married to X.

To avoid this apparent divergence between what we intuitively expect a

rule should mean and what answer we would get if we interpreted negation in

the obvious way (complement the relation), we shall forbid the use of a variable

in a negated subgoal if that variable does not also appear in another subgoal,

and that subgoal is neither negated nor a built-in predicate. This restriction is

not a severe one, since we can always rewrite the rule so that such variables do

not appear.12 For example, to make the attributes of the two relations involved

in (3.6) be the same, we need to project out Y from married; that is, we rewrite

the rules as:

husband(X) :- married(X,Y) .

bachelor(X) :- male(X) ft -"husband (X) .

These rules can then have their meaning expressed by:

husband(X) = irx (married(X, Y))

bachelor(X) = male(X) - husband(X)

or just:

bachelor(X) = male(X) — KX (married(X, Y))

n

While we shall forbid variables that appear only in negated subgoals, the

condition found in Example 3.14 and in the rewritten rules of Example 3.15,

which is that the set of variables in a negated subgoal exactly match the vari

ables of a nonnegated subgoal, is not essential. The next example gives the idea

of what can be done in cases when there are "too few" variables in a negated

subgoal.

Example 3.16: Consider:

canBuy(X.Y) :- likes(X.Y) ft -'broke (X) .

Here, likes and broke are presumed EDB relations. The intention of this rule

evidently is that X can buy Y if X likes Y and X is not broke. Recall the

relation for this rule is a join involving the "complement" of broke, which we

might call notBroke. The above rule can then be expressed by the equivalent

relational algebra equation:

canBuy(X, Y) = likes(X, Y) DO notBroke(X) (3.7)

The fact that notBroke may be infinite does not prevent us from computing

12 Provided, of course, that we take the interpretation of -<q(X\ ,••., Xn) to be that used

implicitly in (3.6): "there do not exist values of those variables among X\ , . . . , Xn that

appear only in negated subgoals such that these values make q(X\, . . . , Xn) true."

3.6 NEGATIONS IN RULE BODIES 131

the right side of (3.7), because we can start with all the likes(X, Y) tuples and

then check that each one has an X-component that is a member of notBroke,

or equivalently, is not a member of broke.

As we did in the previous two examples, we can express (3.7) as a set

difference of finite relations if we "pad" the broke tuples with all possible objects

that could be liked. But there is no way to say "all objects" in relational algebra,

nor should there be, since that is an infinite set.

We have to realize that we do not need all pairs (X, Z) such that X is broke

and Z is anything whatsoever, since all but a finite number of the possible Z's

will not appear as a second component of a likes tuple, and therefore could not

possibly be in the relation canBuy anyway. The set of possible Z's is expressed

in relational algebra as 7r2(/ifces), or equivalently, 7ry(/ifces(X, V)). We may

then express canBuy in relational algebra as:

canBuy(X,Y) = likes(X,Y) - (broke(X) x jTY (likes(X ,

Finally, we can derive from the above expression a way to express canBuy

with rules where the only negated literal appears in a rule with a positive literal

that has exactly the same set of variables, as we derived in Example 3.15. Such

rules can naturally be interpreted as straightforward set differences. The general

idea is to use one rule to obtain the projection onto the needed set of values,

ir2(/tfces) in this case, then use another rule to pad the tuples in the negated

relation. The rules for the case at hand are:

liked(Y) :- likes(X.Y).

brokePair(X.Y) :- broke(X) ft liked (Y) .

canBuy(X.Y) :- likes(X.Y) ft -.brokePair(X.Y) .

D

Nonuniqueness of Minimal Fixed Points

Adjusting the attribute sets in differences of relations is important, but it does

not solve all the potential problems of negated subgoals. If Si and S2 are two

solutions to a logic program, with respect to a given set of EDB relations, we

say 5i < 52 if 51 < 52 and 5i ^ 52. Recall that fixed point Si is said to be

minimal if there is no fixed point S such that 5 < 5i . Also, Si is said to be

aleast fixed point if Si < S for all fixed points S. When rules with negation

are~alTowed, there might not be a least fixed point, but several minimal fixed

points. If there is no unique least fixed point, what does a logic program mean?

Example 3.17: Consider the rules:

(1) p(X) :- r(X) ft -'q(X).

(2) q(X) :- r(X) ft -.p(X) .

132 LOGIC AS A DATA MODEL

Let P, Q, and R be the relations for IDB predicates p and q, and EDB predicate

r, respectively. Suppose R consists of the single tuple 1; i.e., R = {1}. Let S\

be the solution P = 0 and Q = {1}; let S2 have P = {1} and Q = 0. Both 5i

and 52 are solutions to the equations P = R — Q and Q — R — P.13

Observe that S\ < S2 is false, because of the respective values of Q, and

S2 < Si is false because of P. Moreover, there is no solution S such that S < Si

or 5 < 52. The reason is that such an 5 would have to assign 0 to both P and

Q. But then P = R-Q would not hold.

We conclude that both Si and S2 are fixed points, and that they are both

minimal. Thus, the set of rules above has no least fixed point, because if there

were a least fixed point S, we would have S < Si and S < S2. D

Stratified Negation

To help deal with the problem of many minimal fixed points, we shall permit

only "stratified negation." Formally, rules are stratified if whenever there is a

rule with head predicate p and a negated subgoal with predicate q, there is no

path in the dependency graph from p to q.14 Restriction of rules to allow only

stratified negation does not guarantee a least fixed point, as the next example

shows. However, it does allow a rational selection from among minimal fixed

points, giving us one that has become generally accepted as "the meaning" of

a logic program with stratified negation.

Example 3.18: Consider the stratified rules:15

(1) p(X) :- r(X).

(2) p(X) :- p(X).

(3) q(X) :- s(X) ft -.p(X) .

The above set of rules is stratified, since the only occurrence of a negated

subgoal, -<p(X) in rule (3), has a head predicate, q, from which there is no path

to p in the dependency graph. That is, although q depends on p, p does not

depend on q.

Let EDB relations r and a have corresponding relations R and 5, and let

IDB relations p and q have relations P and Q. Suppose R = {1} and S = {1, 2}.

13 Note that rules (1) and (2) are logically equivalent, but these two set-valued equations are

not equivalent; certain sets P, Q, and R satisfy one but not the other. This distinction

between logically equivalent forms as we convert logic into computation should be seen

as a "feature, not a bug." It allows us, ultimately, to develop a sensible semantics for a

large class of logical rules with negation.

14 The construction of the dependency graph does not change when we introduce negated

subgoals. If -,<?(A"i, A"n) is such a subgoal, and the rule has head predicate p, we

draw an arc from q to p, just as we would if the • were not present.

15 If one does not like the triviality of the rule (2), one can develop a more complicated

example along the lines of Example 3.9 (paths in a graph) that exhibits the same problem

as is illustrated here.

3.6 NEGATIONS IN RULE BODIES 133

Then one solution is 5i given by P — {1} and Q — {2}, while another is 52

given by P = {1,2} and Q = 0. That is, both 5i and 52 are solutions to the

equations P - P U R and Q = S - P.16

One can check that both 5i and 52 are minimal. Thus, there can be no

least fixed point for the rules of this example, by the same reasoning we used to

conclude there is none for the rules of Example 3.17. On the other hand, 5i is

more "natural," since its tuples each can be obtained by making substitutions

of known facts in the bodies of rules and deducing the fact that appears at the

head. We shall see later how the proper attribution of "meaning" to stratified

rules produces 5i rather than 52. D

Finding Stratifications

Since not every logic program with negations is stratified, it is useful to have an

algorithm to test for stratification. While this test is quite easy, we explain it

in detail because it also gives us the stratification of the rules; that is, it groups

the predicates into strata, which are the largest sets of predicates such that

1. If a predicate p has a rule with a subgoal that is a negated 9, then q is in

a lower stratum than p.

2. If predicate p has a rule with a subgoal that is a nonnegated q, then the

stratum of p is at least as high as the stratum of q.

The strata give us an order in which the relations for the IDB predicates may

be computed. The useful property of this order is that following it, we may

treat any negated subgoals as if they were EDB relations.

Algorithm 3.5: Testing For and Finding a Stratification.

INPUT: A set of datalog rules, possibly with some negated subgoals.

OUTPUT: A decision whether the rules are stratified. If so, we also produce a

stratification.

METHOD: Start with every predicate assigned to stratum 1. Repeatedly examine

the rules. If a rule with head predicate p has a negated subgoal with predicate q,

let p and q currently be assigned to strata t and j respectively. If i < j, reassign

p to stratum j + l. Furthermore, if a rule with head p has a nonnegated subgoal

with predicate q of stratum j, and t < j, reassign p to stratum j. These laws

are formalized in Figure 3.7.

If we reach a condition where no strata can be changed by the algorithm of

Figure 3.7, then the rules are stratified, and the current strata form the output

of the algorithm. If we ever reach a condition where some predicate is assigned

a stratum that is larger than the total number of predicates, then the rules are

not stratified, so we halt and return "no." D

16 If we did not have rule (2), then the first equation would be P = R, and there would be

a unique solution to the equations.

134 LOGIC AS A DATA MODEL

for each predicate p do

stratum [p] := 1;

repeat

for each rule r with head predicate p do begin

for each negated subgoal of r with predicate q do

stratum[p] := max (stratum [p] , 1+stratum [q]) ;

for each nonnegated subgoal of r with predicate q do

stratum[p] := max (stratum [p] , stratum[q])

end

until there are no changes to any stratum

or some stratum exceeds the number of predicates

Figure 3.7 Stratification computation.

Example 3.19: If there are no negated subgoals, then Algorithm 3.5 immedi

ately halts with all predicates in stratum 1, which is correct.

For a less trivial example, consider the rules of Example 3.17. Initially, p,

q, and r each have stratum 1. Rule (1) forces us to increase the stratum of p

to 2, and then the rule (2) forces us to increase the stratum of q to 3. The first

rule then requires the stratum of p to be 4. We now have a stratum higher than

the number of predicates, and so conclude the rules are not stratifiable. That

conclusion is correct. For example, q appears as a negated subgoal in the first

rule, which has head predicate p, yet q depends on p.

For another example, consider the rules of Example 3.18. Starting with

all four predicates in stratum 1, rule (3) forces us to increase q to stratum 2.

However, there are no further adjustments that need to be made. We conclude

p, r, and s are in stratum 1; q is in stratum 2. That makes sense, because r

and s are EDB relations, while p is an IDB relation that can be computed from

these by Algorithm 3.3 or 3.4, without any uses of negation. After we have

computed p, we can then pretend the negation of p is an EDB relation. Since

q is not recursive, we can compute the relation for q by Algorithm 3.2. D

The correctness of Algorithm 3.5 is proved by the following lemmas and

theorem.

Lemma 3.2: If a logic program has a stratification, then it is stratified.

Proof: The reader should not be lulled by the similarity of the terms "strati

fied" and "has a stratification" into thinking that they are easy to prove equiva

lent. In fact they are equivalent, but the proof requires some work. Recall that

\ a programjs stratified if whenever there is a negated subgoal with predicate

1 q in the body~bTaTule for predicate p, there is no path in the dependency

graph from p to q. It is easy to see from the definition of a "stratification" that

3.6 NEGATIONS IN RULE BODIES 135

the stratum of predicates along any path in the dependency graph can never

decrease, because those paths go from subgoal to head, and the stratum of a

head predicate is never less than the stratum of one of its subgoals.

Suppose a program had a stratification, but was not stratified. Then there

would be a path in the dependency graph to some q from some p, such that

negated q was a subgoal of a rule r for p. The existence of the path says that

the stratum of q is at least as high as the stratum of p, yet the rule r requires

that the stratum of q be less than that of p. D

Lemma 3.3: If a logic program is stratified, then Algorithm 3.5 halts on that

program without producing a stratum higher than n, the number of predicates

in the program.

Proof: Each time we increase the stratum of some predicate p because of

some predicate q in the algorithm of Figure 3.7, it must be that q is a subgoal

(negated or not) of a rule for p. If we increase stratum[p] to i, and q is not

negated, then write q —» p; if q is negated, write q ^ p. For example, the

sequence of stratum changes discussed in Example 3.19 for the nonstratified

rules of Example 3.17 is r =*• p ^ q =*• p.

For technical reasons, it is convenient to add a new symbol start, which is

assumed not to be a predicate. We then let start =$• p for all predicates p.

It is an easy induction on the number of times Algorithm 3.5 changes a

stratum that if we set the stratum of a predicate p to t, then there is a chain of

—» and => steps from start to p that includes at least t =>• steps. The key point

in the proof is that if the last step by which Algorithm 3.5 makes the stratum

of p reach i is q =^ p, then there is a chain with at lease i — 1 =>• steps to q, and

one more makes at least i =^'s to p. If the step by which Algorithm 3.5 makes

the stratum of p reach t is q -^ p, then there is already a chain including at

least t =>'s to 9, and this chain can be extended to p.

Now, notice that if the stratum of some predicate reaches n + 1, there is

a chain with at least n + 1 =>'s. Thus some predicate, say p, appears twice as

the head of a =>. Thus, a part of the chain is

qi 4 p • • • 92 ^ P

where i < j. Also, observe that every portion of the chain is a path in the

dependency graph; in particular, there is a path from p to <ft in the dependency

graph.

The fact that q^ ^ p is & step implies that there is a rule with head p

and negated subgoal 92. Thus, there is a path in the dependency graph from

the head, p, of some rule to a negated subgoal, 92, of that rule, contradicting

the assumption that the logic program is stratified. We conclude that if the

program is stratified, no stratum produced by Algorithm 3.5 ever exceeds n,

136 LOGIC AS A DATA MODEL

and therefore, Algorithm 3.5 must eventually halt and answer "yes." D

Theorem 3.6: Algorithm 3.5 correctly determines whether a datalog program

with negation is stratified.

Proof: Evidently, if Algorithm 3.5 halts and says the program is stratified,

then it has produced a valid stratification. Lemma 3.2 says that if there is a

stratification, then the program is stratified, and Lemma 3.3 says that if the

logic program is stratified, then Algorithm 3.5 halts and says "yes" (the program

is stratified). We conclude that the algorithm says "yes" if and only if the given

logic program is stratified. D

Corollary 3.3: A logic program is stratified if and only if it has a stratification.

Proof: The three-step implication in the proof of Theorem 3.6 incidentally

proves that the three conditions "stratified," "has a stratification," and "Algo

rithm 3.5 says 'yes''" all are equivalent. D

Safe, Stratified Rules

In order that a sensible meaning for rules can be defined we need more than

stratification; we need safety. Recall that we defined rules to be "safe" in

Section 3.2 if all their variables were limited, either by being an argument of

a nonnegated, ordinary subgoal, or by being equated to a constant or to a

limited variable, perhaps through a chain of equalities. When we have negated

subgoals, the definition of "safe" does not change. We are not allowed to use

negated subgoals to help prove variables to be limited.

Example 3.20: The rules of Examples 3.16, 3.17, and 3.18 are all safe. The

rule of Example 3.15 is not safe, since Y appeared in a negated subgoal but in

no nonnegated subgoal, and therefore could not be limited. However, as we saw

in that example, we can convert that rule to a pair of safe rules that intuitively

mean the same thing. D

When rules are both safe and stratified, there is a natural choice from

among possible fixed points that we shall regard as the "meaning" of the rules.

We process each stratum in order, starting with the lowest first. Suppose we

are working on a predicate p of stratum i. If a rule for p has a subgoal with

a predicate q of stratum less than i, we can obtain q's relation, because that

relation is either an EDB relation or has been computed when we worked on

previous strata. Of course, no subgoal can be of stratum above t, if we have a

valid stratification. Moreover, if the subgoal is negated, then stratum of q must

be strictly less than t.

As a consequence of these properties of a stratification, we can view the set

of rules for the predicates of stratum i as a recursive definition of the relations

for exactly the stratum-t predicates, in terms of relations for the EDB relations

and all IDB relations of lower strata. As the equations for the IDB predicates

3.6 NEGATIONS IN RULE BODIES 137

of stratum i have no negated subgoals of stratum i, we may apply Algorithm

3.3 or 3.4 to solve them.

The only technicality concerns how we create the relation for a negated

subgoal -'q(Xi,. .., Xn) of a rule r, so that we may pretend it is the finite

relation belonging to some nonnegated subgoal. Define DOM to be the union

of the symbols appearing in the EDB relations and in the rules themselves. As

we argued, in safe rules, no symbol not in the EDB or the rules can appear in

a substitution that makes the body of a rule true. Therefore, we lose nothing

by restricting the relation for a negated subgoal to consist only of tuples whose

values are chosen from DOM.

Thus, let Q be the relation already computed for q (or given, if q is an

EDB predicate). Let the relation Q for subgoal -'q(Xi, . . . , Xn) be

DOM x • • • x DOM (n times) - Q

If we make the analogous substitution for each negated subgoal in the rules for

stratum t, and then apply Algorithm 3.3 to compute the least fixed point for

the IDB predicates of that one stratum, i, then we shall obtain the same result

as if we had managed to use the infinite relation of all tuples not in Q in place

of Q. The reason is that we can prove, in an easy induction on the number of

rounds of Algorithm 3.3, that every tuple we add to an IDB relation of stratum

t consists of tuples whose components are all in DOM. The proof depends

only on the observation that, as the rules are safe, every variable appearing in

a negated subgoal appears also in a nonnegated subgoal. Given that, we can

invoke the inductive hypothesis to show that at each round the relation for any

rule will be a subset of DOM x • • • x DOM. We can thus offer the following

algorithm for computing the "perfect" fixed point of a datalog program with

safe, stratified negation.

Algorithm 3.6: Evaluation of Relations for Safe, Stratified Datalog Programs.

INPUT: A datalog program whose rules are safe, rectified, and stratified. Also,

relations for all the EDB predicates of the program.

OUTPUT: Relations for all the IDB predicates, forming a minimal fixed point

of the datalog program.

METHOD: First, compute the stratification for the program by Algorithm 3.5.

Compute DOM by projecting all EDB relations onto each of their components

and then taking the union of these projections and the set of constants appearing

in the rules, if any.

Then for each stratum t, in turn, do the following steps. When we reach

stratum t, we have already computed the relations for the IDB predicates at

lower strata, and of course we are given the relations for the EDB predicates.

Thus, in particular, if a rule at stratum t has a negated subgoal, the relation

for that subgoal is known.

138 LOGIC AS A DATA MODEL

1. Consider each nonnegated subgoal in a rule for stratum i. If that subgoal

is an EDB predicate or an IDB predicate at a stratum below i, use the

relation already known for that predicate.

2. For each negated subgoal in a rule for stratum t, let Q be the relation

for its predicate; Q must have been computed, because the stratum of the

predicate for the negated subgoal is less than i. If this subgoal has arity n,

use the relation DOM x • • • x DOM — Q in place of this subgoal, where

DOM appears n times in the product.

3. Use Algorithm 3.3 or 3.4 to compute the relations for the IDB predicates of

stratum t, treating all the subgoals whose relations were obtained in either

step (2) or step (3), as if they were EDB relations with the values given by

those steps. D

Example 3.21: Consider the rules of Example 3.18. Recall from Example 3.19

that p, r, and s are in stratum 1, and q is in stratum 2. The relations R and

S for r and s are given EDB relations. Since all EDB relations are of arity 1,

and there are no constants in the rules, DOM is just iri(K) U 7ri(5), or R U S.

We first work on stratum 1, and we merely need one round to find that

P, the relation for p is equal to R. Now, we proceed to stratum 2. Since p

appears negated, we must compute P, a relation that includes all tuples that

could possibly be in the relation Q for q, yet are not in P. This relation is

DOM - P = RUS - P. Since R - P was just established, P = S - R here.

Since there is no recursion in stratum 2, we immediately get

Q(x) = s(X) M p(X) = s(x) n p(X) =

S(X) n (S(X) - R(X)) = S(X) - R(X)

That is, Q(X) = S(X) - R(X).17

In Example 3.18, we observed that there could be more than one minimal

fixed point. The fixed point produced by Algorithm 3.6 corresponds to the fixed

point Si of that example. D

Perfect Fixed Points

Let us call the fixed point computed by Algorithm 3.6 the perfect fixed point or

model. There is little we can prove about Algorithm 3.6, since as we understand

from Example 3.18, it simply computes one of a number of minimal fixed points

for a set of safe, stratified rules with negation. Technically, we never proved that

what Algorithm 3.6 produces is a minimal fixed point. However, the fact that

we have a fixed point follows from Theorem 3.4 (the correctness of Algorithm

17 The reader should not assume from this example that the result of Algorithm 3.6 is

always a formula in relational algebra for the IDB relations. Generally, when the rules

are recursive, there is no such formula, and the only reason we have one in this case is

that the recursion of rule (2) in Example 3.18 is trivial.

3.7 RELATIONAL ALGEBRA AND LOGIC 139

3.3 for computing least fixed points when there is no negation) and a simple

induction on the strata. That is, we show by induction on i that the equations

derived from the rules with heads of stratum i are satisfied.

As for showing we have a minimal fixed point, we can actually show more.

The perfect fixed point S has the following properties:

1. If 5i is any other fixed point, then for every predicate p of stratum 1, p's

relation in S is a subset (not necessarily proper) of p's relation in Si-

2. For all i > 1, if Si is any fixed point that agrees with S on the relations

for all predicates of strata less than i, then the relations for the predicates

of stratum i are subsets in S of their relations in Si .

It follows from (1) and (2) that S is a minimal fixed point. In fact, S

is "least" of all minimal fixed points if one puts the most weight on having

small relations at the lowest strata. All the results mentioned above are easy

inductions on the strata, and we shall leave them as exercises for the reader.

3.7 RELATIONAL ALGEBRA AND LOGIC

We can view relational algebra expressions as defining functions that take given

relations as arguments and that produce a value, which is a computed relation.

Likewise, we know that datalog programs take EDB relations as arguments and

produce IDB relations as values. We might ask whether the functions defined by

relational algebra and by logic programs are the same, or whether one notation

is more expressive than the other.

The answer, as we shall prove in this section, is that without negation in

rules, relational algebra and datalog are incommensurate in their expressive

power; there are things each can express that the other cannot. With negation,

datalog is strictly more expressive than relational algebra. In fact, the set of

functions expressible in relational algebra is equivalent to the set of functions

we can express in datalog (with negation) if rules are restricted to be safe,

nonrecursive, and have only stratified negation. In this section, "nonrecursive

datalog" will be assumed to refer to rules of this form unless stated otherwise.

Note that since the rules are nonrecursive, it is easy to see that they must be

stratified.

From Relational Algebra to Logical Rules

Mimicking the operations of relational algebra with datalog rules is easy except

for selections that involve complex conditions. Thus, we begin with two lemmas

that let us break up selections by arbitrary formulas into a cascade of unions

and selections by simpler formulas. Then we give a construction of rules from

arbitrary relational algebra formulas.

Lemma 3.4: Every selection is equivalent to a selection that does not use the

NOT operator.

140 LOGIC AS A DATA MODEL

Proof: Suppose we have an arbitrary selection aF(E), where the formula F

contains occurrences of -'. We can push all negations inside the AND and OR

operators by DeMorgan 's laws:

-.(F A G) = (-,F) V (-.G) and -.(F V G) = (-.F) A (-.G)

Repeating these transformations from left to right, as often as needed, and can

celing double negations by -'-'F = F, we eventually reach a point where all

negations apply to comparisons X0Y. However, since 0 is one of the compar

isons =, /, <, <, >, or >, we can always write -'XOY as XtfY, where Q1 is the

"opposite" of 9; e.g., if 9 is <, then 0' is >. Thus, all traces of -' are removed.

D

Lemma 3.5: Every relational algebra expression produces the same relation

(as a function of its argument relations) as some relational algebra expression

whose only selections are of the form axeY, where X and Y are attributes or

constants, and 0 is an arithmetic comparison operator.

Proof: Call selections of the form stated in the lemma simple selections, and

call selections whose formulas involve AND, OR, or NOT complex selections.

By Lemma 3.4, we shall assume our formulas have no occurrences of the NOT

operator.

Suppose we have an expression af(E), where F is a complex selection

without NOT's. We assume that any complex selections in E have already

been replaced, so any selections found there are simple. We show by induction

on the number of AND's and OR's in F, that we can replace fff(E) by an

expression whose selections are all simple. The basis, zero logical operators, is

trivial; af(E) will serve.

For the induction, suppose that we can write F as FI A F2. Then we can

write <TF(FO = aFt(aFt(E)). FI and F2 each have fewer AND's and OR's

than F, so by the inductive hypothesis, there is an expression E\ equivalent to

<7f, (E) with only simple selections. Also by the inductive hypothesis, there is

an expression using only simple selections that is equivalent to ^(Fi). This

expression is equivalent to ffF(E).

If the outer operator of F is not A, then it must be V; i.e., F is of the form

FI VF2. Then we can write aF(E) = aFt (E)(J<7Fi (E)- The inductive hypothesis

tells us that expressions E\ and F2, free of complex selections and equivalent to

<7p-! (E) and erf, (E), respectively, exist. Then E\ UF2 is an expression equivalent

to fff(E) and having only simple selections. D

Example 3.22: Consider the expression

= CT

We use DeMorgan's laws twice to replace the selection condition by

3.7 RELATIONAL ALGEBRA AND LOGIC 141

-.($1 = $2) V -.($1 < $3 V $2 < $3)

then by -'($1 = $2) V (-'($! < $3) A -'($2 < $3)). Next, we absorb the -''s into

the comparisons, leaving

Now we apply the construction of Lemma 3.5. The outermost operator is

V, so we can write:

The first argument of the union is simple, but the second requires an application

of Lemma 3.5 to the A, leaving

D

Theorem 3.7: Every function expressible in relational algebra is expressible

as a nonrecursive datalog program.

Proof: The theorem is an easy induction on the size of the algebraic expression.

Formally, we show that if an expression has i occurrences of operators, then

there is a nonrecursive datalog program that produces, as the relation for one

of its predicates, the value of the expression. The basis is i = 0, that is, a single

operand. If this operand is a given relation R, then R is an EDB relation and

thus "available" without the need for any rules. The only other possibility is

that the operand is a set of tuples. Then we invent a name, say P, for this set,

and for each of the tuples in the set, say 0102 • • • on, we have a (bodyless) rule:

For the induction, consider an expression whose outermost operator is one

of union, difference, selection, projection, and product. Recall that all the

other operators we introduced, such as intersection and various forms of join,

are expressible in terms of these five basic operators.

Case 1: The expression is E = E\ (JE^. Then by the inductive hypothesis, there

are predicates e\ and e2 defined by nonrecursive datalog rules, whose relations

are the same as the relations defined by expressions EI and EZ- Let these

relations have arity n; their arities must be the same, or the union operator

cannot be applied. Then for expression E we have rules:

e(Xi,...,Xn) :- e2(Xi,...,Xn).

Thus, the tuples in the relation for e are exactly those tuples that are in the

relation for e\ or in the relation for e2, or both, as we can see by applying

Algorithm 3.2.

142 LOGIC AS A DATA MODEL

Case 2: E = EI — E2. Assume, as in Case 1, that the relations for E\ and E2

are each of arity n, and that there are predicates e\ and e2 whose rules define

their relations to be the same as the relations for EI and EI, respectively. Then

we use rule:

to define a predicate e whose relation is the same as the relation for E. We can

easily check that Algorithm 3.6, which we must use because there is a negation,

assigns the proper relation to e.

Case 3: E — Kit,...,ik(E\). Let E^'s relation have arity n, and let e\ be a

predicate whose rules produce the relation for E\. Then the rule for e, the

predicate corresponding to expression e, is:

i,. . . , Xn)-

Case 4: E = EI x E2. Let EI and E^ have predicates e\ and e2 whose rules

define their relations, and assume their relations are of arities n and m, respec

tively. Then define e, the predicate for E, by:

e(Xi, . . . ,Xn+m) :- e\(Xi, . . . ,Xn) & ej(Xn+i, . . . , Xn+m).

Case 5: E = af(E\). By Lemma 3.5 we may assume that F is a simple

selection, say $i 9 $j; the case where one of the operands of F is a constant is

similar and left for the reader. Let C\ be a predicate whose relation is the same

as the relation for EI, and suppose e\ has arity n. Then the rule for e is:

e(Xi,...,Xn):-e1(X1,...,Xn)bXieXj.

n

Example 3.23: Let us consider the algebraic expression

canBuy(X, Y) = likes(X,Y) - (broke(X) x KY(Hkes(X,Y))\

developed in Example 3.16. The outermost operator is — , with left operand

likes(X,Y) and right operand equal to an expression that we shall name for

convenience:

brokePair(X, Y) = broke(X) x 7ry (likes(X, Y))

The left operand, being an EDB relation, requires no rules. The right

operand has outermost operator x , with a left operand that is an EDB relation

and right operand 7ry (/ifces(A\ Y)}. The latter expression can be transformed

into a rule by Case 3 of Theorem 3.7; it is:

liked(Y) :- likes(X,Y).

Here we have invented the predicate name liked for the predicate whose relation

is the same as that of the expression 7ry(/ifces(X,

3.7 RELATIONAL ALGEBRA AND LOGIC 143

Now, we can write the rule for the expression brokePair, using Case 4 of

Theorem 3.7:

brokePair (X,Y) :- broke(X) ft liked(Y) .

Finally, we use Case 2 of Theorem 3.7 to produce the rule for canBuy:

canBuy(X.Y) :- likes(X.Y) ft -.brokePair(X.Y) .

Notice that the three rules developed here are the same as the rules pro

duced by an ad-hoc argument in Example 3.16. D

From Logic to Algebra

Now, we shall prove the converse of Theorem 3.7; for every nonrecursive datalog

program, every IDB relation can be computed by an equivalent expression of

relational algebra. Essentially all the ideas for constructing the desired algebraic

expression from a collection of nonrecursive rules have been given; we only have

to put them together properly.

Theorem 3.8: Let H be a collection of safe, nonrecursive datalog rules, possi

bly with negated subgoals. Then for each predicate p of 72 there is an expression

of relational algebra that computes the relation for p.

Proof: Since "R. is nonrecursive, we can order the predicates according to a

topological sort of the dependency graph; that is, if q appears as a subgoal in a

rule for p, then q precedes p in the order. Essentially, we apply Algorithm 3.2 to

evaluate the relation for each predicate in its turn. However, as we now have the

possibility of negated subgoals, we first use the trick of Algorithm 3.6 to replace

relations R for negated subgoals by complementary relations R = DOMk - R,

where k is the arity of R, and DOM is the set of all symbols appearing in H

and in the EDB relations.

The set DOM can always be expressed in relational algebra; it is the union

of a constant set and projections of the EDB relations. Also, the construction

of Algorithm 3.2 uses only the operators of relational algebra. As we may

compose these algebraic operations into expressions with as many operators as

we need, we can easily show by induction on the order in which the predicates

are considered that each has a relation defined by some expression of relational

algebra. D

Example 3.24: Consider the rules

p(X) :- r(X,Y) ft -'s(Y).

q(Z) :- s(Z) ft -'p(Z).

Assume r and a are EDB predicates with relations R and S; we shall derive

expressions for relations P and Q, which correspond to IDB predicates p and

q, respectively. The algebraic expression for DOM is the projection of R onto

its first and second components, plus the unary relation S itself; that is:

144 LOGIC AS A DATA MODEL

DOM =

We must use the topological order p, q. Predicate p is defined by the first

rule. For the first subgoal we can use the EDB relation R(X, Y), and for the

second subgoal we use the complementary relation [DOM — S](Y), i.e., the

unary relation DOM — S regarded as a relation over attribute Y. As required

by Algorithm 3.2, we take the join of these relations and project onto attribute

X, the sole attribute of the head. The resulting expression is:

P(X) = *x (R(X, Y) tx [DOM - S] (Y)) (3.8)

Next we construct the expression for Q according to rule (2). For the

first subgoal of rule (2) we use relation S(Z). For the second subgoal we need

[DOM - P](Z). Thus, the relation Q is S(Z) txj [DOM - P](Z), or, since the

join is an intersection in this case,

Q(Z] = [S n (DOM - P)] (Z)

Since 5 is a subset of DOM, the above simplifies to Q(Z) = S(Z) - P(Z), or,

substituting (3.8), with Z in place of X, for P(Z),

Q(Z) = S(Z) - KZ (R(Z, Y) tx [DOM - S] (K))

One can further argue that DOM can be replaced by ir2(R) in the above ex

pression. The reason is that [DOM - S](Y) is joined with R(Z, Y), so only

those elements of DOM that are derived from the second component of R could

contribute to the join. D

Monotone Relational Algebra

Recall from Theorem 3.3 that of the five basic relational algebra operations, all

but set difference are monotone. The operations union, product, selection, and

projection form the monotone subset of relational algebra. We also include in

the monotone subset any operation derivable from these four operators, such

as natural join. Finally, intersection, even though it was defined using set

difference, is in fact a monotone operator.

Examination of the constructions in Theorems 3.7 and 3.8 tells us that

when there are no set difference operators in the algebraic expression, the rules

constructed by Theorem 3.7 use no negated subgoals, and when there are no

negated subgoals, Theorem 3.8 provides an expression using only the monotone

subset of relational algebra. Thus, we have the following equivalence.

Theorem 3.9: The set of functions from relations to relations expressible in the

monotone subset of relational algebra is the same as the functions expressible

by nonrecursive datalog programs with no negated subgoals. D

3.8 RELATIONAL CALCULUS 145

Comparing Datalog and Relational Algebra

It is not hard to show that without negated subgoals, but with recursion per

mitted, datalog programs are monotone. Corollary 3.2 showed that any step of

Algorithm 3.3, which evaluates such datalog programs, is an operation in the

monotone subset of relational algebra. We have only to show that an arbitrary

composition of monotone functions is still monotone, which we leave as an easy

exercise.

If we accept the monotonicity of datalog without negation, then we can

easily see that there are expressions of relational algebra, such as R — S, that

are not equivalent to any datalog program without negation. That is, R — S

is not monotone, because adding tuples to 5 will decrease the set of tuples in

R — 5, if any of the added tuples are in R.

Similarly, there are functions that can be expressed in recursive datalog,

even without negation, that cannot be expressed in relational algebra. An

example is the transitive closure of a relation, such as the predicate path denned

from the arc predicate of a graph in Example 3.9 (see Exercise 2.14).

3.8 RELATIONAL CALCULUS

A form of logic called "relational calculus" underlies most commercial query

languages that are based on the relational model. Essentially, relational calculus

is what you get when you take a nonrecursive datalog program and substitute

the logical OR of the rule bodies for all the predicates but the one predicate that

represents the answer to a query. In this section we shall define the notation of

relational calculus in one of its two forms, called "domain" relational calculus,

and in the next section, we define "tuple" relational calculus.

When we introduce the appropriate notion of "safety," these two versions

of calculus can be shown equivalent in expressive power to nonrecursive data-

log, and therefore, to relational algebra. The ubiquity of this class of queries is

reinforced strongly by the fact that commercial relational database languages

also have essentially the same expressivity, although they usually add certain

capabilities such as aggregation (taking averages, counts, and so on) and arith

metic (select those tuples for which X = Y + Z, e.g.). Therefore, it has become

common to call a language that is able to express at least all the queries of

relational algebra complete.

Formulas of Relational Calculus

Formulas are expressions that denote relations, possibly infinite ones. Each

formula has a set of "free" variables, which are analogous to variables declared

global to the procedure (i.e., the formula) at hand. Other variables appearing

in a formula are "bound," by a mechanism we shall describe, and correspond

146 LOGIC AS A DATA MODEL

to local variables of a procedure. The relation scheme for a formula is a set of

attributes corresponding to the free variables of the formula.

As with local and global variables of procedures, it is possible for two

occurrences of the same variable name X to refer to two different declarations

of X, and it is possible that one occurrence is bound while another is free.

That is, in general we must distinguish between bound occurrences of variables

and free occurrences of a variable. Thus, as we recursively define the allowable

formulas of relational calculus, we shall at the same time distinguish those

occurrences of variables that are free from those that are bound.

1. Every literal p(X\, ...,Xn), where p is a predicate symbol and X\, . . . , Xn

are variables or constants, is a formula. The predicate p represents a re

lation, and the relation defined by this literal is exactly the same as the

relation defined by Algorithm 3.1 for a rule whose body consists of the sin

gle subgoal p(Xi, . . . , Xn). All occurrences of variables among X\, . . . , Xn

are free.

2. Every arithmetic comparison XOY is a formula, where X and Y are vari

ables or constants, and 9 is one of the six arithmetic comparison operators,

=, >, and so on. We regard the occurrences of X and Y, if they are

variables, as free in the formula XOY. In many cases, XOY represents an

infinite relation, the set of all (X, Y) pairs that stand in relation 8. Thus,

as in datalog rules, we shall require that such formulas are attached by

logical AND to another formula that defines a finite relation; in that case,

the formula XOY can be viewed as a selection operator.

Items (1) and (2) above form the basis of the definition of "formulas"; the

formulas they describe are often called atomic formulas. In items (3)-(6) below,

we give the inductive parts of the definition.

3. If FI and F2 are formulas, then F\ A F2 is a formula, with the intuitive

meaning "both FI and F2 are true." Also, F\ V F2 is a formula meaning

"at least one of FI and F2 is true," and -'Fi is a formula, meaning "Fi is

not true." Occurrences of variables are free or bound in FI A F2, FI V F2,

and -'Fi if and only if they are free or bound in whichever of FI and Fz

they occur. Note that a variable X could be bound in some occurrences

and free in others. In particular, we might find that X is free in Fi and

bound in F2, and the binding of X in F2 has no influence on the status of

occurrences of X in FI (or vice-versa).

4. If F is a formula in which X appears free in at least one occurrence,18 then

(3X)F is a formula with the intuitive meaning that there is at least one

18 The condition that X actually appears free in F is generally not made here or in item

(5) below. However, the cases where X does not appear free in F are trivial, and we

simplify matters by ruling them out from the start.

3.8 RELATIONAL CALCULUS 147

value of X that when substituted for all free occurrences of X in F makes

the resulting formula true. We read (3X) as "there exists an X." (BX)

and (VX), defined below, are called quantifiers. Quantifiers play the role

of declarations as far as the bound/free distinction is concerned. All free

occurrences of X in F are bound by the quantifier (3X) and are considered

bound in the formula (3X)F.

5. If F is a formula with at least one free occurrence of X, then (VX)F is

a formula with the intuitive meaning that whatever value we pick, if we

substitute that value for all free occurrences of X in F, then the resulting

formula becomes true. We read (VX) as "for all X." Like (BX), quantifier

(VX) binds all free occurrences of X in F, so these occurrences are bound

in (VX)F.

6. If F is a formula, so is (F), and its meaning is the same as that of F.

Occurrences of variables are bound or free in (F) exactly as they are bound

in F. We need parentheses for grouping of operands in formulas exactly as

we do in other kinds of expressions. The order of evaluation we shall use

in the absence of parentheses is

t) The unary prefix operators, -,, (VX), and (BX) are of highest prece

dence and are grouped rightmost first when they appear consecutively.

«") A is of next highest precedence and groups from the left,

in) V is of lowest precedence and groups from the left.

Thus, for example, the formula (VX)^p(X, Y)Vq(Y)hr(X) is grouped as

if parenthesized

Notice that the occurrence of X in r(X) is free, rather than bound by the

quantifier (VX).

Example 3.25: In Example 2.21 we discussed the relational algebra formula

irCUST(<7lNAME='Brie' (INCLUDES M ORDERS))

involving relations INCLUDES(O#, INAME, QUANTITY) and

ORDERS(O#, DATE, CUST)

In relational calculus, the join operator is reflected by logical AND, with vari

ables chosen to correspond to the attributes of the relations being joined; this

is the same idea that is used to express join in datalog rules. Thus, we may

start with the formulas includes(N,I,Q) and orders(N,D,C), corresponding

to the relations INCLUDES and ORDERS, respectively, with the variable TV

used in both occurrences of the attribute 0#. Then

INCLUDES txj ORDERS

148 LOGIC AS A DATA MODEL

is represented by the formula

indudes(N, /, Q) A orders(N, D, C)

The selection for ITEM=' Brie" is handled by the logical AND of the above

with a third atomic formula, / ='Brie'. Then, the projection onto attribute

CUST tells us that we are interested only in the existence of some value for

each of the variables TV, /, Q, and D that make the formula

indudes(N, /, Q) A orders(N, D, C) A / = 'Brie'

true. Thus, we may existentially quantify those four variables, leaving C, or

"customer," as the only free variable:

(3N)(3I)(3Q)(3D)(indudes(N,I,Q) A

orders(N, D, C) A / = 'Brie') (3.9)

Since one of the conjuncts in (3.9) requires that / be equal to 'Brie', the

only / that could possibly exist to make the formula true is 'Brie'. Thus, we

can remove the quantifier (3/) if we replace occurrences of / by the constant

'Brie'. With a small effort, we can thus prove that (3.9) is equivalent to:

(3N)(3Q)(3D)(indudes(N,'Bne\Q) A orders(N,D,C)) (3.10)

in the sense that (3.9) and (3.10) produce the same relation over C, i.e., the same

sets of customers, when given the same INCLUDES and ORDERS relations. D

Domain Relational Calculus

Formulas can be used to express queries in a simple way. Each formula with

one or more free variables defines a relation whose attributes correspond to

those free variables. Conventionally, we shall write F(Xi,...,Xn) to mean

that formula F has free variables Xi, . . . , Xn and no others. Then the query,

or expression, denoted by F is

(X1-••Xn\F(Xi,...,Xn)} (3.11)

that is, the set of tuples 01 • • • on such that when we substitute a^ for Xi ,

1 < t < n, the formula F(a\, . . . , an) becomes true.

The query language consisting of expressions in the form of (3.11) is called

domain relational calculus (DRC). The adjective "domain" seems odd in this

context, but it refers to the fact that variables are components of tuples, i.e.,

variables stand for arbitrary members of the domain for their components. This

form of logic should be distinguished from "tuple" relational calculus, which we

take up later in this section, where variables stand for whole tuples.

It should be observed that the relations defined by DRC expressions need

not be finite. For example,

3.8 RELATIONAL CALCULUS 149

(XY[-v(X,Y)}

is a legal DRC expression defining the set of pairs (X, Y) that are not in the

relation of predicate p. To avoid such expressions, we shall later introduce

a subset of DRC formulas called "safe," in analogy with safe datalog rules

introduced in Section 3.2.

From Relational Algebra to Domain Relational Calculus

Before dealing with the question of safety, we can show how to express rela

tional algebra in DRC. The ideas are close to those of Theorem 3.7, where we

translated the algebra into datalog rules. Only the union operator needs to be

handled in a different way, because while datalog allows us to use several rules

to express an "or" of possibilities, in relational calculus we need the logical OR

operator.

Theorem 3.10: Every query expressible in relational algebra is expressible in

domain relational calculus.

Proof: As in Theorem 3.7, the proof is an induction on the number of operators

in the algebraic expression. We show that for every expression E of relational

algebra denning a fc-ary relation, there is a formula F(Xi,.. . ,X/b) of DRC

defining the same relation. The basis, zero operators, covers the case where

E is either a single relation R, or a constant relation. If it is a relation name

R, then R must be fc-ary, and we may use predicate r to represent R in DRC

formulas. Then the desired formula is just r(X\, . . . , X*,).

The other part of the basis is more complex to state, but the idea is sim

ple. Suppose for convenience that the constant relation has only two tuples:

QI • • • Ofc and 61 • • • 6fc. The generalization to any finite number of tuples should

be obvious when we observe that membership in the above finite set is expressed

by the formula

(Xi = ^ A • • - A Xk = afc) V (Xi = 61 A • • • A Xk = bk)

For the induction, we consider the five cases corresponding to the five basic

operators of relational algebra.

Case 1: E = E\ U E^. We may assume that E, Fi, and £2 are all of arity k.

By the inductive hypothesis there are DRC formulas FI and F2 that define the

relations of E\ and E2, respectively. By substituting for free variables in one of

the formulas, we may assume that FI and F2 both have X\, . . . , Xk as their free

variables, and that these variables correspond to the components of the tuples

in E, EI, and £2 in that particular order, Xi, . . . , Xk- Then the formula for E

is FI V F2.

Case 2: E = EI — E2. As in Case 1, assume there are formulas F\(Xi, Xk)

and Fi(X\, ...,Xk) that produce the relations of EI and F2, respectively. Then

150 LOGIC AS A DATA MODEL

the formula for E is FI A -'F2.

Case 3: E = irit,...,it,(E\). Let EI's relation have arity n. By the inductive

hypothesis there is a formula F\(Xi, ..., Xn) that produces the same relation

as E\. Let ji,...,jn-fc be the list of {1,..., n} that do not appear among

ti,...,?V Then a tuple /i is in the relation of E if and only if there exist

values of the components ji, . . . ,jn-k with which we can extend fi and thereby

produce a tuple of E\ . In relational calculus terms, we say:

, , . . . , Xit,) = (IXjt)(3X,-a)(- • •)(3XJ-B_JF1(Xi, . . . , Xn)

to obtain the formula F for .E.

Case 4: E = EI x F2. Let Fi(Jfi, . . . , *n) and F2(yi, . . . ,Ym) be formulas for

E\ and F2, respectively. Renaming variables, if necessary, we shall assume that

the X "s and the y's have no variables in common. Then

F(Ai,. . . ,Xn,Yi, . . . ,Ym) = Fi(Xi,. . . ,Xn) AF2(ii, . . . , Ym)

is a formula for E.

Case 5: E = <7A(Ei). By Lemma 3.5, we shall assume A is a simple selection,

of the form $i8$j or $i9a. By the inductive hypothesis, there is a formula

Fi(Xi, . . . ,Xfc) for E\. Then formula FI A XiBXj or F1 A X^a serves for E,

depending on the form of A. D

Example 3.26: Let us follow the steps of Example 3.23, to produce a DRC

expression for the algebraic expression

likes(X,Y) - (broke(X) x irY(likes(X,Y))\

For the left operand of the difference, we have the DRC formula likes(X, Y).

We must work on the right operand of — , whose outer operator is x. That

operator, in turn, has a left operand with DRC formula broke(X). Its right

operand is obtained by applying Case 3 to the formula likes(X, Y), yielding

(3X)likes(X,Y).

The latter formula has free variable Y, and the formula broke(X) for the

left operand of x has free variable X, so they may be combined without re

naming to obtain the formula for the right operand of — , which is

broke(X) A (3X)likes(X, Y) (3.12)

The reader should appreciate that in (3.12) the occurrence of X in broke is free,

while the occurrence of X in likes is bound by the existential quantifier.

The formula for the entire algebraic expression is obtained by Case 2 from

likes(X, Y) and the above formula (3.12). We can turn it into a query by

inserting it in a set former, as:

{XY | Kkes(X, Y) A -,(broke(X) A (3Z)likes(Z, Y))}

3.8 RELATIONAL CALCULUS 151

For clarity, we have replaced the bound occurrence of X by Z. As with local

variables in programs, we can replace all occurrences of a single bound variable

like X by any other variable, like Z, that does not appear free in the scope of

the quantifier that declares X (i.e., in the line above, we could not use Y in

place of X, but any other variable would do). D

Domain-Independent Formulas

To get at the concept of "safety" of formulas, we shall first consider what we re

ally would like concerning relational calculus expressions. This property, called

"domain independence," is a semantic notion; it will be seen that it is impos

sible to tell, given a formula, whether the formula satisfies the property. After

defining "domain independence," we shall therefore look for approximations to

the ideal, and that is where we shall find our notion of "safety."

For each free variable of a formula, we can imagine that there is some

domain of possible values this variable can assume. There are certain values

that it would not make sense to exclude from the domain: the values that

appear in the formula itself and the values that appear in the given relations.

We call this set DOM(F), where F is the formula at hand. Note that DOM(F)

is not a constant depending only on F, but rather a function of the relations

that are given for each predicate of F. DOM(F) is a simple function; it can

always be expressed in relational algebra as the union of the set of constants

appearing in F and the projections of all the relations that are arguments of

F, projected onto each of their components. Of course, the relation DOM(F)

is of arity 1; i.e., it is a set of symbols.

Example 3.27: Consider the formula

F = p(X,Y) f\q(Y,Z)VX > 10

Let predicates p and q have relations P and Q, respectively. Then

DOM(F) = {10} U jn(P) U 7r2(P) U *i(Q) U 7r2(Q)

D

Intuitively, if the relation defined by a formula F includes tuples with

symbols not in DOM(F), then somehow the formula is not paying attention to

the data it is given, but is materializing data from "somewhere else." Notice

that neither relational algebra nor safe datalog rules can cause the invention of

new symbols. The property that the formula "pays attention" to its data can

be formalized by the notion of "domain independence."

Let F(Xi, . . . , Xn) be a formula, and let D D DOM(F) be a set of values.

The relation for F with respect to D is the set of tuples 01 • • • an in

D x • • • x D (n times)

such that when each a^ is substituted for Xi, F(a\, . . . ,an) becomes true. In

152 LOGIC AS A DATA MODEL

evaluating F, any quantified variables are assumed to range over the set D, and

the negation of a subformula G is satisfied only by values in D that do not make

G true. We say F is domain independent if the relation for F with respect to

D D DOM(F) does not actually depend on D. If F is domain independent,

then its relation with respect to any domain D D DOM(F) is the same as its

relation with respect to DOM(F).

Example 3.28: The formula FI = -'r(X, Y) is not domain independent. Let

R be the relation given for predicate r; therefore DOM(Fi) = ni(R) U n^(R).

However, if D is any set that contains DOM(Fi), then the relation for FI with

respect to D is (D x D) — R. In particular, if a is any symbol in D that is not

in DOM(Fi), then the tuple (a, a) is in the relation of FI with respect to D,

but is not in the relation of FI with respect to DOM(Fi).

For another, more complex example, consider

F2 = (3Y)(p(X,Y)Vq(Y,Z))

Let P = {06, cd} and Q = {ef} be the relations given for p and q, respec

tively. Then DOM(F2) = {a,6,c,d,e,/}. Let D = {a,b,c,d,e,f,g}. Then

the relation for F2 with respect to D, which is a relation over X and Z, the

free variables of Fz, includes the tuple (a, g). The reason is that there exists a

value of Y in the domain D, namely Y = 6, that makes p(a, Y) V q(Y, g) true.

Naturally, q(b,g) isn't true, because bg is not in Q, but p(a, 6) is true because

ab is in P. Since eliminating g from D surely yields a different relation for F2,

we conclude that F2 is not domain independent.

On the other hand, consider F3 = (3Y)(p(X, Y)/\q(Y, Z)). As with F2, the

relation for F3 is a relation over X and Z. However, suppose (a, 6) is a tuple in

the relation for F3 with respect to some D. Then there must be some value c in

D such that when c is substituted for Y , the formula p(a, Y) A q(Y, b) becomes

true. That is, if P and Q are the relations for p and q, then ac is in P and cb

is in Q. Therefore, o is in iri(P), and thus a is in DOM(F3). Similarly, 6 is in

7r2(Q) and therefore in DOM(F3). We conclude that whatever D D DOM(F3)

we choose, the set of (a, 6) pairs in the relation for FJ with respect to D will

be the same as the relation for F3 with respect to D0M(F3); therefore, F3 is

domain independent. D

Safe DRC Formulas

As we mentioned, there is no algorithm to tell whether a given DRC formula is

domain independent. Thus, real query languages based on relational calculus

use only a subset of the DRC formulas, ones that are guaranteed to be domain

independent. We shall define "safe" formulas to be a subset of the domain

independent formulas. The important properties of safety are:

3.8 RELATIONAL CALCULUS 153

a) Every "safe" formula must be domain independent.

b) We can tell easily, just by inspecting a formula, whether or not it is "safe."

c) The formulas that are expressible in real query languages based on rela

tional calculus are "safe."

With these criteria in mind, we introduce the following definition of safe DRC

formulas. Intuitively, these conditions force DRC formulas to look like the result

of applying a sequence of (safe) nonrecursive datalog rules. Rule (2) below says

that logical OR is used in the same way that two rectified rules for the same

predicate may be used, and rule (3) is analogous to the requirement that all

variables in the body of a rule be limited.

1. There are no uses of the V quantifier. This constraint does not affect the

expressiveness of the language, because (VX)F is logically equivalent to

-'(3X)-'F. That is, F is true for all X if and only if there does not exist

an X for which F is false. By applying this transformation wherever we

find a V, we can eliminate all universal quantifiers.

2. Whenever an OR operator is used, the two formulas connected, say F\ V Fz,

have the same set of free variables; i.e., they are of the form

F1(Xi,...,Xn)VF2(X1,...,Xn)

3. Consider any maximal subformula consisting of the conjunction of one or

more formulas F\ A • • • A Fm. Then all variables appearing free in any of

these Fj's must be limited in the following sense.

a) A variable is limited if it is free in some Fj, where Fj is not an arith

metic comparison and is not negated.

b) If FJ is X = a or a = X, where a is a constant, then X is limited.

c) If Fj is X = Y or Y = X , and Y is a limited variable, then X is

limited.

It is important to note that this rule applies to atomic formulas if they

do not appear in a larger group of formulas connected by logical AND.

For example, if our entire formula is X = V, it is not safe because it is

the "conjunct" of one formula, and the variables X and Y are not limited.

Likewise, the formula X = YVp(X, Y) is not safe because the left operand

of the OR violates rule (3). However, X = Y A p(X, Y) is safe, because

p(X, Y) limits both X and Y by (a).

4. A -, operator may only apply to a term in a conjunction of the type dis

cussed in rule (3). In particular, a subformula -<G violates the "safety"

definition unless it is part of a larger subformula

Hi A • • • A Hi A -<G A h A • • • A Ij

where at least one of the /Ts and /'s is positive (not negated).

154 LOGIC AS A DATA MODEL

Example 3.29: Every formula generated in Theorem 3.10 is a safe formula.

For a more complex example, consider

r(jf,y,z)A-.(p(jf,y)v«(y,z)) (3.13)

Subformula p(X, Y) V q(Y, Z) may have an infinite relation, over scheme

{X, Y, Z}. The reason is that whenever p(X, Y) is true, q(Y, Z) need not be

true, so Z could take on any value, and yet p(X, Y) V q(Y, Z) would be true

for the tuple (X, Y, Z). Likewise, -'(p(X, Y) V q(Y, Z)) can be seen to have

an infinite relation. Yet the complete formula (3.13) has a finite relation, in

particular, one that is a subset of the relation for r. Thus, (3.13) is a domain

independent formula. However, it is not safe; in particular, condition (2) is

violated by the subformula p(X, Y) V q(Y, Z).

One way to convert (3.13) to a safe formula is to use DeMorgan's law on

the negated subformula to yield

Then, all three variables are limited by the positive conjunct r(X, Y, Z), so this

formula satisfies condition (3). D

Safe DRC to Relational Algebra

We can prove that every safe formula has a relational algebra expression defining

the same relation. Of course, there are many nonsafe formulas that also have

equivalent relational algebra expressions, such as the formula of Example 3.29,

but we cannot in general tell which ones do and which do not.

Theorem 3.11: The sets of functions computed by expressions of relational

algebra, by safe, nonrecursive datalog programs, and by safe formulas of domain

relational calculus are the same.

Proof: Theorems 3.7 and 3.8 proved the equivalence of relational algebra and

safe, nonrecursive datalog rules. Theorem 3.10, when we check the form of

each constructed formula, tells us that the functions expressible in relational

algebra are all expressible in safe DRC. We complete the proof by showing that

safe DRC formulas define functions that are expressible in safe, nonrecursive

datalog.

The proof proceeds by induction on the number of operators in the safe

DRC formula. However, because rule (3) applies to maximal sets of formulas

connected by logical AND, we have to state the inductive hypothesis carefully,

to avoid considering subformulas that appear unsafe only because they are a

proper subpart of a conjunct that does satisfy rule (3). For example, we do not

want to consider X = Y separately in the formula X = Y hp(X,Y). Thus,

the inductive hypothesis we shall prove is the following. Let F be a safe DRC

formula. Then for every subformula G such that F does not apply the AND

3.8 RELATIONAL CALCULUS 155

operator to G (i.e., there is no larger subformula G f\H or H AG in F), if G has

free variables Xi,...,Xn, then there is a safe, nonrecursive datalog program

that defines the relation for some predicate po(X\, • • • , -^n) to be equal to the

set of tuples (01,...,an) that make G true, when aj is substituted for Xi,

l<i<n.

Basis: G is a maximal conjunct of atomic formulas GI A • • • A Gfc. The basis

includes the case k — 1, where G is an atomic formula not part of any conjunct.

Then each Gi has the form of a subgoal, either ordinary or built-in. If k > 2,

define the predicate pc for G by

where Xi, . . . , Xm are all the free variables in G. Rule (3) in the definition of

safety for DRC implies that the above rule is a safe datalog rule.

If k = 1, then G must be an ordinary atomic formula of the form

p(Xi, . . . , Xk). In this case, use the EDB relation name p for pc, and do

not generate any rules.

Induction: Since universal quantifiers are forbidden in safe formulas, and nega

tions can only appear within conjunctions, we can break the induction into

three cases, for 3, V, and A.

1. G = (3Xi)H, where the free variables of H are X\, . . . , Xk- Then the rule

defines the desired predicate pc-

2. G = H V /. Then the free variables of H and / must be the same, by rule

(2) in the definition of "safety"; let these variables be X\, . . . ,Xk- Then

we use the two rules

Po(Xi,..

3. G = GI A • • • A Gn. Here, we may assume that G is a maximal conjunct,

because the inductive hypothesis does not apply to nonmaximal ones.

a) For all those Gj's that are not arithmetic atomic formulas (i.e., of the

form XOY, where 9 is =, <, etc.), let subgoal Si be pc, (Vii, . . . , Vim,),

where YH, ..., Yim, are all the free variables in Gj. By the inductive

hypothesis, pot has already been defined by the appropriate rules.

b) If Gi is an arithmetic atomic formula, then let Si be Gj itself.

Let Xi, . . . , Xk be all the variables appearing among the Gj's. Then the

rule for G is

D

156 LOGIC AS A DATA MODEL

Example 3.30: Let us treat the DRC formula constructed in Example 3.26:

likes(X, Y) A ^(broke(X) A (IZ)likes(Z, Y))

Of the three atomic formulas, only likes(Z, Y) is not part of a larger conjunct; it

is part of an existentially quantified formula. We thus use likes as the predicate

for this subformula and create no rules.

For the expression (BZ)likes(Z, Y) we create a new predicate, say p and

give it the rule

p(Y) :- likes(Z.Y).

Next we work on the maximal conjunct broke(X) A (^Z)likes(Z, Y), which is

broke(X) /\p(Y). The rule for this conjunct is thus

q(X,Y) :- broke(X) ft p(Y).

where q is used as the predicate name. Finally, the outer conjunct is translated

into a rule

r(X,Y) :- likes(X.Y) ft -.q(X.Y).

Notice that the rules we obtain are essentially those of Example 3.23. What we

called p, q, and r here are liked, brokePair, and canBuy there. D

3.9 TUPLE RELATIONAL CALCULUS

Tuple relational calculus, or TRC, is a variant of relational calculus where vari

ables stand for tuples rather than components of tuples. To refer to the ith

component of a tuple /i we use /i[i]. If an attribute A for that component is

known, we may also write n[A}. The formulas of TRC are defined recursively,

and the structure of TRC formulas is quite close to the structure of DRC for

mulas. The basis, atomic formulas, is:

1. If p is a predicate name and n a tuple variable, then p(/i) is an atomic

formula. Its meaning is that "tuple p, is in the relation for p."

2. XOY is an atomic formula if 9 is an arithmetic comparison operator and X

and Y are each either constants or component references; the latter are of

the form n[i] for some tuple variable n and component number or attribute

i.

The inductive definition proceeds as in domain relational calculus. If F\

and /2 are formulas of TRC and /i is a tuple variable appearing free in FI , then

the following are TRC formulas, with the obvious meanings and sets of free and

bound variables.

a) FiAF2 d) (3/i)Fi

b) FiVFj e) (V/i)F1

c) -F1

3.9 TUPLE RELATIONAL CALCULUS 157

The relation associated with a formula of TRC is defined in the same way as

for DRC. The relation for F has one component for each component of each free

tuple variable of F that actually is mentioned in F.19 The value of the relation

for F is the set of tuples whose values, when substituted for their corresponding

components of tuple variables, makes F true. A query of TRC is an expression

of the form {p, \ F(/i)}, where p, is the only free variable of F. Naturally, this

expression defines the relation of all tuples n such that F(n) is true.

On occasion, the arity of a tuple variable will not be clear from context.

We shall use the notation n^ to denote a tuple variable n that is of arity i.

Frequently, we use the superscript when the tuple variable is quantified and

leave it off in other places.

Example 3.31: The DRC query derived in Example 3.26 can be turned into

TRC if we use the tuple n for (X,Y), v for X in broke, and p for (Z,Y) in

likes. The query is:

|

(3.14)

Notice how the atomic formula f[l] = /i[l] replaces the connection that in

DRC was expressed by using the same variable X in likes and in broke. We

cannot use n as the argument of broke, because broke takes a unary tuple, while

likes takes a binary tuple. Similarly, p[2] = ^[2] substitutes for the double use

of Y. Also notice that v must be existentially quantified, or else it would be a

free variable of the query that did not appear to the left of the bar in the set

former (3.14). Although it looks like v could therefore be anything, the formula

i/[l] = n[l] completely defines the unary tuple v. The relation for the formula

broke(v) A i/[l] = /i[l] is

{(X, X)\XiB in broke}

The two components correspond to i/[l] and /i[l]. They have the same value

in each tuple, because in order for the formula to be satisfied, the subformula

v[l] = n[l] must be satisfied.

In the formula (3v^)(broke(v) A i/[l] = /i[!]) there is only one free com

ponent, n[l]. The relation for this formula is thus {X \ X is in broke}; i.e., it

is the same as broke. D

Safe Tuple Relational Calculus

As in DRC, we can write TRC formulas, such as -r(/i), that denote infinite

relations. We want to avoid them in real query languages, and as with DRC,

19 Note that in TRC it is possible that a subformula could mention /i[2], say, without

mentioning /i[l).

158 LOGIC AS A DATA MODEL

the most useful approach is to define a restricted form of TRC called "safe

TRC." Again in analogy with DRC, we shall be rather more restrictive than we

have to be, when defining "safety," because all we really need to do is define a

class that reflects what is found in commercial TRC-based languages and that

is equivalent in expressive power to relational algebra.

Since the arity of a tuple variable is not always clear from context in a

TRC formula, we shall assume that the arity of each variable is given and that

the arity of one variable does not change from occurrence to occurrence, even

if the two occurrences are bound by different quantifiers. The safety of a TRC

formula is defined as follows, in close analogy with the definition of safe DRC.

1. There are no uses of the V quantifier.

2. Whenever an V operator is used, the two formulas connected, say Fi V F2,

have only one free tuple variable, and it is the same variable.

3. Consider any subformula consisting of a maximal conjunction of one or

more formulas F\ A • • • A Fm. Then all components of tuple variables that

are free in any of these Fj's are limited in the following sense.

a) If Fi is a nonnegated, ordinary atomic formula p(n), then all compo

nents of tuple variable p, are said to be limited.

b) If Fi is n[j] = a or a = fi[j], where a is a constant, then p\j] is limited.

c) If Fi is p\j] — v[k] or v[k] = fi[j], and v[k] is a limited variable, then

p\j] is limited.

4. A -, operator may only apply to a term in a conjunction of the type dis

cussed in rule (3).

From Relational Algebra to Safe Tuple Relational Calculus

We shall show that safe TRC is equivalent in expressive power to relational

algebra, and therefore to the other languages of Theorem 3.11. The proof is in

two lemmas, one converting relational algebra to TRC and the other converting

TRC to DRC. These two results, together with the equivalences of Theorem

3.11 will show the equivalence between safe TRC and the three other abstract

query languages shown equivalent in that theorem.

Our first step is to show how relational algebra expressions can be converted

into TRC formulas. The proof is quite similar to that of Theorem 3.10, where

we turned the algebra into domain calculus.

Lemma 3.6: Every query expressible in relational algebra is expressible in safe

tuple relational calculus.

Proof: We show by induction on the number of operators in the relational

algebra expression E that there is a TRC formula, with a single free tuple

variable, that defines the same relation as E. The basis, zero operators, requires

that we consider two cases, where E is a relation variable R or a constant

relation. If E is a relation name R, then formula R(n) suffices. If E is a

3.9 TUPLE RELATIONAL CALCULUS 159

constant, say {/iI, • • • , Ain}, consisting of tuples of arity k, then we use one free

variable, say v, and we write the TRC formula

i/[l] = /n[l] A i/[2] = m[2] A • • • A i/[fc] = /!,[*] V

i/[l] = /i2[l] A i/[2] = /ij[2] A ••• A v[k] = fi2[k] V

i/[l] = /in[l] A i/[2] = /i» [2] A • • • A ,/[*] = ,i»[*]

Note that for all i and j, ni[j] is a constant here. Thus, the above formula is

safe, by rules (2) and (3b) of the safety definition.

For the induction, we consider the five cases.

1. E = EI U F2. Then there are TRC formulas FI and F2 for EI and F2.

By renaming if necessary, we may assume that the lone free tuple variable

in FI and F2 is n. Because E\ and F2 have the same arity, the free tuple

variables of FI and F2 must also have the same arity, so the renaming is

permitted. Then FI V F2 is a TRC formula for F.

2. E = EI — F/2. As in (1), assume there are formulas F\(fi) and F2(fJ.) for

EI and F/2, respectively. Then FI A -'F2 is a TRC formula for E.

3. E = 7rj,,...,ilk(F,i). Let Fi(I/) be a TRC formula for EI. Then a formula for

F, with free variable fi, is

(3i/)(Fi(i/) A /i[l] = i/[n] A /i[2] = i/[t2] A ••• A n[k] = i/[tfc])

4. F = EI x F2. Let F1(i/(m)) and F2(pW) be TRC formulas for FI and F/2.

Then the TRC formula for F, with lone free variable /i(m+"), is

(3i/)(3p)(F1(i/)AF2(p)A

p.[l] = i/[l] A • • • A n[m] = v[m] A

fjt[m + 1] = p[l] A ••• A /i[m + n] = p[n])

5. F = ^/((F1). By Lemma 3.5, we may assume A is a simple selection of the

form $t 0 $j or $t 9 a, for constant a. Let Fi(/i) be a TRC formula for FI.

Then for F we have TRC formula

Fi(/i) A /i[t] 0 /i[>] or Fi(/I) A /i[t] « a

depending on the form of A. D

Example 3.32: Let us convert the algebraic expression of Example 3.26:

likes(X,Y) - (broke(X) x iry(likes(X,Y))}

into tuple calculus. To begin, the three occurrences of predicates will be trans

lated to likes(X), broke(n), and likes(v), in order of appearance in the expres

sion above. For iry (likes(X, F)), we must introduce a new, unary tuple variable

p, and write (3i/)(/ifces(i>) A p[l] = ^[2]). Notice that this formula is safe, since

the subformula likes(v) A p[l] = v[2] has all its components of free variables

160 LOGIC AS A DATA MODEL

limited; the components of v are limited by likes(v), and p[i] is limited by

being equated to i/[2].

For broke(X) x 7ry(/tfces(X, Y)) we must again introduce a new variable,

this time a binary variable whose first component is equated to the lone com

ponent of p, and whose second component is equated to the lone component of

p. While we could call this new variable what we liked, it makes sense to call

it A. The reason is that, at the next step, we must subtract the formula we

construct now from the formula likes(X), and to make the resulting formula

safe, the free tuple variable of each formula must be the same. Therefore, we

construct TRC formula

(3n)(3p)(broke(n) A ((3v)(likes(v) A p[lj = i/[2])) A

A[l] = /i[l] A A[2] = p[l]) (3.15)

Finally, for the entire expression we have

{A<2> | Kfcea(A) A ^((3^)(3p^)(broke(ti) A

((3i/(2>)(/tfces(i/) A p[l] = i/[2])) A

(3.16)

D

From TRC to DRC

The conversion from safe TRC to safe DRC is straightforward; we replace each

tuple variable by a collection of domain variables, one for each component of

the tuple variable.

Lemma 3.7: For every safe formula of TRC there is a safe formula of DRC

that defines the same relation.

Proof: The idea, as stated above, is to replace each tuple variable //fc) by fc

domain variables Xi,...,Xk, and let Xj be used exactly where p\j] is used.

The existential quantification of a tuple variable, say (3^fc))F, is replaced

by (3Xi)(3X2)(- • •)(3Xfc)F/, where F' is the translation of F into DRC. The

straightforward proof that this transformation produces safe formulas from safe

formulas, and preserves the defined relation, is left for an exercise. D

Example 3.33: Let us consider the TRC query (3.16) from Example 3.32. For

the two components of A we shall use domain variables Z/i and LI. We use

NI and N2 for the two components of i/, and we use M and R for the lone

components of n and p, respectively. Thus, the TRC formula

likea(v) A p[l] = i/[2]

3.10 THE CLOSED WORLD ASSUMPTION 161

is replaced by the DEC formula likes^iN2) A R = A^.

Then, for the TRC formula (3v)(likes(v) A p[l] = i/[2]) we have DRC

formula

F1 = (3N1)(3N2)(likes(N1N2) /\R = N2]

Notice that FI, which has only R as a free variable, defines the same relation

as (3Ni)(likes(NiR)), because of the subformula equating R to N2 in FI.

Progressing outwards, the negated subformula of (3.16), which appeared

in Example 3.32 as (3.15), is converted to

F2 = (3M)(3R)(broke(M) A FI A L^ = M A L2 = R)

where Fi is the formula above.

Finally, the entire query (3.16) can be expressed in DRC as:

{LiLz | /tfces(L1L2) A -,(F2)}

This formula, like Fi, can be simplified by taking advantage of the equalities

between domain variables to eliminate one of them, D

The above relationships and Theorem 3.11 can be summarized as follows.

Theorem 3.12: The following four languages define the same class of functions:

1. Relational algebra expressions.

2. Safe, nonrecursive datalog programs with negation.

3. Safe domain relational calculus formulas.

4. Safe tuple relational calculus formulas. D

3.10 THE CLOSED WORLD ASSUMPTION

We have seen in this chapter how logic can be used to define operations on a

database, and how the process of obtaining answers to a query is one of proving

that certain facts follow logically from the facts in the extensional database.

However, to follow through consistently with the point of view that operations

on data are proofs, we ought to be able to prove that certain facts are not part

of the answer to a query by proving that their negation follows from the given

EDB and rules.

Unfortunately, there is nothing in the logic we have developed that lets

us conclude a negative fact. For example, let us recall our genealogy rules of

Figure 3.1, and suppose we are given an EDB relation P for predicate parent.

We might well suppose that there do not exist in P tuples that let us use rule

(1), which is

sibling(X.Y) := parent(X.Z) ft parent(Y.Z) ft X^Y.

to deduce sibling(superman, henry-viii). Can we therefore deduce the truth

of the logical formula

162 LOGIC AS A DATA MODEL

-<(sibling (superman, henry-viii)) (3.17)

If we assume that there is no Z for which parent(superman, Z) and

parent(henry-viii, Z) are both true, then there is no way

sibling(superman, henry-viii)

could be deduced by rule (1) of Figure 3.1. But that is not a proof that (3.17) is

true. For example, there might be parent-child facts that are not in the relation

P, or there might be a way to deduce sibling(X, Y) other than by rule (1).

Rather than get paranoid about the matter, we can make the closed

world assumption (CWA). The CWA says that whenever an atomic for

mula p(OI, . . . ,afc) with no variables (such a formula is often called a ground

atom) is not deducible from your EDB and your rules, then you may assume

-'p(01, . . . ,0fc). Thus, the CWA is a powerful rule for inferring new formulas.

We are used to one kind of deduction, where we are given some facts that match

the body of a rule, and we thereby deduce the head of the rule as a new fact.

But the CWA acts as a "metarule," which talks about the deductions them

selves. The CWA lets us "deduce" facts of the form -'p(01,. . . , afc) whenever

the usual form of deduction does not yield p(OI, . . . , afc).

Validity of the Closed World Assumption

It turns out that there are circumstances where the CWA leads to logical con

tradictions, and we therefore may not assume it. Before giving such an example,

let us see an important special case where the CWA is logically consistent.

First, we need to assume that different constants are distinct. For exam

ple, in our rule for siblings, we have no trouble believing that superman ^

henry-viii, so if these two individuals had a common parent, surely it would

make sense to accept that the third subgoal of rule (1), X ^ Y, is satisfied,

and therefore, sibling(superman, henryjviii) could be deduced. However, if

instead, our database had P facts

parent(superman, jor-el) and parent(clark-kent, jor-el)

we would be less comfortable about accepting superman / clark-kent, thus

deducing sibling (superman, clark-kent). The consequence is that in order to

rely on the CWA we must assume that distinct constants are not somehow "the

same"; i.e., use superman in your database to denote the man of steel, or use

clark-kent if you wish, but pick one consistently.

A second essential is that we assume there are no more constants than

actually appear in the database and the rules. Without this domain closure

assumption, we could not conclude

-'sibling(superman, henryjviii)

3.10 THE CLOSED WORLD ASSUMPTION 163

just because we found no common parent in the database; there could be a

common parent of superman and henry-VW that was not mentioned in the

database.

The final necessary assumption is that our rules are all Horn clauses (with

no negated subgoals, of course).20 Formally, what we can show is the following.

Theorem 3.13: Let ft be a set of Horn-clause rules, and E be the set of EDB

facts (tuples) of the EDB relations of ft. Let / be the set of IDB facts deducible

by Algorithm 3.3; that is, / U E is the set of tuples in all the relations of the

least fixed point of ft. Let J be the set of ground atoms -'p(01, . . . ,0fc) such

that p is a predicate of ft, and 0i, . . . , afc are constants, but p(01, . . . , at) is

not in / U E. Then I (J E (J J is logically consistent (no contradiction can be

derived).

Proof: Suppose K = / U E U J yielded a contradiction. Then there would

be some rule r and some substitution for the variables of r such that each of

the subgoals of the body of r becomes a member of K, but the head does

not become a member of K. But the subgoals are all unnegated literals, and

therefore they must be in / U E after the substitution. That is, because we

have Horn clauses, a subgoal, after substitution, cannot be in J. Then since /

is computed by taking a fixed point, as in Algorithm 3.3, the head of r after

substitution is also placed in / by Algorithm 3.3, and therefore, the head is also

in K, contrary to assumption. D

Problems with the Closed World Assumption

As we just saw, while we stay within the realm of Horn clauses, the CWA

makes good sense. However, logic as a data model allows more general modes

of reasoning. With Horn clauses, we can only deal with facts that are true and

facts that are not true. We cannot make statements like p(0) Vp(l), i.e., either

the (unary) tuple 0 is in relation P, or 1 is, or both, but we don't know which

of these three cases applies. This sort of reasoning is of a kind that we might

hope a knowledge-base system could support. Unfortunately, the CWA does

not interact well with this kind of reasoning; it leads to a contradiction.

Example 3.34: Suppose we have only the EDB relation R corresponding to

predicate r, and our rules are p(X) :- r(X) and p(0) Vp(l). Note that the latter

rule is not a Horn clause, because it has two literals that are not negated. We

may write it in our usual notation as p(0) :- -'p(l), but that is still not, strictly

20 The subgoal X / Y in rule (1) of Figure 3.1 might give us pause, since it is in a sense

negated. However, we can think of it as a nonnegated subgoal n(X, Y), where the

relation N for predicate n consists of the infinite set of pairs (a, 6} such that u / h.

Since variables X and Y each appear in other subgoals of this rule, the innniteness of

N does not bother us. Notice how the assumption that distinct constants are unequal

is important here too, or else we could not tell what pairs belonged in N.

164 LOGIC AS A DATA MODEL

speaking, a Horn clause, because it has a negated subgoal.

Let us suppose that R does not contain either 0 or 1. Then there is no

way to deduce p(0) and there is no way to deduce p(l). Therefore, the CWA

allows us to assert -'p(O) and -'p(l). However, the three formulas -"p(0), -'p(l),

and p(0) Vp(l) clearly yield a logical contradiction. Thus, when we have non-

Horn clauses among our rules, we may not make the CWA, and it is unsafe to

conclude that something is not true just because you cannot deduce it from the

database and rules. D

Generalizations of the Closed World Assumption

There have been proposed some more restrictive rules that let us infer some

negated facts, but not enough to lead to the contradiction in Example 3.34.

Such generalizations are needed whenever we have inference rules that are not

Horn clauses. For example, we might add to the set of accepted facts (our

selected fixed point) the negated ground atom -'p(01,. .. , afc) as long as there

is no formula F such that:

1. F is the logical OR of ground atoms.

2. p(OI, . . . , Ofc) V F is deducible by the application of rules to the EDB.

3. F itself is not deducible by application of rules to the EDB.

This law would protect against adding either p(0) or p(l) to the fixed point

in Example 3.34, because each serves as F for the other. That is, we cannot

add -'p(O), because we can derive p(0) V F, where F = p(l), and similarly for

The matter of what may be assumed from negative evidence is an active

area for research in the theory of reasoning. Generalizations of the CWA, such

as the one just mentioned, suffer from the problem that there do not appear

to be efficient algorithms to tell whether a negated ground atom -'p(01, . . . , afc)

meets the condition. The references contain pointers to the research on the

subject.

EXERCISES

3.1: In Example 1.13 we gave datalog rules for a simple black/white cell defi

nition system. Generalize the system to allow n colors, 1,2, ...,n. That

is, EDB relation contains(I, J, X, Y) has the same meaning as in Example

1.13, and EDB relation aet(I, X, Y, C) says that cell / has color C at point

(X, Y). Define color(I, X, Y, C) to mean that cell / has color C at point

(X, Y), either directly or through the presence of some subcell. If a point

is defined to have more than one color, then color will be true for each.

EXERCISES 165

* 3.2: Modify your answer to Exercise 3.1 so at most one color is defined for any

point, using the rules:

i) If / has two subcells that each define a color for a given point, the

higher-numbered color predominates.

tt) If / has a subcell J, then whatever color a point has in J (including

both directly denned colors and colors required by subcells of J) pre

dominates over a color defined for that point directly in / [i.e., via

set(I,X,Y,C)}.

Hint: Simplify life by ignoring the translation of coordinates. Start by

assuming there is only one point per cell, and the EDB predicates are

set(I,C) and contains(I,J).

3.3: Are your rules from Exercise 3.2 (a) safe? (b) stratified?

** 3.4: Show that

a) Your rules from Exercise 3.2 can have more than one minimal fixed

point for some values of set and contains.

b) Relation contains is acyclic, if the graph whose nodes correspond to

cells and that has an arc from / to J if contains(I, J, X, Y) is true for

some X and Y, is acyclic. Show that if contains is acyclic, then your

rules from Exercise 3.2 have a unique least fixed point.

* 3.5: The following is a simplification of a calculation that must be performed

in an optimizing compiler. We shall assume that all procedures of the

hypothetical language being compiled have a single parameter, and an EDB

relation param(P,X) says that X is the formal parameter of procedure

P. Another EDB predicate calls(P, Q, Y) says that procedure P calls

procedure Q with actual parameter Y. It is possible that Y is a local

variable of P, the formal parameter of P, or a constant. For example, the

procedures in Figure 3.8 are characterized by the EDB facts

param(p, x) calls(p, q, a)

param(q, y) calls(p, q, x)

calls(q,p,y)

calls(q,q,3)

Write datalog rules that compute the "transitive closure" of calls, that

is, an IDB predicate calls-star(P, Q, Z) that says when procedure P ex

ecutes, it results in a call to Q with argument Z, perhaps through a se

quence of calls to procedures. For example, in the procedures of Figure

3.8, calls-star(p,p, a) is true, because p calls q with argument a, and q

calls p with its own formal parameter as argument. Try to avoid the use

of negated subgoals in your answer.

166 LOGIC AS A DATA MODEL

procedure p(x) ;

local a;

call q(a);

call q(x) ;

end

procedure q(y) ;

call p(y);

call q(3);

end

Figure 3.8 Example program for Exercise 3.5.

3.6: Suppose we have EDB relations

frequents(Drinker, Bar)

serves(Bar, Beer)

likes(Drinker, Beer)

The first indicates the bars a drinker visits; the second tells what beers

each bar serves, and the last indicates which beers each drinker likes to

drink. Define the following predicates using safe datalog rules.

a) happy(D) that is true if drinker D frequents at least one bar that

serves a beer he likes.

b) shouldVisit(D, B) if bar B serves a beer drinker D likes.

* c) veryHappy(D) if every bar that drinker D frequents serves at least

one beer he likes. You may assume that every drinker frequents at

least one bar.

* d) sad(D) if drinker D frequents no bar that serves a beer he likes.

3.7: Write each of the queries of Exercise 3.6 in (i) relational algebra (ii) safe

DEC (iii) safe TRC.

3.8: Assuming R and S are of arity 3 and 2, respectively, convert the expression

iri,5(o-$2=$4V$3=*4(fi x S)) tO

a) Safe, nonrecursive datalog rules.

b) Safe DRC.

c) Safe TRC.

* 3.9: Consider the TRC expression

a) Show that the expression is domain independent but not safe.

b) Find an equivalent safe TRC formula.

EXERCISES 167

3.10: Convert the DRC expression

{AB\r(AB)/\r(BA)}

a) To an English statement.

b) To a datalog rule.

c) To DRC.

d) To relational algebra.

3.11: Show that over the domain of the integers, there are an infinite number

of models for the rules of Example 3.1 that are consistent with the EDB

consisting of (r(l)} only.

*3.12: A generalized projection of a relation R is denoted ?r/,(#), where L is

a list of component numbers and constants. Unlike ordinary projection,

components may appear more than once, and constants as components of

the list L are permitted. In generalized projection, use $i for component i

to distinguish it from the constant t. For example, if R = {abc,def}, then

= {baab,eade}

a) Show that there is a relational algebra expression equivalent to each

generalized projection.

b) Give a construction alternative to that of Algorithm 3.2 that uses

generalized projections but does not require that the rules be rectified.

p(X,X) :- q(X,Y) ft r(Y,Z).

p(X,Y) :- q(X,X) ft r(Y,Y).

q(a,X) :- s(X) .

q(X,Y) :- r(X,Z) ft r(Z,b) ft r(Y,c).

r(X,Y) :- s(X) ft s(Y).

Figure 3.9 Rules for Exercise 3.13.

3.13: Consider the rules in Figure 3.9. Here, s is the only EDB predicate.

a) Rectify the rules.

b) Write relational algebra expressions for the relations defined by the

IDB predicates p, q, and T. To simplify, you may use the result for

one predicate as an argument of the expression for other predicates.

c) Produce algebraic expressions directly from the rules (without rectifi

cation) by using the extended projection operator.

d) Write a safe DRC expression for the relation of q.

168 LOGIC AS A DATA MODEL

3.14: Verify that the expression T(X) ixi U(X,Z) ixi S(Y,Z) in Example 3.5

defines the relation for the body of the rule (3.4) from that exercise.

* 3.15: Complete the proof of Lemma 3.1 by showing that substituting X for Y in

a rule that has X = Y as a subgoal does not make the rule unsafe if it was

safe and does not change the set of facts that the head of the rule yields.

3.16: Complete the proof of Theorem 3.2 by showing that the set of facts pro

duced by Algorithm 3.2 is a subset of any model of the rules, and therefore

is the unique minimal model.

3.17: Complete the proof of Theorem 3.3 by showing that the operations union,

projection, and product are monotone.

3.18: Show that intersection is monotone.

* 3.19: Is 4- a monotone operator?

3.20: Show Corollary 3.1: the composition of monotone operators is monotone.

3.21: Show that Algorithm 3.3 computes the proof-theoretic meaning of datalog

rules, i.e., the set of facts that can be inferred by applying the rules in the

forward direction (from body to head).

3.22: Rules are said to be linear if they each have at most one subgoal with an

IDB predicate. Give a simplification of Algorithm 3.4 (semi-naive evalua

tion) for the case that rules are linear.

* 3.23: A logic program is said to be metalinear if we can partition the predicates

into "strata" such that a rule whose head is in stratum t can have no

subgoals of stratum above i and at most one subgoal at stratum i. Note

these "strata" have nothing to do with negated subgoals; we assume there

are none.

a) Give an example of a datalog program that is metalinear but not

linear.

b) Simplify Algorithm 3.4 for the case that the rules are metalinear.

* 3.24: Extend Algorithm 3.4 to the case that the rules are stratified rules (in the

sense of Section 3.6, not Exercise 3.23) with negations.

3.25: Consider the rules:

p(X,Y) :- q(X,Y) ft -,r(X) .

r(X) :- s(X,Y) ft -'t(Y).

r(X) :- s(X,Y) ft r(Y).

a) Determine the stratum of each predicate. Is the program stratified?

b) Suppose the relations for the EDB predicates s, t, and q are, respec

tively, 5 = {06, 6c, ca}, T = {a, 6, c}, and Q = {ab, bc, cd, de}. Find

the perfect fixed point for the IDB predicates p and r, given this EDB.

c) Find another minimal model for the rules and the EDB given in (b).

EXERCISES 169

* 3.26: Consider the rules

p(X) :- r(X) ft -'s(X).

p(X) :- t(X,Y) ft p(Y).

q(X) :- r(X) ft -ip(X).

q(X) :- t(X,Y) ft q(Y) .

Suppose the EDB predicates r, s, and t have, respectively, the relations

fl={2,3}, 5 ={2}, and

T={(1,1), (2,2), (3,3), (4,4), (2,1), (3,2), (4,3)}

Find, for the IDB predicates p and q:

a) The perfect fixed point.

b) Another minimal fixed point.

c) A fixed point that is not minimal.

Hint,: For the value of T given, we can think of the second rule as saying "if

p(i) is true, then p(j) is true for all j, i < j < 4," and we can understand

the fourth rule similarly.

* 3.27: Consider the rules:

p(X) :- q(X) ft -.r(X).

8(X) :- q(X) ft -.p(X).

t(X) :- q(X) ft -.s(X).

Assume q and r are EDB predicates with unary relations {1, 2, 3} and {1},

respectively; other predicates are IDB.

a) Find the perfect fixed point for these rules and the given EDB rela

tions.

b) Are there any other minimal fixed points for the given EDB relations?

If so, find one; if not, prove it.

c) Are there any nonminimal fixed points for the given EDB relations?

Find one or prove none exist.

* 3.28: In Example 3.15 we suggested that there was a transformation to eliminate

variables appearing only in negated subgoals by rewriting the rules without

changing the IDB relations defined. Give a general algorithm to eliminate

such variables, using the intuitive semantics of Example 3.15 and assuming

that a variable occurring in two or more negated subgoals, and no positive

subgoal, actually represents different variables, each local to one of the

negated subgoals.

* 3.29: In Example 3.16 we showed how negated subgoals in safe rules could be

replaced by set differences; i.e., we could transform the rules so that if there

is a negated subgoal -'p(Xi, . . . , Xn), then there is some positive subgoal

q(Xi, . ..,Xn) with an identical list of arguments in the same rule. Give

170 LOGIC AS A DATA MODEL

an algorithm to implement this transformation.

* 3.30: Show that perfect fixed points, as produced by Algorithm 3.6, are minimal

fixed points.

* 3.31: Show that the IDS portion of any minimal model for datalog rules without

negated subgoals is a minimal fixed point of the corresponding datalog

equations. What happens if there are negated subgoals?

* 3.32: Show that it is undecidable whether a given formula of domain relational

calculus is domain independent.

3.33: Verify that all the DRC formulas constructed from relational algebra ex

pressions in Theorem 3.10 are safe.

* 3.34: One might get the impression, from examples and constructions in Section

3.9, that tuple calculus is always less succinct than domain calculus. Show

that is not the case by exhibiting an infinite family of queries whose ex

pressions in TRC are much more succinct than their shortest expressions

in DRC. That is, give a "big-oh" upper bound on the growth in size of

your TRC formulas and a larger "big-omega" lower bound on the growth

of your DRC formulas.

3.35: Complete the proof of Lemma 3.7, that every safe TRC formula can be

converted to a safe DRC formula.

3.36: Consider the rules of Example 3.1, and assume that the domain from which

values are taken is the integers. If R is the EDB relation corresponding

to predicate r, describe (in terms of R) what negative ground atoms the

closed-world assumption allows us to conclude.

* 3.37: Consider the rules:

q(X) :- r(X).

p(X) V r(X)

Notice that the second is not a Horn clause; it says that for all X, either

p(X) or q(X) (or both) is true. Suppose we are given a relation R for EDB

predicate r, and also assume that the domain from which values are chosen

is the integers.

a) Under the closed world assumption, what negative facts for IDB pred

icates p and q can be inferred?

b) Under the generalized closed world assumption, what negative facts

for p and q can be derived?

c) Are there contradictory facts deduced in your answers to (a) and/or

(b)?

BIBLIOGRAPHIC NOTES 171

3.38: Some definitions of logical rules allow predicates that are mixed EDB/IDB

predicates. That is, a predicate p may have a stored relation with some

tuples for which p is true, and there may be rules that define additional

tuples for which p is true. Show that any such collection of rules can be

replaced by another collection, defining the same relations, in which each

predicate is either EDB or IDB, but not both.

BIBLIOGRAPHIC NOTES

The basic concepts of logic are found in Manna and Waldinger [1984], and the

elements of logic programming appear in Lloyd [1984] and Apt [1987].

There have been two directions from which applications of logic to database

systems have been approached. One, often called "deductive databases," em

phasizes issues of expressibility of languages, and semantic issues, such as the

closed world assumption. Gallaire and Minker [1978] is a compendium of basic

results in this area, and later surveys were written by Gallaire, Minker, and

Nicolas [1984] and Minker [1987]. Minker [1988] is a collection of recent papers

on the subject. A critique of this area is found in Harel [1986].

The second direction emphasizes the optimization of queries expressed as

logic programs. We shall cover this area in detail in Chapter 13 (Volume II).

Bancilhon and Ramakrishnan [1986] is a survey of results in this class.

Relational Calculus

Codd [1972b] is the basic paper on relational calculus, including the equivalence

with relational algebra. Pirotte [1978] classifies query languages into domain-

calculus and tuple-calculus languages.

Levien and Maron [1967] and Kuhns [1967] were early papers on the use

of similar forms of logic as a query language.

Klug [1981] extends the logic and the algebra-logic correspondence to aggre

gate operators (sum, average, etc.). Kuper and Vardi [1984] develop a calculus

for a model more general than the relational model; it is similar to the "object

model" discussed in Section 2.7.

Fixed-Point Semantics of Logic Programs

The fixed point semantics for datalog that we developed in Section 3.5 was

explored in the context of logic programming by Van Emden and Kowalski

[1976] and Apt and Van Emden [1982], and in the database context by Chandra

and Harel [1982]. The basic mathematics, relating monotonicity to the existence

of least fixed points goes back to Tarski [1955].

Reiter [1984] compares the proof-theoretic and model-theoretic approaches

to defining semantics.

172 LOGIC AS A DATA MODEL

Semi-Naive Evaluation

The notion of "semi-naive" evaluation of logic, based on the "derivatives" of

set-valued expressions, has been rediscovered many times in recent years. The

concept dates back at least as far as the study of an optimization technique

in set-theoretic languages called "reduction in strength," by Fong and Ullman

[1976] and Paige and Schwartz [1977]. Bancilhon and Ramakrishnan [1986]

attribute it to unpublished work of Bancilhon; the term "semi-naive" is from

there. The same idea appears independently in Bayer [1985], Balbin and Ra-

mamohanarao [1986], and Gonzalez-Rubio, Rohmer, and Bradier [1987].

Safety

The notion of domain independence is from DiPaola [1969], where it was called

"definiteness." The undecidability of domain independence (Exercise 3.28) was

shown there. Codd [1972b] has a definition of a subclass of tuple relational

calculus roughly corresponding to what we have called "safe" formulas.

The definition of safety we have used here, based on "limiting" the do

mains of the variables in a formula, follows Zaniolo [1986] and Ramakrishnan,

Bancilhon, and Silberschatz [1987]. More general notions of "safety" that are

decidable are discussed in Van Gelder and Topor [1987].

Extensions of the "safety" concept to entire logic programs were made by

Ramakrishnan, Bancilhon, and Silberschatz [1987] and Shmueli [1987]. Beeri,

Naqvi, Ramakrishnan, Shmueli, and Tsur [1987], Kuper [1987], and Ozsoyoglu

and Wang [1987] discuss the issue in the context of languages with set-valued

variables.

Logic with Negation

A basic paper on the meaning of negation is Clark [1978], which proposes "nega

tion by failure," a concept similar to the closed-world assumption, defining

negated subgoal -<p(a) to be true whenever we cannot prove p(o) itself is true.

This is the approach taken by Prolog implementations, e.g., and it is what

justifies our replacing the "if operator :- by equality in Section 3.4, to form

datalog equations.

Various other approaches to defining appropriate models for logical rules

containing negated subgoals have been proposed, such as Le [1985], Naish [1986],

Naqvi [1986], Bidiot and Hull [1986], Ross and Topor [1987], Gelfond and Lifs-

chitz [1988], Lifschitz [1988], and Ross and Van Gelder [1988].

Ginsberg [1988] is a collection of articles on the general subject of coping

with negation in logical rules.

Stratified Logic

Chandra and Harel [1982] defined a class of logic programs equivalent to what we

BIBLIOGRAPHIC NOTES 173

call stratified datalog and defined their meaning to be the "perfect" fixed point.

Immerman [1982] proved the surprising result that any query expressible in this

language can be expressed with a single level of negation, i.e., with two strata.

However, the number of arguments in predicates in the two-strata program may

be very much larger than in the original, so this technique is not generally useful

as an optimization.

Apt, Blair, and Walker [1985] considered the multiplicity of minimal fixed

points for logic programs and argued that for stratified programs the "perfect"

fixed point is the preferred one. Van Gelder [1986] independently argued the

same and gave a relatively efficient algorithm for testing whether a given fact

is in the perfect model of a stratified datalog program. Additional application

of the "stratified" concept appears in Apt and Pugin [1987] and Przymusinski

[1988].

The Closed World Assumption

The fundamental paper on the CWA is Reiter [1978]; also see Reiter [1980]

for a discussion of the domain closure and unique-value axioms. Minker [1982]

introduces the generalized CWA.

There is a close connection between the CWA and the "negation as failure"

idea in Clark [1978]; see Shepherdson [1984].

McCarthy [1980] defines a more general metarule for inferring negative in

formation, called "circumscription." Lifschitz [1985] and Gelfond, Przymusin-

ska, and Przymusinski [1986] relate circumscription and the CWA.

A fundamental problem with all attempts to define metarules for negative

information is the complexity of answering queries according to these rules.

Przymusinski [1986] attempts to provide an algorithm for answering queries in

the presence of circumscriptions, but the question whether the circumscription

approach can be made computationally tractable remains open.

CHAPTER 4

Relational

Query

Languages

We got acquainted with relational algebra in Section 2.4, and in Chapter 3

we met the two forms of logic, tuple and domain calculus, commonly used

for querying relational databases. Now let us consider some of the real query

languages that have been used in systems built upon the relational model of

data. Section 4.2 discusses ISBL, an almost pure embodiment of relational

algebra. Section 4.3 is devoted to QUEL, which is primarily a tuple calculus

language, and Section 4.4 covers Query-by-Example, a domain calculus lan

guage. The data definition language for Query-by-Example is briefly described

in Section 4.5. Then in Section 4.6 we introduce SQL, or "Sequel," a language

that combines features from all three of the abstract languages and is today

very influential. The data definition language of SQL is covered in Section 4.7,

and in Section 4.8 we describe how SQL is embedded in the host language C.

The treatments of these languages varies, so the reader is exposed to essentially

all of the features found in relational query languages, without covering each

feature in each of the languages studied.

4.1 GENERAL REMARKS REGARDING QUERY LANGUAGES

As we saw in Theorem 3.12, the three abstract relational query languages, re

lational algebra and the safe versions of domain and tuple relational calculus,

are all equivalent in their expressive power. Historically, Codd [1972b] first

proposed tuple relational calculus (in a formulation somewhat different from

that given in Section 3.9) as a benchmark for evaluating data manipulation

languages based on the relational model. That is, a language without at least

the expressive power of the safe formulas of relational calculus, or equivalently

of relational algebra, was deemed inadequate. A language that can (at least)

simulate safe tuple calculus, or equivalently, relational algebra or safe domain

174

4.1 GENERAL REMARKS REGARDING QUERY LANGUAGES 175

calculus, is said to be complete. We shall, in this chapter, consider some im

portant relational query languages and show their completeness.

Additional Features of Data Manipulation Languages

Data manipulation languages generally have capabilities beyond those of rela

tional algebra or calculus. Of course, all data manipulation languages include

insertion, deletion, and modification commands, which are not part of relational

algebra or calculus. Some additional features frequently available are:

1 . Arithmetic capability. Often, atoms in calculus expressions or selections in

algebraic expressions can involve arithmetic computation as well as com

parisons, e.g., A < B + 3. Note that + and other arithmetic operators

appear in neither relational algebra nor calculus, but the extension of those

notations to include arithmetic should be obvious.

2. Assignment and Print Commands. Languages generally allow the printing

of the relation constructed by an algebraic or calculus expression and the

assignment of a computed relation to be the value of a relation name.

3. Aggregate Functions. Operations such as average, sum, min, or max can

often be applied to columns of a relation to obtain a single quantity.

For these reasons, the languages we shall discuss are really "more than

complete"; that is, they can do things with no counterpart in relational alge

bra or calculus. Many, but not all, become equivalent to relational calculus

when we throw away arithmetic and aggregate operators. Some languages, like

Query-by-Example (Section 4.4), may be called "more than complete" even

after eliminating arithmetic and aggregation. The original design for Query-

by-Example allows computation of the transitive closure of a relation, although

not all implementations support this feature, and we do not discuss it here.

Recall that transitive closure is not something that can be expressed by nonre-

cursive logic, and therefore, by Theorem 3.12, cannot be expressed in relational

algebra or the two forms of relational calculus.

Comparison of Algebraic and Calculus Languages

It is sometimes said that relational calculus-based languages are "higher-level"

or "more declarative" (recall our discussion of declarativeness and its impor

tance in Sections 1.4 and 1.7.) than the algebraic languages because the alge

bra (partially) specifies the order of operations while the calculus leaves it to

a compiler or interpreter to determine the most efficient order of evaluation.

For instance, Example 2.21 discussed a typical query form, line (2.2), which we

shall here abstract for succinctness. That is, suppose we have relations R(A, B)

and S(B, C), and we want to ask the algebraic query

176 RELATIONAL QUERY LANGUAGES

*C(*A=a(R(A,B)lxS(B,C))) (4.1)

This query says: "print the C-values associated with .A-value a in the joined

relation [Rtxi S\(A,B,C). An equivalent domain calculus expression is

{C\(3B)(r(a,B)*3(B,C))} (4.2)

If we compare (4.1) and (4.2) we see that the calculus expression does in

fact tell only what we want, not how to get it; that is, (4.2) only specifies the

properties of the desired values C. In comparison, (4.1) specifies a particular

order of operations. It is not immediately obvious that (4.1) is equivalent to:

7rC (lTB (<TA=aR(A, B)) M S(B, C)) (4.3)

To evaluate (4.3) we need only look for the tuples in R that have .A-value a and

find the associated B-values. This step computes Ri(B) = irB(0A=aR(A,B)).

Then we look for the tuples of 5 whose B-values are in RI, i.e., we compute

Ri(B) M S(B,C). Finally, we project this relation onto C to get the desired

answer.

As we suggested in Example 2.22, this operation can be quite efficient if

we have the proper indices. An index on attribute A for relation R allows us

to find those tuples with .A-value a in time that is proportional to the number

of tuples retrieved. The set of B-values in these tuples is the set RI. If we

also have an index on B for relation S, then the tuples with B-values in RI

can likewise be retrieved in time proportional to the number of tuples retrieved.

From these, the C-values in the answer may be obtained. The time to do these

steps could be proportional to the sizes of R and 5, since in the worst case,

all tuples in these relations have the desired .A-values or B-values. However, in

typical cases, the size of RI and the size of the answer will be much smaller

than the sizes of the relations, so the time to perform the query by following

(4.3) is much less than the time to look at R and S.

In comparison, (4.1) requires that we evaluate the natural join of R and

5, which could involve sorting both relations on their B-values and running

through the sorted relations. The resulting relation could be very large com

pared to R and 5. Under no circumstances could (4.1) be evaluated in less

time than it takes to scan at least one of R and S, no matter how we choose

to do the join. Thus, the time to evaluate (4.1) exceeds the time to evaluate

(4.3), often by a wide margin, even though the relations computed by the two

expressions are always the same.

In principle, we can always evaluate (4.2) like (4.3) rather than (4.1), which

appears to be an advantage of calculus over algebra, especially as (4.1) is sim

pler, and therefore more likely to be written than is (4.3). However, an opti

mization pass in an algebra-based query language compiler can convert (4.1)

4.2 ISBL: A "PURE" RELATIONAL ALGEBRA LANGUAGE 177

into (4.3) immediately, and relational calculus expressions require optimization

as well if we are to receive the full benefit of their declarativeness.

We shall consider such optimization in Chapter 11. Thus, we feel it is

specious to regard calculus as higher-level than algebra, if for no other reason

than that the first step in the optimization of an algebraic expression could be

to convert it, by Theorem 3.10 or Lemma 3.6, to an equivalent calculus expres

sion. We must admit, however, that calculus-based languages are today more

prevalent than algebraic languages. We prefer to attribute the dominance of

calculus languages to the desirability of their declarativeness from the program

mer's point of view, rather than from the point of view of efficiency or ease of

compilation.

Select-Project-Join Expressions

While we expect a query language to be complete, there is a subset of the

expressions of relational algebra that appear with great frequency, and it is

important to consider how easily a language handles these expressions. This

class is formed from the operators select, project, and join. Intuitively, many

queries can be viewed as taking an entity (described by the selection clause),

connecting it to an entity of another type, perhaps through many relationships

(the join expresses the connection), and then printing some attributes of the

latter entity (the projection determines the attributes printed). We call such

expressions select-project-join expressions. For example, all single datalog rules

without negated subgoals define relations (for their bodies) that are expressed

by select-project-join queries. The reader is encouraged to observe how the

query languages to be described each handle select-project-join queries in a

succinct way.

4.2 ISBL: A "PURE" RELATIONAL ALGEBRA LANGUAGE

ISBL (Information System Base Language) is a query language developed at

the IBM United Kingdom Scientific Center in Peterlee, England, for use in the

PRTV (Peterlee Relational Test Vehicle) system. It closely approximates the

relational algebra given in Section 2.4, so the completeness of ISBL is easy to

show. The correspondence of syntax is shown in Figure 4.1. In both ISBL

and relational algebra, R and 5 can be any relational expressions, and F is a

Boolean formula. Components of a relation are given names (the attributes of

the relation), and we refer to components by these names in F.

To print the value of an expression, precede it by LIST. To assign the value

of an expression F to a relation named fl, we write R = E. An interesting

feature of assignment is that we can delay the binding of relations to names in

an expression until the name on the left of the assignment is used. To delay

evaluation of a name, precede it by N!. The N! calls for evaluation "by name."

178 RELATIONAL QUERY LANGUAGES

Relational algebra ISBL

R\JS

R-S

R + S

R-S

R.S

R:F

Rr\s

Rc<S R*S

Figure 4.1 Correspondence between ISBL and relational algebra.

Example 4.1: Suppose we want to use the composition of binary relations

R(A, B) and S(C, D) from time to time. This composition, in relational algebra,

is:

*A,D(R(A,B) M S(C,D))

B—C

If we write

T = (R*S): B=C 7, A,D

the composition of the current relations R and 5 would be computed and as

signed to relation name T. Note that as R and 5 have attributes with different

names, the *, or natural join operator, is here a Cartesian product.

However, suppose we wanted T to stand not for the composition of the

current values of R(A, B) and S(C, D) but for the formula for composing R

and 5. Then we could write

T = (N!R*N!S): B=C 7. A,D

The above ISBL statement causes no evaluation of relations. Rather, it defines

T to stand for the formula

(R*S): B=C 7. A,D

If we ever use T in a statement that requires its evaluation, such as

LIST T

or

U = T+V

the current values of R and S are at that time substituted into the formula for

T to get a value for T. D

The delayed evaluation operator N! serves two important purposes. First,

large relational expressions are hard to write down correctly the first time.

Delayed evaluation allows the programmer to construct an expression in easy

stages, by giving temporary names to important subexpressions. More impor

tantly, delayed evaluation serves as a rudimentary facility for defining views. By

4.2 ISBL: A "PURE" RELATIONAL ALGEBRA LANGUAGE 179

defining a relation name to stand for an expression with delayed evaluation, the

programmer can use this name as if the defined relation really existed. Thus, a

set of one or more defined relations forms a view of the database.

Renaming of Attributes

In ISBL, the purely set theoretic operators, union, intersection, and difference,

have definitions that are modified from their standard definitions in relational

algebra, to take advantage of the fact that components have attribute names

in ISBL. The union and intersection operators are only applicable when the

two relations involved have the same set of attribute names. The difference

operator, R — S, is the ordinary set-theoretic difference when R and S have the

same set of attribute names. More generally, if some of the attributes of R and

5 differ, then R - S denotes the set of tuples n"mR such that /i agrees with no

tuple in 5 on those attributes that R and 5 have in common. Thus, in ISBL

the expression R — 5, if R is R(A, B) and 5 is S(A, C1), denotes the relational

algebra expression

To allow these operators to be used at will, a special form of projection

permits the renaming of attributes. In a list of attributes following the projec

tion (%) operator, an item A —» B means that the component for attribute A

is included in the projection but is renamed B. For example, to take the union

of R(A, B) with S(A, C) we could write

(R 1. A, B-»C) + S

The resulting relation has attributes A and C.

We can also use renaming to take the Cartesian product of relations whose

sets of attributes are not disjoint. Observe that in ISBL notation, the natural

join R(A, B) * S(C, D) is really a Cartesian product, but R(A, B) * S(B, C) is

a natural join in which the B-components of R and S are equated. If we want

to take the Cartesian product of R(A, B) with 5(B, C) we can write

(R */. A, B-»D) * S

As the left operand of the * has attributes A and D, while S has attributes B

and C, the result is a Cartesian product.

With attribute renaming, we have a way to simulate any of the five basic

relational algebra operations in ISBL. Thus, it is immediately obvious that ISBL

is complete.

Some Sample Queries

Recall that the Yuppie Valley Culinary Boutique (YVCB) keeps a database

with information about its business. The design for a relational database with

180 RELATIONAL QUERY LANGUAGES

this information was shown in Figure 2.8. Of the eight relations of that scheme,

we shall deal with four that will serve for most of our examples. These relations

tell about customers, the orders for delivery that they place, the items on each

order, and the suppliers of those items. The schemes for these relations, with

some attributes renamed from Figure 2.8 to allow the use of the same attribute,

e.g., NAME, with different meanings in different relations, are:

CUSTOMERS (NAME, ADDR, BALANCE)

ORDERS (O#, DATE, CUST)

INCLUDES (O#, ITEM, QUANTITY)

SUPPLIES (NAME, ITEM, PRICE)

In Figure 4.2 we see sample data that will serve as the "current instance" of

this database.

We shall now consider some typical queries on the YVCB database and

their expression in ISBL. For comparison, we shall use these same queries as

examples for several other languages as well.

Example 4.2: The simplest queries often involve a selection and projection on

a single relation. That is, we specify some condition that tuples must have, and

we print some or all of the components of these tuples. The specific example

query we shall use is

Print the names of customers with negative balances.

In ISBL we can write

LIST CUSTOMERS: BALANCE<0 '/. NAME

The clause BALANCE<0 selects the first and second tuples, because their values

in column 3 (BALANCE) is negative. The projection operator leaves only the

first column, NAME, so LIST causes the table

Zack Zebra

Judy Giraffe

to be printed. D

Example 4.3: A more complicated type of query involves taking the natural

join, or perhaps a more general join or Cartesian product of several relations,

then selecting tuples from this relation and printing some of the components.

Our example query is:

Print the suppliers who supply at least one

item ordered by Zack Zebra.

This query asks us to go to the ORDERS relation to find the numbers of all the

orders placed by Zack Zebra. Then, armed with those numbers, we go to the

INCLUDES relation to find the items ordered by Zebra, which are the items

associated with these order numbers. Lastly, we go to the SUPPLIES relation

4.2 ISBL: A "PURE" RELATIONAL ALGEBRA LANGUAGE 181

NAME ADDR BALANCE

Zack Zebra

Judy Giraffe

Ruth Rhino

74 Family Way

153 Lois Lane

21 Rocky Road

-200

-50

+43

(a) CUSTOMERS

o# DATE CUST

1024

1025

1026

Jan 3

Jan 3

Jan 4

Zack Zebra

Ruth Rhino

Zack Zebra

(b) ORDERS

o# ITEM QUANTITY

1024 Brie 3

1024 Perrier 6

1025 Brie 5

1025

1025

Escargot

Endive

12

1

1026 Macadamias 2048

(c) INCLUDES

NAME ITEM PRICE

Acme Brie 3.49

Acme Perrier 1.19

Acme Macadamias .06

Acme Escargot .25

Ajax Brie 3.98

Ajax Perrier 1.09

Ajax Endive .69

(d) SUPPLIES

Figure 4.2 Example YVCB database.

182 RELATIONAL QUERY LANGUAGES

to find the suppliers of those items. While we could write the query directly, it is

conceptually simpler to begin by defining the join that follows these connections

from ORDERS to INCLUDES to SUPPLIES. This connection happens to be

a natural join, since the connecting attributes, O# and ITEM, have the same

names in each of the connected relations; if that were not the case we would

have to use renaming to adjust the attributes. We define the natural join by:

OIS = N! ORDERS * N! INCLUDES * N! SUPPLIES

In this way, OIS is defined to be a relation with scheme

OIS(O#, DATE, GUST, ITEM, QUANTITY, NAME, PRICE)

Note that evaluation of OIS is deferred. When evaluated, it would consist of

all those (o, d, c, i,q, n,p) tuples such that customer c placed order o on date

d, order o includes an order for quantity q of item i, and supplier n supplies

i at price p. To complete the query, we have only to select from this relation

the tuples for customer Zack Zebra and project onto the name attribute, to

produce the set of all suppliers for the items ordered by Zebra. This step is:

OIS: CUST="Zack Zebra" '/. NAME

Since Zack Zebra placed orders 1024 and 1026; the first includes Brie and Perrier

and the latter includes Macadamias, and both Ajax and Acme supply at least

one of these, the answer to the query is {"Ajax", "Acme"}. D

Example 4.4: A still more complicated sort of query involves what amounts

to a "for all" quantifier. The particular query we shall consider is:

Print the suppliers that supply every

item ordered by Zack Zebra.

Such queries are easier in calculus languages than algebraic languages.

That is, in domain calculus we can write the query as

(VI)(((3P)supplies(N,I,P)) V

-<((3O)(3D)(3Q)(orders(O,D, "Zack Zebra") A

indudes(O,/,Q))n j (4.4)

That is, print the set of supplier names N such that for all items /, either N

supplies / [there exists a price P such that (N, /, P) is a tuple of SUPPLIES] or

there exists no order by Zack Zebra for item /. The latter condition is expressed

by the negation of the condition that there is an order number O, a date D, and

a quantity Q such that orders(O, D, "Zack Zebra"), i.e., Zebra placed order O,

and includes(O, /, Q), i.e., item / is included in that order. Notice also that

p V -'q is logically equivalent to p —» q, i.e., p implies q, so we are saying that if

4.2 ISBL: A "PURE" RELATIONAL ALGEBRA LANGUAGE 183

Zebra placed an order for the item /, then supplier N supplies it.

To convert (4.4) to algebra, it helps to eliminate the universal quantifier.

Recall that we can always do so by

Then, we can use DeMorgan's law to move the generated negation inside the

OR: -'(P V Q) = (-.P) A (-,Q). The resulting expression is:

| -Y(3/)(-.((3P)suppftea(AT,/,P)) A

(3O)(3D)(3Q)(orders(O,D, "Zack Zebra") A

(4.5)

Equation (4.5) is not safe; it is not even domain independent [if Zebra hasn't

ordered any items, then both (4.4) and (4.5) define the set of all suppliers in

the domain]. However, if we make the closed world assumption, that the only

suppliers that exist are those that appear in the SUPPLIES relation, we can

work with (4.5) to produce an algebraic expression.1 We first compute the set

of all suppliers, and then subtract those that satisfy the body of (4.5), that is,

there is an item that Zebra orders but which the supplier doesn't sell. The set

of all suppliers is

ALLSUPS = SUPPLIES '/. NAME

For the database of Figure 4.2, ALLSUPS is {"Ajax", "Acme"}.

In a manner similar to the previous example, we can find all of the items

ordered by Zebra by:

ZEBRAITEMS = (ORDERS * INCLUDES):

CUST="Zack Zebra" */. ITEM

For our example database, ZEBRAITEMS is

{"Brie", Terrier", "Macadamias" }

Next, we use a trick that was introduced in Example 3.16. To find the

suppliers that fail to supply some item in the set ZEBRAITEMS, we take from

SUPPLIES the set of pairs (n, t) such that supplier n does supply item i, and

subtract it from the set of pairs consisting of any supplier and any item in

ZEBRAITEMS. The difference is the set of pairs (n, t) such that n is some

1 Perhaps we should also consult the SUPPLIERS relation, mentioned in Figure 2.8 but

not used in this section, since that relation, holding supplier names and addresses, might

mention a supplier that does not appear in the SUPPLIES relation, presumably because

it sells nothing now. If Zebra ordered nothing, then such a supplier would satisfy the

query.

184 RELATIONAL QUERY LANGUAGES

supplier, i is an item Zack Zebra ordered, but n doesn't supply i. This set of

pairs can be obtained by the sequence of steps:

NIPAIRS = SUPPLIES '/. NAME, ITEM

NOSUPPLY = (ALLSUPS * ZEBRAITEMS) - NIPAIRS

In our example database, NOSUPPLY has only the pair

{("Ajax", "Macadamias")}

Finally, if we project NOSUPPLY onto NAME, we get the set of suppli

ers that fail to supply some item that Zebra ordered. The difference between

ALLSUPS and this set is the set of suppliers that do supply everything Zebra

ordered. Thus, the last step in our ISBL program is

LIST (ALLSUPS - (NOSUPPLY '/, NAME))

The result is that only "Acme" is printed. The entire ISBL program is shown

in Figure 4.3, where we have treated all the assignments as view definitions, to

be executed only when the answer is called for by the last statement. D

ALLSUPS = N! SUPPLIES 7. NAME

ZEBRAITEMS = (N! ORDERS * N! INCLUDES):

CUST="Zack Zebra" '/. ITEM

NIPAIRS = N! SUPPLIES '/. NAME, ITEM

NOSUPPLY = (N! ALLSUPS * N! ZEBRAITEMS) - N! NIPAIRS

LIST (ALLSUPS - (NOSUPPLY '/. NAME))

Figure 4.3 Solution to query of Example 4.4.

ISBL Extensions

The ISBL language is fairly limited, when compared with query languages to be

discussed in the next sections. For example, it has no aggregate operators (e.g.,

average, min), and there are no facilities for insertion, deletion, or modification

of tuples. However, there exists in the surrounding PRTV system the facility

to write arbitrary PL/I programs and integrate them into the processing of

relations. The simplest use of PL/I programs in ISBL is as tuple-at-a-time

processors, which serve as generalized selection operators.

Example 4.5: We could write a PL/I program LOWADDR(S) that examines

the character string S and determines whether 5, as a street address, has a

number lower than 100, returning "true" if so. We can then apply LOWADDR

to an attribute in an ISBL expression, with the result that the component for

that attribute in each tuple is passed to LOWADDR, and the tuple is "selected"

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE 185

if LOWADDR returns "true." The syntax of ISBL calls for the join operator

to be used for these generalized selections. Thus

LIST (CUSTOMERS * LOWADDR(ADDR)) '/, NAME

prints the names of customers whose street number does not exceed 99,

{"Zack Zebra", "Ruth Rhino"}

for the example database of Figure 4.2. D

PL/I programs that operate on whole relations, rather than tuples, can also

be defined. To facilitate such processing, the PRTV system allows relations to

be passed to PL/I programs, either as relational read 61es, or relational write

files. These are ordinary files in the PL/I sense, opened for reading or writing,

respectively. A PL/I program can read or write the next record, which is a tuple

of the underlying relation, into or from a PL/I record structure. The reader

should be able to envision how to write PL/I programs to compute aggregate

operators like sums or averages, to delete or modify tuples in arbitrarily specified

ways, or to read tuples from an input file (not necessarily a relational read file;

it could be a terminal, for example) and append them to a relation.

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE

QUEL is the query language of INGRES, a relational DBMS developed at

Berkeley, and marketed by Relational Technology, Inc. In viewpoint and style,

QUEL most closely resembles tuple relational calculus, although the correspon

dence is less close than ISBL's resemblance to relational algebra.

The Retrieve Statement

The most common form of query in QUEL is:

range of n\ is Ri

(4.6)

range of /^ is lit,

retrieve (^.A\,.. .,mr.Ar)

where *(^i,. . . ,/ifc)

The intuitive meaning of a range-statement such as

range of n is R

is that any subsequent operations, such as retrieval, are to be carried out once

for each tuple in relation R, with /i equal to each of these tuples in turn. Thus,

the /Vs in (4-6) are tuple variables, and each range-statement corresponds to

an atomic formula Ri(p-i) of TRC. It is possible to redeclare a tuple variable to

range over another relation, but until one does, the relation corresponding to a

tuple variable does not change. It is unnecessary to include the range statement

186 RELATIONAL QUERY LANGUAGES

for p, in every query, if the relation for /i is the one already declared for fi, but

we shall do so for clarity in the examples to follow.

The condition * is a formula involving components of the /ij's. QUEL uses

Hi.B to designate the component for attribute B of the relation Ri, over which

Hi ranges. Component designators and constants can be related by comparison

operators, as in the language C (<= for <, != for ^, and so on). Comparisons

can be connected by the logical connectives, and, or, and not for A, V, and -'.

As each of the /Vs ranges over the tuples of its relation, the QUEL inter

preter determines whether the current /ij's make V true. If so, certain com

ponents of the /ij's are printed. The components of the tuple to be printed

are computed from component designators in the retrieve-clause. That is, the

first component printed is the component of tuple variable /ij, corresponding

to attribute AI of relation R,t , and so on.

The retrieve statement thus prints a table whose columns are headed

A\,...,Ar. If we wish a different name, say TITLE, for column m, use

TITLE = mm.Am

in place of the simple component designator Him.Am.

The QUEL statement form above is thus equivalent to the TRC query:

r

A*')) (4-7)

In (4.7), the formula *' is * translated from the QUEL notation into the TRC

notation. That is:

1. Some comparison and logical operators are changed; e.g., and becomes A,

and == becomes =.

2. A component designator fii.B becomes Hi[j], where B is the jth attribute

of relation Ri, assuming some fixed order for the attributes of each relation.

Thus, in the first line of (4.7) we have the existential quantification of the

/Vs, which in effect says "let the /ij's range over all possible values." We also

have the atomic formulas Ri(fii), which restrict each tuple variable m to range

only over the tuples of its corresponding relation Ri. Note, incidentally, that

there is no prohibition against two or more tuple variables ranging over the

same relation, and it is sometimes essential that they do.

In the second line of (4.7) we see the equalities that say the tuple v to be

printed consists of certain components of the /ij's, namely those components

that are indicated in the retrieve-clause. Finally, the condition *' on the third

line of (4.7) enforces the where-clause, only allowing the printing of a tuple v

if the /ij's satisfy *.

While the form of a QUEL query is clearly patterned after tuple relational

calculus, it is also convenient to see the same query as an expression of relational

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE 187

algebra:

7rAr(<7F(fli X-•• Xflfc))

where N is the list of components corresponding to the tuple variable v in (4.7),

and F is the condition #', with component designators translated to refer to

their position in the product Ri x • • • x R^.

Example 4.6: The query of Example 4.2 is written in QUEL:

range of c is CUSTOMERS

retrieve (c.NAME)

where c. BALANCE < 0

Here there is only one tuple variable, c. To answer the query, the QUEL inter

preter allows c to assume as a value each tuple in its relation, CUSTOMERS.

If the where-clause is satisfied for that tuple, i.e., the BALANCE component is

negative, then the NAME component of that tuple is printed.

The query of Example 4.3 can be written as shown in Figure 4.4. Lines

(l)-(3) declare o, i, and a to be tuple variables, and also represent the atomic

formulas ORDERS(t), INCLUDES(i), and SUPPLIES(s), as was implied

by Formula (4.7). The natural join of ORDERS, INCLUDES, and SUPPLIES is

expressed in the where-clause by equating, in lines (6) and (7), the two pairs of

components of the three tuple variables that correspond to the same attribute.

The additional condition, that the customer must be Zack Zebra, is expressed

by line (5). Finally, line (4) indicates that the resulting relation is projected

onto the component NAME of relation SUPPLIES, to print the desired supplier

names.

(1) range of o is ORDERS

(2) range of i is INCLUDES

(3) range of s is SUPPLIES

(4) retrieve (s.NAME)

(5) where o.CUST = "Zack Zebra"

(6) and o.O# = i.O#

(7) and i.ITEM = s.ITEM

Figure 4.4 Print the suppliers of an item ordered by Zebra.

To execute the query of Figure 4.4, the QUEL interpreter considers each

choice of a tuple o from ORDERS, i from INCLUDES, and s from SUPPLIES.2

2 Technically, the optimization performed by the QUEL processor will cause it to take a

rather different approach to answering this query, but the result will be the same as the

algorithm described here, which follows the definition of the "meaning" of the query.

See Chapter 11 (Volume II) for details of the actual QUEL processing algorithm.

188 RELATIONAL QUERY LANGUAGES

Whenever all the conditions of lines (5)-(7) are satisfied, the NAME component

of the tuple s is printed. The conditions of lines (6) and (7) say that o, t, and

s fit together to form a tuple of the natural join

ORDERS M INCLUDES ex SUPPLIES

The condition of line (5) says that the tuple refers to an order placed by Zack

Zebra, so the supplier name printed will surely supply some item, the one in

the ITEM components of i and s, that Zebra ordered. D

Example 4.7: A third example illustrates how we can use several tuple vari

ables ranging over the same relation. Consider the query:

Print the name and address of each customer whose

balance is lower than Judy Giraffe's.

In QUEL, this query is written:

range of cl is CUSTOMERS

range of c2 is CUSTOMERS

retrieve (cl.NAME, cl.ADDR)

where cl. BALANCE < c2. BALANCE

and C2.NAME = "Judy Giraffe"

Tuple variables cl and c2 range independently over the relation CUS

TOMERS. To trigger the printing of the NAME and ADDR components of

cl, the NAME component of c2 must be "Judy Giraffe," and the balance in cl

must be less than the balance in c2; i.e., cl is now the tuple for a customer who

owes more than Judy Giraffe. D

Safety of QUEL Retrieve Queries

The TRC query (4.7) is easily seen to be domain independent. The reason is

that the initial group of atomic formulas RI(HI) A • • • A Rk(nk) together with

the second group, which equate each component of v to some component of the

/ij's, guarantees that no value appearing in the answer can fail to appear in the

EDB, that is, in one of the flj's.

Whether a QUEL query representing (4.7) meets our definition of "safety"

for TRC queries depends on the exact form of *'. If *' is the logical AND

of arithmetic comparisons, such as the where-clause of Figure 4.4, then the

formula is safe. For, as just mentioned, the atomic formulas Ri(fii) in the first

line of (4.7) limit all components of all the /i's. Then the second line equates

the components of v to components of the /i's, thereby limiting all components

that appear in the conjunct.

If *' is a more complex formula, (4.7) may not be a conjunction of atomic

formulas, and therefore may violate one of the rules for safety of TRC formulas,

e.g., there may be a logical OR of subformulas that have more than one free

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE 189

tuple variable. Expression (4.7) is still domain independent, of course, which is

really what we need to assure that QUEL queries have finite answers. Moreover,

as we already observed, there is a relational algebra formula equivalent to (4.7).

Thus, we can use Lemma 3.6 to convert this expression to a safe TRC formula.

We leave it as an exercise for the reader to give an algorithm that converts any

V satisfying the restrictions mentioned in connection with (4.6) to an equivalent

formula so that (4.7) satisfies the definition of safety.

Union and Difference

The retrieve-where form of QUEL statement introduced above is not powerful

enough to express the union or difference of relations. Our first instinct might

be to think that we can, in fact, write retrieve-where programs to do these jobs.

Example 4.8: Suppose R(A, B) and S(A, B) are relations. We might suppose

that the QUEL program of Figure 4.5 should produce the union of R and 5;

however, it is erroneous for two reasons. The first reason is a syntactic matter:

the elements of the retrieve list must be components of tuple variables, not new

domain variables. This rule of QUEL is essential to guarantee safety of general

queries, although the query of Figure 4.5 is, in fact, safe.

range of r is R

range of s is S

retrieve (x, y)

where (x=r.A and y=r.B)

or (x=s.A and y=s.B)

Figure 4.5 Erroneous "union" program.

The second matter is more serious. The OR in QUEL3 does not behave as

one might intuitively expect. The translation between TRC and QUEL, defined

in connection with expression (4.6), suggests that Figure 4.5 should correspond

to the TRC query

Hi] = „[!] A i/[2] = /i[2]) V (i/[l] = f[l] A V(2] = p[2])) } (4.8)

However, consider what happens if 5 is empty. Then the atomic formula S(p) is

never satisfied, and therefore no values of v can ever be found to satisfy the body

of (4.8). Similarly, the result is the empty set whenever R is empty. It is easy to

check that if neither R nor S is empty, then (4.8) produces R U 5, as one would

3 The same is true in SQL, to be discussed in Section 4.6.

190 RELATIONAL QUERY LANGUAGES

expect. However, it produces 0 when R is empty (S is the expected answer, of

course), and when S is empty (when R would be the expected answer).

The problem, incidentally, is not limited to "incorrect" examples, like Fig

ure 4.5. For example, the QUEL query

range of r is R

range of s is S

range of t is T

retrieve (r.A)

where r.A=s.A or r.A=t.A

Produces KA(R) n (nA(S) U 7r^T)) as long as neither S nor T is empty, but

produces the empty set when either S or T is empty. The reason, again, is that

the formal semantics of QUEL retrieve queries of the form (4.6) is given by the

corresponding TRC formula (4.7), and when we follow the definition we find

that is exactly the answer defined by the TRC query

{i/ | (3/i)(3p)(30)(fl(/i) A S(p) A T(<t1) A

"[l] =

D

Delete Statements

In order to perform unions and differences properly, QUEL provides two other

statement forms. To delete from a relation, one can write

range of /.i\ is H\

range of /ifc is /u

delete /t,

where ^(/ii,. . .,/ifc)

Here, ^(/ii,...,/ifc) is a QUEL expression like those that can follow "where"

in the retrieve statement. The effect of this statement is to delete from Ri all

tuples fii for which there exist, for all j = 1, 2, . . . , k other than j = i, tuples

Hj in RJ such that 9(n\,. . . ,/ifc) holds. Note that ^ and the Hj'a are found

before any deletions occur, so the order in which tuples are deleted does not

matter.

Example 4.9: The QUEL command

range of o is ORDERS

range of i is INCLUDES

delete o

where o.O# = i.O# and i.ITEM = "Brie"

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE 191

deletes from the ORDERS relation all orders that include Brie among their

items. The deletion occurs only from ORDERS; the information is left in the

INCLUDES relation, where it constitutes a collection of "dangling" tuples,

no longer connected to an existing order. Probably, we should also issue a

command to delete from INCLUDES all tuples whose order number is the same

as the order number of some (perhaps other) tuple whose ITEM component is

"Brie." D

•

Append Statements

Similarly, QUEL has an append statement to perform unions, among other

tasks. We can write

range of /ii is R^

range of Hk is Rk

append to S(A\ = £1, . . . , An = £n)

where *(/ii, . . . ,/ifc)

Here ^ is a QUEL expression as above, and the £j's are expressions involving

components of the /V§ and/or constants, connected by arithmetic operators, if

needed. For each assignment of values to the nj's such that 9(fi\, . . . , /ifc) is

true, we add to relation 5 the tuple whose component for attribute Ap is the

value of £p, for p = 1, 2, . . . , n.

Example 4.10: We could insist that every order in the YVCB database include

ten pounds of Brie by writing:

range of o is ORDERS

append to INCLUDES (O#=o.O#, ITEM="Brie" , QUANTITY=10)

Note that the where-clause is not required in the append statement, and

it is possible, indeed more usual, for the append statement to be used without

tuple variables like o above, for the purpose of appending a single tuple to a

relation. Thus, we can add Sammy Snake to the list of YVCB customers, with

append to CUSTOMERS(NAME="Sammy Snake",

ADDR="56 Allina Row" , BALANCE=0)

D

Retrieval into a Relation

We are still not ready to simulate any relational algebra expression in QUEL;

we need the capability to assign values to new relations. If 5 is the name of a

new relation we can write

192 RELATIONAL QUERY LANGUAGES

range of n\ is Ri

range of /ifc is RI,

retrieve into S(A\ = £1,. .. ,An = £n)

where *(/ii,. . . ,/ifc)

This statement will find all lists of tuples Hi , . . . , Hk such that /ij is in Ri for all

t = 1, 2, ...,&, and *(/i1, . . . , Hk) is true. It then creates for relation S a tuple

whose ith component is £j. Here, £j is a formula as in the append statement.4

The attribute names AI, . . . , An become the names of the components of 5. We

may omit "Ai =" if £i is of the form /ij.NAME, whereupon NAME becomes

the tth attribute of S.

Example 4.11: QUEL, like most relational query languages, does not auto

matically remove duplicates when it computes a relation, because doing so is a

very expensive operation. However, there are times when allowing duplicates

explodes the size of a relation, and we need to cleanse it of its duplicates. Also,

we frequently do not want duplicate information printed.

Suppose, for example, that we wanted to print the names of all the suppliers

appearing in the SUPPLIES relation. We could write

range of s is SUPPLIES

retrieve (s.NAME)

but then each supplier would be printed once for each item it supplies. QUEL

provides a sort command to eliminate duplicates while it sorts a relation, ini

tially on the first component, then on the second component among tuples

with the same first component, and so on. To print each supplier only once,

and incidentally print them in alphabetical order, we could write

range of s is SUPPLIES

retrieve into JUNK (NAME=s. NAME)

sort JUNK

print JUNK

JUNK has one column headed NAME. We could have eliminated the "NAME="

from the retrieve-clause, since the attribute of s used to form the one column

of JUNK is called NAME. D

Completeness of QUEL

Since we now know how to create temporary relations, all we must do to evaluate

any relational algebra expression is to apply the five basic operators to given

and temporary relations in an appropriate order. That is, we work bottom-up

4 Note that the use of formulas, the C^'a, to compute the components of tuples is permitted

in all retrieve statements, not just those that have an "into" keyword.

4.3 QUEL: A TUPLE RELATIONAL CALCULUS LANGUAGE 193

through the algebraic expression, computing relations for progressively larger

subexpressions, and storing these results in temporary relations.

It therefore suffices to show how we can compute the result of any one of

the five basic operators of relational algebra in QUEL and store the result in a

new relation. Suppose in what follows that R(A\, . .. ,An) and 5(Bi, . . . , Bm)

are relations, and T is & new relation name. To compute T = R U S (assuming

m = n) we could write

range of r is R

append to T(Ci = r.A\, . . . ,Cn = r.^n)

range of s is S

append to 1(C\ = s.Bi Cn = s.Bn)

Note that tuples appearing in both R and 5 appear twice in T, since duplicates

are not eliminated automatically in QUEL.

To compute T = R — S (assuming m = n) write

range of r is R

append to 1(.C\ = T.A\,...,Cn = r..An)

range of s is S

range of t is T

delete t

where a . B\ = t . C\ and • • • and s . Bn = t . Cn

For T = R x 5 write

range of r is R

range of s is S

append to T(C"i = r.A\ Cn = r.An,

Cn+i = B.BI, . . . ,Cn+m = s.Bm)

To compute the selection T = fff(R), write

range of r is R

append to T(C*i = T.A\ Cn - T.An")

where F'

Here F' is the formula F translated into QUEL notation (component i of R

becomes r.Ai, A becomes and, and so on). Finally, to express the projection

T = Kit,^,,ik(R) we can write

range of r is R

append to T(Ci = r.Ait , . . . ,Ck = r.Aik")

Example 4.12: Let us express the query of Example 4.4 in QUEL. The strategy

we use is to translate the steps of relational algebra into QUEL, using one

command for each of the steps in Figure 4.3. The QUEL program is shown in

Figure 4.6, and the explanation follows that of Example 4.4, because we have

194 RELATIONAL QUERY LANGUAGES

range of s is SUPPLIES

retrieve into ALLSUPS(s.NAME)

range of o is ORDERS

range of i is INCLUDES

retrieve into ZEBRAITEMS(i.ITEM)

where o . O# = i . 0#

and o.CUST = "Zack Zebra"

range of a is ALLSUPS

range of z is ZEBRAITEMS

retrieve into NOSUPPLY (a. NAME, z.ITEM)

/* temporarily, we have set NOSUPPLY to the product

of ALLSUPS and ZEBRAITEMS; we now delete all tuples

that are in NIPAIRS, i.e., they are the NAME and

ITEM components of a SUPPLIES tuple */

range of n is NOSUPPLY

range of s is SUPPLIES

delete n

where n.NAME = s.NAME

and n.ITEM = s.ITEM

range of a is ALLSUPS

range of n is NOSUPPLY

delete a

where a. NAME = n.NAME

/* above computes the answer into ALLSUPS */

print ALLSUPS

Figure 4.6 Print the supplies who supply everything Zebra ordered.

used the same names for each of the intermediate relations. D

Aggregate Operators

QUEL uses the aggregate functions sum, avg, count, min, and max. The argu

ment of such a function can be any expression involving the components of a

single relation, constants, and arithmetic operators. The components must all

be referred to as p,.A for some one tuple variable n and various attributes A.

Example 4.13: The net balance of all the YVCB customers can be calculated

by

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 195

range of c is CUSTOMERS

retrieve (sum (c. BALANCE))

D

We can also partition the tuples of a relation according to the value of

one or more expressions computed from each tuple. We then take an aggre

gate separately for each set of tuples having values in common for each of the

expressions. This partitioning is achieved by writing

agg-op(E by FI, F2, . . . , Ffc) (4.9)

where E and the F's are expressions whose operands are chosen from among

constants and terms fi.A for one tuple variable /i only. The operands in an

expression may be connected by arithmetic operators. If p ranges over R, the

value of (4.9) for a given value of /i is computed by finding the set 5M of all those

tuples v of R such that v and /i give the same value for each of the formulas

FI, . . . , Ffc. Then, apply the aggregate operator agg-op to the value of E(v), as

v ranges over all the tuples in 5M.

Example 4.14: To print the items supplied with their average prices, we could

write

range of s is SUPPLIES

retrieve into DUMMY (ITEM=s. ITEM,

AP = avg(s. PRICE by s.ITEM))

sort DUMMY

print DUMMY

For example, suppose SUPPLIES is the relation of Figure 4.2(d). When fi is

the first tuple, (Acme, Brie, 3.49), we look for all tuples with the same ITEM

value, "Brie," finding the first and fifth tuples. For each of these tuples, we

evaluate the expression PRICE, i.e., we obtain the third field. These values are

3.49 and 3.98, respectively. We then take the average of these values, which is

3.74, rounding up. Thus, from the first tuple of SUPPLIES, we get the tuple

of relation DUMMY that has first component equal to the ITEM, i.e., "Brie,"

and the second component, AP, equal to 3.74. Note that when n is the fifth

tuple of SUPPLIES, we get an identical tuple of DUMMY.

We sort DUMMY to remove duplicates, as DUMMY will have, for each

item, as many tuples as the SUPPLIES relation has for that item. The result

of running the above program on relation SUPPLIES of Figure 4.2 is shown in

Figure 4.7. D

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE

Query-by-Example (QBE) is a language developed in Yorktown Heights by

IBM. It contains a number of features not present in relational algebra or cal

196 RELATIONAL QUERY LANGUAGES

ITEM AP

Brie 3.74

Perrier 1.14

Macadamias .06

Escargot

Endive

.25

.69

Figure 4.7 Average prices of items.

culus, or in any of the other query languages discussed in this chapter. Among

its interesting features is that QBE is designed to be used through a special

screen editor that helps compose queries. A key on the terminal allows the user

to call for one or more table skeletons, as shown in Figure 4.8, to be displayed

on the screen. The user then names the relations and attributes represented by

the skeleton, using the screen editor.

for relation

<\" name

for attributes (additional

columns available if used)

\

for commands

on tuples

for tuples mentioned

in queries

Figure 4.8 A QBE table skeleton.

Queries are posed by using domain variables and constants, as in domain

relational calculus, to form tuples that we assert are in one of the relations whose

skeletons appear on the screen. Certain of the variables, those prefixed by the

operator P . , are printed.5 When a tuple or combination of tuples matching the

conditions specified by the query are found, the components for those attributes

preceded by P . are printed.

All operators in QBE end in dot, and the dot is not itself an operator.

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 197

Before going into detail regarding the form and meaning of queries in QBE,

let us take an example of what a typical query looks like. Suppose we want

to answer the query of Example 4.3, to print the suppliers of items ordered by

Zack Zebra, and we have the ORDERS, INCLUDES, and SUPPLIES relations

available in the database. We call for three table skeletons to be displayed. In

the box reserved for the relation name, in one skeleton, we type ORDERS P. . In

response to the P . , the attributes of ORDERS will appear along the first row

of that skeleton, as shown in Figure 4.9. Similarly, we type INCLUDES P. in the

upper left corner of the second skeleton to get the attributes of the INCLUDES

relation, and we type SUPPLIES P . to get the attributes of the SUPPLIES

relation, in the third skeleton.

ORDERS O# DATE CUST

_123 Zack Zebra

INCLUDES O# ITEM QUANTITY

-123 -banana

SUPPLIES NAME ITEM PRICE

P. -banana

Figure 4.9 Print the suppliers of an item ordered by Zebra.

In Figure 4.9 we see this query expressed in QBE. In each of the skeletons

is a tuple of the relation for that variable, with the important features shown.

For example, the customer name in the ORDERS skeleton is specified to be

Zack Zebra. The order number in the ORDERS and INCLUDES relations are

required to be the same, indicated by the fact that the domain variable -123

appears in both places. Likewise, the ITEM in the INCLUDES and SUPPLIES

tuples must be the same, because the one domain variable -banana appears

in both places. The entry Zack Zebra appears with no quotation marks or

underscore, to indicate it is a literal, while all variables in QBE must have

names that begin with an underscore.6

6 Note that this convention, preceding names of domain variables by an underscore and

leaving literals unadorned, is diametrically opposed to the usual style of query languages

and programming languages, where character string literals are adorned with quotes,

198 RELATIONAL QUERY LANGUAGES

The occurrence of P. in the NAME component for the SUPPLIES tuple

indicates that this component is to be printed. The QBE query of Figure 4.9

corresponds to the domain relational calculus expression

{N | (3O)(3D)(3I)(3Q)(3P)(customers(O,D, "Zack Zebra") A

includes(O, I, Q) A supplies(N, /, P)) } (4.10)

The variable O of (4.10) appears in Figure 4.9 as _123, and / is replaced by

_banana. Further, the other existentially quantified variables, D, Q, and P,

appear only once in (4.10), so in QBE we need not give them names at all.

That is, a blank in any position of a QBE skeleton is assumed to be a domain

variable that appears nowhere else, not even in other places that are blank.

A large family of QBE queries correspond to domain calculus expressions

of the form

•••Arp(Cpi,...,Cpfcp))}

where each C^ is an AI, a Bj, or a constant, and each AI and BI appears at

least once among the C's. To express any such query, we display the table

skeletons for all the relations Ri,...,Rp corresponding to predicates ri, . . . , rp,

and create a variable name for each of the A's and B's.

In general, it is a good mnemonic to use variable names that are examples of

objects actually found in the appropriate domains, but any character string pre

ceded by an underscore will do. Now, for each atomic formula ri(Cu ,..., Cikt)

write a tuple in the skeleton for Ri. If Cij is a constant, place that constant

in the jth component. If Cij is one of the A's or B's, place the variable cor

responding to that symbol there instead. However, if one of the .A's or B's

appears only once among all the terms, then we can leave the corresponding

component blank if we wish.

It will often be the case that all the A's appear as components of one atomic

formula ri(Cu, . . . , CjfcJ. If so, in the tuple for this term we prefix each of the

A's by the operator P., and we are done. However, if no such term exists, we

can create another table skeleton, whose components we can optionally name,

and enter into the table skeleton the tuple

P.-A1 P._A2 ••• P._An

where _At is the variable name for Ai.

and variables are unadorned. Also observe that Query-by-Example takes its name from

the suggestion that variable names be chosen to be examples of the object desired.

However, as with variables of other languages, the name "banana" has no semantic

meaning, and it could be replaced in all its occurrences by "junk," "a," or "xyz."

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 199

Example 4.15: Suppose we wish to print the order number and quantity

ordered, for all orders for brie. We can express this query in domain calculus

as

{A\A2 | includes(A\, "Brie", A2)}

and in QBE as

INCLUDES O# ITEM QUANTITY

P. -123 Brie P.

Here variable _123 replaces A\. We could have omitted -123 altogether, since

it appears only once. We have taken our option not to create a variable for A2 ,

since it also appears only once.

Let us consider another query: print the name, address, order number, and

date for all current orders. In domain calculus this query is:

As no term has all the A's, we call for a new table skeleton, as well as the

skeletons of CUSTOMERS and ORDERS. The query is shown in Figure 4.10.

CUSTOMERS NAME ADDR BALANCE

-Snake -Rock

ORDERS Off DATE CUST

-123 -today -Snake

P . _Snake P._Rock P. -123 P. -today

Figure 4.10 Print names, addresses, orders, and dates.

It would also have been permissible to write the unnamed relation of Figure

4.10 as

P. -Snake _Rock -123 -today

200 RELATIONAL QUERY LANGUAGES

since a command such as P. in the first column (the column corresponding to

the relation name) applies to all components of the tuple. D

Implementation of QBE Queries

The general rule for implementing a query in QBE is that the system creates

a tuple variable for each row that was entered into the table skeletons for the

existing relations.7 For the second query of Example 4.15 we would create a

tuple variable n for the row (-Snake, _Rock,) of CUSTOMERS and a tuple

variable v for the row (-123, -today, -Snake) of ORDERS. Note that no

variable is created for the row of the unnamed relation in Figure 4.10, since

that relation does not exist in the database.

If there are k such tuple variables we create k nested loops; each loop causes

one of the variables to range over all tuples in its relation. For each assignment

of values to the tuple variables (each "value" is a tuple in the corresponding

relation), we check whether the domain variables of the query can be given

consistent values. In the above example, we only have to check that

ji[NAME] = i/[CUST]

so we can give a consistent value to domain variable -Snake. Other domain

variables appear only once in CUSTOMERS or ORDERS, and thus can take

whatever value /i or v gives them.

Each time we are successful in obtaining consistent values for the domain

variables, we take whatever action the query calls for. For example, if one

or more rows of the query has some print commands, we print the values of

the domain variables to which P. is prefixed. In Figure 4.10, only the tuple

in the unnamed relation has P. operators, so we obtain the values for the

variables mentioned in that tuple and print them. If more than one row has

print commands, whether or not the rows are in the same relation, we print

the values for those rows in separate tables. Other actions that might be taken

when we find a successful match include the insertion or deletion of tuples,

which we shall discuss shortly.

Entries Representing Sets

An entry in a skeleton can be made to match more than one, but less than all,

of the elements in some domain. A primary example is an entry 0c, where 9

is an arithmetic comparison and c a constant. For example, >=3 matches any

value three or greater. We can also write Ov, where « is a domain variable. For

example, <_amount matches any value less than the value of -amount. Presum

ably, the value of -amount is determined by some other entry of the query, and

7 That is not to say that QBE must be implemented this way. Rather, the procedure to

be described serves as a definition of queries in QBE.

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 201

that value changes as we allow tuple variables to range over all tuples, as in the

implementation procedure just described.

Example 4.16: The query of Figure 4.11(a) asks for all supplier-item-price

triples for which the price is at least a dollar. Figure 4.11(b) asks for all items

such that at least one supplier sells the item at a price greater than the lowest

price for Perrier.

SUPPLIES NAME ITEM PRICE

P. > 1.00

(a)

SUPPLIES NAME ITEM PRICE

P. -X

Perrier < _x

(b)

Figure 4.11 Queries using inequalities.

The query of Figure 4.11(b) is implemented by creating tuple variables n

and v for the two rows of the skeleton. As we allow n and v to range over

the various tuples in SUPPLIES, we check for matches. Tuple /i must have

some PRICE component, which defines a value for _x. For example, _x = 3.49

when p is the first tuple of SUPPLIES in Figure 4.2(d). We then look at the

PRICE and ITEM components of v. If i>[PRICE] is less than the value of _x,

and i/[ITEM] is "Perrier," then we have a match. We therefore perform the

action indicated by tuple n, that is, we print ^[ITEM]. For example, if fJL is

the first tuple and v the second tuple in the relation of Figure 4.2(d), then the

conditions are met, and we print "Brie," which is /i[ITEM].

Note that QBE, unlike QUEL, eliminates duplicates automatically. Thus

"Brie" would be printed only once, even though there are, in Figure 4.2(d), two

tuples for Brie and two for Perrier, and the price of Brie exceeds the price of

Perrier in all four combinations. D

Another way to designate a set is to use an entry that is part constant and

part variable. Juxtaposition represents concatenation, so if the domain for this

entry is character strings, we can try to match any constant character strings in

the entry to substrings of the string that forms the corresponding component

of some tuple. If we find such a match, we can assign pieces of the remainder

of the string to the variables in the entry.

202 RELATIONAL QUERY LANGUAGES

Example 4.17: To print all the orders placed in January we could write

ORDERS O# DATE CUST

P. Jan -32

If the date component of a tuple begins with "Jan" then the remainder of that

date matches variable -32, and the entire tuple is printed. For the relation of

Figure 4.2(b), all tuples would be printed, since all are dated January. D

Negation of Rows

We may place the symbol -< in the first column (the column with the relation

name R) of any row. Intuitively, the query then requires that any tuple match

ing the row not be a tuple of R. We shall try to be more precise later, but first

let us consider an example.

Example 4.18: Suppose we wish to print the order or orders with the largest

quantity. We could use the aggregate function MAX., to be described later, but

we can also do it with a negation. Rephrase the query as: "print an order if

there is no order with a larger quantity." This condition is expressed in QBE

in Figure 4.12. D

INCLUDES O# ITEM QUANTITY

P. _x

—1 > -X

Figure 4.12 Print orders such that no order has a larger quantity.

The implementation of queries with a negation requires that we modify

the query-evaluation algorithm described earlier. If in Figure 4.12 we created

tuples p. and v for the two rows (n for the first row), and we considered all

possible values of n and i/, we would not want to print the order number in n

just because we found a tuple v whose QUANTITY component was not greater

than ^[QUANTITY]. This approach would cause each tuple in INCLUDES,

whose QUANTITY was not the minimum, to be printed eventually. Rather,

we must arrange our loops for the tuple variables so that the tuple variables

corresponding to negated rows vary in the innermost loops. Then for each set

of values for the tuple variables corresponding to unnegated rows, we check that

all values of the tuple variables for negated rows fail to produce a consistent

assignment of values for the domain variables in the query.

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 203

For the query of Figure 4.12, the outer loop is on tuple variable /i, and the

inner loop is on v. For a fixed /i, we print /i[O#] only if, while considering all

values of i/, we never find a quantity larger than /i[QUANTITY]. If we followed

this procedure on the data of Figure 4.2(c), then when p, was any tuple but

the last, the quantity in v , when v was the last tuple, would be greater than

the quantity in /i. When fi is the last tuple, no value of i/, including the last

tuple, has a greater quantity, so /i[O#], which is 1026, would be the only order

number printed.

Aggregate Operators

QBE has the usual five aggregate operators, denoted SUM., AVG., MAX., MIN.,

and CNT. (count). There are two other operators, ALL. and UN. (unique) that

often are used in conjunction with aggregate operators. ALL. applied to a

domain variable produces the list of values that the variable takes on as we

run through all the tuples in the relevant relation. The list may have duplicate

elements; it is not the same as a set. Thus, the ALL. operator effectively leaves

duplicates in, while most other QBE operations eliminate duplicates.

Example 4.19: To compute the average balance of YVCB customers we write

CUSTOMERS NAME ADDR BALANCE

P . AVG . ALL . _x

The tuple variable n for this row ranges over all customers, and for each one,

domain variable _x takes on the value /^[BALANCE].

The expression ALL . _x produces the list of values assumed by _x. Should

two customers have the same balance, that balance will appear twice. To com

pute the average balance, we want duplicates left in, or else balances appearing

in the tuples for two or more customers would receive less weight than they

deserve when we take the average.

The expression AVG . ALL . _x then produces the average of all the elements

on the list that was produced by ALL. x. Duplicates are not eliminated prior

to taking the average, which we just argued is what we want in this example.

Finally, the P. causes the average to be printed. D

The operator UN . converts a list into a set, by eliminating duplicates.

Example 4.20: Suppose we wanted to know how many suppliers there are in

the YVCB database. If we (incorrectly) wrote

SUPPLIES NAME ITEM PRICE

P.CNT.ALL._x

204 RELATIONAL QUERY LANGUAGES

and applied it to the relation of Figure 4.2(d) we would get the answer 7, since

variable _x takes on a list of seven values, one for each tuple in the relation.

The correct way to pose the query is

SUPPLIES NAME ITEM PRICE

P.CNT.UN.ALL.jc

In this way, before counting the set of suppliers produced by the expression

ALL._x, the operator UN. removes duplicates. The value of the expression

UN.ALL._x is the set {"Acme", "Ajax"}. Then the operator CNT. computes

the size of this set, and P. prints the correct answer, 2. D

Insertion and Deletion

If a row in a query has the operator I . or D . in the first column, then when

implementing the query we do not create a tuple variable for this row. Rather,

when a match for all the tuple variables is found, we insert (I.) or delete (D.)

into or from the relation in whose skeleton one of these commands is found.

Variables in the row or rows to be inserted, deleted, or updated take their

values from the appropriate components of the tuple variables.

Example 4.21: If Ajax starts selling Escargot at $.24 each, we can insert this

information into the SUPPLIES relation by:

SUPPLIES NAME ITEM PRICE

I. Ajax Escargot .24

Notice that this query is implemented by a special case of the QBE implemen

tation rule. Since there are no tuple variables on which to loop, we simply

execute the insert operation once. The row to be inserted has no variables, so

the components of the inserted tuple are well defined.

If instead, Ajax wants to sell Escargot for the same price that Acme sells

them, we could retrieve Acme's price as we perform the insertion:

SUPPLIES NAME ITEM PRICE

I. Ajax Escargot

Escargot

-ripoff

-ripoffAcme

A tuple variable p, for the second row ranges over all tuples in SUPPLIES.

Assuming the data of Figure 4.2(d), the only value of n that contains the

constants "Acme" and "Escargot" for NAME and ITEM, respectively, also has

.25 in its PRICE component. Thus, the value .25 is given to the variable -ripoff

when p. reaches this tuple. At that time, the insert action of the first row is

4.4 QUERY-BY-EXAMPLE: A DRC LANGUAGE 205

taken, with variable _ripoff bound to .25, so the tuple ("Ajax", "Escargot", .25)

is inserted into SUPPLIES. D

Updates

The update operation can only be understood if we are aware that the QBE sys

tem allows us to define key and nonkey attributes of relations, by a mechanism

to be discussed shortly. The set of key attributes must uniquely determine a tu

ple; that is, two different tuples in a relation cannot agree on all key attributes.

If we place the update (U .) operator in the first column of a row, then entries

in key fields must match the tuple updated, and any tuple of the relation that

does match the row of the skeleton in the key attributes will have its nonkey

attributes updated to match the values in the row with the U. operator.

Example 4.22: In the SUPPLIES relation, NAME and ITEM are key at

tributes and PRICE is nonkey. That is, NAME and ITEM together form a key

for the relation. If Acme decides to lower its price for Perrier to one dollar, we

may update the YVCB database by:

SUPPLIES NAME ITEM PRICE

0. Acme Perrier 1.00

If Acme instead decides to lower all its prices by 10%, we can write:

SUPPLIES NAME ITEM PRICE

U. Acme

Acme

-spam .9*_ripoff

_ripoff_spam

Note the use of an arithmetic expression in the row to be updated. The use of

arithmetic is permitted where it makes sense, such as in rows to be updated or

inserted, and in "condition boxes," a concept to be described next. The execu

tion of the above command follows the general rules we have been following. A

tuple variable for the second row is allowed to range over all SUPPLIES tuples.

Whenever the tuple has supplier name Acme, the variable jspam gets bound to

the item, and _ripoff gets bound to the price. We then update the unique tuple

with NAME equal to "Acme" and ITEM equal to the value of variable -spam,

by changing the PRICE component to .9x jipoff, that is, to 90% of its former

value. D

Condition Boxes

There are times when we wish to include a condition on a query, insertion,

deletion, or update that is not expressed by simple terms such as <3 in the

rows of the query. We can then call for a condition box to be displayed and

206 RELATIONAL QUERY LANGUAGES

enter into the box any relationships we wish satisfied. Entries of a condition

box are essentially conditions as in a language like Pascal, but without the use

of the "not" operator, -'. Either AND or & can be used for logical "and," while

OR or | is used for "or." When the query is implemented, a match is deemed

to occur only when the current values of the tuple variables allow a consistent

assignment of values to the domain variables in the query, and these values also

satisfy the conditions.

Example 4.23: Suppose we want to find all the suppliers whose price for Brie

and Perrier together is no greater than $5.00. We can express this query with

a condition box, as shown in Figure 4.13. The two tuple variables /i and v

range over all SUPPLIES tuples. When we find a pair of tuples with the same

supplier name, with /i[ITEM] equal to "Brie" and ^[ITEM] equal to "Perrier,"

the variables _x and _y get bound to the prices of these items charged by the

supplier in question. If the condition in the condition box is satisfied, i.e., the

sum of _x and _y is no more than five dollars, then consistent values of fi and

v have been found, and we perform the print action indicated in n. If the

condition box is not satisfied, then we do not have a match, even though fi and

v agree on the value of the variable _bmw.

SUPPLIES NAME ITEM PRICE

P . -bmw Brie j.

_bmw Perrier -y

CONDITIONS

_y <= 5.00

Figure 4.13 Suppliers who sell a Brie and Perrier for under $5.

For example, using the data of Figure 4.2(d), when -bmw has value

"Acme," the sum of _x and _y is 4.68, which satisfies the condition, so "Acme"

is printed. However, when the variable _bmw has value "Ajax," the sum is 5.07,

which does not satisfy the condition, and we do not print "Ajax." D

Completeness of QBE

As with the other languages we have studied, it appears simplest to prove

completeness by showing how to apply each of the five basic relational algebra

operations and store the result in a new relation. For instance, to compute

4.5 DATA DEFINITION IN QBE 207

T = R U 5 we can execute the QBE command shown in Figure 4.14, assuming

T is initially empty. The operation of set difference is achieved with an in

sertion command, then a deletion command; Cartesian product and projection

are performed with an insertion. We leave these commands as exercises. For

selection, we invoke Lemma 3.5, which says that all selections can be broken

into simple selections of the form axev • Thus, a condition box can be used to

implement any selection.8

R

_al _a2 _an

S

_bl _b2 _bn

T

I. _al _a2 ... _an

I. _bl _b2 _bn

Figure 4.14 QBE command for T = R U 5.

4.5 DATA DEFINITION IN QBE

Like each of the languages studied in this section, QBE has an associated data

definition language. The QBE DDL uses the same format and graphical inter

face as does the query language. We shall mention two important aspects: how

relations are declared and how views are declared.

The Table Directory

The QBE system maintains a list, called the table directory, of all the relation

names in the database, their attributes and certain information about the at

tributes. One can query, insert, or delete from this list using the same notation

as for general queries. For example, typing P . jrelname, or just P . , in the upper

left hand box of a table skeleton will cause the system to print the current list

of relation names. Typing P . _relname P . in that box will print the relation

8 Lemma 3.5 is essential here, because condition boxes forbid the -' operator, and there

fore, one cannot implement arbitrary selections with condition boxes alone.

208 RELATIONAL QUERY LANGUAGES

names and their attribute names. The second P . refers to the attribute names.

To insert a new relation REL into the table directory, type I . REL I . in the

upper left box and then type the attributes of REL along the top of the skele

ton. Again, the second I . refers to the attributes, while the first I . refers to

the relation name.

The attributes may be declared to have certain properties. These proper

ties are:

1. KEY, telling whether or not the attribute is part of the key (recall that

updates require the system to distinguish between key and nonkey fields).

The values of this property are Y (key) and N (nonkey).

2. TYPE, the data type of the attribute, such as CHAR (variable length

character string), CHAR(n) (character string of length n), FLOAT (real

number), or FIXED (integer).

3. DOMAIN, a name for the domain of values for this attribute. If a domain

variable in a query appears in two different columns, those columns must

come from the same domain. The system rejects queries that violate this

rule, a useful check on the meaningfulness of queries.

4. INVERSION, indicating whether an index on the attribute is (Y) or is not

(N) to be created and maintained.

Example 4.24: To create the SUPPLIES relation we might fill a table skeleton

with some of its properties, as shown in Figure 4.15. The first row indicates the

key for the relation; recall that NAME and ITEM together determine a unique

price, so the key for SUPPLIES is {NAME, ITEM}. The second row indicates

the data type for each ATTRIBUTE. We suppose that the NAME and ITEM

components are character strings, while PRICE is a real number, presumably

one that is significant to two decimal places.

In the row for domains we have indicated a distinct domain for each at

tribute. That would prevent us, for example, from asking a query about sup

pliers who provide an item with the same name as the supplier, because the

same variable would not be allowed to appear in the NAME and ITEM fields.

In the last row we have declared that there are no indices to be created. Recall

that an index on an attribute, such as NAME, allows us to find tuples with a

given name very fast; we do not have to search the entire relation. Particular

structures that could be used to create indices will be discussed in Chapter 6.

n

Views

QBE contains a delayed-evaluation feature similar to ISBL. When we wish to

create a view V, we insert V into the table directly as a relation, prefixing the

name V by the keyword VIEW. We then formulate in QBE the method whereby

V is to be calculated. V is not actually computed at the time. Rather, it is

4.5 DATA DEFINITION IN QBE 209

I. SUPPLIES I. NAME ITEM PRICE

KEY I. Y Y N

TYPE I. CHAR CHAR FLOAT

DOMAIN I . NAMES ITEMS AMOUNTS

INVERSION I . N N N

Figure 4.15 Creation of SUPPLIES relation.

computed whenever V is used in a subsequent query, and its value is computed

then, from the current relations mentioned in the formula for V.

Example 4.25: Suppose we wish to take the natural join of ORDERS and IN

CLUDES, projecting out the order number, to obtain a view OI, with attributes

NAME, DATE, ITEM, and QUANTITY, whose tuples (n, d, i, q) indicate a cus

tomer n who placed an order on date d for quantity q of item i. This view can

be denned as in Figure 4.16.

I. VIEW OI I. NAME DATE ITEM QUANTITY

I. -Snake -today _hotdogs -somuch

ORDERS O# DATE CUST

-123 -today -Snake

INCLUDES O# ITEM QUANTITY

-123 -hotdogs .somuch

Figure 4.16 Definition of View OI.

We can later use the view 01 as if it were an EDB relation, by formulating

queries such as:

0I NAME DATE ITEM QUANTITY

Ruth Rhino P. P. P.

which prints the date, item and quantity for everything ordered by Ruth Rhino.

210 RELATIONAL QUERY LANGUAGES

The value of relation OI, or rather its relevant part—the tuples with NAME

equal to "Ruth Rhino"—is computed from ORDERS and INCLUDES when

the above query is executed. D

4.6 THE QUERY LANGUAGE SQL

SQL, formerly known as SEQUEL, is a language developed by IBM in San

Jose, originally for use in the experimental database system known as System

R. The language is now used in a number of commercial database systems, and

in some cases, the entire database system is marketed under the name SQL.

The particular version we shall discuss here is SQL/RT, implemented for the

IBM PC/RT by Oracle Corp.

Because SQL is the most commonly implemented relational query lan

guage, we shall discuss it in more detail than the other languages of this chap

ter. This section discusses the query language. Section 4.7 covers the data

definition facilities of the SQL system, and Section 4.8 introduces the reader to

the way SQL's query language interfaces with a host language.

The Select Statement

The most common form of query in SQL is a select statement of the form:

SELECT Ri^A\^.^Ri^Ar

FROM fli,...,flfc

WHERE *; (4.11)

Here, Ri , . . . , R^ is a list of distinct relation names, and Rit .A\ , . . . Rir .Ar is

a list of component references to be printed; R.A refers to the attribute A of

relation R. If only one relation in the list following the keyword FROM has an

attribute A, then we may use A in place of R.A in the select-list.

* is a formula involving logical connectives AND, OR, and NOT, and compar

ison operators -, <=, and so on, essentially as in QUEL. Later, we shall discuss

more general conditions that can appear in place of *.

The meaning of query (4.11) is most easily expressed in relational algebra,

as:

That is, we take the product of all the relations in the from-clause, select

according to the where-clause (* is replaced by an equivalent expression ^',

using the operators of relational algebra, i.e., A in place of AND, and so on), and

finally project onto the attributes of the select-clause. Note the unfortunate

notational conflict: the keyword SELECT in SQL corresponds to what is called

"projection" in relational algebra, not to "selection."

4.6 THE QUERY LANGUAGE SQL 211

Example 4.26: The query of Example 4.2, to list the customers with negative

balances, is expressed in SQL by:

SELECT NAME

FROM CUSTOMERS

WHERE BALANCE < 0;

Here, since there is only one relation in the from-clause, there can be no am

biguity regarding what the attributes refer to. Thus, we did not have to prefix

attributes by their relation names. However, we could have written

SELECT CUSTOMERS . NAME

if we wished, or similarly adorned BALANCE in the third line.

In either style, the result would be a one column relation whose attribute

is the one in the select-clause, that is, NAME. Had we wanted another header

for the column, we could have provided an alias for NAME by writing that alias

immediately after NAME in the select-clause, with no punctuation.9 Thus,

SELECT NAME CUSTOMER

FROM CUSTOMERS

WHERE BALANCE < 0;

Prints the table

CUSTOMER

Zack Zebra

Judy Giraffe

Had we wished to print the entire tuple for customers with a negative balance,

we could have written

SELECT NAME, ADDR, BALANCE

FROM CUSTOMERS

WHERE BALANCE < 0;

or just

SELECT *

FROM CUSTOMERS

WHERE BALANCE < 0;

since R.* is SQL's way of saying "all the attributes of relation R." In this exam

ple, since CUSTOMERS is the only relation in the from-clause, we do not even

need to mention that relation, and hence used * instead of CUSTOMERS.*. D

9 In the SQL style, A B written with no punctuation implies that B is an alias, or

renaming, of A, while A, B means that A and B are elements of a list, e.g., a list of

attributes.

212 RELATIONAL QUERY LANGUAGES

Example 4.27: The query of Example 4.3, to print the suppliers of the items

Zack Zebra ordered, is expressed in SQL by the program of Figure 4.17. Here, we

take the natural join of ORDERS, INCLUDES and SUPPLIES, using equalities

in the where-clause to define the join, just as we did in QUEL in Example 4.6

or in QBE in Figure 4.9. The where-clause also contains the condition that the

customer be Zack Zebra, and the select-clause causes only the supplier name to

be printed.

SELECT NAME

FROM ORDERS, INCLUDES, SUPPLIES

WHERE CUST = 'Zack Zebra1

AND ORDERS. O# = INCLUDES. O#

AND INCLUDES. ITEM = SUPPLIES. ITEM;

Figure 4.17 Print the suppliers of an item ordered by Zebra.

We should notice the way attributes are referenced in Figure 4.17. CUST

and NAME unambiguously refer to attributes of ORDERS and SUPPLIES,

respectively, so they do not have to be prefixed by a relation name. However,

O# is an attribute of both ORDERS and INCLUDES, so its two occurrences

on the fourth line of Figure 4.17 have to be prefixed by the relations intended.

A similar handling of the two occurrences of ITEM appears on the last line.

One other nuance is that SQL, like most real query languages, does not

remove duplicates automatically. Thus, in the query of Figure 4.17, "Acme"

would be printed three times, because it supplies each of the three items ordered

by Zebra, and "Ajax" would be printed twice. To remove duplicates, we use

the keyword DISTINCT following SELECT; i.e., the first line of Figure 4.17 would

become

SELECT DISTINCT NAME

D

Tuple Variables

Sometimes we need to refer to two or more tuples in the same relation. To do

so, we define several tuple variables for that relation in the from clause and use

the tuple variables as aliases of the relation. The effect is exactly the same as

was achieved by the range-statement in QUEL, so SQL, which appeared at first

to be a "syntactically sugared" form of relational algebra, is now revealed to

resemble tuple relational calculus.

4.6 THE QUERY LANGUAGE SQL 213

Example 4.28: The query of Example 4.7, to print the names and addresses

of customers whose balance is less than that of Judy Giraffe may be expressed:

SELECT cl.NAME, cl.ADDR

FROM CUSTOMERS cl, CUSTOMERS c2

WHERE cl. BALANCE < c2. BALANCE

AND C2.NAME = 'Judy Giraffe1;

Recall that in the style of SQL, a name followed with no punctuation by another

name makes the second be an alias for the first. Thus, the above from-clause

declares both cl and c2 to be aliases of CUSTOMERS, in effect making them

tuple variables that range over CUSTOMERS. With that understanding, the

above SQL program is only a syntactic variation on the QUEL program that

we gave in Example 4.7. D

Pattern Matching

In addition to the usual arithmetic comparisons in where-clauses, we can use the

operator LIKE to express the condition that a certain value matches a pattern.

The symbol % in character strings stands for "any character string," while the

underscore _ stands for "any one character."

Example 4.29: The following code prints those items that begin with "E."

SELECT ITEM

FROM SUPPLIES

WHERE ITEM LIKE ' E7. ' ;

The next program prints those orders whose number is in the range 1000-

1999, i.e., those whose order numbers are a "1" followed by any three characters.

For this code to make sense, we have to assume that order numbers are stored

as character strings, rather than integers.10

SELECT *

FROM ORDERS

WHERE O# LIKE 'l-__' ;

D

Set Operations in the Where-Clause

While we have imagined the expression in a where-clause to resemble the se

lection conditions of relational algebra, these expressions are actually far more

general. One minor point is that arithmetic is allowed in comparisons, so we

can write conditions like

10 It is often desirable to store numerical data as character strings anyway, because the

data becomes more easily transported between computers with different internal formats

for numbers.

214 RELATIONAL QUERY LANGUAGES

WHERE A > B+C-10

Far more important is that SQL allows sets as operands; these sets are de

nned by complete select-from-where statements nested within a where-clause,

and are called subqueries. The operators IN, NOT IN, ANY, and ALL are used,

respectively, to denote membership in a set, nonmembership, existential quan

tification over a set, and universal quantification over a set.

Example 4.30: One use of subqueries is to replace a sequence of joins by

semijoins. Consider the query of Example 4.3 again, which we wrote using

joins in Example 4.27. Another way to implement the query is:

1. Find the set 5i of orders placed by Zebra, using the ORDERS relation.

2. Find the set S2 of items in set of orders 5i, using the INCLUDES relation.

3. Find the set S3 of suppliers of the items in set S2 by using the SUPPLIES

relation.

The result desired is S3. We express S3 by a query on SUPPLIES only,

but with a where-clause containing the condition that the item should be in

the set S2- S2 is then defined by a subquery on INCLUDES, with a where-

condition that the order should be in set 5i , and 5i is defined by a subquery

on ORDERS. The query is shown in Figure 4.18. Notice that the parenthesis

surrounding the subqueries of lines (4)-(9) and (7)-(9) are essential. D

(1) SELECT NAME

(2) FROM SUPPLIES

(3) WHERE ITEM IN

(4) (SELECT ITEM

(5) FROM INCLUDES

(6) WHERE O# IN

(7) (SELECT O#

(8) FROM ORDERS

(9) WHERE CUST = 'Zack Zebra1));

Figure 4.18 Query of Example 4.3, using subqueries.

Notice that in Figure 4.18 there is no ambiguity regarding the relation to

which ITEM belongs at line (3), since SUPPLIES is the only relation defined

at line (3). Formally, the scope of a relation defined in a from-clause (or of an

alias for that relation) consists of the preceding select-clause and the following

where-clause. Thus, the scope of SUPPLIES, defined in the from-clause on line

(2) is lines (l)-(9), while the scope of INCLUDES, defined on line (5), is lines

(4)-(9) and the scope of ORDERS, from line (8), is (7)-(9). It follows that (3)

4.6 THE QUERY LANGUAGE SQL 215

is only in the scope of SUPPLIES, and it is to that relation ITEM on line (3)

refers.

The occurrence of ITEM on line (4) might refer to SUPPLIES or IN

CLUDES, since it is in the scope of both. However, SQL follows a "most

closely nested" rule to resolve ambiguities, so the scope of INCLUDES, being

nested within the scope of SUPPLIES, yet including line (4), is deemed to be

the relation to which ITEM at line (4) refers. Had we wanted to refer to the

ITEM component of SUPPLIES anywhere within lines (4)-(9), we could have

said SUPPLIES.ITEM. Similar remarks apply to the occurrences of O# on lines

(6) and (7), which refer to the O# components of INCLUDES and ORDERS,

respectively, for the same reasons that ITEM refers to SUPPLIES on line (3)

and to INCLUDES on line (4).

The keyword ANY is used like an existential quantifier. If S is some expres

sion denoting a set, then the condition

A 9 ANY S

is equivalent to the logical expression

(3X)(X is in S A ABX)

Presumably, A is an attribute, whose value is taken from some tuple of some

relation, 5 is a set denned by a subquery, and 0 is an arithmetic comparison

operator. Similarly,

A 0 ALL S

means

(VA")(if X is in S then ABX)

Example 4.31: We can print each item whose price is as large as any appearing

in the SUPPLIES relation by using a subquery to form the set 5 of all prices,

and then saying that the price of a given item is as large as any in the set 5.

This query is shown in Figure 4.19. Notice that the scope rules described above

disambiguate which of the two uses of relation SUPPLIES [lines (2) and (5)]

the attribute PRICE refers to at lines (3) and (4). Line (3) is only in the scope

of the SUPPLIES of line (2), while at line (4), PRICE refers to the relation

with a PRICE attribute whose scope most closely surrounds line (4); that is

the relation SUPPLIES declared at line (5) and used in the subquery of lines

(4)-(5). Notice also that a where-clause is not essential in a query or subquery,

and this subquery creates a list of all prices by having a missing, or always-true,

where-clause. D

If we are sure that the set of values produced by a subquery will be a

singleton, then we can treat it as an ordinary value, and it may appear in arith

metic comparisons. However, if the data is such that the set 5 in a condition

like A = S is not a singleton, then the condition makes no sense, and an error

216 RELATIONAL QUERY LANGUAGES

(1) SELECT ITEM

(2) FROM SUPPLIES

(3) WHERE PRICE => ALL

(4) (SELECT PRICE

(5) FROM SUPPLIES) ;

Figure 4.19 Finding the most costly item.

occurs when the query is executed.

Example 4.32: If we are sure that Ruth Rhino has placed exactly one order,

then we can get its number in a subquery and use it to select from INCLUDES

all the items ordered by Rhino. The query is shown in Figure 4.20, and on the

data of Figure 4.2 the subquery returns {1025} and the items

{"Brie", "Escargot", "Endive"}

are printed. If we replace "Ruth Rhino" by "Zack Zebra" in Figure 4.20, the

query will fail because Zebra placed two orders. D

SELECT ITEM

FROM INCLUDES

WHERE O# =

(SELECT O#

FROM ORDERS

WHERE CUST = ' Ruth Rhino ') ;

Figure 4.20 Find the items ordered by Ruth Rhino.

Aggregate Operators

SQL provides the usual five aggregate operators, AVG, COUNT, SUM, MIN, and MAX.

It also provides the operators STDDEV and VARIANCE to provide the standard

deviation and variance of a list of numbers. A select-from-where statement

can print the result of applying one or more of these aggregate operators to

the attributes of a single relation, by placing the relation in the from-clause

and placing in the select-clause the list of aggregate terms, agg-Op(A), where

aggjyp is an aggregate operator and A is an attribute. The where-clause may

have a condition *, and if so, only those tuples that satisfy * are included

in the computation of the aggregate. The keyword DISTINCT may precede the

attribute A in agg-Op(A), in which case duplicates are eliminated before agg-op

is applied.

4.6 THE QUERY LANGUAGE SQL 217

Example 4.33: Let us consider the queries of Examples 4.19 and 4.20, which

were to compute the average balance and the total number of suppliers in the

YVCB database. For the first of these we write

SELECT AVG (BALANCE)

FROM CUSTOMERS;

This query would print the average balance, which is —69 for the data of Figure

4.2(a). The column header would be AVG (BALANCE). If we wanted another

column header, say AVJ3AL, we could specify an alias, as in:

SELECT AVG (BALANCE) AV_BAL

FROM CUSTOMERS;

For the query of Example 4.20, to count the number of suppliers, we can ex

amine the SUPPLIES relation but, recall from that example, we must eliminate

duplicates before we count. That is, we write

SELECT COUNT (DISTINCT NAME) #SUPPS

FROM SUPPLIES;

to print the number of different suppliers, in a column headed by #SUPPS.

If we wished to know only how many suppliers sell Brie, we could ask:

SELECT COUNT (NAME) #BRIE_SUPPS

FROM SUPPLIES

WHERE ITEM = ' Brie ' ;

Note it is unnecessary to remove duplicates here, because the fact that a supplier

sells Brie appears only once, assuming {NAME, ITEM} is a key for SUPPLIES

in the YVCB database. D

Aggregation by Groups

As in QUEL, we can partition the tuples of a relation into groups and apply

aggregate operators to the groups individually. To do so, we follow the select-

from-where statement with a "group-by" clause, consisting of the keywords

GROUP BY and a list of attributes of the relation mentioned in the from-clause

that together define the groups. That is, if we have clause

GROUP BY A\,...,Ak

then we partition the relation into groups, such that two tuples are in the same

group if and only if they agree on all the attributes A\,...,Ak- For the result

of such a query to make sense, the attributes A\,...,Ak must also appear in

the select-clause, although they could be given aliases for printing, if desired.11

11 This situation is the only one where it is permitted to have both attributes of a relation

and aggregations of other attributes of the same relation appearing in the same select-

clause; otherwise, the combination of, say, NAME and AVG(BALANCE) from relation

218 RELATIONAL QUERY LANGUAGES

Example 4.34: Let us reconsider the query of Example 4.13, to print a table,

which was shown in Figure 4.7, of all the items and their average prices. In

SQL we write

SELECT ITEM, AVG (PRICE) AP

FROM SUPPLIES

GROUP BY ITEM;

The alias AP for AVG(PRICE) is used to conform with the table of Figure 4.7.

D

A where-clause can follow the from-clause if we wish only a subset of the

tuples to be considered as we form the groups. We can also arrange to have

only a subset of the groups printed, independently of any filtering that goes

on in the where-clause before we construct the groups. The keyword HAVING

introduces a clause that may follow the group-by clause. If we write

GROUP BY A\,...,Ak

HAVING *

then the condition * is applied to each relation /Ra,,...,ot that consists of the

group of tuples with values «],...,«*. for attributes A\,...,Ak, respectively.

Those groups for which /2a,,...,at satisfies ^ are part of the output, and the

others do not appear.

Example 4.35: Suppose we wanted to restrict the groups in the query of

Example 4.34 to those items that were sold by more than one supplier. We

could then write

SELECT ITEM, AVG (PRICE) AP

FROM SUPPLIES

GROUP BY ITEM

HAVING COUNT(*) > 1;

Recall that * stands for all the attributes of the relation referred to, which in

this case can only be SUPPLIES. Thus, COUNT(*) counts the distinct tuples,

but since it appears in a having-clause, it does so independently for each group.

It finds that only the groups corresponding to Brie and Perrier have more than

one tuple, and only these two groups have their averages printed. The resulting

output is a subset of the tuples of Figure 4.7, that is,

ITEM AP

Brie 3.74

Perrier 1.14

If we had wanted to consider only those groups with two or more distinct

prices, we could have used the following having-clause:

CUSTOMERS does not make sense.

4.6 THE QUERY LANGUAGE SQL 219

HAVING COUNT (DISTINCT PRICE) > 1

The answer would not change for the data of Figure 4.2(d), but we would notice

a difference if an item had several suppliers, all of whom charged the same price.

Such an item would not be printed if we used the above having-clause. D

Insertion

To insert new tuples into a relation we use the statement form:

INSERT INTO R

VALUES («i,..., «fc);

Here, R is a relation name and v\ , . . . , v^ is a list of values for the attributes of

R. These attributes are given a particular order when the relation R is declared;

we shall discuss data definition in the next section. The values are assumed to

correspond to the attributes of R in the same order. For example, if Ajax starts

selling Escargot at $.24 each, we can say:

INSERT INTO SUPPLIES

VALUES ('Ajax', 'Escargot', .24);

Under certain circumstances, we do not have to specify values for all the

attributes of the relation. As discussed in the next section, certain attributes

may permit null values, and for these attributes a value in the insert command

is optional. If a value is not provided, NULL will be the assumed value. In some

senses, NULL is an ordinary value; one can select for it in a where-clause, for

example. On the other hand, NULL does not match itself in joins.

We introduce null values by listing a subset of the attributes of the relation

into which we are inserting, and by providing values for only these attributes.

Attributes not listed are given value NULL, provided those attributes permit

nulls; if not it is an error.

Example 4.36: Suppose that attribute PRICE of SUPPLIES may have nulls.

Then we could create a tuple that says "Ajax sells Escargot, but we don't know

the price," by:

INSERT INTO SUPPLIES (NAME, ITEM)

VALUES ('Ajax', 'Escargot');

D

Instead of inserting one tuple at a time, we can replace the value-clause of

an insert-statement by a select-from-where statement that produces a relation

of values, say R. The arity of R must match the arity of the relation into which

insertion occurs.

220 RELATIONAL QUERY LANGUAGES

Example 4.37: Suppose we wanted a new relation

ACME_SELLS(ITEM, PRICE)

that listed just the item and price components of the SUPPLIES tuples with

NAME equal to "Acme." We create this new relation by a mechanism discussed

in the next section. Then we can issue the insert command:

INSERT INTO ACME-SELLS

SELECT ITEM, PRICE

FROM SUPPLIES

WHERE NAME = ' Acme ' ;

Whatever the attributes of ACME-SELLS, provided there are exactly two of

them and they are of appropriate type, the first will receive the ITEM com

ponent and the second will receive the PRICE component of every tuple in

SUPPLIES with the name component "Acme." D

Deletion

The form of a deletion command in SQL is

DELETE FROM R

WHERE *;

R is a relation name and ^ is a condition as is normally associated with where-

clauses. The effect, naturally, is that every tuple of R for which * is true is

deleted from R.

Example 4.38: Let us reconsider Example 4.8, which showed how to delete

from the ORDERS relation all orders that included Brie. Recall that we must

use the INCLUDES relation to tell whether a given order includes Brie. The

SQL form of this deletion is:

DELETE FROM ORDERS

WHERE Off IN

(SELECT O#

FROM INCLUDES

WHERE ITEM = 'Brie');

Of course, most deletions will not need a subquery. If we wish to delete

a particular tuple, we simply specify all its values, or at least the values of its

key. For example, if Acme no longer sells Perrier, we can write:

DELETE FROM SUPPLIES

WHERE NAME = 'Acme'

AND ITEM * 'Perrier1;

4.6 THE QUERY LANGUAGE SQL 221

Update

The general form of an update command is

UPDATE R

SET Ai=£i,..., Ak=£k

WHERE *;

Here, R is a relation, some of whose tuples are to be updated. The updated

tuples are those that satisfy the condition \P, and the changes are specified by

the set-clause. For each tuple n satisfying $f, we set component fi\Ai] to Si, for

each t = 1,2, . . . , fc.

Example 4.39: Let us reconsider the updates of Example 4.22, which con

cerned QBE. The first update is to change the price Acme charges for Perrier

to $1.00. In SQL this change is:

UPDATE SUPPLIES

SET PRICE =1.00

WHERE NAME = 'Acme'

AND ITEM = 'Perrier1;

The second update was to lower all of Acme's prices by 10%. In SQL we

write:

UPDATE SUPPLIES

SET PRICE = .9*PRICE

WHERE NAME = ' Acme ' ;

Notice how the above query applies to any tuple whose NAME component is

"Acme," independent of the item. Also observe that the assignment in the

set-clause is like an ordinary assignment, computing the new value of PRICE

in terms of the old value. D

Completeness of SQL

As with QUEL and QBE, in order to simulate an arbitrary expression of rela

tional algebra in SQL, we must assume that a relation for each subexpression

has been defined.12 We then compute the relation for each subexpression, from

smallest to largest expression, culminating in the evaluation of the entire ex

pression. Thus, as with the other languages, we have only to show how to apply

the five basic operators of relational algebra.

Assume we have relations R(A\, . . . , An) and S(Bi,. . . , Bm). In the case

that we need to take the union or difference of R and 5, we also assume m = n

and Ai = Bi for all i. Of course, if the arities of R and 5 disagree, we cannot

take then" union or difference. However, if we need to rename the attributes of

12 Creation of new relations is explained in the next section.

222 RELATIONAL QUERY LANGUAGES

5, we can create a new relation Snew with the same attributes, A\, . . . , An, as

R. We then copy 5 into Snew by:

INSERT INTO Snew

SELECT *

FROM S;

Now, we may use Snew in place of 5.

Finally, we assume in what follows that relation T is declared to have

the appropriate number of attributes for each of the five operations, and that

the attributes of all three relations are A\,...,An in the cases of union and

difference.

To compute T = R U 5 we write

INSERT INTO T

SELECT *

FROM R;

followed by

INSERT INTO T

SELECT *

FROM S;

To compute the set difference T = R - 5, we start with the first insertion

into T, as above, and follow it with:

DELETE FROM T

WHERE C4i,...,An) IN

(SELECT *

FROM S);

Recall we assume that the attributes of R, S, and T are the same when we take

a set difference, and we may assume so because attributes can be renamed if

necessary. The list A\,...,An"m the where-clause above refers to the attributes

of T, while the subquery produces all the tuples of 5, which are each matched

with the attribute list for T and deleted from T if they are present.

For the Cartesian product T = R x S we say:

INSERT INTO T

SELECT R.A\, ..., R.An, 5.Bi, . . . , S.Bm

FROM R, S;

while the selection T = fff(R) is written

INSERT INTO T

SELECT *

FROM R

WHERE F'\

4.7 DATA DEFINITION IN SQL 223

Here, F' is the selection condition F translated into SQL notation.

Finally, the projection T = HI, ,...,«»(#) is expressed in SQL by:

INSERT INTO T

SELECT Ait,...,Aik

FROM R;

4.7 DATA DEFINITION IN SQL

The SQL data definition commands are issued to the same interpreter that ac

cepts the queries and updates described in the previous section. Thus, the DML

and DDL are really two sets of commands that are part of a single language.

The most fundamental DDL command is the one that creates a new rela

tion. We say

CREATE TABLE R

followed by a parenthesized list of attributes and their data types.

Example 4.40: We can define the SUPPLIES relation scheme from our YVCB

example by

CREATE TABLE SUPPLIES

(NAME CHAR(20) NOT NULL,

ITEM CHAR(1O) NOT NULL,

PRICE NUMBER(6,2));

The three attributes are seen to be NAME, ITEM, and PRICE. The data type

of NAME is a string of up to 20 characters, while ITEM is a string of up to

10 characters. PRICE is a number, and the specification (6, 2) says that prices

may have up to six digits, and two of them are to the right of the decimal point.

The specification NOT NULL for the NAME and ITEM attributes says that

nulls will not be permitted in these components. This choice makes sense be

cause these two attributes together form a key for SUPPLIES, and it might be

awkward if null values were permitted in a key. On the other hand, there might

be no harm if a price were temporarily null, so we have elected not prohibit

nulls in the PRICE component. D

The opposite of CREATE is DROP. If we wanted to delete the relation SUP

PLIES from the database entirely, we would write:

DROP TABLE SUPPLIES

Creation of Indices

Indices are used to speed up access to a relation. Recall that if relation R has

an index on attribute A, then we can retrieve all the tuples with a given value

a for attribute A, in time roughly proportional to the number of such tuples,

224 RELATIONAL QUERY LANGUAGES

rather than in time proportional to the size of R. That is, in the absence of

an index on A, the only way to find the tuples /i in R such that n[A] — a is

to look at all the tuples in R. We devote Chapter 6 to a discussion of data

structures that give indices the capability to focus on only the desired tuples.

For the moment, let us consider only how indices are created and used in SQL.

The basic index creation command is:

CREATE INDEX /

ON R(A)\

The effect is to create an index named / on attribute A of relation R.

Example 4.41: We can say

CREATE INDEX OJLINDEX

ON ORDERS (O#);

to create an index on attribute O# of relation ORDERS. The name of the

index is O#JNDEX, and it allows the retrieval of the tuple for a given order

number in time that does not depend (significantly) on the size of the ORDERS

relation. D

An index can also enforce the condition that a certain attribute is a key.

If in Example 4.41 we had said

CREATE UNIQUE INDEX O#_INDEX

ON ORDERS (O#);

then the index O#JNDEX would not only speed up access given an order

number, but it would make sure, as tuples were inserted into ORDERS, that

we never had two tuples with the same order number.

It makes sense to use the UNIQUE keyword in the declaration of the index

on O# for ORDERS, but if we declared an index on O# for INCLUDES, we

would not want to declare it UNIQUE, because it is normal for orders to include

more than one item, and therefore several tuples in INCLUDES may have the

same order number.

To remove an index / from a relation R, without affecting the data in R

itself, we issue command

DROP INDEX /;

Views

A third group of commands of the SQL language functions as a subschema DDL,

or view definition mechanism. In general, we create a view by the command

CREATE VIEW V (Ai , . . . ,4fc) AS

Qi

where V is the name of the view, A\,...,Ak are its attributes, and Q is the

4.7 DATA DEFINITION IN SQL 225

query that defines the view. The view V does not exist, but it can be queried,

and when we do so, V, or its relevant part, is constructed. To construct V, we

evaluate the query Q, and whatever tuples Q produces are the tuples in V.

Example 4.42: We can construct a view consisting of those items Acme sells

and their prices, by:

CREATE VIEW ACME_SELLS (ITEM , PRICE) AS

SELECT ITEM, PRICE

FROM SUPPLIES

WHERE NAME = ' Acme ' ;

Since the attributes of the view ACME-SELLS are the same as the attributes

of the query that returns its tuples, we do not even have to list attributes for

the view, and the first line above could have been written simply:

CREATE VIEW ACME_SELLS AS

A second example is the view OI constructed in Example 4.25. This view is

the join of ORDERS and INCLUDES, with the common O# attribute projected

out. We can create this view as

CREATE VIEW OI (NAME, DATE, ITEM, QUANTITY) AS

SELECT CUST, DATE, ITEM, QUANTITY

FROM ORDERS, INCLUDES

WHERE ORDERS. O# = INCLUDES. O#;

Note how the attribute CUST of ORDERS becomes NAME in view 01, because

we have chosen to specify attributes for that view explicitly. D

Finally, should we want to destroy a view V we say

DROP VIEW V;

This statement has no effect on the database, but queries on view V will no

longer be accepted.

Database Catalogs

There are four database catalogs, called TABLES, VIEWS, INDEXES, and

COLUMNS, and we may obtain information about the current database scheme

by issuing queries that refer to these catalogs as if they were relations. There

is only one major syntactic difference: the name of the table, view, etc., which

we might assume is an attribute of TABLES and VIEWS, respectively, is not

specified in a where-clause, but rather by appending the object name, in brack

ets, to the catalog name. We shall not enumerate all the attributes of the four

catalogs, but rather give some examples of the information available, and how

it is requested.

Suppose we wanted to find the definition of the view ACME-SELLS introduced

in Example 4.42. We could ask:

226 RELATIONAL QUERY LANGUAGES

SELECT VIEWSTEXT

FROM VIEWS [ACME-SELLS] ; (4.12)

Here, VIEWSTEXT is an attribute of catalog VIEWS. The name of the view

we are interested in is indicated by the bracketed ACME-SELLS in the second

line. It is as though there were an attribute NAME of VIEWS, and we had

followed FROM VIEWS by

WHERE NAME = 'ACME-SELLS'

However, we must follow the form given in (4.12) if we are to query database

catalogs. The answer to the query (4.12) is the single string

SELECT ITEM, PRICE FROM SUPPLIES WHERE NAME = 'Acme'

To get information about the attributes of a relation or view, we query the

COLUMNS catalog. Some of the attributes of this catalog are:

1. COLSNAME, the attribute's name.

2. COLSID, the position of the attribute in the list of attributes for its re

lation. For example, relation SUPPLIES, defined in Example 4.40, has

attribute NAME in position 1, ITEM in position 2, and PRICE in po

sition 3. It is important to know the positions of these attributes if we

use a subquery like SELECT * FROM SUPPLIES, since that order affects the

interpretation of the "*."

3. COLSDATATYPE, tells whether the attribute is of type number, char, or

date. We have not discussed data of the latter type, but the idea should

be obvious; a day, month, year, and time of day is represented and may

be printed externally in a variety of formats, e.g., 14-MAY-1948 (here the

time of day is not printed).

4. COLSLENGTH, the number of bytes or decimal places of char and number

data, respectively. The value of this attribute is 20 for the attribute NAME

of Example 4.40 and 6 for the attribute PRICE.

5. COLSSCALE, the number of digits to the right of the decimal point, for

number data only. The value of this attribute is 2 for PRICE in Example

4.40.

6. COLSNULL, tells whether or not nulls are permitted in a column.

For example, if we wanted to examine some of these attributes for the view

ACME-SELLS of Example 4.42 we would write:

SELECT COLSNAME, COLID, COLDATATYPE

FROM COLUMNS [ACME-SELLS] ;

Much of the information for view ACME-SELLS is inherited from the declara

tions we made when we created relation SUPPLIES in Example 4.40. In par

ticular, the data types of attributes ITEM and PRICE are inherited, because

they correspond to the attributes of the same names in the view definition.

4.8 EMBEDDING SQL IN A HOST LANGUAGE 227

Their order, as far as COLSID is concerned, comes from the order in which

they appeared in the create-view statement. Thus, the information printed by

the above query is:

COLSNAME COLSID COLSDATATYPE

ITEM f~ CHAR

PRICE 2 NUMBER

We can use the TABLES catalog to find out the date on which a relation

such as SUPPLIES was created, by a query like:

SELECT TABSTIME

FROM TABLES [SUPPLIES] ;

If we want to know the same thing about a view, we refer to the attribute

VEWSCTIME of catalog VIEWS.

Finally, we can query the catalog INDEXES to find out information about

the indices declared for a given relation. Some of the attributes of indices are:

1. IDXSNAME, the name of the index.

2. IDXSCOLUMN, the attribute that is indexed.

3. IDXSUNIQUE tells whether the index is "unique," i.e., whether the at

tribute IDXSCOLUMN serves as a key for the relation.

Thus, we could ask about the index OSJNDEX created in Example 4.41,

by:

SELECT IDX$NAME, IDXSCOLUMN, IDXSUNIQUE

FROM INDEXES [ORDERS];

Since there is only the one index for ORDERS, the following single tuple:

IDXSNAME IDXSCOLUMN IDXSUNIQUE

O#JNDEX O# NON UNIQUE

would be the only one printed.

4.8 EMBEDDING SQL IN A HOST LANGUAGE

We shall now sketch the way SQL/RT interfaces the SQL language with the

host language C. We try to avoid details of the C language itself, using a

"Pidgin" version that should make clear what functions the code written in

the host language is performing, without getting bogged down in the details

of C or of the UNIX operating system that surrounds it. While the interfaces

between other hosts and/or other database languages differ in many details,

the treatment given here is representative of the capabilities found in such

interfaces.

The process of creating an executable program prog that accesses an SQL

database is shown in Figure 4.21. We begin with a source program prog.pc, that

228 RELATIONAL QUERY LANGUAGES

is mainly C code, but also includes special statements, each on a line beginning

EXEC SQL, that are translated by the SQL precompiler into C code, mostly

calls to library routines that perform the various SQL commands and pieces of

commands.

prog.pc

I

Precompiler

I

prog.c

i

C Compiler

-I

prog.o

1 SQL

LibraryLoader

I

prog

Figure 4.21 SQL/C interface.

The resulting C program prog.c is then compiled, in the ordinary manner,

into a relocatable object code program prog.o. Finally, prog.o is loaded, along

with library routines that perform the SQL operations, creating an executable

program prog.

Data of the Interface

The basic idea behind the connection of C programs and their variables to

the world of SQL and its data is that the names of C variables are treated

like constants in SQL commands. We have only to prefix a colon to the C

variable name, to have its current value treated as a constant whenever the SQL

command containing it is executed. Further, we must enclose the declarations

of all C variables that are so used, within an SQL dedare section, which serves

to declare their data types both to the C compiler and to the SQL precompiler.

Example 4.43: The following code declares some variables that we shall use

in a subsequent example, which is to write a program that accepts an order,

determines the items and their quantities, and inserts the necessary tuples into

the relations ORDERS and INCLUDES of our YVCB example database.

4.8 EMBEDDING SQL IN A HOST LANGUAGE 229

EXEC SQL BEGIN DECLARE SECTION;

int ordno, quant;

char date [10], name [20], item [10] ;

EXEC SQL END DECLARE SECTION;

The first and last statement are endmarkers for the declarations that the

SQL precompiler must know about. Notice the use of EXEC SQL to warn the

precompiler to take notice of what follows.

The middle two statements are ordinary C declarations. Variables ordno

and quant are defined to be integers, and variables date, name, and item are

declared to be arrays of 10, 20, and 10 characters, respectively, which is the

way C represents character strings. D

Another device to connect SQL and C is the communication area. This is

a C data structure, defined in the SQL library, that allows SQL commands to

indicate when any of a wide variety of errors have occurred during the time the

command was executing. We shall not discuss the structure of the communica

tion area or the details regarding the types of errors and their representation.

One kind of "error" that is reported in the communication area is the failure to

find a desired tuple. That event occurs ordinarily during queries, as we repeat

edly ask for a tuple matching some where-clause, until SQL can find no more

and reports "error." As we shall see below, we do not, in this case, need to

examine the communication area directly, as there is a special SQL precompiler

statement that will do the examination for us; that is, the precompiler generates

the C code that tests the appropriate part of the communication area.

Execute-Immediate Statements

The simplest way to have a C program influence an SQL database is to embed

within the C program an execute-immediate statement, of the form

EXEC SQL EXECUTE IMMEDIATE 5;

Here, S is an SQL statement that is not a query; i.e., S may not be a select-from-

where statement. For example, S might be a command to insert a particular

tuple into the ORDERS relation, as in:

EXEC SQL EXECUTE IMMEDIATE

INSERT INTO ORDERS

VALUES(1027, 'Jan 4', 'Sally Squirrel1); (4.13)

There is, however, little use in placing such a statement in a C program,

since every time the program is executed, the same tuple will be inserted into

ORDERS. What we really want is an application program that can be run

every time the YVCB accepts a new order. The program must therefore ask

230 RELATIONAL QUERY LANGUAGES

the user for the order number,13 name, and date, place the user-supplied values

into C variables, which we call ordno, name, and date, and then execute the

statement:

EXEC SQL EXECUTE IMMEDIATE

INSERT INTO ORDERS

VALUES (: ordno , :date, :name);

Notice how the C variables preceded by colons are used exactly as constants

were used in (4.13).

Prepare-and-Execute

An alternative to immediate execution of statements is to prepare statements

prior to their execution, giving each a name known to the SQL precompiler only,

and then executing the statement, by referring to it by its name. The advantage

to this arrangement is that the time spent by the SQL system processing a

command occurs only once, when we prepare the statement, and executions of

the statement can then proceed more rapidly. In contrast, if we use execute-

immediate statements, the cost of processing the command is paid every time

the statement is executed.

The form of a prepare-statement is

EXEC SQL PREPARE 5 FROM 5;

Here, S is an SQL statement, which is still not permitted to be a query, and

S is the name chosen for this statement. S may be an SQL command written

out, perhaps with C variables, preceded by colons, in place of some constants.

S may also be the name of a C variable (again preceded by a colon) that is a

character string in which the command appears.14 Thus, we could write

EXEC SQL PREPARE stat FROM :com;

and store the text of the desired command in variable com prior to executing

the above statement. Subsequently, stat will refer to the statement that was in

com when the prepare-statement above was executed.

We may then execute a statement S by issuing a command of the following

form:

EXEC SQL EXECUTE 5 USING :A\ :Ak;

where AI, . . . , Ak are the C variables that appear in the text from which 5 was

prepared.

13 Perhaps the program would generate a new order number from a C variable representing

the "next order number," which in turn might come from a UNIX file accessible from

C programs, or from a one-tuple SQL relation accessible through SQL commands.

14 We would need a variable like com if we read commands from a terminal and executed

them; the matter is discussed further at the end of the section.

4.8 EMBEDDING SQL IN A HOST LANGUAGE 231

read ordno, date, and name;

insert (ordno, date, name) into ORDERS;

read item;

while item / 'end' do begin

read quant;

insert (ordno, item, quant) into INCLUDES;

read item;

end

Figure 4.22 Sketch of order processing algorithm.

Example 4.44: Let us write the code to read orders and insert the appropriate

tuples into the ORDERS and INCLUDES relations. Figure 4.22 is a sketch of

the algorithm we want to follow. Then, in Figure 4.23 we offer a more detailed

rendition of the algorithm, showing the SQL statements explicitly and using a

"Pidgin" form of C. For input/output we use a hypothetical function write(X)

to print X and read(X) to read a value of the appropriate type and assign it

to variable X.

In Figure 4.23, lines (l)-(4) are the declarations discussed in Example 4.43.

Line (5) is a statement that must appear before any executable SQL statements,

to initialize the connection between the database and the program. Lines (6)

and (7) prepare the insertion statements. Lines (8) and (9) request that the data

for the order be entered by the user and read his response; the data supplied is

entered into the database by line (10). The remainder of the program instructs

the user to enter a sequence of the form ii , q\ , 12 , 92 , • • • , *m 9n , end, where ij is

an item and </_, the quantity of that item. These entries are then read, and each

(*>»?>) ?&"" is inserted into the INCLUDES relation at line (15). Note the use

of ! = as the C "not equal" operator and brackets in place of a begin-end pair.

D

Embedding Queries in C

We should remember that the embedded SQL statements described so far are

not capable of handling select-from-where statements. In order to retrieve tu

ples from the database, there must be an arrangement that allows the tuples to

be supplied one at a time to the host language program. To do so, we declare a

cursor corresponding to each query statement. A cursor is a variable that, like

a statement name, is of concern only to the SQL precompiler. We can think of

it as a tuple variable that ranges over all the tuples of the relation that is the

answer to the query.

We begin the query by opening the cursor. We then fetch one tuple at a

time; the components of each tuple are copied into a list of C variables that

232 RELATIONAL QUERY LANGUAGES

(1) EXEC SQL BEGIN DECLARE SECTION;

(2) int ordno, quant;

(3) char date[10], name[20], item [10] ;

(4) EXEC SQL END DECLARE SECTION;

(5) EXEC SQL CONNECT;

(6) EXEC SQL PREPARE ord-insert FROM

INSERT INTO ORDERS

VALUES (: ordno , :date, :name);

(7) EXEC SQL PREPARE incl-insert FROM

INSERT INTO INCLUDES

VALUES (: ordno , :item, :quant);

(8) writeC'Please enter order number, date, and customer");

(9) read(ordno) ; read(date) ; read(name);

(10) EXEC SQL EXECUTE ord-insert USING : ordno, :date, :name;

(11) writeC'Please enter a list of item-quantity pairs,

terminated by the item 'end'");

(12)read(item);

(13)while(item != "end") {

(14) read(quant) ;

(15) EXEC SQL EXECUTE incl-insert

USING : ordno, :item, : quant;

(16) read(item) ;

Figure 4.23 Order program using prepare and execute.

correspond to these components. Eventually, no tuples remain and we break

out of the tuple-reading loop. Figure 4.24 is a sketch of this process.

Line (1) of Figure 4.24 is an ordinary preparation statement for the state

ment named S. As before, S is an SQL statement, but now it is a select-from-

where statement. S can be written explicitly or it can be a reference to a string

variable holding the query. C variables, preceded by a colon, can appear jn

place of constants in the where-clause of S.

At line (2), the cursor C is declared to be the cursor for statement 5, and at

line (3), C is opened, or initialized to refer to the first tuple of the answer. Line

(4) tells the SQL precompiler that when the "error" condition of no more tuples

occurs, we must go to the statement nomore; the latter name is an ordinary C

label.

Lines (5)-(7) form a loop, in which a tuple is read by line (6). Presumably,

the tuple has k components, and the values of these components are read into

variables A\, ..., Ak, in the proper order; i.e., the tth component becomes the

4.8 EMBEDDING SQL IN A HOST LANGUAGE 233

(1) EXEC SQL PREPARE 5 FROM 5;

(2) EXEC SQL DECLARE C CURSOR FOR S;

(3) EXEC SQL OPEN C;

(4) EXEC SQL WHENEVER NOTFOUND GOTO nomore;

(5) while(l) { /* repeat forever */

(6) EXEC SQL FETCH C INTO :A\ , . . . , :Ak ;

(7) /* do something with this tuple */

(8) nomore :

(9) EXEC SQL CLOSE C;

(10) /* Continue with program following query S */

Figure 4.24 Prepare-open-fetch-close pattern.

value of At- Line (7) suggests that something must happen with each tuple, and

in practice, line (7) will be replaced by code that accesses some of the variables

A\, . . . ,Aif, thereby using the tuple retrieved in some calculation.

We break out of the loop of lines (5)-(7) when line (6) fails to find a new

tuple, after each tuple of the answer has been retrieved. At that time, the

"whenever" clause of line (4) applies, taking us to line (8). Line (9) closes the

cursor C, so it can be reopened if we repeat this query, and we then continue

with the program after the query. A small technical note is that lines (8) and

(9) may not be combined, because the EXEC SQL must be the first characters,

other than white space, on any line in which it appears.

Example 4.45: Let us write a program determine the total number of pounds

of Brie on order. Of course we could do this job with an ordinary SQL command:

SELECT SUM(QUANTITY)

FROM INCLUDES

WHERE ITEM = 'Brie';

but the problem will still serve for an illustration. The program is shown in

Figure 4.25.

Notice that the declaration of variable sum does not have to appear in the

SQL declare section, because it is not used as an interface variable. Also, ==

is C's equality operator, and += is an accumulation operator; sum += quant is

what would be written

sum := sum + quant

in most other languages. Procedure equalstrings, not written here, tests

whether two strings are identical. D

234 RELATIONAL QUERY LANGUAGES

EXEC SQL BEGIN DECLARE SECTION;

int quant;

char itemClO] ;

EXEC SQL END DECLARE SECTION;

int sum;

EXEC SQL CONNECT;

EXEC SQL PREPARE incl-get FROM

SELECT ITEM, QUANTITY

FROM INCLUDES;

EXEC SQL DECLARE cur CURSOR FOR incl-get ;

EXEC SQL OPEN cur;

EXEC SQL WHENEVER NOTFOUND GOTO printsum;

sum = 0;

wMle(l) {

EXEC SQL FETCH cur INTO :item, : quant;

if(equalstrings(item, "Brie"))

sum += quant ;

printsum:

EXEC SQL CLOSE cur;

writeC'Amount of Brie ordered = "); write(sum);

Figure 4.25 Printing the amount of Brie ordered.

More General Queries

There is one other method of interfacing queries with C programs that we shall

not cover here. The limitation of the method just described is that the form of

the query must be known when the C program is written; the only things that

may be left unspecified are the values of certain constants in the where-clause,

which may be represented by variables and changed each time we execute the

query. There are situations where we cannot know the form of the statement

before we write the program. A simple example is the command interpreter

itself, described in Section 4.6. This program must be able to read and execute

an arbitrary SQL command, which could be a query, an insertion, or one of a

number of other forms. Suffice it to say that a complex but completely general

method for reading arbitrary SQL statements and executing them is provided

by the SQL/C precompiler.

EXERCISES 235

EXERCISES

4.1: Suppose we have the beer drinkers' database from Example 3.6 with rela

tions

FREQUENTS(DRJNKER, BEER)

SERVES(BAR, BEER)

LIKES(DRINKER, BEER)

Write the following queries in (t) ISBL (ii) QUEL (iii) Query-by-Example

(t«) SQL.

a) Print the bars that serve a beer drinker Charles Chugamug likes.

b) Print the drinkers that frequent at least one bar that serves a beer

that they like.

* c) Print the drinkers that frequent only bars that serve some beer that

they like (assume each drinker frequents at least one bar).

* d) Print the drinkers that frequent no bar that serves a beer that they

like.

4.2: Write in (t) QUEL (it) Query-by-Example (tit) SQL:

a) The DRC expression of Exercise 3.10.

* b) The TRC expression of Exercise 3.9.

4.3: Using (t) QUEL (ii) Query-by-Example (itt) SQL, write programs to per

form the following operations on the beer drinkers' database of Exercise

4.1.

a) Delete from SERVES all tuples for Potgold Beer.

b) Insert the fact that drinker Charles Chugamug likes Potgold.

c) Insert the facts that Chugamug likes all beers served at the Bent Elbow

Bar and Grill.

4.4: Suppose that the beer drinkers' database has relation

SELLS(BAR,BEER,AMOUNT)

Write in (i) QUEL (ii) Query-by-Example (in) SQL queries to print the

a) Total amount of each beer sold.

b) Average amount of each beer sold per per bar, excluding bars that do

not sell the beer.

* c) Maximum amount of each beer sold, provided at least two bars sell

the beer.

4.5: Suppose that we want a view of the beer drinkers' database

WHERE(DRINKER, BEER, BAR)

236 RELATIONAL QUERY LANGUAGES

containing those tuples (d, 6, r) such that drinker d likes beer 6, bar r

serves beer 6, and drinker d frequents bar r. Write in (t) ISBL (ii) Query-

by-Example (in) SQL a view definition for this view.

4.6: Write or sketch a simple command interpreter that interfaces with the beer

drinkers' database through calls to SQL. The commands are of the forms

i) i <bar name> <beer name>, meaning "insert into SERVES the fact

that the bar serves the beer."

it) d <bar name> <beer name>, meaning "delete from SERVES the fact

that the bar serves the beer."

tit) q bar <bar name>, meaning "print the beers served by the bar."

iv) q beer <beer name>, meaning "print the bars that serve the beer."

* 4.7: Suppose we have a relation

MANAGES(EMPLOYEE, MANAGER)

Write a C program interfacing with SQL that prompts for an employee

name and prints all the people this employee manages, either directly or

indirectly (i.e., of whom he is the "boss" in the sense of Example 1.12).

4.8: Suppose we have relations FSO(F,S,O), meaning that file F is of size 5

and has owner 0, and FTD(F,T,D), meaning that file F is of type T

and appears in directory D. Write the following queries in (t) QUEL (it)

Query-by-Example (iit) SQL.

a) Print the owner and type of all files that are of size at least 10,000.

b) Print all those directories that have a file owned by root.

c) Print the average size of files in the directory bin (QUEL and SQL

only).

d) Print all the files in directory foo whose name contains the substring

bar (SQL only).

4.9: Translate the queries of Figure 4.26 (a), (b), and (c) into relational algebra.

Each refers to the database of Exercise 4.8.

4.10: Complete Example 4.9 by writing the query to delete tuples from the IN

CLUDES relation if they are part of an order that includes Brie as one of

its items.

4.11: In the following questions, we shall assume that conditions in the various

query languages do not involve aggregate operators and do not involve

arithmetic; e.g. A < B + I is forbidden. We want to show that various

classes of queries are equivalent to safe domain relational calculus formulas,

by direct constructions (not by going through relational algebra). Give

algorithms to convert the following to safe DRC (or safe TRC if it is more

convenient).

EXERCISES 237

SELECT OWNER

FROM FSO

WHERE FILE IN

SELECT FILE

FROM FTD

WHERE TYPE = 'tex'

(a) SQL query.

FTD FILE TYPE DIRECTORY

_foo _root

-bar -root

P. _foo -bar

(b) QBE query.

range of t is FSO

range of s is FSO

retrieved;. File, s.File)

where t.Size > s.Size

and t. Owner == 'joe'

(c) Quel query.

Figure 4.26 Queries for Exercise 4.9.

a) QUEL retrieve queries in which the where-condition is a conjunction.

* b) QUEL queries in which the where condition can involve OR and NOT.

* c) Query-by-Example queries without condition boxes, I . , D . , U . , or -'

operators.

* d) SQL queries without subqueries, ANY, or ALL operators, but with AND,

OR, and NOT operators permitted in where-conditions.

** e) SQL queries as in (d), but with subqueries, ANY, and ALL permitted.

4.12: Show how to express the relational algebra operators — , x, and TT in Query-

by-Example.

4.13: Suppose we wish to declare the relations FSO and FTD mentioned in

Example 4.8, and we wish to have indices on F in each relation, and on

O in FSO. In FTD, F and D together form a key, while in FSO F and

O form the key. Assume nonkey attributes can be null, but key attributes

238 RELATIONAL QUERY LANGUAGES

cannot.

a) Show the Query-by-example table directory entries for FSO and FTD.

Invent suitable types and domains for the attributes.

b) Show the entries in the SQL database catalog TABLES for FSO

and FTD. Indicate the values of the fields COLSNAME, COLSID,

COLSDATATYPE, COLSLENGTH, COLSSCALE, and COLSNULL.

Where no value can be deduced, give suitable values, making them

consistent with your choices for (a), when possible.

BIBLIOGRAPHIC NOTES

The notion of completeness for query languages is from Codd [1972b]. Kim

[1979] is a survey of relational systems, while Kent [1979] argues the inadequacy

of such systems. Greenblatt and Waxman [1978] compare several relational

languages for ease-of-use by naive users.

ISBL

Todd [1976] is the principal source of information.

QUEL

The description of QUEL given here is based on Stonebraker, Wong, Kreps, and

Held [1976] and Zook et al. [1977]. An overview of the surrounding INGRES

system can be found in Stonebraker [1980].

Query-by-Example

Development of the system is described in Zloof [1975, 1977]. A description of

the commercial version is in IBM [1978a].

SQL

A definition of the SQL language (formerly called SEQUEL) can be found in

Chamberlin et al. [1976]; earlier versions are described in Boyce, Chamberlin,

King, and Hammer [1975] (called SQUARE) and Astrahan and Chamberlin

[1975].

System/R, which included the original implementation of SQL, is surveyed

in Astrahan et al. [1976, 1979], Blasgen et al. [1981], and Chamberlin et al.

[1981]. The VM commercial implementation of SQL is covered in IBM [1984],

while the PC/RT version of Sections 4.6-4.8 is from IBM [1985a, b].

BIBLIOGRAPHIC NOTES 239

AWK

There is a UNIX tool called AWK that we have not covered here, but which,

along with the join command of UNIX can serve as a rudimentary relational

database system for small files. See Aho, Kernighan, and Weinberger [1979,

1988].

View Update

An unresolved technical problem for relational database systems is how one

properly translates update operations on views into operations on the actual

database relations. Dayal and Bernstein [1982] and Keller [1985] present tech

niques for managing part of this problem.

CHAPTER 5

Object-Oriented

Database

Languages

In this chapter we consider some object-oriented database languages, mirroring

the treatment of value-oriented languages in the previous chapter. Many would

disagree with our use of the term "object-oriented" when applied to the first

two languages: the CODASYL DBTG language, which was the origin of the

network model, and IMS, an early database system using the hierarchical model.

However, these languages support object identity, and thus present significant

problems and significant advantages when compared with relational languages.

The third language covered in this chapter, OPAL, is a modern example of an

object-oriented language, whose pedigree few would dispute.

5.1 THE DBTG DATA DEFINITION LANGUAGE

The dominant influence in the development of the network data model and

database systems using that model has been a series of proposals put forth

by the Data Base Task Group (DBTG) of the Conference on Data Systems

Languages (CODASYL), the group responsible for the standardization of the

programming language COBOL. In addition to proposing a formal notation

for networks (the Data Definition Language or DDL), the DBTG has proposed

a Subschema Data Definition Language (Subschema DDL) for defining views

and a Data Manipulation Language (DML) suitable for writing applications

programs that manipulate the conceptual scheme or a view.

This section discusses the data definition language and the concept of

"DBTG sets," which are equivalent to the links, or many-one relationships,

mentioned in Section 2.5. The next section covers the data manipulation lan

guage.

240

5.1 THE DBTG DATA DEFINITION LANGUAGE 241

Records

What we called logical record types in Section 2.5 are referred to as record

types in the DBTG proposal. The fields in a logical record format are called

data items, and what we called logical records are known simply as records.

We shall use the terms "record" and "record type," since we are inclined to

drop the term "logical" anyway, when no confusion results. However, let us

continue to use "field," rather than "data item," since the latter term is rarely

used outside the DBTG proposal itself. The database can, naturally, contain

many occurrences of records of the same type. There is no requirement that

records of the same type be distinct, and indeed, record types with no fields

are possible; they would be used to connect records of other types, and in the

implementation, the seemingly empty records would have one or more pointers.

DBTG Sets

By an unfortunate turn of fate, the concept of a link, that is, a many-one

relationship from one record type to another, is known in the DBTG world as

a set. To avoid the obvious confusions that would occur should the term "set"

be allowed this meaning, many substitute names have been proposed; the term

DBTG set is a common choice, and we shall adopt it here.

When we have a many-one relationship m from records of type R2 to

records of type Ri, we can associate with each record r of type R\ the set

Sr, consisting of those records s of type #2 such that m(s) = r. Since m is

many-one, the sets 5r, and Sr3 are disjoint if r\ ^ r2. If S is the name of the

DBTG set representing the link m, then each set 5r, together with r itself, is

said to be a set occurrence of S. Record r is the owner of the set occurrence,

and each s such that m(s) = r is a member of the set occurrence. Record type

RI is called the owner type of S, and #2 is the member type of 5.

The DBTG model requires that the owner and member types of a DBTG

set be distinct. This requirement produces some awkwardness, but it is consid

ered necessary because many DBTG operations assume that we can distinguish

the owner from members in a set occurrence. We can get around the require

ment by introducing dummy record types, as in the following example.

Example 5.1: Suppose we have a record type PEOPLE, which we would like

to be both the owner and member types of DBTG set MOTHER-OF, where the

owner record in a set occurrence is intended to be the mother of all its member

records. Since we cannot have PEOPLE be both the owner and member types

for MOTHER-OF, we instead create a record type DUMMY, with the following

DBTG sets.

1. IS, with owner DUMMY and member PEOPLE. The intention is that each

DUMMY record owns an IS set occurrence with exactly one PEOPLE

record. Thus, each DUMMY record d is effectively identified with the

242 OBJECT-ORIENTED DATABASE LANGUAGES

person represented by the PEOPLE record owned by d.

2. MOTHER-OF, with owner PEOPLE and member DUMMY. The intention

is that a PEOPLE record p owns the DUMMY records that own (in the

IS set occurrence) the PEOPLE records of which p is the mother. D

It is useful to visualize a DBTG set as a ring of records, consisting of the

owner record and the member records in some order. For example, a common

operation is to visit each member record in turn, stopping when we come back

to the owner record.

Example 5.2: Let us consider the link E-STUDENT, an instance of which

was shown in Figure 2.15. The DBTG set occurrences for that instance are:

1. Grind owns enrollment records 1 and 2.

2. Nerd owns enrollment record 3.

3. Weenie owns entrollment records 4 and 5.

4. Jock owns no enrollment records.

These sets, drawn as rings, are shown in Figure 5.1. D

1:1

4:1

Figure 5.1 Ring representation of DBTG sets.

Declaring Record Types and DBTG Sets

The data definition language allows us to describe record types and their fields,

and it allows us to describe DBTG sets, their member type and their owner

type. We are also able to define details of the physical structure that will

be used to store these records and sets, but we shall not discuss the options

available until Chapter 6. Therefore, we shall here use a "Pidgin" version of

the DBTG data definition language, sketching only part of the declarations for

records and sets.

A record type R is defined by

RECORD R

followed by a list of the fields of record type R. A field declaration consists

of a level number, a field name, and a data type. Level numbers up to 99 are

permitted, allowing fields to have structure. A typical use of such structure is

to declare, within a field such as ADDRESS at level 1, subfields like STREET,

CITY, and ZIP at level 2.

5.1 THE DBTG DATA DEFINITION LANGUAGE 243

RECORD EMPS

1 ENAME CHAR (20)

1 SALARY REAL;

RECORD DEPTS

1 DNAME CHAR (10)

1 DEPT# INTEGER;

RECORD SUPPLIERS

1 SNAME CHAR(1O)

1 SADDR CHAR(50) ;

RECORD ITEMS

1 INAME CHAR (10)

1 ITEM# INTEGER;

RECORD ORDERS

1 O# INTEGER

1 DATE CHAR(1O);

RECORD CUSTOMERS

1 CNAME CHAR(20)

1 CADDR CHAR (50)

1 BALANCE REAL;

RECORD ENTRIES

1 QUANTITY INTEGER;

RECORD OFFERS

1 PRICE REAL;

Figure 5.2 Record type declarations for YVCB database.

Example 5.3: The YVCB network database scheme was described in Example

2.24. There are eight record types. In Figure 5.2 we see the declarations for

each of these. D

We declare DBTG set 5, with owner type O and member type M by the

following statement form:

DBTG SET 5

OWNER IS O

MEMBER IS M ;

Example 5.4: The YVCB database also has eight links, as indicated in Figure

2.16. In Figure 5.3 we see them listed with their owner and member types. D

244 OBJECT-ORIENTED DATABASE LANGUAGES

DBTG SET WORKS-IN

OWNER IS DEPTS

MEMBER IS EMPS;

DBTG SET MANAGES

OWNER IS DEPTS

MEMBER IS EMPS;

DBTG SET O-ITEM

OWNER IS ITEMS

MEMBER IS OFFERS;

DBTG SET O_SUPPLIER

OWNER IS SUPPLIERS

MEMBER IS OFFERS;

DBTG SET E-ITEM

OWNER IS ITEMS

MEMBER IS ENTRIES;

DBTG SET E-ORDER

OWNER IS ORDERS

MEMBER IS ENTRIES;

DBTG SET CARRIES

OWNER IS DEPTS

MEMBER IS ITEMS;

DBTG SET PLACED-BY

OWNER IS CUSTOMERS

MEMBER IS ORDERS;

Figure 5.3 DBTG set declarations for YVCB database.

Virtual Fields and Redundancy Avoidance

There are situations where it is convenient to imagine that fields of one record

type were duplicated in another record type. For example, the OFFERS logical

record type has only a PRICE field, but we might wish that it were like the

relation SUPPLIES discussed in our running example of Chapter 4, with fields

(supplier) NAME and ITEM, as well as PRICE. However, if we added these

fields to OFFERS, we would have at least the following two problems.

1. The NAME and ITEM fields would waste space, because they duplicated

data that could be obtained without them. That is, given an OFFERS

record, we could find the value of NAME by finding the owner of that

5.1 THE DBTG DATA DEFINITION LANGUAGE 245

record according to the 0-SUPPLIER link and taking the SNAME field

of the owner record. Similarly, we could find the owner of the OFFERS

record according to the OJTEM link, and take the INAME field of that

record in place of the ITEM field of the OFFERS record.

2. There is a potential for inconsistency. Perhaps, because of careless up

dating of the database, when we follow the links described in (1) to get

SNAME or INAME values, they do not agree with the NAME and ITEM

fields of the OFFERS record.

The way the DBTG proposal copes with the problems of redundancy and

potential inconsistency is to allow us to declare virtual fields, which are fields

defined to be logically part of a record, but not physically present in the record.

Rather, when we declare the virtual field, we define a source for the field, which

is a field of some owner record. When we refer to the virtual field in a query, the

database system obtains its value by following a link to the proper owner record

and obtaining the source field from that record. By having only one physical

copy of each field, we not only save space, but we also render impossible the

inconsistency mentioned in (2) above. Of course, we trade increased access time

for the privileges of consistency and space conservation, since instead of finding

the virtual field in the record where we imagine it resides, we have to go to the

database to obtain the source field from another record.

Example 5.5: If we wished to have virtual NAME and ITEM fields in OFFERS

records we could have defined that record type by the DDL code in Figure 5.4.

Note that we use the notation A.B for field B of record type A1 D

RECORD OFFERS

1 PRICE REAL

1 NAME VIRTUAL

SOURCE IS SUPPLIERS . SNAME OF OWNER OF O_SUPPLIER

1 ITEM VIRTUAL

SOURCE IS ITEMS. INAME OF OWNER OF O-ITEMS;

Figure 5.4 Virtual fields for OFFERS records.

Incidentally, the reader should note that each of the models discussed has a

method, roughly equivalent to "virtual fields," for solving the redundancy and

consistency problems. The virtual record types used in the hierarchical model

are quite similar in spirit to the virtual fields of the DBTG proposal, and they

serve the same purpose. The object model provides the same facility, since an

object 0i that is part of another object O^ never appears physically within

The DBTG proposal uses the notation B IN A for the more common A.B.

246 OBJECT-ORIENTED DATABASE LANGUAGES

02. Rather, O\ is pointed to, or referenced by, O2. In Chapter 7 we shall see

how these problems are dealt with in the relational model through the schema

design process known as "normalization."

View Definition

The DBTG proposal calls for a subschema data definition language, in which

one can define views. In a view, one is permitted to use a different name for

any record type, field, or DBTG set. We can omit from the view fields that are

present in a record type, we can eliminate record types altogether, and we can

eliminate DBTG sets from the view.

As the view facility of the DBTG proposal contains no concepts not present

in the data definition language for the conceptual scheme, we shall, in the

following sections, write programs that act on the conceptual scheme directly,

as if it were a complete view of itself. Thus, views play no role in what follows.

5.2 THE DBTG QUERY LANGUAGE

In this section we shall consider the query aspects of the DML that is defined by

the CODASYL proposal. The next section covers the commands that update

the database.

In the DBTG approach, all programs are written in a host language

(COBOL in the DBTG proposal) augmented by the commands of the data

manipulation language, such as FIND (locate a described record), GET (read a

record from the database), and STORE (put a record into the database). This

arrangement is essentially the one illustrated in the second column of Figure

1.4, although statements of the extended language are not marked explicitly for

a preprocessor as they were in Figure 1.4.

The Program Environment

The environment in which a program operates is depicted in Figure 5.5. There

is a workspace, called the user working area, in which is found space for three

kinds of data.

1. Variables defined by the program.

2. Currency pointers, which are pointers, or references, to certain records in

the database; we shall describe currency pointers in more detail next.

3. Templates for the various record types. The template for a record type

T consists of space for each field F of the record type, and that space is

referred to as T.F (or just F if the field name is unique) in programs. A

record is stored into J;he database only after assembling the record in the

template for its type, and the STORE command copies the contents of the

template into the database. Similarly, the GET command reads a record

from the database into the appropriate template. We also use the template

5.2 THE DBTG QUERY LANGUAGE 247

as a way of "passing parameters" to certain commands that at first glance

do not appear to have parameters, especially to the FIND command.

Record

templates /
Currency-

^. ^-
" /—

pointers -.
-—
^

""~ -
Program

variables V

Workspace

Figure 5.5 The program environment.

Currency Pointers

As a program runs, it is necessary for it to locate various records by a FIND

command, and to operate upon them by other commands. To keep track of

recently accessed records, a collection of currency pointers is maintained auto

matically by the database system, and the values of these pointers are made

available to the program. The currency pointers with which we deal are:

1. The current of run-unit. The term "run-unit" means "program" in the

DBTG proposal. The most recently accessed record, of any type whatso

ever, is referenced by a currency pointer called the "current of run-unit."

2. The current of record type. For each record type T, the most recently

accessed record of this type is referred to as the "current of T."

3. The current of set type. For each DBTG set 5, consisting of owner record

type TI and member record type T-j, the most recently accessed record of

type TI or T2 is called the "current of S." Note that sometimes the current

of 5 will be an owner, and sometimes it will be a member. Also understand

that the current of S is a record, rather than a set occurrence. Sometimes

it is convenient to talk of the set occurrence containing the record "current

of 5" as if this set occurrence itself were the "current 5 occurrence," but

there is no such thing as a pointer to a set occurrence.

Example 5.6: Suppose that the data about suppliers from the relation of

Figure 4.2 is now represented according to the network of Figures 5.2 and 5.3.

In particular, let us focus on the set occurrence of the O-SUPPLIER set owned

by Ajax, in which the Ajax SUPPLIERS record owns three OFFERS records,

corresponding to items Brie, Perrier, and Endive. Each of these is owned by

248 OBJECT-ORIENTED DATABASE LANGUAGES

an ITEMS record, according to the OJTEM DBTG set. If we assume that the

virtual fields described in Figure 5.4 are not present in OFFERS records, then

to find the items supplied by Ajax, we must visit each OFFERS record Ajax

owns. Only the prices are found in OFFERS records, but they are linked in

rings to their owner according to the OJTEM set, and by following that link we

can find the owning item, which is one of the items sold by Ajax. The structure

is suggested by Figure 5.6.

^3^8"]^- -^
V^7

Figure 5.6 Set occurrences connecting suppliers to items sold.

We have not described yet the commands whereby we can follow the links

suggested in Figure 5.6. However, in order to discuss currency pointers, let us

outline the steps such a sequence of commands would take.

1. Find the SUPPLIERS record for Ajax.

2. Find the first member of Ajax's O-SUPPLIER set occurrence, marked 3.98

in Figure 5.6.

3. Go from the latter record to its owner in the OJTEM set, that is, the

ITEMS record for Brie.

4. Find the second member of Ajax's O-SUPPLIER set occurrence, the record

1.09.

5. Find its item owner, Perrier.

6. Find the third member of Ajax's O-SUPPLIER set occurrence, that is, .69.

7. Find its item owner, Endive.

As we execute these seven steps, we change the pointers for the current of

run-unit, the current of the SUPPLIERS, OFFERS, and ITEMS record types,

and the current of the O-SUPPLIER and OJTEM sets. For example, the first

step makes the Ajax record be the current of run-unit, of the SUPPLIERS

record type, and of the O-SUPPLIER set. The other currency pointers are

undefined, or retain values they held previously. When we move, at the second

5.2 THE DBTG QUERY LANGUAGE 249

step, to the record 3.98, that record becomes the current of run-unit, the current

OFFERS record, and the current of both the O-SUPPLIER and OJTEM sets;

other currency pointers are not changed. The history of the currency pointers

is summarized in Figure 5.7. D

Current of:

SUPPLIERS OFFERS ITEMS O-SUPPLIER OJTEM run-unit

1. Ajax - - Ajax - Ajax

2. Ajax 3.98 - 3.98 3.98 3.98

3. Ajax 3.98 Brie 3.98 Brie Brie

4. Ajax 1.09 Brie 1.09 1.09 1.09

5. Ajax 1.09 Perrier 1.09 Perrier Perrier

6. Ajax .69 Perrier .69 .69 .69

7. Ajax .69 Endive .69 Endive Endive

Figure 5.7 A program's effect on currency pointers.

Navigation Within the Database

Reading a record from the database to the workspace is a two stage process.

First, using a sequence of FIND statements, we locate the desired record; that

is, the desired record must become the current of run-unit. At this point,

nothing has been copied into the template for the record type. To copy the

record into the template in the workspace, we simply execute the command

GET. This command always copies the current of run-unit into the template for

whatever record type is the current of run-unit. If we wish to copy only a subset

of the fields of the current of run-unit, we can list the desired fields after GET,

as in

GET <record type>; <list of fields>

Example 5.7: Suppose that the OFFERS record type is defined as in Figure

5.4, with the virtual fields NAME and ITEM, as well as the field PRICE. If the

current of run-unit is an OFFERS record, we can read the ITEM and PRICE

fields by:

GET OFFERS; ITEM, PRICE

The NAME field in the template for offers is not affected.

Notice that even though ITEM is a virtual field of OFFERS, we can pro

gram as though it actually existed. We rely on the system to get the correct

250 OBJECT-ORIENTED DATABASE LANGUAGES

value from the ITEMS.INAME field of the owner of the OFFERS record in its

OJTEM set occurrence. D

For debugging purposes, we can append the record type to the command

GET, even if we want all fields of the record. For example

GET OFFERS

will copy the current of run-unit into the OFFERS template, if the current of

run-unit is a OFFERS record. Otherwise, the system will warn the user of an

error when the GET OFFERS command is executed. Let us emphasize that one

cannot use GET to read a record other than the current of run-unit, even if we

follow GET by the type of that record.

CALC-Keys and Database Keys

Frequently, record types in DBTG databases are stored in such a way that given

values for a certain subset of the fields, one can get all the records with those

values quickly, i.e., without scanning the entire set of records of that type; this

set of fields is called the CALC-key for the record type. In effect, there is an

index on the CALC-key for a record type. This index could be implemented by

any of a number of forms discussed in Chapter 6, although the DBTG proposal

visualizes the index as a hash table, where records are grouped according to the

hash value of the fields of the CALC-key.2

We should understand that a CALC-key is not a "key" in the usual sense.

Rather, there can be more than one record with the same value of the fields

in the CALC-key. Thus, for example, we could choose CADDR, or {CADDR,

BALANCE} as the CALC-key for CUSTOMERS, even though it is conceivable

that there are two or more customers with the same address, or even the same

address and balance. However, it would be more normal to use CNAME, which

we suppose is a key, as the CALC-key.3

The DBTG proposal also uses the term database key to mean a pointer

to, or physical address of, a record. Database keys therefore always refer to a

unique record, and they are not related to CALC-keys.

The FIND Statement

The FIND command in the DBTG proposal is really a collection of different

commands, distinguished by the keywords following FIND. These commands

have the common purpose of locating a particular record by some designated

2 Readers not familiar with hashing should consult Section 6.3.

3 Recall that we have agreed to pretend that "names" of things are unique identifiers.

In practice, customers are given ID numbers to distinguish two or more with the same

name, and there would be an additional field of CUSTOMERS, say ID#, which would

really be the key and would be the normal choice for the CALC-key.

5.2 THE DBTG QUERY LANGUAGE 251

strategy. The variety of FIND statements is extensive, and we shall here con

sider only the following useful subset of the possibilities.

1. Find a record given its database key, i.e., a pointer to the record.

2. Find a record given a value for its CALC-key.

3. From the file of records of a given type, find (one-at-a-time) all the records

with a given value in the CALC-key field or fields.

4. Visit all the members of a set occurrence in turn.

5. Scan a set occurrence for those member records having specified values in

certain of the fields.

6. Find the owner of a given record according to a given DBTG set.

7. Find the current of any record or DBTG set.

At first, (7) seems paradoxical, since if a record is "current of something" it

is, in principle, "found." However, recall that GET operates only on the current

of run-unit, not on a current of set or record. Most other commands also require

the current of run-unit as the sole possible operand. Thus the purpose of this

FIND statement is to make a "current of something" record be the current of

run-unit, for further processing.

Finding a Record Directly

Let us now introduce the commands for executing the FIND statement. We

shall use a "Pidgin" version of the DBTG data manipulation language through

out, which differs from the proposal in two ways.

1. The proposal calls for many optional "noise words" in its syntax. We

have arbitrarily chosen to include or exclude them, with an eye toward

maximizing clarity.

2. We have inserted the words RECORD, SET, and other explanatory words,

in certain places where they help to remind the reader of what the variables

represent.

The first two kinds of FIND statement access records by a "key," either

the database key or the CALC-key. To access by database key we write:

FIND <record type> RECORD BY DATABASE KEY <variable>

where the <variable> is a variable in the workspace that has previously been

given a database key as value.

Example 5.8: We can store a database key into a variable of the workspace

by an instruction such as

XYZ := CURRENT OF ITEMS

Later, we could retrieve this particular ITEMS record by saying:

252 OBJECT-ORIENTED DATABASE LANGUAGES

FIND ITEMS RECORD BY DATABASE KEY XYZ

GET ITEMS

D

To find a record given values for its CALC-key fields, we "pass" those values

to FIND by placing the values in the corresponding fields of the template; then

we issue the command

FIND <record type> RECORD BY CALC-KEY

Example 5.9: Suppose CUSTOMERS records have field CNAME as CALC-

key. Then we could find the balance for Zack Zebra by:

CUSTOMERS. CNAME := "Zack Zebra"

FIND CUSTOMERS RECORD BY CALC-KEY

GET CUSTOMERS; BALANCE

Note that CUSTOMERS.CNAME and CUSTOMERS.BALANCE could have

been written CNAME and BALANCE, respectively, as no ambiguity would

arise in our example database. D

Scanning a Record Type

To find all the records of a given type with a given value for the CALC-key,

we can find the first such record as in Example 5.9, and then find additional

records with the same CALC-key by executing, in a loop,

FIND DUPLICATE <record type> RECORD BY CALC-KEY

Assuming the current of run-unit is of the type <record type>, and its value in

the CALC-key field or fields equals the corresponding value in the template for

<record type>, then the next <record type> record with that value is found.

When performing any sort of scan, we must be prepared to find no record

matching the specifications. In the DBTG proposal, there is a global error-

status word that indicates when a FIND operation fails to find a record, among

other abnormal conditions. We shall here assume for convenience that a variable

FAIL becomes true if and only if a FIND operation fails to find a record.

Example 5.10: Suppose we wish to print all the suppliers of Brie and the

prices they charge. Suppose for convenience that OFFERS has virtual fields

NAME and ITEM, as in Figure 5.4, and that the CALC-key for OFFERS is

ITEM. Then the desired table could be printed by the routine shown in Figure

5.8. D

Scanning a Set Occurrence

To begin, suppose we have a current set occurrence for some DBTG set S.

Recall that the set occurrence can be viewed as a ring consisting of the owner

5.2 THE DBTG QUERY LANGUAGE 253

print "SUPPLIER", "PRICE" /* print header */

OFFERS. ITEM := "Brie"

FIND OFFERS RECORD BY CALC-KEY

while -,FAIL do begin

GET OFFERS; NAME, PRICE

print OFFERS. NAME, OFFERS. PRICE

FIND DUPLICATE OFFERS RECORD BY CALC-KEY

end

Figure 5.8 Print suppliers and prices for Brie.

and each of the members. If we get to the owner, we can scan around the ring

and come back to the owner, causing FAIL to become true when we do. The

FIND statement

FIND OWNER OF CURRENT <set name> SET

finds the owner of the current of <set name>, making it the current of run-unit

and the current of <set name>.

The statement

FIND NEXT <record type> RECORD IN

CURRENT <set name> SET

goes one position around the ring from the current of <set name>, setting

FAIL4 to true if the next record is not of the <record type>. Normally, the

<record type> is the member type of the <set name>, so we fail when we get

back to the owner. The FIND NEXT command can be repeated as many times

as we like, taking us around the ring for the set occurrence.

An alternative way to scan around the ring is to issue the command

FIND FIRST <record type> RECORD IN

CURRENT <set name> SET

to get the first member record of the current <set name> DBTG set. If there

are no members of this set, FAIL becomes true. Otherwise, we can continue

around the ring with a loop containing a FIND NEXT command, as above.

Example 5.11: Figure 5.9 prints the items ordered by Zack Zebra. We

begin by finding the CUSTOMERS record for Zebra. This record owns the

PLACED_BY set occurrence we wish to scan, and in that set occurrence are

all the orders placed by Zebra. We find the first member record of this set

occurrence, and in the body of the outer while-loop we check whether we have

4 Technically, the error-status word treats reaching the last member of a set occurrence

as a different "abnormality" from failing to find a record, but we trust no confusion will

occur if we use FAIL to indicate all abnormalities.

254 OBJECT-ORIENTED DATABASE LANGUAGES

gone around the ring already. If not, we "process" an order and move to the

next order.

To "process" an order, we must treat the ORDERS record as the owner of

an E-ORDER set occurrence, and scan each of the ENTRIES records in that set

occurrence by a similar loop, the inner while-loop. For each ENTRIES record,

we use a FIND OWNER command to reach the owner of that record according

to the EJTEM set. That owner is one of the items ordered by Zack Zebra, and

we print it. Note that duplicates, that is, items found on more than one order,

will be printed several times. D

CNAME := "Zack Zebra"

FIND CUSTOMERS RECORD BY CALC-KEY

/* CALC-key for CUSTOMERS is CNAME */

FIND FIRST ORDERS RECORD IN CURRENT PLACED_BY SET

while -,FAIL do begin

FIND FIRST ENTRIES RECORD IN CURRENT E-ORDERS SET

while -'FAIL do begin

FIND OWNER OF CURRENT E-ITEM SET

GET ITEMS; INAME

print INAME

FIND NEXT ENTRIES RECORD IN CURRENT E-ORDERS SET

end

FIND NEXT ORDERS RECORD IN CURRENT PLACED-BY SET

end

Figure 5.9 Print the items ordered by Zebra.

Singular Sets

There are times when we would like to scan all the records of a certain type, for

example, to find all customers with negative balances. We cannot directly access

all the CUSTOMERS records by CALC-key or database key, unless we know

the name of every customer of the YVCB, or if we know all the database keys for

these records, which are two unlikely situations. Scanning set occurrences for

CUSTOMERS records won't work either, unless we have some way of locating

every set occurrence of some DBTG set.

We may define, for a given record type, what is known as a singular DBTG

set. A singular set has two special properties.

1. The owner type is a special record type called SYSTEM. Having SYSTEM

as the owner distinguishes singular DBTG sets.

5.2 THE DBTG QUERY LANGUAGE 255

2. There is exactly one set occurrence, and its members are all the records of

the member type. The records are made members automatically, with no

specific direction required from the user.

Example 5.12: If we wish the capability of searching all the CUSTOMERS

records conveniently, we could add to the DBTG set declarations in Figure 5.3

the definition of the following singular set.

DBTG SET ALLCUST

OWNER IS SYSTEM

MEMBER IS CUSTOMERS;

To print all the customers with negative balances we could then execute the

program of Figure 5.10. D

print "NAME", "BALANCE"

FIND FIRST CUSTOMERS RECORD IN CURRENT ALLCUST SET

/* the lone set occurrence of ALLCUST is always current */

while -'FAIL do begin

GET CUSTOMERS

if BALANCE < 0 then

print CNAME, BALANCE

FIND NEXT CUSTOMERS RECORD IN CURRENT ALLCUST SET

end

Figure 5.10 Print YVCB customers with negative balances.

Scanning a Set Occurrence for Fields of Specified Value

The next type of FIND statement also scans the members of a set occurrence,

but it allows us to look at only those records with specified values in certain

fields. The values for these fields are stored in the template for the member

record type before using the FIND. To get the first member record having the

desired values, we can write

FIND <record type> RECORD IN CURRENT

<set name> SET USING <field list>

Here, <record type> is the member type for the DBTG set whose name is

<set name>, and the <field list> is a list of fields of the <record type> whose

values, stored in the template for <record type>, must match the values of

these fields in the selected record. To get subsequent records in the same set

occurrence with the same values we say

256 OBJECT-ORIENTED DATABASE LANGUAGES

FIND DUPLICATE <record type> RECORD IN CURRENT

<set name> SET USING <field list>

Example 5.13: To find the price charged by Ajax for Perrier, we could use

the program of Figure 5.11. It assumes that OFFERS records have the vir

tual fields NAME and ITEM, and it assumes that SNAME is the CALC-key

for SUPPLIERS. After finding the SUPPLIERS record for Ajax, we scan the

O-SUPPLIER set occurrence it owns for an OFFER record that has ITEM

equal to "Perrier," and we print the price when and if such a record is found.

SNAME := "Ajax"

FIND SUPPLIERS RECORD USING CALC-KEY

ITEM := "Perrier"

FIND OFFERS RECORD IN CURRENT O-SUPPLIER SET USING ITEM

GET OFFERS; PRICE

print PRICE

Figure 5.11 Find the price charged by Ajax for Perrier.

As an example of a situation where we might wish to scan for several match

ing records, consider Figure 5.12, where we scan the singular set ALLCUST,

introduced in Example 5.11, for all customers with zero balance, d

BALANCE := 0

FIND CUSTOMERS RECORD IN CURRENT ALLCUST

SET USING BALANCE

while -'FAIL do begin

GET CUSTOMERS; CNAME

print CNAME

FIND DUPLICATE CUSTOMERS RECORD IN

CURRENT ALLCUST SET USING BALANCE

end

Figure 5.12 Find customers with zero balance.

Establishing a Current of Run-Unit

The last type of FIND we shall cover is a FIND statement whose purpose is to

make a current of record or set become the current of run-unit. The syntax is:

FIND CURRENT OF <set name> SET

5.2 THE DBTG QUERY LANGUAGE 257

or

FIND CURRENT OF <record type> RECORD

Example 5.14: Suppose we wish to find out how much Brie Zack Zebra or

dered. We begin by scanning the EJTEM set occurrence owned by Brie, and

for each ENTRIES record, we need to determine whether it is an entry in an

order placed by Zebra. If so, we shall accumulate the quantity found in that

ENTRIES record, in a workspace variable named zbtotal.

When we find each ENTRIES record, we could immediately read it into

the workspace. However, that would waste time, since we only need to read

the record if it turns out to be part of a Zack Zebra order. One solution is to

reestablish this ENTRIES record as the current of run-unit when we find that

we want to read it.5 We test that we want to read the entry by following the

E-ORDER and PLACED-BY links to their owners, thus finding the appropri

ate CUSTOMERS record. If the customer in this record is Zebra, then and

only then do we wish to read the ENTRIES record that is still the current of

ENTRIES. The program that implements these ideas is shown in Figure 5.13.

It assumes INAME is the CALC-key for ITEMS. D

zbtotal := 0

INAME := "Brie"

FIND ITEMS RECORD USING CALC-KEY

FIND FIRST ENTRIES RECORD IN CURRENT E_ITEM SET

while -,FAIL do begin

FIND OWNER OF CURRENT E-ORDER SET

FIND OWNER OF CURRENT PLACED-BY SET

/* now we have arrived at the customer */

GET CUSTOMERS; CNAME

if CNAME = "Zack Zebra" then begin

FIND CURRENT OF ENTRIES RECORD

/* now we can read the quantity */

GET ENTRIES; QUANTITY

zbtotal := zbtotal + QUANTITY

end

FIND NEXT ENTRIES RECORD IN CURRENT E-ITEM SET

end

print zbtotal

Figure 5.13 Finding how much Brie Zack Zebra ordered.

Recall that we can only GET the current of run-unit.

258 OBJECT-ORIENTED DATABASE LANGUAGES

5.3 THE DBTG DATABASE MODIFICATION COMMANDS

In addition to FIND and GET, the DBTG proposal includes commands to in

sert or delete the current of run-unit from set occurrences and from the list of

records of a type, and a command to modify the current of run-unit. Database

modification is complex, because the user is given, in the DDL, a variety of exis

tence constraints that he may choose to have the system enforce. For example,

if there is a DBTG set S with owner type T\ and member type T2, we may

wish that whenever we create a TI type record, it has some 5 set occurrence to

which it belongs. To do so, when the DBTG set 5 is declared, we add:

INSERTION IS AUTOMATIC

and give a set selection clause, to be illustrated shortly, that tells how to select

the set occurrence into which the T2 record should be placed. One use of such

constraints is to check that we do not perform meaningless operations, such as

inserting an order from a nonexistent customer.

Another form of constraint we may place on DBTG set members is to de

clare a retention class for them. If we declare retention to be MANDATORY,

then once a record is a member of some set occurrence, it cannot be removed

from that occurrence and placed in another; we must copy the record into the

working area, delete it from the database, and then store it in the desired set

occurrence. If, however, retention is declared OPTIONAL, then by INSERT

and REMOVE commands to be discussed, we can shift it from one set occur

rence to another. The purpose of mandatory retention is not to make things

difficult, but to offer the user a check on possible program bugs.

The STORE Command

To store a new record of type T into the database, we create the record r in

the template for record type T and then issue the command

STORE T

This command adds r to the collection of records of type T and makes r be

the current of run-unit, the current of T, and the current of any DBTG set of

which T is the owner or member type.

As mentioned above, if T is the member type of any DBTG sets in which

it is declared to have automatic insertion, then r becomes a member of one set

occurrence for each of these sets; exactly which occurrences depends on the set

selection clauses that are part of the DDL database description.

The opposite of AUTOMATIC is MANUAL. If DBTG set 5 is declared

this way, then member records are not inserted into any set occurrence of 5

when the records are stored, and we must "manually" insert records into set

occurrences of 5 by an INSERT command, to be discussed later in this section.

5.3 THE DBTG DATABASE MODIFICATION COMMANDS 259

Set Selection

Granted that we have declared insertion of records of type T into set occur

rences of S to be AUTOMATIC, we need a mechanism for deciding which

set occurrence of S gets the new record. The STORE command itself cannot

specify the correct set occurrence. Rather, when we declare DBTG set S, we

include a SET SELECTION clause that tells how to select the set occurrence

of S into which a newly stored member record is to be placed. There are many

different ways in which the set occurrence could be chosen. We shall describe

only the two simplest kinds of set selection clauses. Remember that each of the

following statements belongs in the declaration for a set 5; i.e., they would be

added to declarations such as those of Figure 5.3. They are not part of the data

manipulation language. Also note that we use a "Pidgin" syntax to make the

meaning of the clauses more apparent.

1. SET SELECTION IS THRU CURRENT OF S SET. Here, before storing a rec

ord, the program itself establishes a current set occurrence for DBTG set

S, and when the record is stored, it becomes a member of that occurrence.

2. SET SELECTION IS THRU OWNER USING <field list>. The <field list>

must be the CALC-key for the owner type of S. The current values of

these fields in the template for the owner type must determine a unique

record of the owner type for 5, and the stored record goes into the set

occurrence of S owned by that record.

Example 5.15: Suppose we wish to store ENTRIES records and insert them

automatically into E-ORDER and EJTEM set occurrences when we do. If O#

is the CALC-key for ORDERS, we can use an order number to select the set

occurrence for E-ORDER, by including in the declaration for E-ORDER the

clause

SET SELECTION IS THRU OWNER USING O#

We might choose to select the EJTEM occurrence through the owner identified

by INAME, but for variety, let us select the EJTEM occurrence by placing

SET SELECTION IS THRU CURRENT OF E-ITEM SET

in the declaration of EJTEM. The clause

INSERTION IS AUTOMATIC

must be placed in the declarations of both E-ORDER and EJTEM. The pro

gram in Figure 5.14 reads an order number, item, and quantity, creates an

ENTRIES record with the quantity, and stores that record into the database.

Because of the set-selection declarations we have made, this ENTRIES record

is automatically inserted into the correct set occurrences of E-ORDER and

EJTEM. D

260 OBJECT-ORIENTED DATABASE LANGUAGES

read O, I, Q /* the name, item, and quantity */

ORDERS. O# := O /* prepare E-ORDER set selection */

ITEMS. INAME := I

FIND ITEMS RECORD BY CALC-KEY

/* above prepares E-ITEM set selection */

ENTRIES. QUANTITY := Q

/* above creates a new ENTRIES record in the template */

STORE ENTRIES /* automatically places the record in the

E-ORDER set occurrence owned by O and in the current

E-ITEM set, which is that owned by I */

Figure 5.14 Read and store an entry in an order.

Manual Insertion into Set Occurrences

If we do not wish to use set selection to place records in set occurrences, we

can do insertion by an explicit command. A record type can be declared an

AUTOMATIC member of some DBTG sets, in which case set selection is used,

and the same record type can be declared

INSERTION IS MANUAL

for some other DBTG set of which it is a member, in which case a record, when

stored, is not made a member of any set occurrence for this DBTG set.

To insert a record r (which already exists in the database) of the member

type T for DBTG set 5, into a designated set occurrence of 5, we first make

this set occurrence be the current of S, by whatever means we find suitable.

Then we make r be the current of run-unit and issue the command

INSERT T INTO 5

Note that r must be the current of run-unit, not just the current of T. It is

permissible to follow INTO by a list of DBTG sets, and if so, insertion of r into

the current of each set will occur.

Example 5.16: In Example 5.15 we read an ENTRIES record and inserted it

automatically into ORDERS and ITEMS set occurrences. If we instead declare

ENTRIES to be a MANUAL member of the E-ORDER and EJTEM DBTG

sets, we can do the insertion manually by the procedure of Figure 5.15. CH

Manual Deletion from Set Occurrences

To remove the current of run-unit, which is a record of type T, from its set

occurrence for DBTG set 5, we issue the command

REMOVE T FROM 5

As with insertion, 5 could be replaced by a list of DBTG sets. Remember,

5.3 THE DBTG DATABASE MODIFICATION COMMANDS 261

read 0, I, Q

ORDERS. O0 := O

FIND ORDERS RECORD BY CALC-KEY

/* establishes the correct current of E-ORDER */

ITEMS. INAME := I

FIND ITEMS RECORD BY CALC-KEY

/* establishes the correct current of E_ITEM */

ENTRIES. QUANTITY := Q

STORE ENTRIES /* new order is now the current of run-unit,

but not a member of any set occurrences */

INSERT ENTRIES INTO E-ORDER, E-ITEM

Figure 5.15 Manual insertion of a new ENTRIES record.

the record removed must be the current of run-unit, not just the current of T.

Also, we are not permitted to execute the REMOVE statement if mandatory

retention has been specified for 5.

Record Modification

The command

MODIFY <record type>

has the effect of copying the template for <record type> into the current of

run-unit. If the current of run-unit is not of the designated record type, it is

an error. We can also modify a selected subset of the fields in the current of

run-unit by writing

MODIFY <record type> ; <field list >

If T is the record type for the current of run-unit, the values of the fields in the

list are copied from the template for T into the fields of the current of run-unit.

Other fields in the current of run-unit are unchanged.

Example 5.17: Suppose Ruth Rhino moves to 62 Cherry Lane. Assuming

that CNAME is the CALC-key for CUSTOMERS, we could change her CUS

TOMERS record by:

CUSTOMERS. CNAME := "Ruth Rhino"

FIND CUSTOMER RECORD BY CALC-KEY

CUSTOMERS. CADDR := "62 Cherry Lane"

MODIFY CUSTOMERS; CADDR

262 OBJECT-ORIENTED DATABASE LANGUAGES

Deletion of Records from the Database

The command

DELETE <record type>

deletes the current of run-unit, which must be of the specified <record type>,

from the file of records of that type. Naturally, if the current of run-unit is a

member of any set occurrences, it is removed from those occurrences. If the

current of run-unit is the owner of any set occurrences, those occurrences must

presently have no members, or it is an error, and the deletion cannot take place.

Another form of DELETE statement is

DELETE <record type> ALL

This instruction is applicable even if the current of run-unit is the owner of

some nonempty set occurrences. The DELETE ALL statement not only erases

the current of run-unit, as the simple DELETE does, but recursively, DELETE

ALL is applied to any members of set occurrences owned by the deleted record.

Thus it is conceivable that DELETE ALL could destroy the entire database.

Example 5.18: We can delete the current ENTRIES record by simply saying:

DELETE ENTRIES

Since ENTRIES records are not owners in any DBTG set, the given entry is

simply deleted from the file of ENTRIES records and from whatever E-ORDER

and EJTEM set occurrences it belongs to.

As another example, suppose O# is the CALC-key for ORDERS. We can

delete order number 1024 from the database by:

ORDERS. 0# := 1024

FIND ORDERS RECORD BY CALC-KEY

DELETE ORDERS ALL

This erasure has the effect of deleting the record for order 1024 from the OR

DERS file and deleting the entire E_ORDER set occurrence of which it is the

owner. The members of this set occurrence are the entries for order 1024. Re

cursively, each entry in the deleted set occurrence is itself deleted from the

ENTRIES file and from the EJTEM set occurrence of which it is a member.

Since ENTRIES records do not own any set occurrences, the recursion stops

here, and no further alterations to the database are made. D

5.4 DATA DEFINITION IN IMS

In this section we shall begin the study of a language for the hierarchical model.

The data manipulation language we shall describe in the next section is a "Pid

gin" version of the language DL/I (data language one) used by the IMS database

management system, marketed by IBM since the early 1960's. Here, we shall

illustrate the important features of IMS's data definition language for defining

5.4 DATA DEFINITION IN IMS 263

the structure of hierarchies; the syntax is again a "Pidgin" language chosen for

clarity. In Chapter 6 we shall discuss some of the options for declaring physical

layout of hierarchies that IMS provides.

There are three essential features that define structure in a hierarchy: trees,

nodes (logical record types), and fields within nodes. We shall declare trees by:

TREE <name> <list of logical record types>

Each logical record type is then declared by:

RECORD <name> <information>

The information associated with records includes the following.

1. Fields. We shall use the same notation as in Section 5.1 for declaring fields

within a record type.

2. The position of the record type within the hierarchy. We use the word

ROOT to indicate the record type is at the root of the tree, and otherwise,

we shall include a clause

PARENT = <parent name>

to indicate the parent record type for the record type being declared.

3. Virtual record types present as fields within the record. We use the clause

VIRTUAL <record name> IN <tree name>

to indicate which node in which tree the pointer field points to.

There are a number of other aspects to the IMS data definition language.

They allow us to declare additional pointers, for example, to parent records, to

the leftmost child, or to the next record in a preorder traversal of the database.

Unlike the pointers resulting from virtual record type declarations, these point

ers are not accessible to the data manipulation commands, and are only used

by the query-processing algorithms to speed up access to data.

DEPTS CUSTOMERS SUPPLIERS

"< /

EMPS *EMPS/ /TTEMS ORDERS, - *ITEMS/
*

v I i -OFFERS

*ORDERS *SUPPLIERS V ^*ITEMS/ /

V S \ QUANTITY I

^ -ENTRIES i

Figure 2.26 (repeated) YVCB database.

264 OBJECT-ORIENTED DATABASE LANGUAGES

Example 5.19: Let us express the hierarchy of Figure 2.26 in the above no

tation. (Figure 2.26 is repeated here, for convenience.) We use the same set

of fields for the logical record types as was found in Figure 5.2, when we de

clared the network structure for the YVCB database. To these we must add

the pointer fields representing virtual record types. The structure is shown in

Figure 5.16. For consistency with Figure 5.2, we use the record name OFFERS

for the node in Figure 2.26 that has a PRICE and a virtual ITEMS field, and we

use ENTRIES for the node consisting of a QUANTITY and a virtual ITEMS

field. D

5.5 A HIERARCHICAL DATA MANIPULATION LANGUAGE

We shall now introduce the reader to a hierarchical query language that is based

on IMS's data manipulation language called DL/I. As with the network DML

described in Sections 5.2 and 5.3, DL/I is a language with a great number of

complex features, and we shall simplify it significantly, in order to give the

flavor of, and concepts behind, the language without getting bogged down in

details. We shall refer to our language as "Pidgin DL/I." This language is a

collection of commands that are embedded in a host language. In IMS, these

commands actually have the form of procedure calls, and we can regard them

as such here.

The Program Environment

The database consists of a collection of trees, as discussed in Sections 2.6 and

5.4. As in the DBTG model, we may assume there is a workspace in which

a template for each logical record type is kept. These templates can be filled

by particular records of the correct type chosen from the database by the GET

command. Also in analogy with the DBTG proposal, it is convenient to assume

that there is a "current record" of each tree. This record could be of any type

in the scheme for that tree. We shall also have some use for the notion of a

"current parent," the parent of the current record.

Additionally, we assume that there is a variable FAIL, accessible both to

the host language program and to the commands of the query language. FAIL

will be used to indicate whether or not certain database searches have found a

record meeting the desired conditions.

The GET Command

The basic retrieval command, called GET LEFTMOST, specifies a path from a

root record occurrence to a (target) record of a particular type, not necessarily

a leaf record type. The reader should remember that the trees on which this

and other commands operate is not the scheme trees, as in Figure 2.26, but

trees that represent instances of the database, as was suggested by Figure 2.19.

5.5 A HIERARCHICAL DATA MANIPULATION LANGUAGE 265

TREE DEPTS-TREE

RECORD DEPTS ROOT

1 DNAME CHAR (10)

1 DEPT# INTEGER

RECORD EMPS PARENT=DEPTS

1 ENAME CHAR(20)

1 SALARY REAL

RECORD MGR PARENT=DEPTS

VIRTUAL EMPS IN DEPTS-TREE

RECORD ITEMS PARENT=DEPTS

1 INAME CHAR (10)

1 ITEM# INTEGER

RECORD VIRT-ORDERS PARENT=ITEMS

VIRTUAL ORDERS IN CUST_TREE

RECORD VIRT-SUPPS PARENT=ITEMS

VIRTUAL SUPPLIERS IN SUPPS-TREE

TREE CUST-TREE

RECORD CUSTOMERS ROOT

1 CNAME CHAR(20)

1 CADDR CHAR (50)

1 BALANCE REAL

RECORD ORDERS PARENT=CUSTOMERS

1 O# INTEGER

1 DATE CHAR(1O)

RECORD ENTRIES PARENT=ORDERS

1 QUANTITY INTEGER

VIRTUAL ITEMS IN DEPTS-TREE

TREE SUPPS-TREE

RECORD SUPPLIERS ROOT

1 SNAME CHAR(1O)

1 SADDR CHAR(50)

RECORD OFFERS PARENT=SUPPLIERS

1 PRICE REAL

VIRTUAL ITEMS IN DEPTS-TREE

Figure 5.16 Hierarchical database for YVCB.

266 OBJECT-ORIENTED DATABASE LANGUAGES

The GET LEFTMOST command causes a certain record to be retrieved

and placed in the template for the target record type. This record is the leftmost

record occurrence of that type to satisfy whatever conditions are placed on it

and on its ancestors by the GET LEFTMOST command.

The syntax we shall use in our "Pidgin DL/I" for GET LEFTMOST is

GET LEFTMOST <target record name>

WHERE <condition list>

The <condition list> consists of a sequence of conditions of the form

<record name> . <field name> 0 <value>

possibly connected by "and" and "or." Each <record name> is an ancestor

(not necessarily proper) of the target record type. The <field name> is a field

of the <record name>, and 0 is one of the arithmetic comparison operators, =,

<, and so on. The <value> can be a constant or a variable of the host language

program; the latter option helps us pass "parameters" to the calls represented

by the DL/I commands. We can omit the <record name> if it is uniquely

determined by the <field name>.

Example 5.20: Let us suppose that we have opened access to the tree with

root CUSTOMERS, of the database described as a diagram in Figure 2.26 and

as a formal declaration in Figure 5.16. The Pidgin DL/I command

GET LEFTMOST CUSTOMERS

WHERE CUSTOMERS. BALANCE < 0 (5.1)

finds the leftmost customer record whose BALANCE field has a negative value.

D

Order of Records

To understand what "leftmost" means in this context, recall that for each tree

of a database scheme, such as Figure 2.26, there is a collection of trees, one

for each database record in the current instance of the scheme. A database

record consists of one record of the root type and all its descendant records in

the database, as we discussed in Section 2.6. The order of database records of

a given type might be a sort based on some key field, or it might be random,

perhaps based on a hash function; the actual order depends on the physical

structure chosen when the database scheme is declared. Whatever order of the

database records there is, getting the "leftmost" means getting the first eligi

ble database record in this order. For example, the "leftmost" CUSTOMERS

database record might be the one whose customer name comes first in alpha

betical order. If there is a condition to be satisfied, such as BALANCE<0 in (5.1),

then we would scan CUSTOMERS records in their order, until we find one

meeting the condition.

5.5 A HIERARCHICAL DATA MANIPULATION LANGUAGE 267

If we are looking for a record type R that is not the root, then we examine

the database records in order from the left. Within a tree, the nodes have a

natural "from the left" order, with order among records of the same type that

are children of the same node determined in some specified manner, e.g., sorted

according to some key value, or random. We consider all records of type R, in

this order, until we find one meeting the conditions of the where-clause.

Example 5.21: Referring again to the tree CUST-TREE, we could ask:

GET LEFTMOST ORDERS

WHERE CUSTOMERS. BALANCE < 0

AND ORDERS. DATE = "Jan 3"

The effect of this query is that customer database records are examined, in

order "from the left," until we find one that has a root CUSTOMERS record

with a BALANCE less than zero and an ORDERS child with a DATE field of

"Jan 3." To find this ORDERS record we may skip over many database records

with BALANCE less than zero. If the desired database record has two or more

ORDERS children with the date "Jan 3," we stop at the leftmost such child.

We can access virtual record types as if they were physically present in

the database at the point where the virtual record (pointer) appears. Thus,

we could imagine that the ITEMS children of ORDERS in the CUST-TREE

database records are physically part of that tree, and treat them as grandchil

dren of CUSTOMERS records. Thus, we could write

GET LEFTMOST ITEMS

WHERE ORDERS. O# = 1024

to find the first item on order 1024. To execute this command, we scan all of the

CUST-TREE database records in order, until we find one with an ORDERS

child having order number 1024. Then we find the first (virtual) ITEMS child

of this ORDERS record. Note that the "ITEMS child" of an orders record is

technically part of an ENTRIES record, which includes a physical field, QUAN

TITY, as well as the fields of a virtual ITEMS record.

As a final variant, we could use, instead of a constant, 1024, an order

number that was read by the host language and passed to the GET command,

in a host-language variable we shall call order.

read order

GET LEFTMOST ITEMS

WHERE ORDERS. O# = order

D

Scanning the Database

Another version of the GET command allows us to scan the entire database

for all records satisfying certain conditions. We use the word NEXT in place of

268 OBJECT-ORIENTED DATABASE LANGUAGES

LEFTMOST to cause a scan rightward from the last record accessed (i.e., from the

"current record") until we next meet a record of the same type satisfying the

conditions in the GET NEXT statement. These conditions could differ from

the conditions that established the "current record," but in practice they are

usually the same.

Example 5.22: Suppose we want to find all the items ordered by Zack Zebra.

We again go to CUST-TREE, and we execute the program of Figure 5.17.

In principle, we examine all the customer database records, but only the one

with CNAME equal to "Zack Zebra" will satisfy the condition in the where-

clause. We find the first item in the first order placed by Zebra, with the GET

LEFTMOST statement. Then we scan to the right, from order to order, and

within each order, from item to item, printing the name of each item.

Eventually, we find no more items that Zebra ordered. At that time, the

variable FAIL will become true, indicating that the GET NEXT statement has

failed to find a record. It is also possible that there are no items ordered by

Zebra, in which case the initial GET LEFTMOST statement will cause FAIL to

become true. In general, any GET statement that does not find a record sets

FAIL to true. D

GET LEFTMOST ITEMS

WHERE CUSTOMERS. CNAME = "Zack Zebra"

while -'FAIL do begin

print ITEMS. INAME /* "print" refers to the template

for the appropriate record type in the workspace */

GET NEXT ITEMS

WHERE CUSTOMERS. CNAME = "Zack Zebra"

end

Figure 5.17 Print the items Zack Zebra ordered.

Scanning the Descendants of a Given Node

A third form of GET, written GET NEXT WITHIN PARENT, permits us to visit all

the children of a particular record occurrence in the actual database. It utilizes

the informal concept of "current parent," which is the record occurrence most

recently accessed by any variety of GET other than GET NEXT WITHIN PARENT.

The record type accessed by a GET NEXT WITHIN PARENT command need not be

a child record type for the type of the current parent; it could be any descendant

record type. The difference between GET NEXT and GET NEXT WITHIN PARENT

is that the latter fails when it has scanned all the descendants of the current

5.5 A HIERARCHICAL DATA MANIPULATION LANGUAGE 269

parent; the former searches rightward for any record occurrence such that it

and its ancestors satisfy the associated conditions.

Example 5.23: Another way to print all the items ordered by Zebra is to find

the root of his database record by

GET LEFTMOST CUSTOMERS

WHERE CUSTOMERS. CNAME = "Zack Zebra"

This statement makes the customer record for Zebra be the "current parent"

as well as the "current record" for the CUST-TREE tree. Then, we scan all

the ITEMS descendants of this one record by repeatedly executing GET NEXT

WITHIN PARENT, as shown in Figure 5.18. We never look for any item that is

not a descendant of the customer record for Zebra, even though there is no

WHERE CUSTOMERS . CNAME = "Zack Zebra"

clause constraining us from jumping to other database records. Notice that the

"parent" record in this case is really a grandparent of the ITEMS records being

found. The "current parent" remains the Zack Zebra record, since all retrievals

but the first use GET NEXT WITHIN PARENT. D

GET LEFTMOST CUSTOMERS

WHERE CUSTOMERS. CNAME = "Zack Zebra"

GET NEXT WITHIN PARENT ITEMS

while -'FAIL do begin

print ITEMS. INAME

GET NEXT WITHIN PARENT ITEMS

end

Figure 5.18 Using get-next-within-parent.

Insertions

An INSERT command, for which we use the same "Pidgin" syntax as for the

varieties of GET, allows us to insert a record of type S, first created in the

workspace, as a child of a designated record occurrence of the parent type for

S. If the "current record" is either of the parent type for 5, or any descendant

of the parent type, simply writing

INSERT S

will make the record of type S sitting in the workspace a child of that occurrence

of the parent type that is the current record or an ancestor of the current record.

The position of the new child among its siblings is a matter to be declared

when the database scheme is specified. We shall not discuss the syntax for

270 OBJECT-ORIENTED DATABASE LANGUAGES

specifying order, but the options include making each record the rightmost or

leftmost child of its parent at the time it is inserted, or keeping children in

sorted order according to a key field or fields.

If the desired parent record is not the current record or an ancestor of

that record, we can make it be so by including a where-clause in the INSERT

statement, with syntax and meaning exactly as for the GET statement.

Example 5.24: If the Produce Department starts selling Cilantro, which we

give product number 99, we can insert this fact into the database by the steps of

Figure 5.19. If the Produce Department's DEPTS record, or some descendant

of that record such as the EMPS record for an employee of the Produce Depart

ment, were already the current record, then we could omit the where-clause of

Figure 5.19. D

ITEMS. INAME := "Cilantro"

ITEMS. ITEM# := 99

/* the above assignments take place in the ITEMS

template of the workspace */

INSERT ITEMS

WHERE DEPTS. DNAME = "Produce"

Figure 5.19 The Produce Department now sells Cilantro.

Deletion and Modification

In order to delete or modify a record we must first "hold" it by issuing some

variety of GET command that will make the desired record be the current

record. However, we add the word HOLD after GET in the command. The

requirement for holding a record before deleting or modifying it is motivated

by the possibility that there is concurrent processing of the database by two

or more application programs. Upon executing GET HOLD, any other program

is prevented from accessing the record. See Chapter 9 for a description of the

need for "holding" a record before modifying it. "Hold" here corresponds to

"lock" or "write-lock" in Chapter 9.

To delete a record after finding and holding it, simply issue the command

DELETE

The effect of this statement is to delete the current record and also to delete

any of its children in the underlying database. Virtual records would not be

deleted, of course.

To modify a record after finding and holding it, we first change the copy

of the record found in the workspace. When we issue the command

5.6 DATA DEFINITION IN OPAL 271

REPLACE

the version of the current record in the workspace replaces the corresponding

record in the database.

Example 5.25: Suppose we wish to double the amount of Brie on order number

1024. We first get the ENTRIES child of the ORDER record for 1024, and hold

it. Then we double the QUANTITY field of the record, in the workspace, and

finally store the new ENTRIES record by a REPLACE command. The steps are:

GET HOLD LEFTMOST ENTRIES

WHERE ITEMS. INAME = "Brie" AND ORDERS. O# = 1024

ENTRIES. QUANTITY := 2 * ENTRIES. QUANTITY

REPLACE

Aas another example, we can delete order 1024 by the following code.

GET HOLD LEFTMOST ORDERS

WHERE ORDERS. Off = 1024

DELETE

The effect of this sequence of steps is to delete not only the ORDERS record

for 1024, but all the ENTRIES children of that record. Those records include

the QUANTITY field and the pointer to an ITEMS record that represents the

virtual ITEMS child of ENTRIES. We do not, of course, delete any ITEMS

records or any of their children. D

5.6 DATA DEFINITION IN OPAL

The object-oriented language OPAL presents a contrast to all of the languages

we have studied in this chapter and the previous one. OPAL is the language

of the Gemstone database system marketed by Servio Logic Corp. Its data

definition and data manipulation facilities are present in one language, whose

style borrows heavily from the language Smalltalk. We shall sketch the most

important features of this language, and then discuss the way the language

lets us define database schemes. The next section talks about other aspects of

OPAL that are more important for data manipulation.

Classes

A class is an abstract data type, consisting of

1. A data structure definition for the class, and

2. A collection of operations, called "methods," that apply to objects in the

class.

In Section 2.7 we saw a simple example of a language for defining data structures

for classes; OPAL has a considerably more general mechanism. The way one

defines methods in OPAL will be discussed below.

272 OBJECT-ORIENTED DATABASE LANGUAGES

Objects that are members of a given class C are instances of C; they each

have the data structure of that class, and the methods for class C can be applied

to any instance of C.

Classes are arranged in a hierarchy. If class C is a descendant of class D.

then the methods of class D can (usually) be applied to instances of C, but not

vice versa. The details of subclass creation and inheritance of methods will be

described near the end of this section.

Methods

A procedure in OPAL is called a method. Each method is defined for a particu

lar class, and it applies to instances of that class and instances of its subclasses,

if any. The form of a method definition is:

method <class name>

<message format>

<body of method>

7.

The <class name> is the class to which the method applies. The <message

format> is the name of the method and/or the names of its parameters, and

the body is the code that is executed whenever the method is called.

The format of messages requires some explanation. In the simplest form,

a message format consists of only a name for the method. Such a method has

only one argument, the receiver object to which the method is applied. The

receiver ofLajnethodjalways appears to the left of the method's name, and the

receiver must be an instance of the class for which the method is defined.

Example 5.26: Any class understands the built-in (predefined) method new.

The message format for this method is simply the word new. For our first OPAL

examples, let us draw upon Example 2.31, where we defined certain types of

structures, roughly equivalent to OPAL classes, that were used to build the

YVCB database. For example, ItemType is a class, and if we wished to create

a new instance of that class, i.e., a record for an item, we could say:

ItemType new

This OPAL statement produces a new instance of the ItemType class. As it

is, nothing is done with that instance, but we could assign it to a variable, say

NewItem, by the statement

Newltem := ItemType new

Here, the receipt of the message new by the class name ItemType causes a new

instance of that class to be generated, and the assignment symbol : = causes the

variable on the left of the assignment to become a name for that instance. D

5.6 DATA DEFINITION IN OPAL 273

Methods with Parameters

A more general message format has one or more parameters, in addition to the

implicit parameter that is the receiver of the message. We should appreciate

that a method with parameters has no "name"; rather the list of parameter

names serves as a name for the method. While in most programming lan

guages, parameters of a procedure are identified only by their argument posi

tions, in OPAL parameters also have names.6 The format in which parameters

are passed is

<receiver> <parml>: <vall> ••• <parmn>: <valn>

Here, <receiver> is the object to which the method is applied; <parmt> is the

name of one of the parameters of this method, and <vali> is the value passed

for that parameter.

Example 5.27: Let us write a method that, given the name of an item, tests

whether a given object of class ItemType has name field equal to that item

name, and returns the item number if so. If not, the method returns a character

string that serves as an error message. The method is shown in Figure 5.20.

(1) method: ItemType

(2) check I tern: i

(3) ((self getName) = i)

(4) ifTrue: ["self getNumber]

(5) ifFalse: ["'error: wrong item name']

(6) '/.

Figure 5.20 Accessing an item record.

The code of Figure 5.20 uses a number of constructs we have not yet

explained, so let us consider the program line-by-line. Line (1) tells us that

we are declaring a method for class ItemType. Line (2) says that this method

is distinguished by one parameter, called checkItem, and it introduces i as

the formal parameter of the method; i represents the actual value that will

be passed when this method is applied to a particular ItemType object. For

example, if we use this method with variable CurrentItem as receiver we could

write

Currentltem checkltem: 'Brie1 (5.2)

6 The use of attribute names in relational query languages frequently serves a similar

purpose: naming the components of tuples. In contrast, logical rules, as in Chapter

3, follow the syntax of traditional programming languages, since the arguments of a

predicate are known only by their order and have no names.

274 OBJECT-ORIENTED DATABASE LANGUAGES

Then the formal parameter i would have the value "Brie" when we executed

the code of Figure 5.20 on the object that CurrentItem represents.

Line (3) introduces the special object designator self, which always denotes

the receiver of the method. That is, when executing (5.2), self denotes the

same object that CurrentItem denotes. Notice that without the word self, we

would have no way to refer to the receiver of a method, because methods have

no formal parameter name to represent their receiver.

We also see in line (3) a method getName, which we suppose has already

been defined. The presumed effect of getName, when applied to an object O

of class ItemType, is to return the name field of O. Thus, when getName is

applied to self during the execution of (5.2), it has the effect of returning the

name of the item CurrentItem. That value becomes the receiver of the second

method on line (3), the built-in method =.7 This method tests whether the

value of its receiver equals the value of its parameter. For example, in (5.2), we

test whether the item CurrentItem has name field equal to "Brie."

Lines (4) and (5) represent a test on the Boolean value (true or false)

created by the expression on line (3). Think of ifTrue: and ifFalse: as

parameter names for a built-in method whose receiver is a Boolean value. The

effect of applying the method is that the block of code following ifTrue: is

executed if the message is sent to the value true, and the block of code following

ifFalse: is executed if the message is sent to false.

Blocks of code are surrounded by square brackets, which function as begin-

end pairs. Thus, line (4) says that if CurrentItem is indeed the item object for

Brie, then we return the item number for Brie. In explanation, " is the symbol

for "return." We suppose that the method getNumber was previously defined

and, when applied to an ItemType object, produces the value of the /# field

of that object, which is then returned by the method checkItem. Finally, line

(5) says that if the item name in CurrentItem doesn't match the parameter

i, "Brie" in the case of (5.2), then we return the string "error: wrong item

name ' as a value. L]

Creating Record Types

The language OPAL allows us to define classes of objects in many different

categories: bags (multisets), arrays, strings, and others. We shall concentrate

on only two kinds of classes here:

1. General "objects" used as record types and

2. Sets, whose members are objects of some fixed class.

Classes of these two types correspond to the type constructors RECORDOF and

SETOF, respectively, discussed in Section 2.7. To create the type for a relation,

7 Note that methods are applied from left-to-right, so the inner parentheses are redundant.

We shall continue to show the correct grouping, for clarity.

5.6 DATA DEFINITION IN OPAL 275

we define a class C\ of type (1) whose instances are the tuples, and we create a

class C2 of type (2) to be the type of the relation itself, that is, a set of objects

of class C\. That relation may be the only instance of class C2.

To create a record type, we send to the built-in "variable" Object the

message subclass. More exactly, there is a built-in method with a number of

parameters, most of which we shall not discuss, whose function is to define a

new class. The three important parameters of the class-creation method, as far

as we are concerned here, are:

1. subclass: <class name>. This parameter's value is the name of the new

class, given as a quoted string.

2. instVarNames: <field names>. The objects of a given class can have

instance variab/e names, which function as names of fields. These variables

are called "instance variables" because they occur in every instance of the

class.

3. constraints: <data types>. We may, optionally, place a constraint on

the class to which the value of one or more of the instance variables must

belong. It is worth noting that OPAL, as a default, is typeless, and objects

belonging to any class can be stored in instance variables or anywhere else

objects are permitted.

Example 5.28: Let us create a class ItemType corresponding to the declara

tion in Example 2.31, where this class was defined to consist of an item name

field and an item number field. The message we send to Object is shown in

Figure 5.21.

Object

subclass : ' ItemType '

instVarNames : #['name', 'number']

constraints: #[

[#name , String] ,

#[Onumber, Integer]

Figure 5.21 Declaration of ItemType class.

There are some syntactic matters concerning Figure 5.21 that we have

not yet discussed. The instance variables are specified by an array of string

constants; here, 'name' and 'number' are used. Such an array is delimited

by #[...]. The constraints are also indicated by an array, whose elements are

pairs (i.e., arrays of length two) consisting of a symbol, which is the instance

variable name preceded by a #, and a class name, such as the built-in classes

String and Integer used in Figure 5.21. Note that 'number1 appears as a

276 OBJECT-ORIENTED DATABASE LANGUAGES

string when it is denned to be the name of an instance variable, but when we

refer to the instance variable itself, in the constraint, we must use the "symbol"

#number. D

Creating Set Types

In order to define a class that will behave like a set, we send the subclass

message to the built-in class Set. Generally, these subclasses of Set will not

have instance variables, but we shall wish to constrain a set to contain objects of

only one class; as a default, OPAL permits sets to have objects of mixed types.

Thus, a typical definition of a set would have the following form (as usual, we

omit certain parameters whose role in the message will not be discussed):

Set

subclass: <set name>

constraints: <element class>.

Example 5.29: We can now do all of the definitions in Example 2.31. Cor

responding to Figure 2.27 we have Figure 5.22, with the comparable OPAL

declarations. In addition to the classes of sets required for Figure 2.31, we have

added declarations for sets of customers, suppliers, and departments, to serve

as types for the relations (or record types) CUSTOMERS, SUPPLIERS, and

DEPTS, found in the databases defined for the other languages we have studied

in Chapters 4 and 5. D

Subclasses

Every class is created as a subclass of some previously existing class; we can

use the most general class, Object, if there is nothing more suitable for a super

class. Each subclass inherits all of the methods of its superclass. For example,

ItemType, being a subclass of Object, inherits the method new, which creates

a new object of class ItemType when sent to the variable ItemType.6 While

we have seen subclasses created only from the built-in classes of OPAL, there

is often a use for creating subclasses of user-defined classes. Such subclasses

can have extra instance variables, which is equivalent to adding extra fields to

records in the subclass. Subclasses can also have methods that apply only to

them, and we can redefine for the subclass methods that are already defined

for the superclass.

Example 5.30: We might wish to define managers to be a subclass of employ

ees; that is, we create a subclass MgrType from class EmpType. For example.

8 The reader should note a difference between methods like new, which are sent to the

name of a class, and methods like getName in Figure 5.20, which are sent to instances

of that class. The former are called class methods, and the latter instance methods, or

just "methods." Both kinds of methods are inherited by subclasses.

5.6 DATA DEFINITION IN OPAL 277

Object subclass: 'Itemtype'

ins tVarNames : # [' name ' , ' number ']

constraints: #[#[#name, String],

[ttnumber , Integer]] .

Set subclass: 'ItemSet'

constraints : ItemType .

Object subclass: 'IQType1

instVarNames : #['item', 'quantity']

constraints: #[#[#item, ItemType],

#[^quantity, Integer]].

Set subclass: 'IQsef

constraints : IQType .

Object subclass: 'OrderType'

instVarNames : # [' ordno ' , ' includes ']

constraints: #[#[tfordno, Integer],

#[^includes, IQset]] .

Set subclass : ' OrderSet '

constraints : OrderType .

Object subclass: 'CustType'

instVarNames : # [' name ' , ' addr ' , ' balance ' , ' orders ']

constraints : # [# [#name , String] ,

[#addr , String] ,

#[^balance, Integer],

[borders , OrderSet]] .

Object subclass: 'DeptType1

instVarNames : # [' name ' , ' deptno ' ,

' emps ' , 'mgr', 'items']

constraints: #[#[#name, String],

#[#deptno, Integer] ,

[#emps , EmpSet] ,

[#mgr , EmpType] ,

#[#i terns, ItemSet]].

Object subclass: 'EmpType1

instVarNames: »['name', 'salary', ' dept ']

constraints: #[#[»name, String],

#[^salary, Integer],

#[#dept, DeptType]] .

Figure 5.22(a) OPAL classes for the YVCB database (begin).

278 OBJECT-ORIENTED DATABASE LANGUAGES

Set subclass: 'EmpSet'

constraints : EmpType .

Object subclass: 'IPType'

instVarNames : #['item', 'price']

constraints: #[#[#item, String],

#[#price, Integer]] .

Set subclass : ' IPset '

constraints : IPType .

Object subclass: 'SupType'

instVarNames : # [' name ' , ' addr ' , ' supplies ']

constraints: #[#[#name, String],

#[#addr, String],

#[^supplies, IPSet]].

Set subclass: 'CustSet'

constraints: CustType.

Set subclass: 'SuppSet1

constraints : SupType .

Set subclass: 'DeptSet'

constraints: DeptType.

Figure 5.22(b) OPAL classes for the YVCB database (continued).

we could then declare the mgr instance variable of DeptType of Figure 5.22(a)

constrained to be of type MgrType, rather than EmpType. Managers will have

an additional instance variable (field) rank, which is a character string, along

with all of the instance variables that employees possess. We can express this

situation by declaring class MgrType, as follows.

EmpType subclass: 'MgrType'

instVarNames : # [' rank ']

constraints: #[#[#rank, String]].

Then, objects of type MgrType have the instance variables, or "fields," name,

salary, and dept, as well as rank. The methods we define for EmpType in the

next section are also applicable to objects of type MgrType. D

5.7 DATA MANIPULATION IN OPAL

In all of the other languages we have discussed so far, once the database scheme

is declared, we immediately have available certain data manipulation oper

ations. For example, relational languages give us relational algebra or cal

5.7 DATA MANIPULATION IN OPAL 279

culus, plus insertion, deletion, and modification operations; DBTG and IMS

databases provide FIND and GET, respectively, to do search and retrieval from

the database, as well as providing insert, delete, and modify operations. In

OPAL, however, even the most primitive operations must be declared for each

class we define.

For example, it would be normal that for each instance variable, we should

have a way of obtaining the value of that variable given an instance. It would

also be typical that we should have a way of changing the value of that variable,

given an instance. We shall, in what follows, assume that for each instance

variable X in any class, there is a method getX that returns the value of X,

when the message with that name is sent to an object of the appropriate class.

Also, there is a method

storeX: v

that sets X to value v when sent to an object with an instance variable X.9

Example 5.31: For class ItemType we could declare the methods of Figure

5.23. D

method: ItemType

getName

"name

7.

method: ItemType

getNumber

"number

X

method : ItemType

storeName: n

name := n

y.

method: ItemType

storeNumber: n

number := n

I

Figure 5.23 Methods for ItemType.

9 It is possible to create methods like these automatically by sending the class name the

message compileAcceasMethodsFor:, followed by a list of instance variables.

280 OBJECT-ORIENTED DATABASE LANGUAGES

Insertion

As we saw in Section 5.6, sets can be used as if they were relations. We might

therefore want to define a method for some class that was a set of "tuples,"

to allow us to create new tuple objects and insert them.10 The scenario is as

follows. Suppose we have a class T that serves as "tuples," e.g., ItemType in

Figure 5.22(a). Suppose also that 5 is the class defined to be a set of T's, as

ItemSet in Figure 5.22(a). Then we would ordinarily create one instance of

class 5, say r, to serve as the "relation" of type T. We create r by sending

the message new to S, which understands this message because all classes do.

That is, we execute:

r := 5 new.

Now, we can create a method, which we shall refer to as insert, for objects

of type S. This method takes a value for each of the instance variables (fields

or components) of class T. It creates a new object of type T, and sends that

object an appropriate stored message for each instance variable X. Finally,

insert sends the add message to r, to add the new object; add is another built-in

method that all sets understand.

Example 5.32: Suppose we have executed

Items := ItemSet new.

to create a "relation" Items that is a set of objects of class ItemType. We

can then define the method insert as in Figure 5.24. Notice that "insert" does

not appear as the name of the method; we only used that name informally.

Rather, the method is identified by its two parameter names, insertName:

and insertNumber:. Also note that surrounding NewItem with bars, as in

line (4), is OPAL's way of declaring NewItem to be a local variable for the

method.

Line (5) makes NewItem an object of class ItemType, and line (6) sets its

instance variables to the desired values, na and num, which are the values of the

parameters for this method. Note that two different methods, storeName and

storeNumber are applied to the object NewItem in line (6), and the semicolon

is punctuation to separate the two methods. Finally, line (7) adds the new tuple

to the set to which the method being defined is applied; hence the receiver self

for the method add.

Having declared Items to be the set of items for the YVCB database, we

can add Cilantro, which is item 99, by sending it the message:

Items insertName: 'Cilantro' insert Number: 99.

10 We talk as if all actions had to be defined as methods. While it would be usual for

something as fundamental as insertion into a set to be defined for that set's type, it is

also possible to write all of the operations we describe here as parts of ordinary OPAL

programs.

5.7 DATA MANIPULATION IN OPAL 281

(1) method: ItemSet

(2) inser tName : na

(3) insertNumber : num

(4) I Newltem I

(5) Newltem := ItemType new.

(6) Newltem storeName: na; storeNumber: num.

(7) self add: Newltem.

(8) X

Figure 5.24 "Insert" method for items.

In the method of Figure 5.24, 'Cilantro' will be the value of na, 99 will be

the value of num, and self on line (7) refers to Items. D

Retrieval

Access to the database is obtained by following the paths that are implicit in

the structure of the various classes. For example, one of the instance variables

of each customer object is orders, which is constrained to be of class OrderSet,

that is, a set of orders. By sending message getOrders to an object of type

CuatType, we are returned this set of orders; actually we get a pointer to a

representative of the set, so this retrieval operation can be carried out cheaply,

without copying large sets unless forced to do so.

Given this pointer, which OPAL sees as a set-valued object, we can visit

each order in the set. From each order object we can reach, through its includes

instance variable, an object that is an IQset, i.e., a set of item-quantity pairs.

Similarly, from this object, we can reach each of the items in that order, and

the quantity of each that was ordered.

We should notice the similarity between this way of exploring the objects

in the database and the way we explored a tree in the hierarchical model.

What we just described is very much like exploring a database record of the

tree CUST-TREE in Figure 5.16, which has a customer record at the root, orders

records for children of the root, and children of each order record consisting of

a (virtual) item and its corresponding quantity. The principal difference is that

in OPAL, all objects other than constants are "virtual." For example, orders

records appear physically as children of customer records in the hierarchical

database, but in the OPAL database, only pointers to orders appear in the

object that is a set of orders. Furthermore, that set of orders does not appear

physically in the customer record; only a pointer to that set-valued object

does.11

11 Of course, physical layout of either kind of database may allow the orders placed by a

OBJECT-ORIENTED DATABASE LANGUAGES

There is also an analogy between the customer-order-item structure in Fig

ure 5.22(a) and the DBTG record types (CUSTOMERS, ORDERS, ENTRIES,

and ITEMS) and DBTG sets (PLACED_BY, E-ORDER, and EJTEM) found

in Figures 5.2 and 5.3. That is, the presence, in each customer object, of an

object that is a set of orders, mirrors the PLACED-BY set, in which each cus

tomer owns a set of orders. The fact that each order object contains a set of

item-quantity pairs is analogous to each order owning, via the E-ORDER set,

a set of ENTRIES, each of which is effectively an item-quantity pair. The only

apparent difference is that an ENTRIES record contains only the quantity, and

we have to find its owner in the EJTEM set to find the item. That is not really

different from the arrangement in Figure 5.22(a), since there, the item object,

while in principle present in the IQType object, is actually represented there

by a pointer to an object of class ItemType. On the other hand, the quantity

in an IQType object, being a constant, is physically present in the object, just

as it was in the ENTRIES records of the DBTG database.

The "Select" Method

OPAL provides several ways of exploring all the members of an object that is

a set. One is by a method whose parameter name is select:. The parameter of

a selection is a block of code with a single local variable that takes on, in turn,

each of the members of the set as its value. The form of the message is

select : [: X \ <code involving X and

returning true or /also] (5.3)

Here, :X, followed by a bar, declares X to be a local variable. A block of code

used as the parameter of a select: message must have exactly one local variable;

this variable takes on each member of the receiver set as its value, in turn. A

block such as that found in (5.3) will be called a one-argument block.

When a message of the form (5.3) is sent to an object O of class 5, which

is a subclass of Set, a new object of class S is returned. That object is the set

of all objects X in the set O such that the body of the selection, evaluated for

X, returns value true.

Example 5.33: Suppose we want to find the set of customers with balances

less than 0. Let us suppose that our database contains an object Customers,

of class CustSet, whose members are the objects for all the customers in the

YVCB database. Then we can find the subset of these customers with negative

balances by

customer to appear close to the record for that customer, which is what we really want

if we are to retrieve the orders for a given customer quickly. In general, when we refer

to "pointers," we really mean "some convenient representation that lets us locate the

physical copy of the object easily"; physical contiguity could serve this purpose well.

5.7 DATA MANIPULATION IN OPAL 283

Deadbeats := Customers select: [:c I (c getBalance) < 0]

Here, variable c takes on each customer object in turn. Sending the getBalance

message to c returns the balance of the customer, and if that value is less than

0, the block has value true. In that case, a pointer to the customer object

represented by c is placed in the set being formed by the selection, and when

that set is complete, it is assigned to the new variable Deadbeats, which, like

Customers, is of class CustSet. D

The "Detect" Method

We can also send a set 5 the message detect: followed by a one-argument block.

The block is executed with its local variable equal to each member of 5, in some

order, until a member x that makes the block true is found. Then, x is produced

as a value. Note that unlike the select: method, which produces a subset as

value, detect: produces an element of the set that is its receiver.

Example 5.34: If we want to obtain the object for customer Zack Zebra, we

could send the Customers set, mentioned in Example 5.33, the message

Zebra := Customers detect:

[:c I (c getName) = 'Zack Zebra1]

When c takes on the object for customer Zebra, the body of the one-argument

block will be true for the first time, so variable Zebra is assigned this object as

its value. D

The detect: method can take a second parameter, ifNone:, which is fol

lowed by a (not necessarily one-argument) block. If a message of this type is

sent to a set, none of whose elements satisfy the one-argument block following

detect:, then the result of executing the block following ifNone: is returned.

Example 5.35: Let us attempt to answer the query "who has ordered Brie?"

As in the previous examples, we assume the set of all customers is available

in object Customers. While we could write the entire query as code, it is

convenient to create two methods, which apply to sets of item-quantity pairs

and to sets of orders, respectively, and are useful as subroutines.

The first applies to objects of class IQSet and tells whether some member

of the set has a given item. The code is shown in Figure 5.25(a). The method is

identified by the parameter name testFor:, and it takes a parameter, t, which

is the item we are looking for. We attempt to detect an item-quantity pair

with item equal to i, by sending the detect: message to self, i.e., to the set of

item-quantity pairs that received the testFor: message. The message getItem:

retrieves the item object part of a typical item-quantity pair, iq. The message

getName sent to that object produces the name of the item; i.e., it retrieves

the name instance variable from the item object.

284 OBJECT-ORIENTED DATABASE LANGUAGES

If the name equals t, this item-quantity object iq is the value produced

by the detection. If there is no such object, then the block following ifNone:

is executed, and this block simply returns the value nil, a built-in constant.

The result of the detection is passed the message notNil. This built-in method

returns true if passed to a value that is not nil. Thus, testFor: returns true if

an item with name i is found and returns false if not.

method: IQSet

testFor: i

"((self detect: [:iq I ((iq getltem) getName) = i]

ifNone: [nil]) notNil)

7.

(a) testFor applied to sets of item-quantity pairs.

method: OrderSet

testFor: i

"((self detect: [:o I (o getIncludes) testFor: i]

ifNone: [nil]) notNil)

'/,

(b) testFor applied to order sets.

Figure 5.25 Methods to find an item within orders.

The method of Figure 5.25(b) is also called testFor. Note that there is

no reason the same name cannot be used for methods that apply to different

classes, even if they are radically different, because objects know the class to

which they belong, and therefore we can tell which method of a given name

applies to a given object. The ideas behind this method are very similar to

those behind Figure 5.25(a). However, here, instead of testing equality between

an item name and the parameter value i, we apply the testFor method defined

in Figure 5.25(a) to an object that is the entire set of entries for an order.

Finally, we can find who ordered Brie by saying:

BrieLovers := Customers select:

[:c I (c getOrders) testFor: 'Brie']

Deletion

Let us reflect briefly on the different ways different types of systems perform

deletion. Each of the relational systems, being value-oriented, deletes one or

more tuples from a relation by specifying values in certain fields that the victim

5.7 DATA MANIPULATION IN OPAL 285

tuples must possess. On the other hand, network and hierarchical systems,

being object-oriented, first locate the victim by making it the "current of run-

unit" or the equivalent, and then delete the record independently of any values

it may have. OPAL, being object-oriented, also needs to locate victim objects

before it can delete them. However, in OPAL we have no currency pointers to

keep track of objects automatically; rather we need to store the victim objects

in variables used for that purpose.

If variable O's value is an object in set 5, then sending 5 the message

5 remove: O

will delete that object from S.

There are several ways we could arrange that O denotes an object in 5.

One approach is to use the do: method described below.

The "Do" Method

The method do: applies a block of code to each element of a set. This code

is essentially a one-argument block, but it does not have to produce a Boolean

value. The form of the do: method is:

do: \.:X I <code involving X>"]

Example 5.36: Suppose we wish to delete all the orders that include Brie.

One way to do this task is shown in Figure 5.26. There are two "do-loops";

the first lets variable c range over all customers, that is, members of the object

Customers, which we suppose is the relation that holds data about customers.

In this loop we do two things. First, we assign the set of orders in each customer

object to the local variable OrdersForCust. Then we use the inner do-loop to

let variable o range over all orders in this current set of orders.

The method testFor of Figure 5.25(b) is used to test whether an order

includes Brie. If so, then we send the remove: message to OrdersForCust.

The effect of that message is to remove the object o, which is an order that

includes Brie, from the object that OrdersForCust denotes; that object is the

value of the orders "field" of the current customer.

The reader should observe carefully how the object-oriented approach

to data differs from the value-oriented approach. In OPAL, the value of

OrdersForCust is not a copy of the set of orders for the customer; rather

it is that set itself. Thus, deletions to OrdersForCust apply to the data of

the database. In a relational system, OrdersForCust would be a view or a

relation separate from Customers, and deletion from the former would either

be prohibited or have no effect on the latter. LJ

Index Creation

To this point, we have described OPAL as if it were a general-purpose language,

286 OBJECT-ORIENTED DATABASE LANGUAGES

I OrdersForCust I

Customers do:

[:c I

OrdersForCust :» c getOrders.

OrdersForCust do:

[:o I

(o testFor: 'Brie')

ifTrue: [OrdersForCust remove: o]

Figure 5.26 Delete all orders for Brie.

rather than a database language. In fact, OPAL provides the features of a

DBMS outlined in Chapter 1, such as security (see Section 8.6) and concurrency

control. Also very important for a database language is the ability to support

efficient access to data. We shall now give a brief description of how one can

create and use indices to speed up certain operations on large sets of objects.

Suppose 5 is a set whose elements are of class C. Suppose also that objects

of class C have an instance variable / whose values are constrained to be of a

type with comparable values, e.g., numbers or character strings (an elementary

type). Then we can create an index on S by sending it the message

S createEqualityIndexOn: '/'

From then, certain uses of methods with one-argument blocks, such as select:

will be executed in such a way that we do not have to examine all members of

5 to perform the selection; this matter is discussed later in the section.

If / is not constrained to be an elementary type, we cannot create an index

on /, but we might be able to create such an index on a subfield of /. That

is, suppose / is constrained to have a value that is an object of class D, and J

is an instance variable of D, constrained to be of a particular elementary type.

We can create the index for S on the path I.J. This idea generalizes to paths

/i./2. • • • -In of any length, as long as:

1. 5 is a set constrained to have elements of some class C, and C"s objects

have instance variable I\.

2. For j = 1, 2, . . . , n — 1, /, is an instance variable constrained to be of some

class whose members have instance variable Ij+\.

3. /n is an instance variable constrained to be of elementary type.

Then we can send 5 the message

S createEqualityIndexOn: /i./2.-••./n

5.7 DATA MANIPULATION IN OPAL 287

to speed up accesses to elements of 5 whose I\ "field" has a value in its /2

"field" that has • • • that has a given value in its /n "field."

Example 5.37: Suppose IQPs is a variable whose value is a set of item-

quantity pairs. Its elements are of class IQtype [see Figure 5.22(a)] , and one

of the instance variables for IQtype is item, which is constrained to be of

class ItemType. That class, in turn, has instance variable name, which is of

elementary type String. Thus, we may create an index for IQPs based on

the path item.name, that is, on the actual name of the item in the pair. The

command is

IQPs createEqualityIndexOn: 'item. name'

Identity Indices

We can also create indices on subparts of the elements of a set, even if those

subparts are not of elementary type. We base these indices on the object

identity of the objects found in those fields. The paths referring to such fields

are of the same form /i./2. • • • -In as for equality indices, but condition (3) does

not necessarily hold; that is, /n does not have to be constrained to be of an

elementary type.

Example 5.38: We could have based an index for IQPs of Example 5.37 on

the object identity of the item objects themselves. That is, we could say

IQPs createldentityIndexOn: 'item'

Note that the parameter name mentions "identity" rather than "equality." D

Using Indices

When we create one or more indices on an object that is a set, that object

functions like a database object, for example, as a relation or as a logical record

type. To take advantage of efficient retrieval from such sets, we must use a

selection block, which is a one-argument block whose body is a conjunction

(logical AND) of comparisons. Each comparison must relate two variables or

constants by one of the arithmetic comparison operators.

If we wish to take advantage of an equality index, we can use any of the

usual six comparisons on values, which are written =, "=, <, >, <=, and >= in

OPAL. If we wish to use an identity index, which we should recall is on the

objects' identities (i.e., pointers to objects) themselves, then the last four of

these make no sense, and we are restricted to the two comparisons on object

identities, == (the same object) and (different objects).

Selection blocks are distinguished from ordinary one-argument blocks by

the use of curly brackets {} rather than square brackets [] . If there is no

appropriate index to use, the effect of a selection block does not differ from

288 OBJECT-ORIENTED DATABASE LANGUAGES

that of the corresponding one-argument block. However, if there is an index

that can help, retrieval takes time roughly proportional to the number of objects

found, rather than to the size of the whole set.

Example 5.39: Suppose we have the set IQPs from Example 5.37, and we

also have the index on item.name for this set. Then we can find all the item-

quantity pairs where the item name is "Brie" by using the following selection

block.

BriePairs := IQPs select: {:p I p. item. name = 'Brie'}

Note that the path p.item.name takes us to the name field of the item field

of a typical item-quantity pair object p, and it is on the name field that the

index for IQPs is organized. Moreover, the value in this field is compared with

a constant, "Brie." It is in exactly this situation, where the field used for the

index is compared with a constant, that the index can be of use. Thus, the

pairs with item name "Brie" are found directly, without searching the whole

set IQPs.

If we had the identity index of Example 5.38 instead, then we could also

use it to find certain item-quantity pairs. Now, suppose we want those pairs for

which the item is Brie. We are now looking for pairs with a particular object

as item, so we need a name for this object to use in a comparison. Suppose

that we obtain, perhaps by a detect: operation on the set of items, the Brie

object, which becomes the value of variable BrieObject. Then we can obtain

the members of IQPs that have Brie as the item by

BriePairs := select: {:p I p. item == BrieObject}

Notice that the symbol == is used to require that the values being compared be

the same object, not merely objects with the same value, as = requires. As with

the previous selection, the identity index on item helps us find all the desired

pairs quickly. D

EXERCISES

5.1: In Exercise 2.8 we discussed information about the ingredients of certain

dishes.

a) Define a network to represent the data, using the DBTG DDL.

b) Show the links in your network for the particular data given in Exercise

2.8.

5.2: Suppose we have the following record types:

COMPANY(CNAME, CADDR)

STOCK(SH_NO, QUANTITY)

PERSON(PNAME, PADDR)

EXERCISES 289

Let there also be the following DBTG sets.

i) BMP, with member PERSON and owner COMPANY, indicating the

employees of a company,

it) OWNS, with member STOCK and owner PERSON, indicating which

person owns which stock certificates,

tit) ST-CO, with member STOCK and owner COMPANY, indicating the

company to which a stock certificate pertains.

You may assume the location mode for each record is CALC, with keys

CNAME, SH_NO, and PNAME, respectively. Write programs in the "Pid

gin" DBTG data manipulation language of this chapter, to do the following:

a) Read a share number and print the name and address of the person

owning the share.

b) List all persons owning stock in IBM. You may list a person owning

two certificates twice.

c) List all persons owning stock in the company they work for. (Assume

a singular set of persons exists.)

d) Determine the total quantity of stock in IBM owned by its employees.

5.3: Suppose we wish to enter new shares into the database of Exercise 5.2, and

we want a new share to be entered into the correct OWNS and ST_CO set

occurrences when the stock record is stored.

a) Suggest set selection clauses that will enable the automatic insertion

to be performed.

b) Write a program to read the necessary data and store the new stock

record correctly.

c) Suppose we wish to use manual insertion instead of automatic. Write

a program to store STOCK records and insert them in the proper

OWNS and ST-CO occurrences manually.

5.4: In Figure 5.27 is a hierarchical database scheme representing the navies of

the world. Assume for convenience that each record type has a field NAME

that serves as a key. Write queries in Pidgin DL/I to do the following:

a) Print all squadrons that have at least one submarine.

b) Print all countries that have a squadron with at least two cruisers.

» c) Print all countries that have a fleet with at least two cruisers.

* d) Read a naval base and print the country to which it belongs.

e) Read a country, fleet, squadron, and the name of a submarine and

enter the submarine into the proper squadron.

5.5: What additional structure added to the database scheme would make it

possible to execute the query of Exercise 5.4(d) efficiently?

5.6: Express the hierarchy of Figure 2.32(b) in the Pidgin DDL for IMS that

was described in Section 5.4.

290 OBJECT-ORIENTED DATABASE LANGUAGES

COUNTRIES

FLEETS NAVAL BASES

SQUADRONS

DESTROYERS CRUISERS SUBMARINES CARRIERS

Figure 5.27 Naval database.

5.7: In Figure 5.28(a) is a hierarchy for a real estate corporation's database, and

in Figure 5.28(b) are the fields in each of the logical record types. Write

Pidgin DL/I queries to answer the following questions:

a) Find the addresses of all listings selling for over one million dollars.

b) Find an agent in the Princeton, NJ office whose sales are over one

million dollars. You may assume that there is only one city named

Princeton in the Northeast region, although there may be cities with

that name in other regions.

c) Find all the clients of agent Sam Slick. Assume that there is only one

agent with that name among all the offices.

5.8: Perform the following updates on the hierarchical database of Figure 5.28,

using the Pidgin DL/I of Section 4.5.

a) Add the fact that Joe Nebbish, who lives at 74 Family Way, is now a

client of agent Sam Slick.

b) Add 100,000 to the sales of Sam Slick.

c) Delete all listings of the Princeton (Northeast region) office.

5.9: We wish to define an OPAL object that looks like the relation

FSO(F,S,O)

which was discussed in Exercise 4.8.

a) Write the commands to define the appropriate class for such an object.

b) Write the command to create an object FSO of the desired class.

c) Write a command that can be used to insert a "tuple" into FSO, given

its file name, size, and owner.

d) Write a query to find all the files owned by Sally Hacker.

e) Declare an index that will speed up the answer to query (d).

EXERCISES 291

REGIONS

OFFICES

AGENTS LISTINGS

CLIENTS

(a) Hierarchy.

REGIONS(RNAME)

OFFICES(CITY, OADDR)

AGENTS(ANAME, SALES)

LISTINGS(LADDR, PRICE)

CLIENTS(CNAME, CADDR)

(b) Record formats.

Figure 5.28 Real estate database.

5.10: In Exercise 2.11(f) we defined a scheme for courses, students, and grades in

the object model of Section 2.7. Translate that scheme into data definitions

of OPAL.

5.11: Write the following queries in (t) the DBTG DML (it) DL/I (tit) OPAL.

Refer to the databases defined in (t) Figures 5.2 and 5.3 (it) Figure 5.16

(iit) Figure 5.22, respectively.

a) Find all the employees of the Produce department.

b) Find the items supplied by Acme.

c) Find the suppliers of the items sold by the Produce department.

* d) Find the manager of the department Arnold Avarice works for.

5.12: Give OPAL data definitions for the beer drinkers' database of Exercise

4.1. Create suitable classes for drinkers, bars, and beers, that make all

the important connections accessible. For example, the object for a bar

consists of a field (instance variable) for the name of the bar, a field for the

set of drinkers who frequent the bar, and a field for the set of beers sold

at the bar. Also, declare OPAL variables Drinkers, Bars, and Beers to

represent the sets of objects of the three classes.

292 OBJECT-ORIENTED DATABASE LANGUAGES

* 5.13: Write OPAL programs to answer the queries of Exercise 4.1, using the

database you denned in answer to Exercise 5.12. Assume that getX has

been defined for every instance variable X of every class. As we have not

discussed printing in OPAL, assign the results of the queries to suitable

variables. Hint: The following methods that were not covered in the text

may prove useful here and in following exercises:

i) B not produces the complement of the Boolean value B.

it) S includes: O produces the value true if object O is a member of set

S and false if not.

ttt) S isEmpty produces true if S is an empty set and false otherwise.

5.14: Write the queries of Exercise 4.3 in OPAL, referring to the database of

Exercise 5.12.

* 5.15: Write an OPAL program to find the sum of all the customers' balances in

the YVCB database.

* 5.16: Suppose we have defined employee-manager pair objects with the following

OPAL declaration:

Object subclass: 'EMpair1

instVarNames : # [' emp ' , ' mgr ']

constraints: #[#[#emp, String], #[#mgr, String]]

Also suppose that Manages is a set of employee-manager pairs. Write

an OPAL method that finds, in Manages, all the subordinates of a given

individual i, that is, all the individuals of whom t is the "boss" in the sense

of Example 1.12.

BIBLIOGRAPHIC NOTES

A number of references concerning object-oriented systems and models were

given in the bibliographic notes for Chapters 1 and 2. Here, we shall add

references to particular database management systems.

Network-Model Systems

As was mentioned, the DBTG proposal comes from CODASYL [1971, 1978].

Olle [1978] is a tutorial on the proposal.

Among the important systems based on this proposal are TOTAL (Cincom

[1978]), IDMS (Cullinane [1978]), and ADABAS (Software AG [1978]). Each

of these systems is described in Tsichritzis and Lochovsky [1977], and TOTAL

is also described in Cardenas [1979].

BIBLIOGRAPHIC NOTES 293

IMS

The material in Sections 5.4 and 5.5 is based on IBM [1978b]. More exten

sive descriptions of the system can be found in Date [1986], Tsichritzis and

Lochovsky [1977], and Cardenas [1979].

System 2000

Another important system based on the hierarchical model is System 2000 (MRI

[1978]). For descriptions, see Tsichritzis and Lochovsky [1977], Cardenas [1979],

or Wiederhold [1983].

OPAL

The description of the language in Sections 5.6 and 5.7 is taken from Servio

Logic [1986]. The underlying Smalltalk language is defined in Goldberg and

Robson [1980]. The Gemstone database management system, of which OPAL

is the user interface, is described in Maier, Stein, Otis, and Purdy [1986].

CHAPTER 6

Physical

Data

Organization

We have alluded many times to the need to make operations like selection from

a relation or join of relations run efficiently; for example, selections should take

time proportional to the number of tuples retrieved, rather than the (typically

much larger) size of the relation from which the retrieval is made. In this

chapter we cover the basic techniques of storage organization that make these

goals realistic.

We begin by discussing key-based organizations, or "primary index" struc

tures, in which we can locate a record quickly, given values for a set of fields

that constitute a key. These organizations include hashing, indexed-sequential

access, and B-trees. Then we consider how these structures are modified so

we can locate records, given values for fields that do not constitute a key and

whose values do not, in principle, influence the location of the record. These

structures are called "secondary indices."

Then, we explore what happens when the objects stored, which we think

of as records, have variable-length. This situation includes both true variable-

length records, e.g., those containing fields that are strings of arbitrary length,

and structures that are more complex than records, such as a record for a

department followed by records for all of the employees of that department.

We next show how these techniques are used to support efficient access in the

database systems that we discussed in Chapters 4 and 5.

In the last sections, we discuss partial-match queries and range queries, two

classes of database operations that are increasing in importance as database sys

tems tackle the new kinds of applications discussed in Section 1.4. We offer two

data structures to support systems where these types of queries are common:

partitioned hashing and k-d-trees.

294

6.1 THE PHYSICAL DATA MODEL 295

6.1 THE PHYSICAL DATA MODEL

The physical database is a stored collection of records, each consisting of one

or more fields. The values of fields are of an elementary type, such as integers,

reals, and fixed-length character strings. We also include among our elementary

types the pointer, which is a reference to a record; we shall discuss the nature

of a pointer in more detail later in this section. At times, certain other types,

such as variable-length character strings, will be treated as elementary.

Records are used to store physically each of the basic data objects found

in the various data models we have discussed. For example:

1. A tuple can be stored as a record; each component of the tuple is stored

in one field.

2. A logical record, as used in the network and hierarchical models, can be

stored as a record. The fields of the logical record are fields of the physical

record. In the case that a field of a logical record in a hierarchy is a virtual

record of some type T, its corresponding field in the physical record is a

pointer to a record of type T.

3. An OPAL object can be stored as a record. Instance variables whose values

are elementary objects, e.g., integers, have their values stored physically in

fields, while instance variables whose values are objects of a user-defined

class are represented by fields containing pointers to objects (i.e., pointers

to the records representing these objects).

Files

As with the higher-level data models, it is normal to see records as being in

stances of a scheme. That is, normally we deal with collections of records that

have the same number of fields, and whose corresponding fields have the same

data type, field name, and intuitive meaning. For example, records representing

the tuples of a single relation have a field for each attribute of that relation, and

the field for each attribute has the data type associated with that attribute. Let

us term the list of field names and their corresponding data types the format

for a record.

We shall use the term file for a collection of records with the same format.

Thus, for example, a file is an appropriate physical representation for a relation.

This notion of a file differs from the common notion of a "file" as a stream of

characters, or perhaps other types of elements, accessible only by scanning from

beginning to end. In practice, we shall find that files are normally accessible in

many different ways, and their records often are not stored as a single stream

or sequence.

Two-Level Storage

The physical storage medium in which records and files reside can normally

296 PHYSICAL DATA ORGANIZATION

be thought of as a large array of bytes numbered sequentially. For example,

storage may be a virtual memory space whose bytes are numbered from 0 up

to some large number, probably in the range 224 to 230. This virtual memory

would be stored physically on secondary storage devices, such as disks. On a

computer system that does not support virtual memory, the physical storage

might be thought of as the sequence of bytes on a disk or collection of disks,

ordered in some simple way.

When the amount of data in our database is large, we should not picture

storage as the main memory of the computer. Rather, we must take into account

the fact that in order to operate upon any of the data in the database, that data

must be moved from the secondary storage device upon which it resides, into

main memory. Further, this transfer of data from secondary to main memory,

or back, is very slow, compared with the typical things that one does with the

data once it is brought to main memory.

Blocks

Another factor that influences the way we account for costs in database op

erations is that it is normal for storage to be partitioned into blocks of some

substantial number of bytes, say 29 through 212, and for transfers of data be

tween secondary and main memory to occur only in units of a full block. This

constraint applies whether we have a system that supports virtual memory,

in which case that memory is partitioned into blocks of consecutive bytes, or

whether our secondary storage is thought of as the bytes of a disk, in which

case a block might be a sector of a single track.

It is common that records are significantly smaller than blocks, so we fre

quently find several records on one block. Since our costs are so closely tied to

the number of blocks we move between main and secondary memory, it becomes

very important to arrange that, when we have to access several records of a file,

they tend to lie on a small number of different blocks. Ideally, when we access

a block, we need to access all, or almost all, the records on that block.

The Cost of Database Access

We shall define the unit of cost for operations on physical blocks to be the

block access, which is either the reading from or writing into a single block.

We assume that computation on the data in a block does not take as much

time as transferring a block between main and secondary memory, so the cost

of computation will generally be neglected.

In reality, not every time we need to read or write the contents of a block

will the block be transferred to or from secondary memory. The operating

system or the DBMS itself will buffer blocks, keeping copies around in main

memory as long as there is room and remembering they are there. However, we

6.1 THE PHYSICAL DATA MODEL 297

often cannot predict whether a block will be available in main memory when we

need it, since it may depend on factors beyond our control, such as what other

jobs are running on the system at the time, or what other database operations

are being executed as a result of requests from other users.

Conversely, the time to access a particular block on a disk depends on the

place where the last access on that disk was made, because of the time to move

the heads from cylinder to cylinder and the time it takes a disk to rotate from

one angular position to another. Systems that deal with the largest amounts of

data often need to take into account the exact sequence in which block accesses

are made and design the layout of blocks on the disk units accordingly. These

systems are often quite limited in the class of operations on data that they

perform, compared with the data manipulation languages discussed in Chapters

4 and 5. We shall, therefore, not consider access costs at this level of detail.

In summary, we assume there is some fixed probability that the need to use

a block will actually result in a transfer of data between main and secondary

memory. We also suppose that the cost of an access does not depend on what

accesses were made previously. With that agreed, we can assume each block

access costs the same as any other, and thus we justify the use of block accesses

as our measure of running time.

Pointers

In essence, a pointer to a record r is data sufficient to locate r "quickly." Because

of the variety of data structures used to store records, the exact nature of a

pointer can vary. The most obvious kind of pointer is the absolute address, in

virtual memory or in the address system of a disk, of the beginning of record r.

However, absolute addresses are often undesirable; for several reasons, we

might permit records to move around within a block, or perhaps within a group

of blocks. If we moved record r, we would have to find all pointers to r and

change them. Thus, we often prefer to use as a pointer a pair (6, fc), where b

is the block on which a record r is found, and k is the key value for r, that is

the value of the field or fields serving as a key for records in the file to which

r belongs. If we use such a scheme, then in order to find r within block b we

need to rely on the organization of blocks so that we can find r within b. The

matter of block formats is discussed below, but as an example, in order to find

r in block 6, given its key k, it is sufficient to know that:

1. All records in block 6 have the same record format as r (and therefore,

none can agree with r in its key fields),

2. The beginnings of all the records in block b can be found (so we can examine

each in turn, looking for key &), and

3. Each record in block 6 can be decoded into its field values, given the be

ginning of the record (so we can tell if a record has key fc).

298 PHYSICAL DATA ORGANIZATION

Pinned Records

When records may have pointers to them from unknown locations, we say the

records are pinned; otherwise they are unpinned. If records are unpinned, they

can be moved around within blocks, or even from block to block, with no adverse

consequences, as long as the movement of blocks makes sense from the point

of view of the data storage structure. However, when records are pinned, we

cannot move them at all, if pointers are absolute addresses, and we can move

them only within their block if a block-key-pair scheme is used for pointers.

Another constraint we face when records are pinned is that we cannot

delete them completely. If there were a pointer p to record r, and at some time

we deleted r, we might, at a later time place some other record r' in the space

formerly occupied by r. Then, if we followed pointer p, we would find record

r' in place of r, yet have no clue that what we found was not the record r

to which p was intended to refer. Even if we use block-key pairs for pointers,

we are not completely safe from this problem, known as dangling pointers or

dangling references. The reason is that r' might have the same key value as

r, since it was inserted into the file after r had left, and therefore, caused no

violation of the principle of unique key values.

To avoid dangling pointers, each record must have a bit called the deleted

bit, that is set to 1 if the record is deleted. The space for the record can never

again be used, but if we go searching for a record, say by following a pointer,

and we come upon the deleted record, we know the record isn't really there and

ignore it.

Record Organizations

When we arrange the fields in a record, we must place them in such a way that

their values can be accessed. If all fields have fixed length, then we have only

to choose an order for those fields. Each field will thus begin at a fixed number

of bytes, called its offset, from the beginning of the record. Then, whenever we

come upon a record known to have the format in question, we can find a field,

given the beginning of the record, by moving forward a number of bytes equal

to the offset for that field.

There may be several bytes, not devoted to data fields, that are required

in each record. For example, under some circumstances we need:

1. Some bytes that tell us what the format of the record is. For example,

if we are storing records belonging to several record types or several rela

tions, we may wish to store a code indicating the type or relation of each.

Alternatively, we can store only one type of record in any block, and let

the block indicate the type of all of its records.

2. One or several bytes telling how long the record is. If the record is of a

type that has only fixed-length fields, then the length is implicit in the type

6.1 THE PHYSICAL DATA MODEL 299

information.

3. A byte in which a "deleted" bit, as described above, is kept.

4. A "used/unused" bit, kept in a byte by itself, or sharing a byte with other

information such as the "deleted" bit. This bit is needed when blocks are

divided into areas, each of which can hold a record of some fixed length.

We need to know, when we examine an area, whether it really holds a

record, or whether it is currently empty space, with some random data

found therein.

5. Waste space. We might put useless bytes in a record's area is so that

all fields can begin on a byte whose address is a convenient number. For

example, many machines operate on integers more efficiently if they begin

at an address divisible by 4, and we shall assume this requirement here.

Example 6.1: Let us introduce a simple, running example for this chapter.

We suppose that records of the type numbers consist of the following fields:

1. Field NUMBER, of type integer, which serves as a key. It is intended that

this field always holds a positive integer.

2. Field NAME, which is a single byte indicating the first letter of the English

name for the number in the first field. All positive integers have names that

begin with one of the letters in the word soften, but there is no known

significance to this fact.

3. Field SQUARE, which holds the square of the number in the first field.

In this example, SQUARE is of type integer. In other examples, we shall

let SQUARE be a character string holding the digits of the number in

question; the purpose of the latter arrangement is so this field can vary in

length.

On the assumption that integers take four bytes, the three fields above

take a total of nine bytes. To this quantity, we shall add another byte, at the

beginning of the record, which holds a used/unused bit and a "deleted" bit. We

shall call this the INFO byte.

01234 78 11

NUMBER SQUARE

INFO NAME WASTE

Figure 6.1 A fixed-length record format.

However, recall we suppose integers must begin at an address that is a

multiple of 4. Thus, it makes the most efficient use of space if we choose as our

record organization the order: INFO, NAME, NUMBER, SQUARE, placing

300 PHYSICAL DATA ORGANIZATION

two waste bytes after NAME so the last two fields can be properly aligned.

The arrangement is suggested in Figure 6.1, and it uses 12 bytes per record. D

Variable-Length Records

When fields can vary in length, we have additional record-formating problems,

because we cannot rely on fields being at the same offset in each record with a

given format. There are two general strategies:

1. Let each field of variable length start with a count, that tells how many

bytes the field value uses. If there is more than one variable-length field,

it is sometimes useful to have in the beginning of the record a count of

the total length of the record, although that information is, in principle,

redundant.

2. Place, in the beginning of each record, pointers to the beginning of each

variable-length field. We also need a pointer to the end of the last such

field. Furthermore, it is necessary to have all the fixed-length fields precede

the variable-length fields, so the end of one is the beginning of the next.

Scheme (1) uses less space, but it is time-consuming to locate fields beyond

the first variable-length field, since we can only calculate the offset of a field if

we examine all previous variable-length fields, in turn, to determine how long

they are. We shall give a simple example of (1) below. Scheme (2) can be

used not only for storing fields within records but for storing records within

blocks, and we shall give an example of such an arrangement when we cover

block formats.

Example 6.2: Let us consider numbers records, as introduced in Example 6.1,

but with the field SQUARE stored as a character string composed of its decimal

digits. The bytes of this field will be preceded by a single byte whose value is

the number of (additional) bytes used by the SQUARE field. Thus, character

strings for this field are limited to the range 0 to 255, which is a common

treatment for variable-length character strings. The fields and information bytes

of the record are:

1. Byte 0 holds the length of the entire record, including the variable-length

field. Thus, the limit on field SQUARE is somewhat more stringent than

255 bytes, since the whole record must use no more than 255 bytes.

2. Byte 1 holds the INFO bits, discussed in Example 6.1.

3. Byte 2 holds the field NAME.

4. Byte 3 is waste.

5. Bytes 4-7 hold the field NUMBER.

6. Byte 8 holds the length of the field SQUARE.

7. Bytes 9 and following hold the value of SQUARE, as a character string.

The contents of two records, for numbers 2 and 13, are shown in Figure 6.2.

6.1 THE PHYSICAL DATA MODEL 301

0 1234 789

10 14

INFO WASTE

(a) Record for NUMBER = 2.

0 1234 789 10 11

12 13 3 1 6

INFO WASTE

(b) Record for NUMBER = 13.

Figure 6.2 Variable-length records.

Notice that because there is only one variable-length field, the length of

the record and the length of that field are easily related, and we can dispense

with either byte 0 or byte 8, but not both. That is, the value of byte 0 is always

nine more than the value of byte 8.

Also note that if there were fields following SQUARE in this format, then

we would have to consult byte 8 to find them. For example, the offset of a

hypothetical field following SQUARE would have offset equal to nine plus the

contents of byte 8. D

Block Formats

Just as we need to locate fields within a record, we must be able to locate

records within a block. As records require some space for format information,

such as a length or a "deleted" bit, so do blocks often require some extra space

for special purposes. For example, blocks often have pointers in fixed positions

to link blocks into lists of blocks.

If integers and pointers within the records are required to start at "conve

nient" bytes, which we have taken (as a plausible example) to mean "divisible

by 4," then we must be careful how we place records within a block. While

many variations are possible, the simplest scheme is to assume that the offsets

of integers and pointers within a record are always divisible by 4, and then

require that records start with an offset within their block that is also divisible

by 4. Since blocks themselves will begin at bytes that are multiples of some

large power of 2, it follows that the address (first byte) of a block will also be

divisible by 4, and thus, all fields that need to be aligned will start at bytes

divisible by 4.

302 PHYSICAL DATA ORGANIZATION

If a block holds fixed-length records, then we have only to partition the

block into as many areas, each holding one record, as will fit on the block. Of

course, if there are special fields belonging to the block, such as pointers among

blocks, then space for these pointers must be reserved in a known place in each

block. Any byte not usable either in a special field or as part of the area for a

record, is waste space.

Example 6.3: In our examples we shall assume blocks of length 64, a number

that is much too small to be realistic, but which will make our examples easier

to follow. Suppose we wish to store records of the fixed-length format discussed

in Example 6.1, and we also want blocks to have a pointer of 4 bytes, for use

as a link to another block. Then the block layout of Figure 6.3 will serve and

has no waste space. O

0 11 12 23 24 35 36 47 48 59 60 63

Record 1 Record 2 Record 3 Record 4 Record 5 Link

Figure 6.3 Block format for fixed-length records.

Incidentally, the format of Figure 6.3 assumes that a used/unused bit ap

pears in each record, so we can find an empty area in which to insert a record,

if one exists on the block. That scheme is time consuming, since we must visit

each record area to see if it is unused. Instead, we could put all the used/unused

bits for the record areas in a byte or bytes at the beginning of the block. That

arrangement facilitates finding an empty area in which to place a newly inserted

record.

Example 6.4: For the format of Example 6.3, grouping the used/unused bits

happens to waste a lot of space. Because of our constraints about aligning

records and integer- or pointer-valued fields at bytes divisible by 4, we could

not reduce the length of records below 12, even if there were no need for an

information byte in the records themselves. We would need only byte 0 of the

block for all the used/unused bits, but we could not start the first record area

until byte 4. Then, since we need the last four bytes for a link, we could only fit

four record areas in the block, in bytes 4-15, 16-27, 28-39, and 40-51. Bytes

1-3 and 52-59 are now waste space. D

Blocks with Variable-Length Records

If we pack variable-length records into a block, with no special fields to help

locate the beginnings of records, we can, in principle, still find each record. We

assume the first record starts in byte 0, and there we can find the length of the

record. Increasing that length to the next multiple of 4, we find the beginning

6.1 THE PHYSICAL DATA MODEL 303

of the second record; the length field in that record tells us where to find the

third record, and so on.

Evidently, that is a cumbersome way to search the block, so a more desir

able approach is to place at the beginning of the block a directory, consisting

of an array of pointers to the various records in the block. These "pointers"

are really offsets in the block, that is, the number of bytes from the beginning

of the block to the place where the record in question starts.

The directory can be represented in several ways, depending on how we

determine the number of pointers in the directory. Some choices are:

1. Precede the directory by a byte telling how many pointers there are.

2. Use a fixed number of fields at the beginning of the block for pointers to

records. Fields that are not needed, because there are fewer records in the

block than there are pointers, are filled with 0, which could not be the

offset of a record under this scheme.

3. Use a variable number of fields for pointers to records, with the last field

so used holding 0, to act as an endmarker for the list of pointers.

Example 6.5: In Figure 6.4 we see a block holding variable-length records in

the format of Example 6.2. The scheme for managing pointers to records could

be either (2) or (3) above, since only the last of the four fields holds 0. The

three records found are for numbers 2, 13, and 100; these have lengths 10, 12,

and 14, respectively. Note that bytes 26-27 are waste, because of our need to

start the second record at an offset that is a multiple of 4. Bytes 54-59 are

waste because we cannot find a record, of the format discussed in Example 6.2,

that fits in so small a space.

0 3 4 7 8 11 12 15 16 25 26 27 28 39 40 53 54 59 60 63

16 28 40 Record 2 Record 13 Record 100^$^ Link

Figure 6.4 Block format for variable-length records.

We could have been more economical about the storage of offsets in the

first four fields. Rather than using four bytes for each, we could have used a

single byte for each offset, since in these tiny blocks, offsets are numbers in the

range 0-63. In fact, even if blocks were of length 1024, which is a common

choice, we still could have stored offsets in a single byte, assuming that offsets

had to be divisible by 4 and storing the offset divided by 4, in the byte. D

304 PHYSICAL DATA ORGANIZATION

Semi-Pinned Records

Another reason for adopting the scheme of Figure 6.4 is that it has the effect of

"unpinning" pinned records. If there are pointers to a record r from outside the

block, we make that pointer point to the field of the directory that holds the

offset of r. We may then move r around within the block, changing its offset in

the directory as we do, and we never create a dangling reference.

Incidentally, when we have variable-length records, there is frequently a

good reason why we would move these records around in the block. For example,

the data in a record may grow or shrink, and we wish to make space by moving

all following records to the right, or we wish to consolidate space and move

subsequent records left. The number of records on the block may change,

requiring us to create additional directory fields, and move records around to

make the room.

Another advantage of the scheme of Figure 6.4 is that we can, in effect,

delete pinned records. We move the "deleted" bit from the record itself to the

directory, assuming there is room. Then, if we wish to delete a record r, we can

reuse its space. We set the "deleted" bit in r's directory entry, so if we ever

follow a pointer to that entry, we shall know the record is no longer there. Of

course, the directory entry is now dedicated to the deleted record permanently,

but that is preferable to retaining the space for a large, deleted record.

6.2 THE HEAP ORGANIZATION

In the three following sections we shall consider data structures that are useful

for primary indices, that is, for structures that determine the location of the

records of a file. Generally, a primary index is based on a key for the file, and

the location of a record is determined by its key value. It is also important

that given the value for the key of a record, one can quickly find that record.

In some of the organizations we shall discuss, the field or fields used as a "key"

need not uniquely identify a record. However, if there are too many records

with the same "key" value, then the time to find records may be much larger

than expected.

In this section, we define the operations normally permitted on records

within files. As a baseline for performance, we then examine the heap file

organization, the most trivial organization, in which records are packed into

blocks in no special order, and with no special organization to the blocks. We

assume only that pointers to all of the blocks of the file are available, and we

shall suppose that these pointers are stored in main memory. If there are too

many blocks to store even these pointers in main memory, then the pointers

themselves can be stored in blocks of secondary storage and retrieved when

needed.

We shall consider how long it takes to do the three basic operations:

6.2 THE HEAP ORGANIZATION 305

1. Lookup. Given a "key" value, find the record(s) with that value in its "key"

fields. We put quotation marks around "key" because we need not assume

that values for the field or fields forming a "key" uniquely determine a

record.

2. Insertion. Add a record to the file. We assume that it is known that the

record does not already exist in the file, or that we do not care whether or

not an identical record exists. If we do wish to avoid duplication of records,

then the insertion must be preceded by a lookup operation.

3. Deletion. Delete a record from the file. We assume it is not known whether

the record exists in the file, so deletion includes the process of lookup.

4. Modification. Change the values in one or more fields of a record. In

order to modify a record, we must find it, so we assume that modification

includes lookup.

Efficiency of Heaps

Suppose there are n records, and that R is the number of records that can fit

on one block. If records are pinned, and deleted records cannot have their space

reused, then we should understand n to be the number of records that have ever

existed; otherwise, n is the number of records currently in the file. If records

are of variable length, then take R to be the average number of records that

can fit in a block, rather than the exact number. Then the minimum number

of blocks needed to store a file is \n/R~\ , or, since n is normally much greater

than R, about n/R.

Recall that the time to perform operations such as insertion, deletion, and

lookup is measured by the number of blocks that must be retrieved or stored,

between secondary and main memory. We shall assume, for uniformity among

all our data structures, that initially, the entire file is in secondary memory. To

look up a record in a heap, given its key, we must retrieve n/2R blocks on the

average, until we find the record, and if there is no record with that key, then

we must retrieve all n/R blocks.

To insert a new record, we have only to retrieve the last record of the heap,

which is the one that has empty space within it. If the last block has no more

room, then we must start a new block. In either case, we must write the block

to secondary storage after we insert the record. Thus, insertion takes two block

accesses, one to read and one to write.

Deletion requires us to find the record, i.e., perform a lookup, and then

rewrite the block containing the record, for a total of n/2R + 1 accesses, on

the average when the record is found, and n/R accesses when the record is not

found. If records are pinned, then the process of deletion is only the setting

of the "deleted" bit. If records are not pinned, then we have the option of

reclaiming the space of the record.

For deletions from files of fixed-length records, we can reclaim space by

306 PHYSICAL DATA ORGANIZATION

finding a record on the last block of the file, and moving it into the area of

the deleted record. With luck, we can dispense with the last block altogether,

if we have removed its last record. In general, compacting the file in this way

minimizes the number of blocks over which it is spread, thereby reducing the

number of blocks that must be retrieved in lookups and further deletions.

If records are of variable length, we can still do some compaction. If we

use a format like that of Figure 6.4, we can slide records around in the block,

making sure the pointers to those records, which are at the beginning of the

block, continue to point to their records. If we create enough space in one block

to move in a record from the last block, we might do so. However, when records

vary in length, it is wise to keep some of the space in each block free, so when

records on that block grow, we are unlikely to have to move a record to another

block.

Finally, modification takes time similar to deletion. We need n/2R block

accesses for a successful lookup, followed by the writing of the one block con

taining the modified record. If records are of variable length, then we may want

to, or be required to, read and write a few more blocks to consolidate records

(if the modified record is shorter than the old record), or to find another block

on which the modified record can fit, if that record has grown.

Example 6.6: Suppose we have a file of 1,000,000 records, of 200 bytes each.

Suppose also that blocks are 212 = 4096 bytes long. Then R = 20; i.e., we can

fit 20 records on a block. Thus, a successful lookup takes n/2R = 25,000 block

accesses, and an unsuccessful one takes 50,000 block accesses. On the optimistic

assumption that the retrieval of any block from disk takes .01 second, even

successful lookups take over four minutes. The time to do modification and

deletion are essentially the same as for lookup. Only insertion, which assumes

no search of the file is necessary, can be done at "computer speed," that is, in

a fraction of a second.

The directory of blocks takes a significant amount of space, perhaps so

much that we would not want to keep it in main memory. Suppose that block

addresses are four bytes long. Then we need 200,000 bytes, or 50 blocks, to

hold the addresses of all the blocks. D

6.3 HASHED FILES

The basic idea behind the hashed file organization is that we divide the records

in the file into buckets, according to the value of the key.1 For each file stored

in this manner there is a hash function h that takes as argument a value for the

key and produces an integer in the range 0 to B — 1, where B is the number

1 As in the previous section, we do not require that what we call a key field or fields

uniquely determine a record, although for the sake of efficiency it is desirable that there

not be many records with the same "key" value.

6.3 HASHED FILES 307

of buckets used for this file. The integer h(v) is the bucket number for the key

value v.

Each bucket consists of some (presumably small) number of blocks, and

the blocks of each bucket are organized as a heap. There is an array of pointers,

indexed from 0 to B — 1, which we call the bucket directory. The entry for i

in the bucket directory is a pointer to the first block for bucket t; we call this

pointer the bucket header. All of the blocks in bucket t are linked in a list by

pointers, with a null pointer, some value that cannot be the address of a block,

appearing in the last block of the list (or in the bucket header if the bucket is

currently empty). It is common for B to be sufficiently small that the entire

bucket directory can reside in main memory, but if that is not the case, then

the directory is spread over as many blocks as necessary, and each is called into

main memory as needed.

Hash Functions

There are many different kinds of functions one can use for the hash function

h. It is essential that the range be 0, . . . , B - 1, and it is highly desirable that h

"hashes" keys; that is, h(v) takes on all its possible values with roughly equal

probability, as v ranges over all possible key values. A great deal has been said

about hash functions, and we do not intend to go into the subject deeply here;

see Knuth [1973], for example.

A simple kind of hash function converts each key value to an integer, and

then takes the remainder of that integer modulo B. If key values are integers to

begin with, we simply compute h(v) = v mod B. If keys are character strings,

we can convert strings to integers as follows. Divide a string into groups of

characters, perhaps one or two characters per group, treat the bits representing

the character group as an integer, and sum these integers.

If key values consist of values from several fields, convert each field's value

to an integer, by a method such as the ones just mentioned, and take their sum,

and divide the result by B, the number of buckets. A variety of other ways to

produce "random" integers from data of other types exist, and good methods

are not hard to discover.

Example 6.7: In Figure 6.5 we see a file of numbers records with the format

introduced in Example 6.1, organized as a hashed file with four buckets; i.e.,

B = 4. We assume the parameters of Example 6.3, that is, records twelve bytes

long, with up to five of these and a link packed into one block, as in Figure 6.3.

We have stored a set of prime numbers, using the hash function h(v) = v mod 4.

Storing keys that are primes is one of the few foolish things one can do

with a hash function that chooses buckets by taking remainders divided by B,

the number of buckets. There can never be a prime that goes into bucket 0,

except for B itself, if B is a prime. In Figure 6.5, there will never be a prime

308 PHYSICAL DATA ORGANIZATION

17 13 5 29 o

--HI

23 7 35 19 11 J 31

Bucket

Directory

Figure 6.5 Hashed file organization.

in bucket 0, and only the prime 2 belongs in bucket 2. Thus, all the records for

primes, except for 2, will distribute themselves in buckets 1 and 3, so we only

get the benefit of two buckets, while paying for four buckets. D

Operations on Hashed Files

To look up a record with key value «, we compute /i(«), find the bucket header

for that hash value, and examine the list of blocks in that bucket, as if the bucket

were a heap. If the desired record is not found, there is no point in examining

other buckets, because records whose keys have hash value h(v) could not be

placed in any other bucket. The lookup process does not depend on there being

a unique record with "key" «, although if there is more than one, we must keep

searching through bucket h(v) to find them all, or we must be content with the

first one we find.

To insert a record with key value v, we compute h(v) and go to bucket

h(v). Presumably, only the last block of the bucket has room, so we must find

that block.2 We could search from the bucket header, down the list of blocks for

the bucket, but there are two situations in which that would not be necessary:

1. The insertion was preceded by a search through the bucket to check that

the record we are inserting is not already there. In this case, we are already

at the last block of the bucket.

2. The data structure of Figure 6.5 is enhanced by an array of pointers to the

last blocks of each bucket. Then we can find the desired block directly.

2 We might link blocks in the reverse order from that shown in Figure 6.5, i.e., with the

last block to be added placed at the front of the list rather than at the end. However, if

buckets tend to have few blocks, say one or two, then we would prefer to have a full block

or blocks at the beginning of the list, so the number of blocks retrieved in a successful

lookup is as small as possible.

6.3 HASHED FILES 309

Having found the last block, we place the inserted record therein, if there

is room. If there is no room, we must obtain another block and link it to the

end of the list for bucket h(v).

Deletions are executed similarly. We find the record to be deleted as in

a lookup. If records are pinned, then we simply set the "deleted" bit in the

record. If records are unpinned, we have the option of compacting the blocks of

the bucket, as we did for a heap in the previous section. So doing may reduce the

number of blocks needed for this bucket, thereby reducing the average number

of block accesses needed for subsequent operations.

Example 6.8: It is discovered that 35 is not a prime, so we wish to delete its

record from the structure of Figure 6.5. We compute /i(35) = 35 mod 4, which

is 3, and so look in bucket 3, where we find the record for 35 in the first block on

the list. Assuming records are unpinned, we can go to the last (second) block

in bucket 3 and move a record from that block into the third area in the first

block for bucket 3. In this case, the record for 31 is the only candidate, and it

empties its block. We can thus remove the second block for bucket 3, leaving

the situation in Figure 6.6. D

0 o

1 0-—

2

3

o—

Bucket

)irector

»—

I

17 13 5 29 o

2 o

23 I 7 | 31 | 19 1 11

Figure 6.6 Effect of deleting 35.

Finally, modifications are performed by doing a lookup. We then change

the field or fields in those records that are to be modified. If records are variable-

length, there is the possibility that records will have to be moved among the

blocks of the bucket, as discussed in connection with heaps.

Efficiency of Hashing

The central point is that a hashed file with li buckets behaves as if it were a

heap approximately 1/Bth as long. Thus, we can speed up our operations by

almost any desired factor, £?, that we want. The limiting considerations are:

310 PHYSICAL DATA ORGANIZATION

1. Buckets must have at least one block, so we cannot lower the average

lookup cost below one access per lookup, no matter how large we make B.

2. We have to store the bucket directory, either in main memory or on blocks

of secondary storage. Making B too large forces us to use secondary storage

and increase the number of block accesses by one per operation (to retrieve

the block with the needed bucket header).

Thus, if we have a file of n records, of which R fit on a block, and we

use a hashed file organization with B buckets, whose headers are kept in main

memory, we require on the average:

a) \n/2BK\ accesses for a successful lookup, deletion of an existing record,

or modification of an existing record.

b) \n/ BK\ accesses for an unsuccessful lookup, or for checking that a record

is not in the file (during the attempted deletion of a nonexistent record or

during a check for existence prior to an insertion).

The reason these relationships hold is that the average bucket has n/B

records, and we can apply the analysis for heaps from the previous section. It

should be emphasized that these estimates assume random records in our file.

If the hash function does not distribute records evenly among the buckets, or

if by bad luck, our file has an atypical collection of records, then the average

number of accesses per operation could rise considerably.

To these estimates, we must add one if the bucket directory is not in

main memory, and we must add an additional one for operations that require

modification and writing of one of the blocks of the bucket (i.e., for anything

but a lookup). If records are of variable length, and it may be necessary to move

records among blocks of the bucket, then a fraction of an access per operation

should be added.

Example 6.9: Let us consider the file with n = 1,000,000 and R - 20 discussed

in Example 6.6. If we choose B = 1,000, then the average bucket has n/B =

1,000 records, which would be distributed over n/BR — 50 blocks. On the

assumption block addresses require four bytes, the bucket directory requires

4,000 bytes, and could easily be kept in main memory. The operations requiring

examination of an entire bucket, such as lookup of a record that is not in the file,

take 50 block accesses, plus another one if writing of a block is needed, e.g., if

the operation is insertion preceded by a check that the record does not already

exist. Operations requiring search of only half the bucket on the average are

expected to require 25 or 26 accesses. Using our previous estimate of .01 second

per access, any of these operations can be performed in under a second. D

6.4 INDEXED FILES

We now consider a second representation for files that are to be accessed via

a key. This organization is often called isam, standing for indexed sequential

6.4 INDEXED FILES 311

access method. The description of isam files that we shall give here assumes

that keys are true keys, each belonging to a unique record of the file, rather

than "keys" that determine a small number of records, as in the previous two

sections. We leave as an exercise the generalization of the lookup technique

to the case where keys are really "keys." For the isam representation, we are

required to sort the records of a file by their key values, so let us first consider

how data of arbitrary format is to be sorted.

Sorting Keys

No matter what the domain of values for a field, we can, in principle, compare

values from the domain, and therefore we can sort these values. The justification

is that to be stored in a file, the values must be representable as bit strings,

which can be ordered if we treat them as integers and use numerical order.

The usual domains of values, such as character strings, integers, and reals

have conventional orders placed on them. For integers and reals we have nu

merical order. For character strings we have lexicographic, or dictionary order

defined by X\X2 ••• Xk < YiY2 • • • Vm, where the X's and Y"s represent char

acters, if and only if either

1. k < m and X\ • • • Xk = Y\ • • • Yk, or

2. For some i < min(k, m), we have X\ = YI, X2 = ¥2, . . . , Xi-i = YI-I, and

the binary code for Xi is numerically less than the binary code for YJ.

In ASCII or any other character code in common use, the order of the codes

for letters of the same case is alphabetical order and the order of the codes for

digits is the numerical order of the digits. Thus, for example, ' an ' < ' and ' by

rule (1), and 'banana1 < 'bandana1 by rule (2) with i = 4.

If we have a key of more than one field, we can sort key values by first

arbitrarily picking an order for the key fields. Records are sorted by the first

field, which will result in an ordered sequence of clusters; each cluster consists

of records with the same values in the first field. Each cluster is sorted by the

value of the second field, which will result in clusters of records with the same

values in the first two fields. These clusters are sorted on the third field, and

so on. Note that this ordering is a generalization of lexicographic ordering for

character strings where, instead of ordering lists of characters, we order lists of

values from arbitrary domains.

Example 6.10: Suppose we have a key with two fields, both with integer

values, and we are given the list of key values (2,3), (1,2), (2,2), (3,1), (1,3).

We sort these on the value of the first field to get (1,2), (1,3), (2,3), (2,2), (3,1).

The first cluster, with 1 in the first field, is by coincidence already sorted in

the second field. The second cluster, consisting of (2,3) and (2,2), needs to be

interchanged to sort on the second field. The third cluster, consisting of one

record, naturally is sorted already. The sorted order is

312 PHYSICAL DATA ORGANIZATION

(1,2), (1,3), (2,2), (2,3), (3,1)

D

Accessing Sorted Files

If we are willing to maintain a file of records sorted by key values, we can take

advantage of the known order to find a record quickly, given its key value. We

are probably familiar with at least two examples of searching for key values in

a sorted list: using the dictionary and using the phone book. In both cases

each page has in the upper left corner the first word or name on the page.3 By

scanning these first words, we can determine the one page on which our word

(if a dictionary) or name (if a phone book) could be found.4 This strategy is far

better than looking at every entry on every page. Except for one page, which

we must scan completely, we need only look at one entry per page.

To help speed access to a sorted file, (which we call the main file), we create

a second file called a (sparse) index, consisting of pairs

(<key value>, <block address>)

For each block 6 of the main file, there is a record (v, b) in the index file; « is a

key value that is at least as low as any key value on block 6, but higher than

any key on any block that precedes b. Often, we initially pick v to be the lowest

key on block b, but as time goes on, v could be strictly less than any of the keys

remaining on that block. Also, it is convenient to use v = —oo if 6 is the first

block, where —oo is a value smaller than any real key.

The first field of (v, b) is a key for the index file, and the index file is kept

sorted by its key value. In a sense, an index file is like any other file with a

key, but we may take advantage of the fact that in an index file, records are

never pinned down by pointers from elsewhere. However, there is an important

difference between index files and the general files we have been discussing. In

addition to (possibly) wishing to do insertions, deletions, and modifications on

index files, we wish to obtain the answer to questions of the form: given a key

value v\ for the file being indexed, find that record («2,6) in the index such

that «2 < v\ and either (v2, 6) is the last record in the index, or the next record

(«3,6') has Vi < «3. (Say that «2 covers «i in this situation.) This is how we

find the block b of the main file that contains a record with key value v\ , since

the index file is guaranteed to be sorted.

Operations of the above type rule out certain organizations for index files.

3 The upper right contains the last word/name, but this information is redundant, since

the first word/name of the next page provides equivalent information.

4 In practice we use our intuitive feeling about the distribution of words/names to take

an educated guess as to where our goal lies, and we do not search stolidly starting at

page 1. We shall have more to say about adapting this idea to computer search later.

6.4 INDEXED FILES 313

For example, it would not be convenient to use the hashed file organization of

Section 6.3 for index files, since there is no way to find the value v2 that covers

«i in a hashed file without searching the entire file.

Searching an Index

Let us assume the index file is stored over a known collection of blocks, and

we must find that record (v2,b) such that v2 covers a given key value v\. The

simplest strategy is to use linear search. Scan the index from the beginning,

looking at each record until the one that covers «i is found. This method is

undesirable for all but the smallest indices, as the entire index may be called

into main memory, and on the average, half the index blocks will be accessed

in a successful lookup. Yet even linear search of an index is superior to linear

search of the main file; if the main file has R records per block, then the index

has only 1/flth as many records as the main file. In addition, index records

are usually shorter than records of the main file, allowing more to be packed on

one block.

Binary Search

A better strategy is to use binary search on the keys found in the index file.

Suppose that B\,...,Bn are the blocks of the index file (not main file), and

«i, . . . , vn are the first keys found on BI,..., Bn, respectively. Let us look for

the block of the main file where a record with key v could be found. We first

retrieve index block &fn/2l and compare « with its first key, say w. If v < w,

repeat the process as if the index were on blocks BI • • • Bfn/2i-i- If v > w,

repeat the process as if the index were on B(-n/2l • • • Bn. Eventually, only one

index block will remain. Use linear search on that block to find the key value

in the index that covers v. There is a pointer to a block B of the main file

associated with this key, and if there is a record with key «, it will be on block

B.

As we divide the number of blocks by two at each step, in [log2(n + 1)]

steps at most we narrow our search to one index block. Thus the binary search

of an index file requires that about log2 n blocks be brought into main memory.

Once we have searched the index, we know exactly which block of the main file

must be examined and perhaps must be rewritten to perform an operation on

that file. The total number of block accesses, about 2 + log2 n, is not prohibitive,

as an example will show.

Example 6.11: Let us again consider the hypothetical file of 1,000,000 records

described in Example 6.6. We assumed blocks were 4,096 bytes long, and records

200 bytes long. Since the length of the key matters here, let us assume the key

field or fields use 20 bytes. As R = 20, i.e., 20 records fit on a block, the main

file uses 50,000 blocks. We thus need the same number of records in the index

314 PHYSICAL DATA ORGANIZAT1ON

file.

An index record uses 20 bytes for the key and 4 bytes for the pointer

to a block of the main file. As many as 170 records of 24 bytes each could

fit on one block, but that would leave no room for used/unused bits. Let us

suppose 150 records are placed on one block of the index file. We would then

require 50,000/150 = 334 blocks for the index file; that is, n = 334 in the above

calculation.

Linear search would require about 168 index block accesses on the average

for a successful lookup, in addition to two accesses to read and write a block

of the main file. However, if we use a binary search, accessing and rewriting

a record of the main file requires 2 + log2 334, or about 11 block accesses.

In comparison, the hashed organization requires only three accesses, on the

average, provided we use about as many buckets as there are blocks of the main

file (one access to read the bucket directory, and two to read and write the lone

block of the bucket).

However, there are some advantages of the sorted organization over the

hashed file. In response to a query asking for records with keys in a given

range, we would have to examine almost all the buckets of the hash table, if the

range were substantial, so the hash table offers little help. On the other hand,

the sorted organization allows us to look almost exclusively at those blocks of

the index and the main file that contain relevant records. The only extra work

we have to do is use binary search to find the first relevant index block, and

look at some records outside the desired range in the first and last index blocks

and the first and last blocks of the main file that we access. D

Interpolation Search

A method of searching an index that can be superior to binary search is known

as interpolation or address calculation search. This method is predicated on

our knowing the statistics of the expected distribution of key values, and on

that distribution being fairly reliable. For example, if we are asked to look up

John Smith in the phone book, we do not open it to the middle, but to about

75% of the way through, "knowing" that is roughly where we find the 5's. If we

find ourselves among the T's, we go back perhaps 5% of the way, not halfway

to the beginning, as we would for the second step of a binary search.

In general, suppose we have an algorithm that given a key value «i, tells

us what fraction of the way between two other key values, «2 and «3, we can

expect «i to lie. Call this fraction /(i»i, «2 , ^3)- If an index or part of an index

lies on blocks B\, . . . ,Bn, let v2 be the first key value in B\ and 113 the last

key value in Bn. Look at block Bj, where i = \nf(v\, «2,^3)] to see how its

first key value compares with v\. Then, as in binary search, repeat the process

on either BI, . . . , Bi-i or Bi,...,Bn, whichever could contain the value that

covers v\, until only one block remains.

6.4 INDEXED FILES 315

It can be shown that if we know the expected distribution of keys, then we

can expect to examine about 1 + log2 log2 n blocks of the index file (Yao and

Yao [1976]). When we add to this number the two accesses to read and write a

block of the main file, we get 3 + log2 log2 n. Under the assumptions of Example

6.11, this number is a little over 6, compared with 11 for binary search.

Operating on a Sorted File with Unpinned Records

Let us consider how to do the operations of lookup, insertion, deletion, and

modification on a sorted file with records that are not pinned down, by pointers,

to a fixed location. These four operations will require insertions, deletions, and

modifications to the index file, so it is important to bear in mind that the index

file itself is sorted and has unpinned records. Thus in describing operations on

the main file, we may call for the same operations to be done to the index file,

assuming that the reader sees how to implement these operations on the index.

Note that since the index file has no index, and lookup strategies for the index

file have been described already, we are not using circular reasoning.

The original sorted file is kept on a sequence of blocks BI, B2, . . . , Bfc, with

the records of each block in sorted order, and the records of Bi preceding those

of Bj+i in the ordering, for i — 1, 2, . . . , k — I. We assume that bytes at the

beginning of the file give used/unused information for each of the records areas

of the file, or if records are variable-length, then the beginning of the block tells

us, by offsets, where the records are and where unused space, if any, begins.

Initialization

First, we sort the initial file of records and distribute them among blocks. Since

files tend to grow, we often find it convenient to distribute the initial records

in such a way that there is a small fraction, say 20%, of the total space unused

on each block.

The second step of initialization is to create the index file, by examining

the first record on each block of the main file. The keys of each of these records

are paired with the addresses of their blocks to form the records of the index

file. One useful exception is to replace the key value in the first index record

by —oo, a value that is less than any real key value. Then, should we insert

a record with a key that precedes any key in the current file, we do not have

to treat it specially. When we apportion the index records among blocks, we

might again want to leave a small fraction of the space available, because when

we are forced to increase the number of blocks of the main file we also have to

increase the number of records of the index file.

The final step of initialization is to create a directory containing the ad

dresses of the index blocks. Often, this directory is small enough to put in main

memory. If that is not the case, the directory may itself be put on blocks and

316 PHYSICAL DATA ORGANIZATION

moved in and out of main memory as needed. If we must do so, we are getting

very close to the multilevel index structure known as "B-trees," discussed in

Section 6.5.

Lookup

Suppose we want to find the record in the main file with key value «i . Examine

the index file to find the key value v2 that covers v\ . The index record containing

«2 also contains a pointer to a block of the main file, and it is on that block

that a record with key value v\ will be found, if it exists.

The search for the index record with key v^ covering v\ can be performed

by any of the techniques discussed above—linear search, binary search, or in

terpolation search—whichever is most appropriate.

Modification

To modify a record with key value v\, use the lookup procedure to find the

record. If the modification changes the key, treat the operation as an insertion

and deletion. If not, make the modification and rewrite the record.

Insertion

To insert a record with key value v\ , use the lookup procedure to find the block

Bi of the main file, on which a record with key value v\ would be found. Place

the new record in its correct place in block Bi, keeping the records sorted and

moving records with key values greater than v\ to the right, to make room for

the new record.5

If block Bi had at least one empty record area, all records will fit, and we

are done. However, if Bi was originally full, the last record has no place to go,

and we must follow one of several strategies for creating new blocks. In the

next section we shall discuss a strategy ("B-trees"), in which Bi is split into

two half-empty blocks. An alternative is to examine BJ+I. We can find Bt+i'

if it exists, through the index file, since a pointer to Bi+i is in the record of the

index file that follows the record just accessed to find Bi. If BJ+I has an empty

record area, move the excess record from Bi to the first record area of .Bj+i,

shifting other records right until the first empty record area is filled. Change

the used/unused information in the header of BJ+I appropriately, and modify

the index record for Bi+i to reflect the new key value in its first record. If Bi+i

has many empty record areas, we can shift enough records from Bi to Bi+i to

equalize the amount of empty space on each; the number of block accesses is

not increased, and in fact, very little extra computation is needed.

5 Remember, we assume that the most significant cost of operations is the block access

time, and simple computations on the block, like moving data left or right, do not

dominate the total cost.

6.4 INDEXED FILES 317

If Bi+i does not exist, because i = k, or Bi+i exists but is full, we could

consider obtaining some space from Bj_i similarly. If that block is also full,

or doesn't exist, we must get a new block, which will follow Bi in the order.

Divide the records of Bi between Bi and the new block. Then insert a record

for the new block in the index file, using the same strategy as for inserting a

record into the main file.

Deletion

As for insertion, a variety of strategies exist, and in the next section we shall

discuss one in which blocks are not allowed to get less than half full. Here,

let us mention only the simplest strategy, which is appropriate if relatively few

deletions are made. To delete the record with key value «i, use lookup to

find it. Move any records to its right one record area left to close the gap,6

and adjust the used/unused bits in the header. If the block is now completely

empty, return it to the file system and delete the record for that block in the

index, using the same deletion strategy.

Example 6.12: Suppose we have a file of numbers records, and initially our

file consists of records for the following list of "random" numbers, which were

generated by starting with 2, and repeatedly squaring and taking the remainder

modulo 101. Our initial sorted list is:

2, 4, 5, 16, 25, 37, 54, 56, 68, 79, 80, 88

We can fit five records on a block, but let us initially place only four on each to

leave some room for expansion. The initial layout is shown in Figure 6.7. Each

of the three blocks of the main file has one empty record area and four bytes of

waste space at the end, one byte of which could be occupied by used/unused bits

for the five record areas of the block. The one block of the index file has three

records, (-00,61), (25,62)1 and (68,63), where 6i, 62, and 63 are the addresses

of the three blocks of the main file. The directory of index blocks is not shown,

but would contain the address of the one index block.

Now, let us consider what happens when the next four numbers in this

random sequence, 19, 58, 31, and 52, are inserted. We place 19 in the first

block, and it happens to follow all the numbers already in that block. We thus

place it in the fifth record area, the one that is empty, and there is no need to

slide records to the right in this block. Number 58 similarly goes in the second

block, and" its proper place is in the fifth record area, so no rearrangement is

necessary.

The third insertion, 31, also belongs in block 2, and its proper place is in

6 This step is not essential. If we do choose to close up gaps, we can use a count of the

full record areas in the header in place of a used/ Caused bit for each record area. The

reader should again be reminded that if records are pinned we do not even have the

option of moving records into record areas whose records have been deleted.

318 PHYSICAL DATA ORGANIZATION

X
t 4 a ID III

(

25 37 54 56
///I

(

68 79 80 88 ///

o o

wl/// ///I///—oo

Figure 6.7 Initial index file.

the second record area, after 25. We must thus slide 37, 54, 56, and 58 to the

right to make room. However, there is not room for six records, and we must

find a place for one of them. In this case, the third block has space, so we can

shift 58 into the first record area of the third block, and shift the four records

already in that block to the right. Since 58 is now the lowest key in the third

block, we must change the index record for that block. These modifications are

shown in Figure 6.8.

^ <4 o 1U
13 I///

/* 25 31 37|54 56 |///

f

58 68 79 80 88 I///

///!///-oo 1 25 58 I///

Figure 6.8 After inserting 19, 58, 31.

Our final insertion is 52, which also belongs in block 2, following 37. Again

there is no room in block 2, but now, the following and preceding blocks are

also full. Thus, we split the second block into two, each of which will take three

of the records: 25, 31, and 37 in one, and 52, 54, and 56 in the other. The first

of these two blocks can be identified with the block being split-, since its index

record (25, 62) is the same. The second requires a new index record, with key

52, and this record must be inserted in the proper order into the index file. The

resulting structure is shown in Figure 6.9. D

Sorted Files with Pinned Records

If records are pinned down to the place in which they are first stored, we cannot,

in general, keep records sorted within a block. One solution is to start the file

6.4 INDEXED FILES 319

- z 4 ;> Ib iy ///

25 31 37
///I

, 52 54 56 ///

r 58 68 79 80 88 ///

r& £ £ //////i
^99

Figure 6.9 After inserting 52.

with essentially the same organization as if records were unpinned, as in Figure

6.7. However, we view each block of the main file as the first block of a bucket.

As records are inserted, additional blocks will be added to the bucket, and new

blocks are chained by a series of pointers extending from the original block for

that bucket.

The index never changes in this organization, and the first records of each

block of the initial file determine the distribution of records into buckets forever,

or at least until the file has gotten so large that it is worthwhile reorganizing

it into a larger number of buckets. Let us now describe the way in which

operations are performed on a file with this organization.

Initialization

Sort the file and distribute its records among blocks. Consider filling each block

to less than its capacity to make room for expected growth and to avoid long

chains of blocks in one bucket. Create the index with a record for each block.

As in the previous organization, it is important to use key —oo for the first

block, so keys smaller than any seen before will have a bucket in which they

belong.

Operations

The operations on files with this organization are performed with a combination

of the ideas found in Section 6.3, concerning hashed files, and the organization

just discussed, concerning sorted files with unpinned records. The salient fea

tures are mentioned below:

1. Lookup. Find the index record whose key value v2 covers the desired key

value «i. Follow the pointer in the selected index record to the first block

of the desired bucket. Scan this block and any blocks of the bucket chained

to it to find the record with key «i .

320 PHYSICAL DATA ORGANIZATION

2. Insertion. Use the lookup procedure to find the desired bucket. Scan the

blocks of the bucket to find the first empty place. If no empty record area

exists, get a new block and place a pointer to it in the header of the last

block of the bucket. Insert the new record in the new block.

3. Deletion. Use the lookup procedure to find the desired record. We might

consider setting the used/unused bit for its record area to 0. However, as

discussed in Section 6.1, if there may exist pointers to the record being

deleted, another deletion strategy must be used. The used/unused bit is

kept at 1, and to indicate removal of the record, a deletion bit in the record

itself is set to 1.

4. Modification. Perform a lookup with the given key. If only nonkey fields

are to be changed, do so. If one or more fields of the key change, treat

the modification as a deletion followed by an insertion. However, if records

are pinned and modification of key fields is permitted, we must not simply

set the deleted bit of the old record to 1. If we did nothing else, then old

pointers to that record would "dangle," and we would not be able to find

the modified record by following those pointers. Thus, we must not only

set the deleted bit for the deleted record, but we must leave in that record

a "forwarding address," pointing to the new incarnation of the record.

Example 6.13: Suppose we begin with the file shown in Figure 6.7 and add

the numbers 19, 58, 31, 52, 78, and 24. As in Example 6.12, the first two of

these go in blocks 1 and 2, and they accidentally maintain the sorted order of

the blocks, as they are placed in the fifth record area of each block. When we

insert 31, we must create a new block for the second bucket and place it in the

first record area. Similarly, 52 goes in the second record area of the new block,

78 fills the block of the third bucket, and 24 requires us to create a second block

for bucket 1. The final organization is shown in Figure 6.10. D

Additional Links

As records are not placed in a bucket in sorted order after the initialization,

we may have difficulty if we wish to examine records in sorted order. To help,

we can add a pointer in each record to the next record in sorted order. These

pointers are somewhat different from the pointers we have been using, since

they not only indicate a block, but they also indicate an offset within the block;

the offset is the number of the byte that begins the stored record, relative to

the beginning of the block. The algorithms needed to maintain such pointers

should be familiar from an elementary study of list processing.

Example 6.14: The second bucket of Figure 6.10 with pointers indicating the

sorted order is shown in Figure 6.11. D

6.5 B-TREES 321

Figure 6.10 Inserting into file of pinned records.

cy Sao

37^ 54 56 58

Figure 6.11 Linking records in sorted order.

6.5 B-TREES

An index being nothing more than a file with unpinned records, there is no

reason why we cannot have an index of an index, an index of that, and so on,

until an index fits on one block, as suggested in Figure 6.12. In fact, such an

arrangement can be considerably more efficient than a file with a single level of

322 PHYSICAL DATA ORGANIZATION

indexing. In the structure of Figure 6.12, the main file is sorted by key value.

The first level index consists of pairs (v, 6), where 6 is a pointer to a block B

of the main file and v is the first key on block B. Naturally, this index is also

sorted by key value. The second level of index has pairs (v,b), where b points

to a first-level index block and v is its first key, and so on.

Third-level

Index

Second-level

Index

First-level

Index

Figure 6.12 Multilevel index.

There are many forms that multilevel index structures can take, and they

are collectively referred to as B- trees (balanced trees). The particular structure

suggested in Figure 6.12 keeps the main file as part of the B-tree itself and

assumes that the main file has unpinned records. This style does not use space

as efficiently as possible, and we introduce the subject of B-trees this way

only because of its simplicity. A superior approach, which saves space in most

situations and is also suitable for storing pinned records, is described in Section

6.6. There we keep the main file packed tightly on blocks with records in no

particular order, as a heap. Then the leaves of the B-tree contain not the main

file records, but pointers to those records.

For insertion and deletion on a B-tree, we could use the same strategy as

was described in the previous section, applying the insertion and deletion oper

ations to the nodes (blocks) of the tree at all levels. This strategy would result

in nodes having between one and the maximum possible number of records.

Rather, B-trees are usually defined to use a particular insertion/deletion strat

egy that ensures no node, except possibly the root, is less than half full. For

convenience, we assume that the number of index records a block can hold is

an odd integer 2d — 1 > 3, and the number of records of the main file a block

can hold is also an odd integer 2e — 1 > 3.

6.5 B-TREES 323

Before proceeding, we must observe one more difference between B-trees

and the index hierarchy suggested by Figure 6.12. In index blocks of a B-tree,

the key value in the first record is omitted, to save space. During lookups, all

key values less than the value in the second record of a block are deemed to be

covered by the (missing) first key value.

Lookup

Let us search for a record with key value v. We find a path from the root of the

B-tree to some leaf, where the desired record will be found if it exists. The path

begins at the root. Suppose at some time during the search we have reached

node (block) B. If B is a leaf (we can tell when we reach a leaf if we keep the

current number of levels of the tree available) then simply examine block B for

a record with key value v.

If B is not a leaf, it is an index block. Determine which key value in block

B covers v. Recall that the first record in B holds no key value, and the missing

value is deemed to cover any value less than the key value in the second record;

i.e., we may assume the missing key value is —oo. In the record of B that covers

t> is a pointer to another block B'. In the path being constructed, B' follows

B, and we repeat the above steps with B' in place of B.

Since the key value in record t of B is the lowest key of any leaf descending

from the tth child of B, and the main file's records are sorted by key value, it

is easy to check that B' is the only child of B at which a record with key v

could exist. This statement also holds for t = 1, even though there is no key

in the first record of B. That is, if v is less than the key in the second record,

then a main-file record with key v could not be a descendant of the second or

subsequent children of B.

Modification

As with the other organizations discussed, a modification involving a key field

is really a deletion and insertion, while a modification that leaves the key value

fixed is a lookup followed by the rewriting of the record involved.

Insertion

To insert a record with key value «, apply the lookup procedure to find the

block B in which this record belongs. If there are fewer than 2e — 1 records

in B, simply insert the new record in sorted order in the block. One can show

that the new record can never be the first in block B, unless B is the leftmost

leaf. Thus, it is never necessary to modify a key value in an ancestor of B.

If there are already 2e — 1 records in block B, create a new block B\ and

divide the records of B and the inserted record into two groups of e records

each. The first e records go in block B and the remaining e go in block B\ .

324 PHYSICAL DATA ORGANIZATION

Now let P be the parent block of B. Recall that the lookup procedure

finds the path from the root to B, so P is already known. Apply the insert

procedure recursively, with constant d in place of e, to insert a record for B\ to

the right of the record for B in index block P. Notice that if many ancestors of

block B have the maximum 2d — 1 records, the effects of inserting a record into

B can ripple up the tree. However, it is only ancestors of B that are affected.

If the insertion ripples up to the root, we split the root, and create a new root

with two children. This is the only situation in which an index block may have

fewer than d records.

Example 6.15: Nontrivial examples of B-trees are hard to show on the page.

Let us therefore take the minimum possible values of d and e, namely two.

That is, each block, whether interior or a leaf, holds three records. Also to

save space, we shall use small integers as key values and shall omit any other

fields, including used/unused bits in the header. In Figure 6.13 we see an initial

B-tree.

. First record, key

value omitted

Third record

Figure 6.13 Initial B-tree.

Suppose we wish to insert a record with key value 32. We find a path to

the block in which this record belongs by starting at the root, B\. We find that

32 is covered by 25, the key value in the second record of B\. We therefore

progress to B3, the block pointed to by the second record of B\. At B3 we find

that 32 is less than 64, the value in the second record of BS, so we follow the

first pointer in B3, to arrive at Bj. Clearly 32 belongs between 25 and 36 in

6.5 B-TREES 325

By, but now B^ has four records. We therefore get a new block, BH, and place

25 and 32 in B7, while 36 and 49 go in Bi2.

We now must insert a record with key value 36 and a pointer to B\2 into

B3. Value 36 is selected because that is the lowest key value on the block B\2-

This insertion causes B3 to have four records, so we get a new block B\3. The

records with pointers to B7 and B12 go in B3, while the records with pointers

to BS and Bg go in B13. Next, we insert a record with key value 64 and a

pointer to Bi3 into B\. Now BI has four records, so we get a new block BU,

and place the records with pointers to B2 and B3 in BI , while the records with

pointers to Bi3 and B4 go in B14. As BI was the root, we create a new block

B15, which becomes the root and has pointers to BI and Bi4. The resulting

B-tree is shown in Figure 6.14.

9 |l6| - ||25|32| - ||36|49|

Bit Bg Bio

Figure 6.14 B-tree after insertion of 32.

Deletion

If we wish to delete the record with key value v, we use the lookup procedure

to find the path from the root to a block B containing this record. If after

deletion, block B still has e or more records, we are usually done. However, if

the deleted record was the first in block B, then we must go to the parent of

B to change the key value in the record for B, to agree with the new first key

value of B. If B is the first child of its parent, the parent has no key value for

B, so we must go to the parent's parent, the parent of that, and so on, until

326 PHYSICAL DATA ORGANIZATION

we find an ancestor A\ of B such that A\ is not the first child of its parent

AI- Then the new lowest key value of B goes in the record of AI that points to

A\. In this manner, every record («i,pi) in every index block has key value v\

equal to the lowest of all those key values of the original file found among the

leaves that are descendants of the block pointed to by p\ .7

If, after deletion, block B has e — l records, we look at the block B\ having

the same parent as B and residing either immediately to the left or right of B.

If BI has more than e records, we distribute the records of B and B\ as evenly

as possible, keeping the order sorted, of course. We then modify the key values

for B and/or B\ in the parent of B, and if necessary, ripple the change to as

many ancestors of B as have their key values affected. If BI has only e records,

then combine B with BI, which will then have exactly 2e — 1 records, and in

the parent of B, modify the record for BI (which may require modification of

some ancestors of B) and delete the record for B. The deletion of this record

requires a recursive use of the deletion procedure, with constant d in place of e.

If the deletion ripples all the way up to the children of the root, we may

finish by combining the only two children of the root. In this case, the node

formed from the combined children becomes the root, and the old root is deleted.

This is the one situation in which the number of levels decreases.

Example 6.16: Let us delete the record with key value 64 from the B-tree of

Figure 6.14. The lookup procedure tells us the path to the block that holds this

record is BI$, BU, B\3, Bs. We delete the record from Bg and find that it was

the first record of that block. We therefore must propagate upwards the fact

that the new lowest key value in BS is 81. As BS is the leftmost child of BIS,

we do not change B\z, nor do we change BU, since B13 is its leftmost child.

However, B\4 is not the leftmost child of BIS, so there is a key value in Bi5

that must be changed, and we change 64 to 81 there. Notice that a deletion

never causes more than one key value to be changed.

We have another problem when we delete 64. Block BS now has only one

record. We go to its parent, B\3, and find that Bs has no sibling to its left. We

therefore examine Bg's sibling to the right, Bg. As Bg has only two records,

we can combine Bg with Bs. Now we discover that B13 has only one child, and

we must combine B\3 with its sibling, B4. Block BIS will now have pointers to

B8, BIO, and B\I. The key value 196 to go with the pointer to B\\ is found in

.64, while the key value 144 to go with B\Q is found in BU. In general, when

we merge blocks in a deletion, the necessary key values are found either in the

merged blocks or in their common parent. We leave it as an exercise for the

reader to develop an algorithm to tell where the desired key values are found.

7 This property is not essential, and we could dispense with the modification of keys in

index blocks. Then v\ would be a lower bound on the keys of descendants of the block

pointed to by p\ . The descendants to the left of that block will still have keys less than

«i, as they must for the B-tree to be useful for finding records.

6.5 B-TREES 327

On combining BIS ami .84, we find BH has only one child, and so we

combine BH with B\. At this time, BI$ has only one child, and since it is the

root, we delete it, leaving the B-tree of Figure 6.15. D

B2
9\ 9 M - H B3 I?|36M-|°I Bl3Ml44|o|l96|

1 | 4 | - | | 9 1 16 1 - | 1 25 1 32 1 - | |36|49| - | |8l|lOOJ12l| |l44|l69|

B& BQ Bf B\2 BQ BIQ

Figure 6.15 B-tree after deleting 64.

Time Analysis of B-tree Operations

Suppose we have a file with n records organized into a B-tree with parameters d

and e. The tree will have no more than n/e leaves, no more than n/de parents

of leaves, n/d?e parents of parents of leaves, and so on. If there are i nodes

on paths from the root to leaves, then n > d*~1e, or else there would be fewer

than one node at the level of the root, which is impossible. It follows that

i < 1 + logd(n/e)

To perform a lookup, i read operations on blocks suffices. For an insertion,

deletion, or modification, usually only one block (the leaf holding the record

involved) needs to be written, although in pathological cases, about i additional

reads and i additional writes may be necessary. Exact analysis of the probability

of finding blocks with too many records in an insert or too few records in a

deletion is very difficult. However, it is not hard to show that even for d = e — 2,

the expected number of extra reads and writes (in excess of the i reads to find

the leaf and one write to store the leaf) is a proper fraction. We shall thus

neglect this fraction and estimate the number of read/writes at 2 + logd(n/e).

Even this figure is conservative, since in the average case many blocks will have

more than the minimum number of records, and therefore the height of the tree

may well be less than 1 + logd(n/e).

328 PHYSICAL DATA ORGANIZATION

Example 6.17: Let us reconsider our running example of a file, which we dis

cussed in relation to single-level indices in Example 6.11. Records are assumed

200 bytes long, and if we want an odd number on 4,096-byte blocks, we must

choose 2e - 1 = 19; i.e., e = 10. We assumed in Example 6.11 that keys were

20 bytes long, and pointers took 4 bytes. Since we omit the first key, we can

fit 171 index records on a 4,096-byte block, since 170 x 20 -I- 171 x 4 = 4,084.

Thus, d = 86. The expected number of block accesses per operation is thus

2 + \ogd(n/e) = 2 + log86(l,000,000/10) < 5

This figure is greater than the best for hashed access (about 3 read/writes),

but is superior to methods using a single level of indexing, except perhaps in

those situations where an interpolation search can be performed. The B-tree

shares with the methods of Section 6.4 the advantage over hashed access of

permitting the file to be listed or searched conveniently in sorted order. D

6.6 FILES WITH A DENSE INDEX

In the schemes discussed so far, hashing, sparse indices, and B-trees, most

blocks of the main file are only partially filled. For example, a hash structure

with an adequate number of buckets will have only one or two blocks in most

buckets, and at least one block per bucket will be only partially filled. In the

B-tree scheme discussed in the previous section, all the leaf blocks are between

half-full and completely full, with the average block around three-quarters full.

In contrast, the heap, mentioned in Section 6.2, keeps all main file blocks

but the last full, which saves a significant amount of space.8 The problem with

using a heap, of course, is that we must have an efficient way of finding a record,

given its key value. To do so, we need another file, called a dense index, that

consists of records (v,p) for each key value v in the main file, where p is a

pointer to the main file record having key value v. The structure of the dense

index may be any of the ones discussed in Sections 6.3-6.5; i.e., we only require

that we can find the record (v,p) quickly, given the key v. Note, incidentally,

that a "dense" index stores a pointer to every record of the main file, while the

"sparse" indices discussed previously stored the keys for only a small subset of

the records of the main file, normally only those that were the first on their

blocks.

To look up, modify, or delete a record of the main file, given its key, we

perform a lookup on the dense index file, with that key, which tells us the block

of the main file we must search for the desired record. We must then read this

block of the main file. If the record is to be modified, we change the record and

8 There is the detail that if records are pinned, we cannot physically delete records but

must set a "deleted" bit. However, this extra space cost occurs with all storage structures

when records are pinned.

6.6 FILES WITH A DENSE INDEX 329

rewrite its block onto secondary storage. We thus make two more block accesses

(one to read and one to write) than are necessary to perform the corresponding

operation on the dense index file.

If we are to delete the record, we again rewrite its block and also delete

the record with that key value from the dense index file. This operation takes

two more accesses than a lookup and deletion from the dense index.

To insert a record r, we place r at the end of the main file and then insert

a pointer to r, along with r's key value, in the dense index file. Again this

operation takes two more accesses than does an insertion on the dense index

file.

It would thus seem that a file with a dense index always requires two more

accesses than if we used, for the main file, whatever organization (e.g., hashed,

indexed, or B-tree) we use on the dense index file. However, there are two

factors that work in the opposite direction, to justify the use of dense indices

in some situations.

1. The records of the main file may be pinned, but the records of the dense

index file need not be pinned, so we may use a simpler or more efficient

organization on the dense index file than we could on the main file.

2. If records of the main file are large, the total number of blocks used in the

dense index may be much smaller than would be used for a sparse index

or B-tree on the main file. Similarly, the number of buckets or the average

number of blocks per bucket can be made smaller if hashed access is used

on the dense index than if hashed access were used on the main file.

Example 6.18: Let us consider the file discussed in Example 6.17, where we

used a B-tree with d = 86 and e = 10 on a file of n = 1,000,000 records.

Since dense index records are the same size as the records in the interior nodes

of a B-tree, if we use a B-tree organization for the dense index, we may take

d = 86 and e — 85.9 Thus, the typical number of accesses to search the dense

index is 2 + log86(1,000,000/85), or slightly more than 4. To this we must add

two accesses of the main file, so the dense index plus B-tree organization takes

between one and two more block accesses [the actual figure is 2 — log86 (85/10)]

than the simple B-tree organization.

There are, however, compensating factors in favor of the dense index. We

can pack the blocks of the main file fully if a dense index is used, while in the

B-tree organization, the leaf blocks, which contain the main file, are between

half full and completely full; thus, we can save about 25% in storage space

for the main file. The space used for the leaves of the B-tree in the dense

index is only 12% of the space of the main file, since index records are 24 bytes

Technically, the leaf blocks of the B-tree used as a dense index must have key values

in all the records, including the first. This difference means that we can fit only 170

records in leaf blocks, and so must take e = 85.

330 PHYSICAL DATA ORGANIZATION

long and main file records are 200 bytes. Thus, we still have a net savings of

approximately 13% of the space. Perhaps more importantly, if the main file has

pinned records, we could not use the B-tree organization described in Section

6.5 at all. D

Methods for Unpinning Records

Another use for a dense index is as a place to receive pointers to records. That

is, a pointer to record r of the main file may go instead to the record in the

dense index that points to r. The disadvantage is that to follow a pointer to

r we must follow an extra pointer from the dense index to the main file. The

compensation is that now records of the main file are not pinned (although the

records of the index file are). When we wish to move a record of the main

file, we have only to change the one pointer in the dense index that points

to the moved record. We may thus be able to use a more compact storage

organization for the main file, and the storage savings could more than cover

the cost of the dense index. For example, if the main file is unpinned, we can

reuse the subblocks of deleted records.

Another technique for making files unpinned is to use the key values of

records in place of pointers. That is, instead of storing the address of a record

r, we store the value of the key for r, and to find r we do a standard lookup

given the key value. The IMS database system (IBM [1978b]), for example,

makes use of this technique, as discussed in Section 6.10. In this way, both the

dense index file and the main file can be unpinned. The disadvantage of this

implementation of pointers is that to follow a "pointer" to the main file, we

must search for the key value of that record in the dense index, or in whatever

structure is used for accessing the main file, which will probably take several

block accesses. In comparison, we would need only one block access if we could

go directly to the record of the main file, or two accesses if we went directly to

the record in the dense index and then to the record in the main file.

Summary

In Figure 6.16 we list the four types of organizations for files allowing lookup,

modification, insertion, and deletion of records given the key value. In the

timing analyses, we take n to be the number of records in the main file and,

for uniformity with B-trees, we assume the records of the main file are packed

about e to a block on the average, and records of any index files can be packed

about d to a block on the average.

6.7 NESTED RECORD STRUCTURES

Frequently, we are interested in doing more than retrieving records, given their

key value. Instead, we want to find a subset of the records in a file based

6.7 NESTED RECORD STRUCTURES 331

Time per

Organization Operation

Advantages and

Disadvantages

Problems with

Pinned Records

Hashed « 3 if buckets Fastest of all Must search

average one

block.

methods. If

file grows,

access slows,

as buckets get

large. Cannot

access records

easily in order

of sorted key

values.

buckets for

empty space

during inser

tion or allow

more blocks

per bucket

than optimal

IhHin index w 2 4- log(n/de)

for binary search

»s 3 + log log(n/de)

if address cal

Fast access if

address calcul

ation can be

used. Records

Same as above.

culation is can be accessed

feasible and in sorted order.

is used.

B-tree &2 + logd(n/e) Fast access.

Records can be

Use B-tree

as dense

accessed in index.

sorted order.

Blocks tend not

to be solidly

packed.

Dense index < 2 + time for

operation on

dense index

Often slower by

one or two block

accesses than

None.

file. if same access

method used for .

index file were

used for the

main file.

May save space.

Figure 6.16 Summary of access methods.

332 PHYSICAL DATA ORGANIZATION

on their value in a nonkey field or fields, or we want to retrieve a subset of

records because of their relationship to a record in another file. For example,

consider the hierarchical structure of Figure 2.26, and particularly the tree with

root CUSTOMERS, intermediate node ORDERS, and leaf ENTRIES (which

consist of an item plus a quantity of that item ordered). We might wish to find

a given customer, examine all of the orders placed by that customer, and all of

the entries within some or all of those orders.

When we are interested in retrieving related collections of records, we can

minimize block accesses in a way that does not even enter into consideration

when we assume the basic operation is the retrieval of a single record, as in

Sections 6.1 6.6. For example, we might hope that all the orders and entries

for a given customer are located on the same block or, at worst, among a few

consecutive blocks. Then having found the customer, perhaps reading several

blocks of an index or hash structure to find his record, we could retrieve all of

his orders and entries from the block on which the customer record was found

plus the immediately following blocks, if necessary.

When we interleave records of two or more types, it is useful to have a

notation to describe the common patterns that arise. We define patterns and

their instances, i.e., the sequences of records they denote, as follows.

1. If A is a record type, then R is a pattern whose instances are all the

occurrences of a single record of type R.

2. If PI, . . . , Pn are patterns, then PI • • • Pn is a pattern. This pattern's in

stances are all those sequences of records of the form /i •••/n, where Ij is

an instance of pattern Pj, for j = 1, 2, . . . , n.

3. If P is a pattern, then (P)* is a pattern. Its instances are all those sequences

of records of the form Ii •••/n, where each Ij is an instance of pattern

P. Here, 1 < j < n, and n may be 0, in which case the instance is

the "sequence" of zero records. The parentheses may be omitted if no

ambiguity results. We call an instance of a starred pattern such as (P)* a

repeating group.

Example 6.19: Let us consider the hierarchy of Figure 2.26 again. An entry

consists of a virtual item and a quantity. We may regard the virtual item pointer

as a record type, say VITEM, and the quantity likewise as a one-field record,

which we shall call QUANTITY. Then we could define the pattern ENTRIES

to consist of a VITEM record followed by a QUANTITY record, as

ENTRIES = VITEM QUANTITY

Note that there is no significant distinction between two records concatenated,

as we have done here, and a single record with two fields; we could have regarded

ENTRIES as a fundamental record type, rather than the name of a pattern.

We may then regard an order as an ORDERS record followed by a sequence

of zero or more "entries," that is, an alternation of virtual items pointers and

6.7 NESTED RECORD STRUCTURES 333

quantities. These sequences are exactly the instances of the pattern

ORDERS (VITEM QUANTITY)* (6.1)

Then, we might represent the entire tree rooted at CUSTOMERS by saying

that a customer is a collection of records with pattern

CUSTOMERS (ORDERS (VITEM QUANTITY)*)* (6.2)

The instances of this pattern are the preorder traversals of the possible database

records.10 A file consisting of any number of these database records would have

the pattern

(CUSTOMERS (ORDERS (VITEM QUANTITY)*)*)*

For a more complex example, a database record for DEPTS in Figure 2.26

can be described by

DEPTS EMPS* MGR (ITEMS VORDERS* VSUPPLIERS*)*

That is, in preorder traversals of database records for departments, we find one

DEPTS record followed by records for all the employees of the department,

followed by a record for the one manager of the department, and zero or more

groups of records, one group for each item the department sells. Each group con

sists of the ITEMS record for the item, a sequence of virtual ORDERS records,

one for each order including that item, and a sequence of virtual SUPPLIERS

records, one for each supplier of the item. D

Storage by Preorder Sequence

One common way to store nested or hierarchical structures is in the preorder se

quence as we traverse tree-structured "database records." That is, we store the

records in exactly the order implied by the pattern that describes the hierarchy.

Example 6.20: Suppose we have a collection of CUSTOMERS database

records, each with the structure of (6.2) above. Also assume that the data

in this database record is what we find in the sample database for the YVCB of

Figure 4.2. Then the preorder traversal of the database record for Zack Zebra

visits records in the order shown in Figure 6.17.

If we take the data type definitions of Figure 5.16 as a guide, we might

suppose that CUSTOMERS records require 80 bytes, ORDERS require 20,

and virtual ITEMS and QUANTITY records require 8 each. These figures

assume that fields must begin at a multiple of 4, and there is a 4-byte region

of every record holding a code that identifies the record type, as well as other

information such as a "deleted" bit. With these estimates, the entire database

10 Recall from Section 2.6 that a "database record" in a hierarchical system is an instance

r of the record type of some root, together with all the descendant records in the tree

of the actual database whose root is (physical) record r.

334 PHYSICAL DATA ORGANIZATION

CUSTOMERS record for Zack Zebra

ORDERS record for order 1024

Virtual ITEM pointer to "Brie"

QUANTITY 3

Virtual ITEM pointer to "Perrier"

QUANTITY 6

ORDERS record for order 1026

Virtual ITEM pointer to "Macadamias"

QUANTITY 2048

Figure 6.17 Order of records in one database record.

record takes 168 bytes, and it is very likely that it fits on one block. Thus, if

we search for and find the Zack Zebra CUSTOMERS record, we often require

no additional retrievals to find the orders and entries within those orders for

this customer, although additional block retrievals are necessary if we follow

the virtual pointers and actually retrieve the items ordered.

With bad luck, the records of Figure 6.17 will be distributed over two

consecutive blocks, and both will have to be retrieved to get all the orders for

Zack Zebra. However, even two block accesses is much better than what we

might have to face if we stored customers, orders, and item-quantity pairs in

separate files, with no clustering of orders or entries for the same customer.

Then we might find each of the nine records of Figure 6.17 on a different block.

D

Separate Storage of Repeating Groups

Another way to store a nested structure is to replace each of the outermost

repeating groups (those that are not inside any other repeating group) by a

pointer that indicates a place on another block or group of blocks where the

repeating group itself may be found in consecutive space. Also needed is in

formation about how to tell when the list of records in the repeating group

ends. For example, we might attach to the pointer a count of the number of

occurrences of the repeating group, or the records of the repeating group itself

might be linked in a list, with a null pointer to indicate the end of the repeating

group.

Example 6.21: In the structure for a single CUSTOMERS database record,

given by (6.2) above, there is one outermost repeating group, which is the

structure for a single order that was given by (6.1). We could replace this

repeating group by a pointer, which we could think of as a "virtual list of

orders." The structure of a CUSTOMERS database record thus becomes

6.7 NESTED RECORD STRUCTURES 335

CUSTOMERS VORDERS

This structure is equivalent to a simple, fixed-length record, like CUSTOMERS

records, with an additional field for a pointer and perhaps a count of orders.

The structures for the orders can then be stored in preorder sequence, or

they can be further broken down by replacing the outermost repeating group

of (6.1), which is

(VITEM QUANTITY)*

by a pointer to a list of "entries," which are item-quantity pairs. If we take this

option, then the CUSTOMERS, ORDERS, and ENTRIES records are spread

over three files, and therefore, over three groups of blocks, as is suggested by

the structure of Figure 6. 18. There, we have linked together records belonging

to a single repeating group. D

CUST(Zebra) | VORDERS(y)| • • - (other customers)

I ORDERS(1024) I VENTRY((j')| /[| ORDERS(1026) | VENTRY(y) |

|VITEM(c')|3|/| | VITEM(c.)|6]T| [VITEM(y)

f

2048

7
Brie Perrier Macadamias

Figure 6.18 Representing repeating groups by pointers.

Operations on Nested Record Structures

Some of the operations that we want to perform on nested record structures are

the usual ones: lookup, insert, delete, or modify a record of one of the record

types involved in the structure. In previous sections, we assumed that these

record accesses were performed with a key value, and that value determined

where the record was located. In this more complex situation, where we are

trying to store nested structures to keep "related" records close together, we

cannot allow the records also to be positioned according to the demands of some

primary index structure, such as a hashed file or a sorted file.11

11 There are some exceptions. For example, under the separate-storage technique illus

336 PHYSICAL DATA ORGANIZATION

In general, if we want to access records of a given type by their key value,

we need to create a dense index, as was discussed in Section 6.6, to take us from

key values to the locations of the records. For example, if ORDERS records

are stored near the customer who placed the order, as in Figure 6.17, then we

might create a hash table or B-tree that stored records consisting of a key value,

which is an order number, and a pointer to an ORDERS record. But we could

not store the ORDERS records themselves in buckets, because then they would

not be close to their customer, as in Figure 6.17. If orders are not placed near

their customer, we cannot retrieve all of the orders for a given customer by

accessing just one or a few blocks, on which all of those orders were found; we

would have to retrieve about one block per order.

However, as indicated above, the reason for using a nested structure is not

to assist with simple record accesses; it is to support operations that access

related records. We have suggested that structures such as (6.2) are suitable

for operations in which we scan a tree of a hierarchy, and indeed that is so,

since the descendants of any node appear on a number of blocks that is not too

much greater than the smallest number on which they are physically capable

of fitting. Thus, we can see them all with a number of block accesses that is

proportional to the space taken by the records (measured in blocks), rather

than proportional to the number of records, which is usually much larger, since

typically many records fit on a block.

Example 6.22: Let us use the estimates of record sizes given in Example 6.20

and assume that a typical customer has four orders with five entries each. Then

an average database record uses

80 + 4 x (20 + 5 x (8 + 8)) = 480 bytes

Moreover, since this database record consists of 45 separate records of differing

lengths,12 we need a block directory or an equivalent structure to help us find

the records. At four bytes per pointer, we need another 180 bytes per database

record for directory space, or 660 bytes per customer. If blocks are 4,096 bytes

long, we can store about six customers per block. Thus, the probability is

approximately 83% that the records for a single customer will be found on one

block; in the remaining 17% of the cases, two blocks need to be retrived.

Suppose our query is: given a customer, find his order numbers. With the

nested structure stored in preorder, we must find the record for the customer.

If we use a dense index on customer name, stored as a hash table with an

trated in Example 6.21, we could store CUSTOMERS records in a hash table or sorted

file if we kept the pointers to orders structures along with the corresponding customer's

record.

12 That is probably an overestimate, since we would naturally group entries, consisting

of a virtual item and a quantity, into a single record, reducing the number of different

records per customer to 25.

6.7 NESTED RECORD STRUCTURES 337

adequate number of buckets, we need about 2 block accesses, one for the block

of the bucket and one for the block on which the customer record is stored. To

that, we add another sixth of an access in the case the orders are spread over

two blocks.

It is hard to make an exact comparison of this performance with a structure

in which orders are not nested close to their customers, because, given the

structures seen so far, we do not even have a way of finding orders records

given a customer name. In fact, in the hierarchy of Figure 2.26, ORDERS

records do not contain the name of the customer, and it was assumed implicitly

that the name is found in the parent record whenever we reach an ORDERS

record.

However, if we adopt the approach of the relational model, where ORDERS

records are tuples containing the name of the customer, as in Figure 2.8, then

we can find the orders, given a customer, provided we use a "secondary index"

on customer name for the ORDERS relation. Secondary indices are discussed

further in the next section, but, for example, we might build a hash table whose

records have a "key" field, which is a customer name, and a second field, which

is a pointer to one of the orders for that customer. Of course these "keys"

are not true keys, but since we assume only four orders per customer on the

average, the records will distribute fairly well among buckets, and we might

expect to discover the locations of all orders for a given customer in about two

block accesses. There is no reason to expect two of these orders to be on the

same block, if they are in a file sorted by order number, for example. Thus, six

accesses (two for hashing and four for finding the orders themselves) are needed

for an "ordinary" structure, while the nested structure needs only 2.17 on the

average. D

Another natural use of nested structures is for storing two record types

connected by a DBTG set. For example, the structure of Figure 6.17 could be

thought of as one where CUSTOMERS records "own" the following ORDERS

records, which in turn "own" their following ENTRIES records, each consisting

of a pointer to an item and a quantity. Then the nested structure facilitates

queries that ask for the orders owned by a given customer, or the entries owned

by a given order. It also facilitates moving from member records to their owners,

e.g., from an order to the customer that placed the order, since it is likely that

the owner is on the same block as the member record in question.

Block Formats for Nested Structures

In order for the operations described above to be done at all, we need to design

record and block formats carefully, so blocks can be broken apart into their

constituent records. Since records of various types are mixed on one block:

338 PHYSICAL DATA ORGANIZATION

1. Blocks must be formatted for records of variable length.

2. We must be able to tell what type a given record is.

For example, we might use the format of Figure 6.4 for blocks, where at

the beginning of each block is a directory of the records contained therein. To

satisfy (2), we might include in the directory a code, stored in one or more

bytes, that indicates the type of the record being stored. Alternatively, we

might insist that all records begin with a byte or several bytes that indicate the

type of the record.

If we have a format meeting these conditions, then we can search forward

from a given record r to find all its descendant records. We know we have

seen the last of r's descendants when we meet another record of type r. As

another example, if we store DBTG sets as nested structures, in the manner

just mentioned, then we can scan backwards from record r of a member type,

to find its owner. The reason is that the owner of r is the record of the owner

type that most closely precedes r.

Performing Insertions and Deletions

When several record types are intertwined, as in Figure 6.17, insertions or

deletions of records of any of these types affect records of the other types. In

essence, the records appearing in a nested structure are sorted, not by key

value, but by their need to appear in a particular position relative to a record

or records of other types. For example, in Figure 6.17, all the orders placed

by Zack Zebra must appear after his record and before the record of the next

customer. Each order record must also precede its entries records but follow

the entries of previous orders. On the other hand, the sort is not rigid, because,

for example, we could place order 1024 and its two entries after order 1026 and

its entry (unless we wanted orders sorted by order number).

It is, on balance, easiest to treat the blocks storing a nested structure as

if their records were in a fixed order. Thus, if records are unpinned, we can

use the method illustrated in Figures 6.7-6.9 to create additional blocks in the

middle of a sequence of blocks.

Insertion of Pinned Records

However, it is likely that records are pinned, since we often need a dense index

to records of each type in the nested structure. In that case, we must adopt a

strategy like that of Figure 6.10, where we dealt with pinned records in a sorted

file. We should start with records spread among blocks in such a way that a

fraction of available space is found on each block. Deletions must be made by

setting a "deleted" bit.

There are two cases to consider for insertions. In one case, pointers go to

the records themselves, and we may not move them around within their block.

6.8 SECONDARY INDICES 339

Then, inserted records are placed in available space at the end of the block

in which they belong, and records can be linked in the proper order, as was

suggested by Figure 6.11. In the second case, we have a block directory for

our variable-length records, and pointers go to the directory itself. Then, we

can slide records around within the block, making sure the directory pointers

continue to point to the correct records. Therefore, we can insert records into

their proper order in the block, and need not link the records.

However, we must consider what happens when blocks overflow. If records

are pinned to fixed locations within blocks, the best we can do is what was done

in Figure 6.10. We consider each original block the first block of a "bucket,"

and we link to it additional blocks containing the newly inserted records. To

preserve the correct order of records we need links as in Figure 6.11.

If pointers to records are really pointers to the block directory, then we

have some options. The block directory itself cannot move, so we cannot split

blocks into two blocks and distribute records simply. We still must think of the

overflowing block as the beginning of a chain for a bucket. We must keep the

directory on that block or, as the bucket grows, on the first and subsequent

blocks of its bucket. However, we can keep the records of the bucket in their

proper order, distributed among the blocks of the bucket.

6.8 SECONDARY INDICES

Prior to Section 6.7, we were concerned with structures for primary indices,

those that allow us to find a record given the value of its key. Often, the

organization of the file was determined by the needs of the primary index. Then

in Section 6.7 we saw that there are reasons why we might want to organize the

records of a file in a way that is not compatible with the desired primary index

structure. That problem can be handled by using a dense index, with one of

the structures discussed in Sections 6.3-6.5, to hold pointers to the records of

the file, which are then distributed to meet some other need, such as fitting into

a nested structure. We also saw in Section 6.7 that structures can be designed

to make efficient certain operations other than lookup, insertion, and deletion

of a record with a given key value; in particular, we considered how to support

queries that follow relationships between two or more record types.

In this section, we shall consider another type of operation: given the value

v of a field other than the key, find all records of a certain type that have value

v in that field. This problem reduces to the one we considered in the previous

section, because we can use a secondary index, which is a nested structure with

pattern

VALUE (REFERENCE)*

A REFERENCE, in this sense, is a way of getting to one of the records having

the given VALUE. Two reasonable interpretations of references are:

340 PHYSICAL DATA ORGANIZATION

1. A pointer to the record in question.

2. The key value of the record in question.

If we use pointers, we can get to the intended records faster than if we use key

values, since with a key value we have to use the primary index structure to

get at the record. On the other hand, using key values rather than pointers

prevents the records from becoming pinned, thus allowing us several opportu

nities for primary index structures that are forbidden when records are pinned,

as discussed in Sections 6.1 and 6.4, for example.

Example 6.23: Recall that numbers records, first introduced in Example 6.1,

have a nonkey field NAME, which is the first letter of the English name of the

number. If our main file stores the twelve numbers of the initial file from Ex

ample 6.12 (Figure 6.7), then the instance of the nested structure representing

the secondary index on NAME is

e, 80, 88, /, 4, 5, 54, 56, s, 16, 68, 79, t, 2, 25, 37

Here, the letters are the different values of the NAME field that actually appear

in the twelve chosen numbers records, and the numbers themselves can be

thought of either as key values or as pointers to the records with those keys.

We can store this secondary index by packing its elements into blocks in the

order shown and then creating another structure that serves as a dense index for

the values of the NAME field. We show this structure in Figure 6.19, assuming

that six elements of any type can fit on one block. Since there are only six

different values of NAME that are possible, we use a simple heap structure for

that index. In fact, since we have the dense index, it is not necessary to repeat

the letters in the nested structure itself (right side of Figure 6.19), and we could

have pointers from the dense index go directly to the first of the references for

the corresponding letter.

f :
•

e 80 88 t 4 &

lr f -r
4

e 8
X

54 56 s 16 68 79

t \\1II ///I/// ///
^~

X

V_^^ t 2 25 37 /// III

Figure 6.19 Secondary index structure for NAME.

Fortuitously, the references for each letter but / fall on one block. Thus,

assuming the dense index for letters is kept in main memory, we need only a

6.8 SECONDARY INDICES 341

little more than one block access per letter to find references to all the numbers

with a given NAME value. Of course, we must still retrieve the records for

these numbers if we want to access them, and this step would take one access

per number if pointers were stored in the secondary index, and several accesses

per number if keys (i.e., the numbers themselves) were stored in the secondary

index and some appropriate structure were used for a primary index. If the

size of the numbers file were very large, and the numbers for each NAME value

covered several blocks, we could still retrieve references to all of the numbers

with a given first letter with about as many block accesses as the references

themselves could fit in.

Instead of storing the secondary index in preorder, with a dense index on

letters, we could use separate storage of the repeating group of references, as

in Figure 6.18. Then the secondary index itself would consist of only the (up

to) six letters that are possible values of NAME, each paired with a pointer to

a chain of blocks that hold of all the references for that letter. The index itself

becomes a short file with at most six letter-pointer records, which we might

store as a linked list of blocks. An example, using the data of Figure 6.7, with

our tiny blocks holding six elements each, is shown in Figure 6.20. There, each

of the lists of references fits on one block, but in general, these lists would cover

many blocks. D

4 | 5 |54|56|///

80 88

Figure 6.20 Separate-storage structure for secondary index.

Dense Indices as Secondary Indices

The importance of storing the references for a given value close to that value

and close to each other goes up as the number of references associated with

each value increases. Only then can we minimize the number of blocks that

342 PHYSICAL DATA ORGANIZATION

need to be retrieved when using the secondary index. On the other hand, if

the expected number of records with a given value in the field of the secondary

index is small, then we have the option of treating the secondary index as if it

were a dense index for a key value. Some of the structures for primary indices

need some modification. A hashed file, as we have mentioned, does not depend

on the keyness of the values it hashes. However, sorted files and index structures

can present some pitfalls if used as a dense index on values that do not serve

as keys.

Suppose we have a secondary index on field F, which we store as a dense

index. That is, our secondary (dense) index is a file of pairs (v,p), where p is

a pointer to a record with value v in field F. Let us sort the file on the first

component and use the (sparse) isam index structure of Section 6.4 to find,

given a value v, those pairs with first component v. There may, in fact, be two

or more records, say («,pi) and (f,p2), in the secondary index file. With bad

luck, the first of these comes at the end of one block and the second at the

beginning of the next, as

V P2

If we followed the lookup strategy of Section 6.4, with value v we would

be directed only to the second of these blocks (unless the first were entirely

filled with pairs of first component v). Thus, on finding the first block with a

given value v, if we find no value less than v on that block, we must check the

previous block in case it too contains a pair with value v. A similar warning

applies if we use a B-tree as the structure for the secondary index.

6.9 DATA STRUCTURES IN DBTG DATABASES

Now, let us consider how the data structure ideas seen so far in this chapter are

made available to the designer of the physical scheme of a CODASYL database.

There are certain options that the DBTG proposal, introduced in Sections 5.1-

5.3, makes available to the designer of a particular database, and others that

might be provided by the implementer of the database system. In this section,

we shall cover the options regarding the representation of links and then discuss

data structures for logical record types.

Representing Links

There are several ways we can represent links so that we can travel efficiently

from owner to members or vice versa. Suppose we have a link from member

record type T2 to owner record type T\. The most efficient implementation

of the link is generally to store the files corresponding to both of these record

types as a nested structure 7\(T2)*. Then, if we implement this structure as

suggested in Section 6.7, we can easily go from an owner of type T\ to all of

6.9 DATA STRUCTURES IN DBTG DATABASES 343

its members, and we can go easily from a member to its owner, if we use the

preorder sequence.13

If there is another link from record type T3 to 7\ , we can list the occurrences

of T-j records with the corresponding T\ records, using a nested structure such as

Ti(T2)*(Ts)*. Again, the methodology of Section 6.7 can be used to implement

such structures.

However, suppose there is another link from T2 to some record type T^.

We cannot list T2 records after 7\ records and also list them after T4 records, or

at least, it would hardly be efficient or convenient to do so. If we duplicated T2

records and placed them after both 7\ and T4 records owning them, we would

introduce the redundancy and potential for inconsistency that we always wish

to avoid.

Multilist Structures

We therefore need another way of representing links, one that does not force

records of one type to be adjacent to records of another type. In this organi

zation, called a multilist, each record has one pointer for each link in which it

is involved, although we do have the option of eliminating the pointer for one

link and representing that link by a nested structure, as discussed above.

Suppose we have a link L from T2 to TI . For each record R of type TI we

create a ring beginning at R, then to all of the records RI, fl2, . . . , R^ of type

T2 linked to R by L, and finally back to R. The pointers for link L in records of

types TI and T\ are used for this purpose. Such rings were suggested in Figure

5.1.

It is important to remember that in a multilist organization, each record

has as many pointers as its record type has links. As the pointers are fields in

the records, and therefore appear in fixed positions, we can follow the ring for a

particular link without fear of accidentally following some other link. Another

essential, if we are to navigate through multilists is that each record must have,

in a fixed location such as the first byte, a code that indicates its record type.

If we didn't have that code, we couldn't tell when we had reached the owner

record in a ring. If the owner and member types of a link kept their pointer

for the link in different positions,14 then we could not find that pointer without

knowing whether we were at a member or owner.

Example 6.24: Multilist structures involving two or more links can look

quite complex, although logically, they are only implementing physically sev

eral many-one mappings, as we illustrated in Figure 2.15. There, we showed

13 If we store the repeating group of TI records separately, as in Figure 6.18, then we also

need pointers back from the TI records to their TI "owner."

14 In general, it is not possible to avoid having the pointer position for at least one link

differ between its owner and member types, without wasting substantial space.

344 PHYSICAL DATA ORGANIZATION

CS101 9

the many-many relationship between courses and students, represented by two

many-one relationships and an intermediate "enrollment" record type. In Fig

ure 2.15, ENROLL records have fields SECTION and GRADE. We now give

them two additional pointer fields, one for the link E-COURSE from ENROLL

to COURSES and the other for link E-STUDENT, which goes from ENROLL

to STUDENTS. The STUDENTS and COURSES records are given one pointer

field, for the one link in which each of these records participates. The multilist

structure corresponding to Figure 2.15 is shown in Figure 6.21. That figure can

also be viewed as a physical realization of the rings of Figure 5.1. CH

COURSES

E-COURSES

ENROLL

E-STUDENTS

STUDENTS

Figure 6.21 A multilist structure for courses and students.

We may choose a multilist structure when we do not want to, or cannot,

store the member type of a link with its owner type as a nested structure. While

the multilist structure does allow us to traverse the rings, and thus, to perform

the FIND operations on DBTG sets described in Section 5.2 (e.g., finding owners

given members and vice-versa), the cost of doing so tends to be much greater

than with the nested structure discussed earlier in the section. The reason is

that on almost every step around the ring we shall have to retrieve a new block

into memory; the difference in performance between the multilist and nested

structure is similar to that illustrated in Example 6.23 of the previous section.

Location Modes

The DBTG data definition language allows us to declare data structures, called

location modes, for logical record types, and by implication, for the links involv

ing those record types. One important location mode is called CALC; it was

mentioned in Section 5.2 because it is used for certain kinds of FIND statement.

This mode is declared by the clause

6.9 DATA STRUCTURES IN DBTG DATABASES 345

LOCATION MODE IS CALC <procedure> USING <field list>

in the declaration of the record type. For example, in Figure 5.2 we could

include with the declaration for the SUPPLIERS record type the information

LOCATION MODE IS CALC PROC1 USING SNAME

Presumably, PROC1 is the name of a procedure that takes values for the

SNAME field, producing a "hash value." In general, the CALC location mode

suggests, but does not require, that the file for a record type declared this way be

stored in buckets, one for each value produced by the "hashing" <procedure>

applied to the values of the fields in the <field list>, as described in Section 6.3.

As a perfectly reasonable alternative, the <procedure> could examine a sparse

index to find the bucket in which a record belongs, as described in Section 6.4,

or it could examine a dense index organized as a B-tree, as suggested in Sections

6.5 and 6.6.

There are no fundamental limits on what the <procedure> can do, but

the user of the database is entitled to expect that, given values for the <field

list>, locating some record (there may be several, because CALC-keys are not

true keys) with those values in the <field list> can be done efficiently; it is

the responsibility of the system to provide built-in procedures that make this

search efficient.

A second location mode is DIRECT, declared by

LOCATION MODE IS DIRECT

This mode declares that records of the type are found only by their addresses

in the file system, which are called "database keys" in the DBTG proposal. In

principle, the file of records of this type can be kept in any order; a record will

be accessed by providing a database key, that is, the location of the record.

A third location mode, VIA, is declared for a record type T\ by

LOCATION MODE IS VIA <set name> SET

This declaration implies that type T\ is the member type of the designated <set

name>, 5, and each record of type 7\ will be grouped with the owner of the

S occurrence of which it is a member. That is, if the owner type for S is T2,

the TI records and the T\ records are stored as a nested structure with format

The VIA location mode leads to some very complex structures. For exam

ple, it is possible that record type T2 is given declaration

LOCATION MODE IS VIA R SET

where T2 is the member type for DBTG set R, whose owner type is T3. Then

records of types 7\, T2, and T3 are organized as if in variable length records

with format T3(T2(ri)*)*.

346 PHYSICAL DATA ORGANIZATION

Comparison of Location Modes

Each location mode makes certain operations efficient but not others. The

direct mode, corresponding to the heap organization of Section 6.2, allows us

to use minimum area for a file, but makes search for records, given values for

certain fields, almost impossible. The CALC mode is very good for lookup of

records given their CALC-key, but navigation through links involving a member

type stored in CALC mode may be inefficient. That is, to get all members of a

given set occurrence we must follow the multilist structure, which requires that

we make almost as many block accesses as there are members in the occurrence.

One the other hand, the VIA mode makes navigation between owners and

members efficient, while lookup of a record is difficult if we don't know its

owner. We can, however, create a secondary index (called a search key in the

DBTG proposal) on the key values for some record type that was stored VIA

a set and thus have the advantage of fast lookup inherent in the CALC mode.

As always, we can only decide what organization to use for a physical

database if we have a clear idea of what sorts of operations we shall do most

frequently; e.g., shall we be doing more lookup or more navigation through sets?

Set Modes

There are also options regarding how DBTG sets are to be stored. The DBTG

proposal allows us to declare set modes for DBTG sets. While the proposal is

somewhat vague about what all of the options should be, it includes the multilist

structure, called chain mode, and an arrangement called pointer array mode, in

which each owner record has an array of pointers to its members. Presumably,

any DBMS implementing the proposal would also allow users to declare other

set modes, such as some of those discussed in Section 6.7 to implement variable

length records.

6.10 DATA STRUCTURES FOR HIERARCHIES

The nested structures of Section 6.7 are the natural implementation of a hi

erarchy. That is, the structure for a leaf node with record type R is just R,

and the record structure for an interior node with record type T and children

of record types 5i, . . . , 5n is R(Si)*- • • (5n)*. We gave several examples of this

construction in Example 6.19, although we did take advantage of the fact that

we expected there to be only one manager of a department, as we used MGR in

stead of (MGR)* in constructing the nested structure for departments database

records.

Another way to view this structure for hierarchies is that each logical record

type except for the root is stored "via" the implicit DBTG set of which its parent

is the owner and it is the member type. As we pointed out in Section 6.7, a

feature of such an organization is that given a node, we can find its descendants

6.10 DATA STRUCTURES FOR HIERARCHIES 347

in the tree in very few block accesses on the average, since they collectively

follow the node in the preorder sequence. It is this property of the preorder

listing, together with the assumption that the most frequent type of query will

ask for the descendants of a given node, that justifies the preorder sequence as

an important organization for hierarchical data.

Data Structures in IMS

The IMS hierarchical database system offers the database designer certain op

tions that combine nested structures, stored in preorder, with some of the access

techniques described earlier in this chapter. Specifically, we are given the option

to have the collection of database records corresponding to a single tree in the

hierarchical scheme stored in a sequence of blocks, with each database record

kept together and stored in the preorder sequence. To help access root records

quickly, we create a primary index on the key of the root record type. This

index can be either:

1. A hash table, used as a dense index, or

2. An isam index, as described in Section 6.4, used as a dense index.

That is, we create a pair (v,p) for each root record, where v is its key value and

p is a pointer to that record. These pairs are stored either in a hash table or

an isam index, with the first component as key for the pairs. In analogy with

the DBTG options, we store the root record type by CALC-key and the other

record types R "via" the link between R and its parent.

A third strategy, called HISAM (hierarchical, indexed-sequential access

method) partitions database records into buckets, using an isam index based

on the keys of the root records. The buckets each hold keys in some range, and

the ranges do not change as the database evolves. We can view each bucket

as arranged in a two-dimensional way. The rows correspond to single database

records, and each database record will be, in general, spread over some linked

list of blocks. We shall assume that no block holds data from more than one

database record and that, as usual, records are not spread over more than one

block. The former constraint is for implementation convenience; if we select the

block size to be somewhat smaller than the typical database record, there will

be little waste space because of it.

Example 6.25: Figure 6.22(a) shows a simple hierarchy and Figure 6.22(b)

shows three database records that might form a tiny instance of the database.

We have made assumption about the relative sizes of A, B, and C records,

which can be deduced from Figure 6.23. For convenience, the key value for an

.A-type record a^ is taken to be i itself. We suppose that the database records

whose roots have key values 10 and 20 belong in one bucket and the one with

key value 30 belongs in a second bucket.

Figure 6.23 shows the three database records stored among blocks. Each

348 PHYSICAL DATA ORGANIZATION

(a) The scheme

A
C2 63 C3 C4 C5 Cg Cy Cg

(b) The database

Figure 6.22 Example database and its scheme.

block has a pointer in the front to the first block of the next database record

in the same bucket. This pointer is unused if the block is not the first block for

its database record. We also show a pointer at the end of each block, linking

the block to the next block for the same database record if there is one. D

Bucket

Headers

9 OIG bi \ &2 M C2

C4

III 0 C8 111111111111111°

Figure 6.23 Two-dimensional organization of database records.

In the HISAM organization, records can be moved around within the blocks

of one database record, because pointers to the descendant records consist of:

1. The address of the first block of the database record, and

2. The value of the key field or fields for the record in question.

Note that this type of "pointer" will not support the movement of records among

different database records. It does, however, allow us to insert new records into

their proper place within a database record, moving other records among the

various blocks holding that database record, if necessary.

6.10 DATA STRUCTURES FOR HIERARCHIES 349

Example 6.26: Suppose that in the database of Figure 6.23 we insert 64 as a

child of a3o. Using our relative size assumptions it is necessary to move cy to

the block now occupied by eg, while shifting 05, eg, and eg to the right. If we

then delete eg, we simply set a deletion bit in that record; no motion of records

is made.

Now, imagine that we insert a database record with root 012 and children

65 and eg, then insert a database record with root 015 and children be, 67, and

6g. Each of these database records belongs in the first bucket, and we can place

them in sorted order within the bucket. The resulting arrangement of blocks

and records is shown in Figure 6.24. D

Bucket

Headers

P Oi2 b5 eg llll-

67

020

o 68 ///////////// o

030 &4 C5 cG 1
I o CT eg //////////// o

Figure 6.24 Database records after some insertions and deletions.

Pointer Networks

In some queries, we do not want to see the entire database record, and if so, we

can often speed our access to the relevant parts if we use a network of pointers

to connect the records that belong to one database record. For example, if

all the children of the root were linked by a chain of pointers, we could visit

each child in turn, even though many blocks holding the descendants of those

children appear between them.

IMS uses two types of pointer networks. The first is the obvious one: each

record points to the next record in the preorder listing. This arrangement is

called preorder threads. The second arrangement is for each record to have a

pointer to its leftmost child and a pointer to its right sibling. The right sibling

of a node n is that child of the parent of n that is immediately to the right of

350 PHYSICAL DATA ORGANIZATION

n. For example, in Figure 6.25(a), g is the right sibling of 6, and g has no right

sibling.

Example 6.27: Figure 6.25(a) shows a tree; Figure 6.25(b) shows that tree

with preorder threads, and Figure 6.25(c) shows the same tree with leftmost

child (solid) and right sibling (dashed) pointers. D

A /l\
h i j

e f e f

(a) A tree. (b) Preorder threads

c *-d h i j
•

(c) Leftmost child/right sibling pointers

Figure 6.25 Pointer arrangements.

Each method has its advantages. Preorder threads need only one pointer

per record, while leftmost child/right sibling pointers require space for two

pointers per record, even though many of these pointers are null (for example,

no leaf node has a leftmost child). On the other hand, leftmost child/right

sibling pointers enable us to travel from left to right through the children of a

node quickly, even though many descendants intervene in the preorder sequence.

Observe, for example, how we can go from btog directly in Figure 6.25(c), while

we must travel through c, d, e, and / in Figure 6.25(b).

6.11 DATA STRUCTURES FOR RELATIONS 351

6.11 DATA STRUCTURES FOR RELATIONS

A relation has an obvious representation as a file of records, with one record

for each tuple. However, many data structures can be used to make access to

relations more efficient than the obvious organization. In this section we shall

examine some of the options that have been used in relational database systems.

Storage of Relations in INGRES

INGRES was one of the first relational database systems; its query language,

Quel, was introduced in Section 4.3. In its original implementation there were

three options for organization of relations. Later, B-trees became available, as

well. When a relation R is created, it has a "heap" organization; that is, the

tuples are in any order, with no access structure. Tuples of such a relation can

be found only by scanning the file.

We can arrange for hashed access to the file for relation R by saying

modify R to hash on A\,...,Ak

where A\, . . . , Ak is the list of attributes of R whose values are hashed to de

termine the bucket for a given record. The INGRES implementation of the file

for R becomes that of Section 6.3; records may be pinned because of secondary

indices, as mentioned below.

An ISAM index can be created for the file R, by writing

modify R to isam on A\,...,Ak

Again, A\, . . . , Ak is the assumed key for R.

We can create a secondary index for R by the statement

index on R is S(A\,.. .,>!fc)

The relation S becomes a secondary index on attributes A\, . . . , Ak for R. That

is, associated with each list of values «i, . . . , Vfc for A\, . . . , Ak, respectively, is

a set of pointers to those records of relation R that have value v, for attribute

Ai, for t = 1, 2, . . . , k. The relation S has fc + 1 components, the first k being

A\,...,Ak, and the last being a pointer to a record of #; the last component

has no attribute name, so the user cannot access its values or change them. The

file for secondary index 5 can be given a structure by the modify command,

just as any other relation can.

Storage Organization in System R

System R is the original relational database system from which the language

SQL, introduced in Section 4.5, derives. This system used a number of data

structure ideas that mirror the techniques found in the DBTG proposal, al

though some more recent implementations of SQL do not use all these options.

In System R one can:

352 PHYSICAL DATA ORGANIZATION

1. Store one relation "VIA" another,

2. Create a multilist structure to connect the tuples of two relations, and

3. Create an index for any relation on any set of attributes; this index is a

dense index, as described in Section 6.6, with a B-tree structure.

Indices in System R

The B-tree indices mentioned in (3) above make no distinction between a pri

mary and secondary index. That is, it doesn't matter to the system whether

the set of attributes for an index forms a key for the relation. Suppose we have

an index on attributes AI, . . . , Ak- Then the interior nodes of the B-tree are

blocks filled, as much as the B-tree scheme allows, with records consisting of a

pointer to another block and a list of values, one for each of the attributes of

the index. These records are essentially the same as the pairs consisting of a

pointer and a key value that we discussed in connection with B-trees in Section

6.5; the difference is that there is no presumption of keyness.

Leaf nodes of the B-tree consist of values for attributes AI, . . . , A^ and

associated lists of tuple identifiers; there is one tuple identifier for each tuple

having the given values for AI, . . . , Ak- Actually, tuple identifiers point not to

the tuple, but to a place near the end of the block, where a pointer to the tuple

itself can be found. This double indirection, through a block directory, does

not cost us extra block accesses, and it has the advantage that tuples may be

moved around within blocks, as was mentioned in Section 6.1.

The reader should note that this arrangement differs somewhat from the

B-tree schemes we discussed in Sections 6.5 and 6.6. In the terms of Section

6.7, there is a nested structure with the pattern

VALUE (RECORD)*

serving as a secondary index into the main file. This structure is implemented

by storing its instance in preorder, among a sequence of blocks. These blocks,

which are the "leaves of the B-tree" mentioned above, are managed by splitting

overfull blocks into two, and merging blocks less than half full, according to the

B-tree style of handling insertions and deletions.

"Via Set" Structures in System R

As we mentioned above, System R also allows the tuples of one relation to be

stored as a nested structure with the tuples of another relation, thus imitating

storage "via set" as defined by the DBTG proposal. This storage option gives

us the advantage of nested structures discussed in Section 6.7. For example,

the relations CUSTOMERS, ORDERS, and INCLUDES from Figure 4.2 can

be stored in preorder, as an instance of the nested structure

CUSTOMERS (ORDERS (INCLUDES)*)*

6.11 DATA STRUCTURES FOR RELATIONS 353

The resulting sequence of tuples beginning with the CUSTOMERS record for

Zack Zebra and including all its "owned" ORDERS records and INCLUDES

records "owned" by them, is shown in Figure 6.26.

CUSTOMERS record for Zack Zebra

ORDERS record for order 1024

INCLUDES record:

O# = 1024; ITEM = "Brie"; QUANTITY = 3

INCLUDES record:

O# = 1024; ITEM = "Perrier"; QUANTITY = 6

ORDERS record for order 1026

INCLUDES record:

O# = 1026; ITEM = "Macadamias" ; QUANTITY = 2048

Figure 6.26 Tuples stored "via set."

The similarity of Figure 6.26 to Figure 6.17 should be observed. The

INCLUDES tuples correspond to what we called "entries," which consist of a

virtual item and a quantity. However, one should appreciate the fact that in the

hierarchical and network models, we do not have to place the customer name in

both CUSTOMERS and ORDERS, or the order number in both ORDERS and

INCLUDES. The structure of the network or hierarchy allows us to determine

the customer for an order by its owner (in networks) or parent (in hierarchies).

In a relational system, it is the common values between CUSTOMERS and

ORDERS, and between ORDERS and INCLUDES, that determines the posi

tions of ORDERS and INCLUDES records; e.g., an ORDERS record follows

the CUSTOMERS record with the same customer name.

The formal requirements for storing the tuples of a relation R nested within

a relation 5, according to the pattern SR* are as follows.

1. We can establish a correspondence between a set of attributes X of R and

Y of 5. For example, R could be ORDERS, 5 could be CUSTOMERS,

X could consist of the single attribute CUST, and Y could be the sin

gle attribute NAME. Note that CUST in ORDERS and NAME in CUS

TOMERS "mean" the same thing, but of course there is no requirement

for a similarity of "meaning."

2. Y is a key for 5.

3. Whenever we have a tuple p, in R, there is a tuple v in 5 such that n[X] =

v[Y]; that is, the X-value of every tuple in R occurs as a V-value in some

tuple of 5.

Under these conditions, we can store, after each tuple v of S, all the tuples p,

of R such that n[X] = v[Y]. Every tuple of R will have a unique tuple of S to

354 PHYSICAL DATA ORGANIZATION

follow.

Multilist Structures in System R

We can also have, in System R, a multilist structure linking tuples of two

relations according to common values in a field of each. Suppose that two

relations R and S satisfy (l)-(3) above. Then we may create new attributes

PTR for both relation schemes; these new attributes are not accessible to the

user. The values for these two attributes are used to form rings connecting each

tuple v of S to the tuples of R that it "owns," that is, the tuples of R whose

X-values agree with v[Y].

Figure 6.27 Ring Structure for ORDERS and INCLUDES.

Example 6.28: In Figure 6.27 we see the ORDERS and INCLUDES relations

of Figure 4.2 stored as a multilist structure based on the commonality of values

between the attributes CUST and NAME, respectively. D

6.12 RANGE QUERIES AND PARTIAL-MATCH QUERIES

Classical database systems are designed to handle the type of query that appears

repeatedly in Chapters 4 and 5, one in which a value for one attribute or field is

given and values of related attributes or fields are desired. The index structures

covered so far in this chapter are well suited to such queries. However, in some

modern applications, such as those discussed in the second half of Chapter 1—

graphics databases, computer aided design databases, and VLSI databases—we

are often faced with queries for which the index structures described so far are

inadequate. These queries may involve inequalities, rather than equalities, and

they may have many simultaneous conditions.

6.12 RANGE QUERIES AND PARTIAL-MATCH QUERIES 355

Figure 6.28 Representation of a rectangle.

Example 6.29: A fundamental object in a graphics or VLSI database is a

rectangle, which we may suppose is represented by a record with four fields,

giving the coordinates of the lower-left and upper-right corners, as suggested in

Figure 6.28. Some typical queries about a relation

RECTANGLES(X1, Yl, X2, Y2)

are shown in Figure 6.29. Part (a) asks for all the rectangles that contain the

point (3,4), while (b) asks for the rectangles that have lower-left corner at point

(5, 6) . Query (c) asks for all rectangles whose lower-left corner is in the square

bounded by the x- and y-axes, and the lines x = 10 and y = 10. D

SELECT X1, Yl, X2, Y2

FROM RECTANGLES

WHERE X1 <= 3 AND X2 >= 3 AND Yl <= 4 AND Y2 >= 4

(a) Rectangles that contain the point (3,4).

SELECT X1, Yl, X2, Y2

FROM RECTANGLES

WHERE X1 = 5 AND Yl = 6

(b) Rectangles with lower-left corner at (5,6).

SELECT X1, Yl, X2, Y2

FROM RECTANGLES

WHERE X1 >= 0 AND X1 <= 10 AND Yl >= 0 and Yl <= 10

(c) Lower-left corner in square of side 10.

Figure 6.29 Some range and partial-match queries.

356 PHYSICAL DATA ORGANIZATION

Range Queries

A query in which fields are restricted to a range of values rather than a single

value is called a range query. Figure 6.29(a) and (c) are range queries; in (a),

x\ is restricted to the range —oo < xi < 3, and in (c) x\ is restricted to the

range 0 < x\ < 10, for example.

Partial-Match Queries

A query in which several fields (but not all fields) are restricted to single values

is often called a partial-match query. Figure 6.29(b) is a partial-match query,

since values for two of the fields, Xi and y\ are specified, and the other two

fields are left unspecified.

Usually, but not necessarily, range queries and partial-match queries are

applied to files with the property that no proper subset of the fields of a record

is a key. For example, a rectangle is uniquely determined only by the four

coordinates used in Example 6.29; any subset of three or fewer cannot determine

a unique rectangle. It is also normal that the query asks for the entire record,

as did the queries in Figure 6.29, rather than for a subset of the fields.

Performance of Index Structures on Partial-Match Queries

Let us consider a partial-match query such as Figure 6.29(b). Suppose we

placed a secondary index on each of the fields in Example 6.29. The query of

Figure 6.29(b) could then be answered as follows:

1. Use the index on x\ to find all those rectangles with x\ = 5.

2. Select from among those records retrieved in (1) the records that have

yi =6.

That method is better than searching the entire file of rectangles, but it is

not as good as the theoretical optimum. If we were to group the rectangles to

answer that one query, we would put all answers on as few blocks as would hold

them. Instead, if we have a secondary index on Xi, we have to access as many

blocks as there are rectangles with x\ = 5, because no two of these rectangles

are likely to appear on the same block. That is many more blocks than there

are answers (since most rectangles with x\ = 5 will not have yi = 6), and it is

far more than the number of blocks on which the answers could be held under

some ideal organization.

In reality, we cannot expect to have an organization that is ideal for any

partial-match query. If we choose to organize the file of rectangles with a

primary index on x\, such as a hash, isam, or B-tree index, then rectangles

with the same x\ value will be close physically, and we can retrieve, say, the

rectangles having x\ = 5 with a number of accesses close to the number of blocks

on which they all fit, rather than the (much larger) number of such rectangles.

6.12 RANGE QUERIES AND PARTIAL-MATCH QUERIES 357

However, even that is not as good as the ideal, because on the average, few of

these rectangles will have y\ = 6. Furthermore, the primary index would only

help if the query specifies a value for x\ (or whichever field we chose for the

primary index).

Another alternative is to get pointers to all of the possible solution records

from dense indices on all of the fields for which the query provides a value.

Then we intersect these sets of pointers. If these sets are sufficiently small, the

intersection can take place in main memory. The pointers in the intersection

tell us where to find the records in the solution. In our running example, the

cost is proportional to the number of index blocks that point to records with

either x\ = 5 or yi = 6, plus the number of blocks on which solution records

are found, which can still be much larger than the theoretical ideal.

Performance of Index Structures on Range Queries

We have similar, or even worse, problems with range queries. If we use hashing

for our indices, then we get no help for queries with large ranges. For example,

if field X is restricted to range a < X < b, then we must look in the buckets

for every value between a and b inclusive for possible values of X. There may

easily be more values in this range than there are buckets, meaning that we

must look in all, or almost all, the buckets.

Structures like isam indices and B-trees do support range queries to an

extent. We can find all X values in the range a < X < b with a number of

block accesses that is close to the number of records whose X field is in that

range. However, isam or B-tree secondary indices on each of the fields still leave

us with the problem we encountered with partial-match queries: the number of

blocks retrieved is proportional to the number of records that satisfy one of the

conditions, not to the number of answers. For example, in the query of Figure

6.29(c), we would retrieve either all the rectangles with 0 < x\ < 10 or all the

rectangles with 0 < y\ < 10.

The data structures we propose in the next two sections are more efficient

on some but not all of the partial-match and range queries. However, they allow

us to avoid maintaining indices on all the fields,15 which is expensive because

all insertions and deletions must deal with each of the indices we create. The

structures we propose next are often superior in retrieval time, are simpler and

faster to update, and require less space than keeping secondary indices on all

the fields. '

15 If we omitted an index on one field F, then a query that specified a range or a value

only for F would receive no help from the structure.

358 PHYSICAL DATA ORGANIZATION

6.13 PARTITIONED HASH FUNCTIONS

Partitioned hashing is a technique that can be used for partial-match queries

and, if we know something about the distribution of values in the various fields,

for range queries as well. Let us assume we have a file with fields FI, F2, . . . , Fk,

and suppose that they are all regarded as part of the key for purposes of hashing.

If we used a typical hash function such as those suggested in Section 6.3, we

could not locate a record without being given values for all the fields. However,

if we design the hash function carefully, we can limit the number of buckets to

be searched in response to any partial-match query; the more fields that are

specified, the fewer buckets we must search.

The "trick" is to divide the bits of the bucket number into several pieces

and let each field determine one of the pieces. Then, whenever we know one or

more fields, we know something about the bucket numbers in which the desired

record or records could be found. We assume for convenience that the number

of buckets is a power of two; i.e., B = 2b. Then a bucket number is a string of

b bits. If the fields are F\, . . . , Ft, we assign 6j bits to field Fj, in such a way

that 5Zi=i &i = 6- It is not necessary that all the 6j's be the same, or even close

to each other in value, but that is often a sensible thing to do. As with all hash

tables, we want B to approximate the number of blocks needed to hold the file,

so the number of blocks per bucket is about one.

For each t = 1,2, ...,fc there is a hash function hi whose range is the

integers from 0 through 26' - 1, inclusive. We may think of hi(v) as a sequence

of exactly bi bits, by padding small integers with O's on the left, if necessary.

To determine the bucket in which a record (v\, . . . , «fc) belongs, we apply hi to

Vi for each i. The bucket for this record is then the integer whose bit string is

hi(v\)h2(v2) • • • hk(vk). Note this string is of length b, and therefore represents

a bucket number in the correct range, from 0 to B — 1, inclusive.

Example 6.30: Instead of storing rectangles as we did in Example 6.29, let

us consider the simpler problem of storing points, that is, (x, y) pairs. The

following is the sample database we shall use, consisting of nine points.

(3,6) (6,7) (1,1)

(5,6) (4,3) (5,0)

(6,1) (0,4) (7,2)

Let us choose B = 4, and pick b\ = 62 = 1. For both the hash functions

hi and h2 we shall use the high-order bit in the three-bit representation of

the number; i.e., hi(i) = h2(i) = 0 for 0 < i < 3 and MO = MO = 1

for 4 < i < 7. The reason for using this function will become clear when we

take up range queries. The sample data above divides into the four buckets

with numbers 6ife2 as shown in Figure 6.30. For example, the point (4,3) has

61 = M4) — 1' and ^2 = M3) = O, so it goes in bucket 6162 = 10, i.e., the

6.13 PARTITIONED HASH FUNCTIONS 359

62 =

(1,1) (3,6)

(0,4)

(4,3)

(5,0)

(6,7)

(5,6)

(6,1)

(7,2)

Figure 6.30 Distribution of points into buckets.

bucket whose number is 2. D

Answering Partial-Match Queries

If we are given values for a subset of the fields Fi,...,Ffc, We use the hash

functions for the fields whose values were given, to compute whatever bits of

the bucket number are determined by those fields. The only buckets that could

hold records to be retrived are those whose numbers, treated as binary strings,

match all of the computed bits; values in other bits can be either 0 or 1.

Example 6.31: Continuing with Example 6.30, suppose we ask for all those

points with x = 5. Then we know bit 61 is 1, but we do not know 62. Thus, we

must look in buckets whose numbers are bit strings 10 and 11; i.e., in buckets

number 2 and 3. In those buckets we find points (5,0) and (5,6), as well as

several points that do not match the query (see Figure 6.30). D

Answering Range Queries

We can also adapt the partitioned hash function structure to answer range

queries if our data obeys a "uniformity" assumption. In general, one of the

advantages of hashing is that it randomizes the distribution of keys into buckets,

so even if keys were chosen in some regular pattern, it is very likely that records

would distribute themselves fairly evenly among buckets. However, if we want

to answer range queries, we also want to know that records whose values in

a given field are close have a high probability of being in the same bucket, or

scattered over relatively few buckets. Put another way, we want a hash function

h that respects the linear order on the values in each field, i.e., if v < w we

want h(v) < h(w).

360 PHYSICAL DATA ORGANIZATION

That condition is not compatible with the requirement that h divide "ran

dom" sets of values evenly among buckets. In effect, we must partition values

so the lowest numbers, up to some fixed value ao, go in bucket 0, values bigger

than GO, up to some larger value ai, go in bucket 1, and so on. If we can find a

sequence of numbers ao, . . . , as-2 such that the number of values in each of the

ranges —oo to OQ, ao to 01,...,os_2 to +00 are expected to be about equal,

then the hash function that sends these ranges to buckets 0, 1, . . . , B— 1, respec

tively, serves both purposes: it preserves order and it "randomizes." However,

to use this approach to hashing requires that we know quite accurately the

distribution of values in each of the fields on which we hash.

Example 6.32: The partitioned hash function of Example 6.30 respects order,

since it uses the most significant bits of its values. To justify its use, we must

assume that points are chosen at random from the square of side 8 with lower-

left corner at the origin, i.e., the set of points (x,y) defined by 0 < x < 7 and

0 < y < 7. Actually, in this simple case it is sufficient to assume that the

expected numbers of points in each of the four quadrants of this square are

about the same; the exact distribution within quadrants does not matter. Even

this assumption requires accurate knowledge of the nature of the data. It would

be terrible, for example, if 90% of the points turned out to be in one quadrant.

With bad luck, even a small range in x and y will force us to look at all

four buckets. That happens, for example, if the query asks for 3 < x < 4 and

3 < y < 4. However, some ranges for x or y that are smaller than half of the

entire range (0 to 7) allow us to restrict bit 61 (if the range is for x) or bit 62

(if for y) of the bucket number. In that case, we need only look at a subset of

the buckets. For example, the query 1 < x < 3 and 2 < y < 5 requires us to

look only at the two buckets with 61 = 0, i.e., buckets 0 and 1. For the data of

Figure 6.30, no matching points are found. D

Performance of Partitioned Hashing

The small size of our running example may not allow the general rule to be

seen. Thus, let us consider general partial-match queries, with fields FI , . . . , Ffc

and with bi bits of the bucket address devoted to field Fj, for i = 1, 2, . . . , k. If

a query specifies values for set of fields 5, let 5 be the set of fields for which

a value is not specified. Then the number of buckets we must examine is 2C,

where

• in S

In justification, note that c bits are left unspecified, and these bits can be

replaced by any of 2C bit strings.

For example, if 6j = b/k for each i, and m out of the fc fields are specified,

6.14 A SEARCH TREE STRUCTURE 361

then the number of buckets searched is 26^fc m)/fc. As a more specific example,

if m = fc/2, then we search 26/2 buckets, or the square root of the total number

of buckets.

When we have range queries to evaluate, we need to make the simplifying

assumption that the number of bits devoted to each field is large. Then, we

can neglect "edge effects" due to small ranges that hash to two different values,

as was illustrated in Example 6.32. That is, we assume that if a field Fj is

restricted to a range that is fraction r of its total domain, then the number of

different hash values hi(v) resulting from given values v in this range will be

fraction r of the total number of values that hi can produce, that is, r26' .

Thus, let us suppose that for i = 1, 2, . . . , fc, field Fj is restricted by our

query to a range whose length is fraction TJ of its total range; if the query does

not restrict Fj, then take rj to be 1. Then the number of buckets that must be

retrieved is

The above equality follows because Hfc=i 26' = 26, and 26 is B, the number of

buckets. Thus, we have shown that, neglecting edge effects, the fraction of the

buckets that must be examined is the same as the product of the TJ'S, which

is the fraction of all possible records that match the query. That is the least

possible cost, since almost all the retrieved blocks consist of answer records

only, and any retrieval algorithm must access at least that many blocks.

In summary, partitioned hashing offers essentially best-possible perfor

mance on range queries. It offers good performance on partial-match queries,

but the comparison with the multiple-indices structure considered in Section

6.12 could go either way depending on the data. In favor of partitioned hashing

is the fact that update of records is almost as simple as possible, while a pos

sible problem is that the good performance on retrieval depends on our having

a priori knowledge of the statistics of the data.

6.14 A SEARCH TREE STRUCTURE

There are a variety of tree structures that one can use to support range and

partial-match queries. B-trees, for example, can be modified so that at different

levels, different fields are used to divide records among the subtrees descending

from a single node. If we had a value (in a partial-match query) or a small

range (in a range query) for a field F, and the level we are at during our

search branched according to the value of F, then we could restrict our search

significantly at levels below. If a value or range were unspecified for F, then

at this level we would have to look at all the children of each node N at that

level, such that prior levels of search brought us to TV.

362 PHYSICAL DATA ORGANIZATION

The problem is that B-trees often have very few levels, so frequently it

would not be possible to devote even one level to each field. We shall instead

consider a similar structure, called a k-d-tree, which is really designed for main-

memory operation. We shall then mention how it can be adapted to our model

of costs, where only block accesses are counted.

A k-d-tree is a variant of a binary search tree, which is a tree whose nodes

each hold a record and have (optional) left and right children. In an ordinary

binary search tree, there is one key field for records, and if node N has key x,

then the left child of N and all its descendants have keys less than x, while the

right child of TV and all its descendants have keys greater than x.

To find the record with key value v, we start at the root. In general, during

the search we shall be at some node M. If the key at M is « we are done. If v

is less than the key of M we go to M's left child, and if v is greater, we go to

M's right child. Thus, we follow only one path from the root to a place where

the record is found, or we try to move to a missing child, in which case we

know there is no record with key v in the tree. If we wish to insert a record,

we search for its key and insert the record at the place where we find a missing

child. Deletion is a bit trickier; if we find the record with key «, say at node TV:

1. If N has no children, delete N.

2. If TV has only one child, M, replace TV by M.

3. If TV has two children, find the leftmost descendant of the right child of TV,

and move that node to replace TV.

These techniques, and the reason they work, are fairly common knowledge, and

we shall not elaborate on them further. The reader interested in the details can

consult Aho, Hopcroft, and Ullman [1983].

A k-d-tree differs from a binary search tree only in that the levels of the

tree are assigned to fields in round-robin fashion; that is, if there are k fields,

F\, ..., Ffc, then level i is assigned Fi, for t = 1, 2, . . . , k, level k + 1 is assigned

FI, and so on. If TV is a node at a level to which Fj is assigned, and the value of

field Fi in the record at TV is x, then the left child of TV and all its descendants

must have Fj < x, while the right child of TV and its descendants must have

Fi>x.

Example 6.33: Let us store the nine points of Example 6.30 in a k-d-tree.

In general, many different k-d-trees can be used for the same set of records;

which one we get depends on the order in which we insert. The one we get by

inserting the nine points in order, row by row and left-to-right within rows, is

shown in Figure 6.31; we shall see how this tree is obtained shortly. D

Lookup in k-d-Trees

As above, we assume our k-d-tree stores records with fields Fi,...,Ffc, and

the levels are assigned fields in round-robin fashion. Suppose we are asked to

6.14 A SEARCH TREE STRUCTURE 363

(6,7)

(7,2)

Figure 6.31 k-d-tree.

find the record («i, • • • , ty). The search procedure is applicable to any node TV;

initially, we start with TV equal to the root.

1. If TV holds record («i, . . . , VK), we are done.

2. Otherwise, let TV be at level j, and let Fi be the field assigned to TV's level.

Let x be the value of field Fi in the record at TV; we call x the dividing

value for TV. If DJ < x, and there is no left child of TV, then we have failed

to find the desired record. If vi < x and TV has a left child M, then repeat

the search process at M .

3. If Vt > x and TV has no right child, then the search has failed. If «j > x

and TV has right child M, repeat the search at M

Thus, the lookup procedure is little different from lookup in an ordinary

binary search tree. The only modification is that at each node along the search

path, we must compare the proper fields of the desired record and the record at

the node; in the binary search tree, it is always the key fields that are compared.

To insert a record r, we perform the lookup procedure, and when we come

to a missing child, we insert the record in the place for that child, knowing that

should we come looking for r we shall be directed from the root to that child

and thus find r. Deletion is performed as described for binary search trees in

general. In fact, we have some additional options regarding the choice of the

record that replaces the deleted record; this matter is left as an exercise.

Example 6.34: We mentioned that the k-d-tree of Figure 6.31 was constructed

364 PHYSICAL DATA ORGANIZATION

by inserting each of the nine data points in turn. The last to be inserted is (7, 2),

so let us imagine the tree missing that node and see how insertion takes place.

We start at the root, which is level one and, therefore, is assigned the first field

(x) for its branching. We compare the first field of (7,2) with the first field of

the record at the root, which is (3,6). Thus, the dividing value at the root is

3. As 7 > 3, we go to the right child of the root.

At the second level, we deal with field two, i.e., the y components. The

second field of our record, 2, is less than the second field of the record (6, 7)

which we found at the right child of the root. Thus, we move to the left child

of that node, where record (5, 6) is found. At the third level, we again compare

first fields, we find that 7 > 5, and so we move to the right child, where record

(5, 0) lives. We compare second fields, find 2 > 0, and again move to the right

child, which holds record (6, 1). As this node is at level five, we compare first

fields again, and we find 7 > 6, so we move to the right child. However, there

is no right child, so we place the record (7, 2) in that position, making it the

right child of (6,1). D

Partial-Match Retrieval from k-d-Trees

If we are given values for a subset of the fields, we search as outlined above, as

long as we are at a node whose assigned field is one for which we have a value.

If we have no value for the field of our current node, then we must go both

left and right, and the search algorithm is applied to both children of the node.

Thus, the number of paths we follow from the root can double at each level for

which no value is given by the partial-match query.

Example 6.35: Suppose we want to find, in the tree of Figure 6.31, the set of

points with y = 1. Then at even-numbered levels, we can use the y-value 1 to

guide our search to the left or right, while at odd-numbered levels we have no

z-value to use, and so must search both left and right.

We begin at the root, and since x is the field assigned to this level, we must

examine both the left and right subtrees of the root. Of course, we must also

check the point at the root itself, but that point, (3,6) does not have y = 1, so

we do not select it. At the left child of the root we find point (1, 1), which we

select because of its y-value. As this node is assigned field y, we can restrict

the search. We need only move to the right child, because no point with y = 1

can be found in the left subtree, where all y-values must be less than 1 (the

left subtree is empty, here, so by coincidence we haven't saved any work). The

right child has point (0,4), which we do not select. Since x is the assigned field,

we must look at both subtrees, but they are empty trees, and we are done with

the left subtree of the root.

Now, we search the right subtree of the root, starting at (6, 7). As y is the

assigned field at this level, and 7 > 1, we need only search the left subtree of

6.14 A SEARCH TREE STRUCTURE 365

(6,7). That takes us to (5,6), where because the branch is on x, we are forced

to look at both subtrees. The left subtree has only point (4,3), so we are done

with the left side. For the right side, we examine (5, 0). Since y is the assigned

field, and 1 > 0, we have only to search right.

The next move takes us to (6, 1), which we select because it has y = 1. As

x is the assigned field, we must examine both subtrees. As the left is empty,

and the right contains only (7,2), we are done. The two points with y = I,

namely (1,1) and (6, 1), have been found.

In the above example, each time we were able to restrict the search to one

subtree, it turned out that the other subtree was empty anyway; thus we did

not save any time. However, had we asked a partial-match query like x = 4, we

would have quickly followed one path:

(3,6), (6,7), (5,6), (4,3)

thereby finding the one point with x = 4. D

Range Queries on k-d-Trees

A similar idea allows us to restrict the search in a k-d-tree when given a range

query. Suppose we are at a node N that is assigned the field F, and the query

specifies a range from a to b for that field (possibly a = —oo or b = oo, or both).

Let the value of field F at N be x. If 6 < x, then any descendant of N with an

F-value in the range would have to be in the left subtree, so we do not have to

search the right subtree of N. Likewise, if a > x, then we need not search the

left subtree. Otherwise, we must search both left and right.

Example 6.36: Suppose we again have the k-d-tree of Figure 6.31 and we ask

the range query with 2 < x < 4 and 2 < y < 4.16 Begin at the root and note

that the point there is not selected because its y-value is outside the range for

y. As the dividing value, x = 3, is inside the range for x, we must search both

left and right from the root.

Following the left path, we come to (1,1), which is outside the range in

both x and y. The dividing value, y = 1, is below the lower limit for y's range,

so we need only search right. That takes us to (0,4), which is not selected

because x is outside the range.

Now, let us follow the right path from the root. We come to (6, 7), whose

dividing value is y = 7. As this number exceeds the top end of the range for

y, we need search only left. That takes us to (5,6), and the dividing value,

x = 5, again sends us only left, because the top of x's range is less than 5. We

thus come to (4,3), which is the only point selected, and we are done, because

the node of (4, 3) has no children. The entire subtree rooted at (5, 0) is not

searched because we know that any point found there would have to have a

16 We use the same range for x and y only for convenience in remembering the query.

366 PHYSICAL DATA ORGANIZATION

x-value larger than the top of the desired range for x. D

Performance of k-d-Trees for Partial-Match Queries

As k-d-trees assume many shapes, even for a given set of records, it is hard to

generalize about the lengths of paths that must be searched or the frequency

with which the search must examine both subtrees of a node. We shall make

the assuption that trees are complete; that is, all interior nodes down to some

level have both their children, and all the leaves are at the same level. Then in

a tree of n nodes, all paths from the root to a leaf have length logn.

While this assumption minimizes the average path length, and thus appears

to underestimate the cost of searching, in compensation, whenever we are forced

to look at both subtrees of a node, we find they are both nonempty; we do not

get the fortuitous help that we did because of empty subtrees in the previous

two examples.

Consider a partial match query in which m out of k fields are specified.

Then k — m times out of k, when we reach a node we shall have to search both

subtrees. Thus, starting at the root, and traveling downward for logn levels,

we shall split the path at ((k — m)/fc) logn levels, thereby reaching a total of

2((fc-m)/fc)logn = TJ(fc-m)/fc

leaves.

Performance of k-d-Trees for Range Queries

The performance of k-d-trees on range queries is harder to estimate precisely.

The following argument offers a reasonable approximation. Suppose that our

query restricts field Fi to fraction TJ of its total domain. In particular, consider

a node TV with assigned field Fj. If the range for Fi is o to 6, and the dividing

value at N is x, where a < x < b, then we must search both subtrees of N.

However, on the left, we shall only encounter records with Fi < x. Thus, in the

search of the left subtree, the range for Fi is from a to x, and the set of possible

values for Fi we might encounter in the left subtree of N is that portion of the

set of possible values for Fi that is less than x. A similar statement holds for

the right subtree of x, but the range and set of possible values are restricted to

the portion > x.

As a result, on the average, both the range and the set of possible values

are divided in half when we must search both subtrees, keeping TJ effectively

the same as it was at N. On the other hand, if we are fortunate to need to

search only one subtree, then the range does not change size, but the set of

possible values for Fi that we might encounter is divided by 2 on the average.

Thus, on the average, rj doubles when we need to search only one subtree.

The consequence is that we cannot expect to search only one of the subtrees

6.14 A SEARCH TREE STRUCTURE 367

too often. If we start with a range for Fi that is fraction rJ of the total domain

for Fi, and at j nodes that have Fi as the assigned field, we need to search

only one subtree, then the effective range for Fi has become fraction T^ of the

set of possible values. As this fraction cannot exceed 1, we find that, on the

average, we cannot expect to search only one subtree more than j < log(l/rj)

times due to Fj.

When we consider the possible savings due to each of the k fields, we find

that the number of levels at which we might expect that any path fails to

bifurcate is

(6.3)

The fraction of leaves reached is 1/2 raised to the power given by quantity (6.3),

which simplifies to fraction Ili=i rt- F°r example, if each range in the query is

half the total domain for its field, and there are n records in the file, we shall

have to look at about n/2k of the records. In general, the fraction of nodes we

look at will be close to the fraction of the entire file that we expect to meet

the conditions of the range query. Thus, like partitioned hashing, k-d-trees are

approximately as efficient as possible for range queries.

Minimizing Block Accesses for k-d-Trees

The k-d-tree was conceived of as a main-memory data structure, and it is not

well tuned to the cost measure that is appropriate for large databases: the

number of block accesses. To minimize block accesses, we must apportion nodes

to blocks in such a way that when we access a block, we are likely to need many

of the records (nodes) found on that block.

Let us suppose that blocks and records are related in size so that a node

and all its descendants for m levels can fit on one block; that is, blocks can hold

2m — 1 records. Then we can allow every node at levels 1, m + 1, 2m + 1, and

so on, to be the "root" of a block, and use that block for all its descendants for

m levels down the tree.

Example 6.37: The tree of Figure 6.31 is shown partitioned into blocks on

the assumption that m = 2; i.e., blocks can hold three records. That number

of records is too low to be typical, but will illustrate the idea. Notice that the

node (0,4) is in a block by itself, and the block with root (6, 1) is missing one

of its descendants. It is inevitable for all but the most regular trees that gaps

like these will occur. D

Partitioning the nodes into blocks as described above will tend to minimize

the number of block accesses, because whenever a search reaches the root node

N of a block, thereby causing the block to be read into main memory, we shall

be following at least one path of descendants of N, and we shall follow many

368 PHYSICAL DATA ORGANIZATION

"(5,6) ,

(4,3) (5,0)

Figure 6.32 Partition into blocks.

paths from TV through the block, if the query forces the search to branch at TV

or some of its descendants within the block.

However, we are still faced with the problem that many blocks will be only

partially full, and some may be very sparse. All structures we have studied

tend to leave a fraction of each block empty. However, in a k-d-tree partitioned

into blocks this way, it will be fairly common for a node that is the root of a

block to be missing both its children, and thus be the only node on the block.

Call such a node a singleton.

We can treat singletons specially. Instead of allocating a block for each,

place a notation in it parent that the node is stored not on its own block, but

on a block used to hold many singletons. The singleton's parent holds a pointer

to the location of that node. If we insert any child of the singleton, then the

singleton is moved to its own block, where it becomes the root.

Similarly, we could devise a more complicated scheme where nodes with

only one descendant, or only some small number of descendants, are packed

into special blocks. A node only becomes the root of its own block when it has

acquired a sufficent number of descendants.

EXERCISES

6.1: Suppose we have a file of 100,000 records. Each record takes 200 bytes,

of which 50 are for fields of the key. A block has room for 1000 bytes. A

pointer to a block takes five bytes, and an offset requires two bytes.

a) If we use a hashed file organization with 1000 buckets, how many

blocks are needed for the bucket directory?

b) How many blocks are needed for the buckets, assuming all buckets

have the average number of records?

EXERCISES 369

c) On the assumption of (b), what is the average number of block accesses

to lookup a record that is actually present in the file?

d) If we assume pinned records and use a sparse isam index that has just

been created for the file (all file blocks are full, with no overflow), how

many blocks are used for the index?

e) If we use binary search for the index, how many block accesses are

needed to lookup a record?

f) If we use a B-tree and assume all blocks are as full as possible, how

many index blocks are used (among all nonleaf levels)?

6.2: Suppose keys are integers, and we have a file consisting of records with

keys 1,4,9, ..., 152 = 225. Assume that three records will fit in one block.

a) If we use the hashed organization of Section 6.3, with the hash function

"divide by 7 and take the remainder," what is the distribution of

records into buckets?

** b) Explain why the perfect squares hash so nonuniformly in part (a).

c) Suppose we begin a sparse index organization as in Section 6.4 by

packing the odd perfect squares into blocks as tightly as possible.

Assuming the records are unpinned, show the file organization after

inserting the even perfect squares.

d) Repeat part (c) assuming pinned records.

e) Show a B-tree organization of the file if the fifteen records are inserted

in order of their keys. Assume the parameters of the B-tree are

d = e = 2

f) Suppose we use a B-tree with d=2 as a dense index on the file. Show

the organization if the records are inserted even squares first, in nu

merical order, then odd squares in numerical order.

6.3: Suppose records have four fields, A, B, C, and D, which are of type integer,

byte, variable-length character string, and character string of length 10,

respectively. Also assume that a used/unused bit and a deleted bit are

required in each record. Suggest an appropriate record format for such

records assuming:

a) Integers must start at a byte that is a multiple of 4.

b) Integers (and other fields) may start at any byte.

6.4: Assume blocks are 1000 bytes long and pointers require four bytes (offsets

within a block are not pointers). Suppose all blocks have two pointer fields

linking them to other blocks, and we wish to store variable-length records

within a block. Suggest an appropriate block format on the assumption

that

a) All records must begin at offsets that are divisible by 4.

b) Records may begin at any offset.

370 PHYSICAL DATA ORGANIZATION

* 6.5: Give an algorithm that takes definitions for complex objects, as in Section

2.7, and produces appropriate record formats.

6.6: Give algorithms to allocate and deallocate records using the block formats

of

a) Figure 6.3.

* b) Figure 6.4.

6.7: What advantage is there to using key values as pointers (rather than block

addresses), if a hash table is used as the primary index?

* 6.8: In Section 6.5 we claimed that when deleting from a B-tree, the keys for

the new interior nodes are found either in the blocks being merged or in

their common parent. Show this claim is true by giving an algorithm to

find the needed keys.

* 6.9: In Section 6.4 we defined "covering" of a key value by an entry in an isam

index; that definition is appropriate if the key is a true key, guaranteed

to determine a unique record in the main file. Modify the definition of

"covers" so we can obtain the first (of perhaps many) records of the main

file with a given "key" value, in the case that "keys" do not determine

unique records.

* 6.10: Modify the B-tree lookup procedure for the case (as in System R), where

"keys" can determine more than one record, and we need to find all records

with a given "key" value.

* 6.11: Modify the B-tree lookup, insertion, and deletion algorithms if we do not

insist that a key value at an interior node be the exact minimum of the

keys of the descendants for one of the children of that node (just that it be

a lower bound on the keys of the descendants of that child).

* 6.12: What happens to the distribution of nodes in a B-tree if keys only increase?

For example, consider a file of employees where ID numbers are never

reused as employees leave the company, and a new number, higher than

any used before, is assigned to each new employee.

6.13: Suppose we keep a file of information about states. Each state has a

variable-length record with a field for the state name and a repeating group

for the counties of the state. Each county group has fields for the name

and population, a repeating group for township names, and a repeating

group for city names. Give the nested structure for state records.

* 6.14: Suppose we have a nested structure of format A(B)*. An A record takes

20 bytes and a B record 30 bytes. A pointer requires 4 bytes. Each A

has associated with it from 2 to 8 B's with probabilities .05, .1, .2, .3,

.2, .1, and .05, respectively. If blocks are 100 bytes long, compare the

average number of blocks per instance of the structure used if we adopt

EXERCISES 371

the following organizations.

a) Store records in preorder, as in Figure 6.17.

b) Allocate space for eight B records regardless of how many there are.

c) Represent the repeating group of B's by a pointer, as in Figure 6.18.

d) Allocate room for p B records along with each A record, and include

a pointer to additional B records; the pointer is null if there are p or

fewer B records in the repeating group.

In (d), what is the optimal value of p?

6.15: Express the following hierarchies as nested structures.

a) The tree of Figure 5.27.

b) The tree of Figure 5.28.

6.16: Show how to express the structures of complex objects, as in Section 2.7,

as nested structures.

6.17: Explain the differences between the terms (i) primary index (it) secondary

index (Hi) dense index, and (iv) sparse index.

6.18: Give an algorithm to maintain sorted order within a bucket by linking

records, as in Figure 6.11.

* 6.19: In Section 6.9 we discussed the formatting of records in a DBTG database,

and we claimed that it was not always possible to keep the pointer fields

associated with a link at the same offset in both member and owner types of

a given link, without wasting space. Show that this claim is true by giving

an example of a network in which at least one record type has unnecessary,

unused space, or at least one link has its pointers in different positions in

owner and member records. Hint: Assume that all nonpointer fields are

too large to fit in space unoccupied by a pointer.

* 6.20: Continuing with the problem of Exercise 6.19, suppose that we reserve k

fields of all record formats to hold link pointers, that no record type is

involved in more than ro links, and that in the entire network of n record

types, we are willing to tolerate up to p links that do not have the same

position in owner and member types. For given m, n, and p, what is the

smallest k such that we can find record formats for any network meeting

the above conditions.

6.21: Suppose blocks hold 1000 bytes of data, in addition to a few pointers, and

there are records of three types, A, B, and C, of length 300, 200, and

400 bytes, respectively. Let C be a child of B, and B a child of A in the

hierarchy. Suppose that the key for record oj of type A is taken to be t,

and that database records are to be distributed into three buckets, based

on the key value of their root records. The three buckets take keys (t)

below 10 (it) 10-20, and (iii) above 20, respectively. Show the structure

372 PHYSICAL DATA ORGANIZATION

BIO ^20 a30

/ \ I /l\

b\ 62 &3 J'4 &5 be

l\ I / \ I l\

Ci C2 C3 C4 C5 Ce C7 C8

67 bs bg bw bn

I / l\

Cg C1O Cii Ci2

Figure 6.33 Database records.

of blocks if the database records of Figure 6.33 are inserted, in the order

shown, assuming the "two-dimensional" organization of Figure 6.23.

6.22: Show (a) preorder threads, and (b) leftmost-child/right-sibling pointers on

the database records of Exercise 6.21.

6.23: Show the effect of deleting 07 and inserting ci3 as the rightmost child of 62

a) Assuming records are unpinned and can slide within a bucket.

b) Assuming records are pinned and preorder threads are maintained.

* 6.24: Give algorithms to update (a) preorder threads (b) leftmost-child/right-

sibling pointers when a record is inserted or deleted.

* 6.25: Show that in any n node tree, the number of nonnull leftmost-child pointers

plus the number of nonnull right-sibling pointers is exactly n - 1. What

does this relationship say about the space efficiency of leftmost-child/right-

sibling pointers?

6.26: Suppose we store a file of rectangles, as discussed in Example 6.29. Let the

particular rectangles in the file be:

(1,2,10,5) (3,4,7,6) (2,4,9,6)

(5,1,7,8) (1,6,3,8) (4,2,7,10)

(5,6,9,10) (8,2,10,7) (9,3,10,9)

a) Show the effect of storing these in turn, into an empty k-d-tree.

b) Assume that we use a partitioned hash function with one bit from each

field, and that bit is the least significant bit in each case. Show the

distribution of rectangles into buckets. Would this structure be useful

for range queries?

EXERCISES 373

6.27: Write an SQL query saying that two rectangles, represented as in Example

6.29, intersect. Is this a partial-match query? A range query? Would the

structures of Sections 6.13 and 6.14 be of use answering the query?

6.28: If all partial-match queries specify values for at least m out of the k fields,

how many indices are needed so that there will be at least one index to

answer each query, using the method outlined in Section 6.12?

6.29: Suppose we ask a range query that specifies a range for the key equal to

l/10th of the total domain for the key in the isam-indexed file of Example

6.11. On the average, how many block accesses does it take to answer the

query?

* 6.30: More generally than was discussed in Section 6.13, we can use a partitioned

hash function whose individual /ij's have ranges that are not powers of 2.

If the range of hi is 0 to nj — 1, then the number of buckets is nj=i n«-

Prove that for any distribution of partial-match queries with the property

that when a value for field F is specified, any possible value for F is equally

likely, we can minimize the average number of buckets examined if we use

a partitioned hash function that stores record («1,...,«fc) in the bucket

numbered

+ nk (/ifc-i(«fc-i) + nfc_i(/ifc_2(«fc-2) H H "2M^i))) (6-4)

for some values «i, . . . , nfc. Note that n\ is not explicitly involved in the

formula.

6.31: Suppose we use the scheme described in Exercise 6.30 to store the rectangle

data of Exercise 6.26 in nine buckets, with MI = MJ = 3 and n3 = n4 = 1;

i.e., only the coordinates of the lower-left corner determine the bucket.

Show the distribution into buckets of the data in Exercise 6.26.

* 6.32: Consider the population of partial-match queries that each specify a value

for exactly one of the k fields, and the probability that field Fj is specified

is pi, where JZt=i P« = 1. Show that the optimum value of nj to choose in

the bucket address formula (6.4) is cpi, where c is a constant that is the

same for all i and depends only on the desired number of buckets. As a

function of B, the number of buckets, what is c?

* 6.33: Consider the population of partial match queries in which the probabilities

of any field having a specified value is independent of what other fields

are specified. Let the probability that Fj has a specified value be 9j, for

t = 1, 2, . . . , k. Show that the optimum value of nj in (6.4) for this class of

queries is dqi/(l - <fr), for some d that is independent of i. Give a method

of calculating d as a function of the q^a and the desired number of buckets.

374 PHYSICAL DATA ORGANIZATION

6.34: Suppose we use a partitioned hashing scheme for partial-match retrieval,

and bucket addresses have 12 bits. If there are four fields, and each query

specifies exactly one of them, with probabilities 1/2, 1/4, 1/8, and 1/8,

what is the optimum distribution of bits in the bucket addresses to the

fields? Hint: Find the optimum values of the n^s by the formula of Exercise

6.32 and "round" so each n^ becomes a power of 2.

6.35: Let all be as in Exercise 6.34, but queries specify any number of fields

independently, and the probability that values are specified for the four

fields are 8/9, 1/2, 1/9, and 1/17. What is the optimal distribution of bits

in the bucket address?

* 6.36: Suppose keys have three fields, A, B, and C, and we attempt to handle

range queries by using a partitioned hash function with 2, 3, and 4 bits

devoted to A, B, and C, respectively. Let the number of values in the

total allowable range for these fields be 100, 200, and 500, respectively,

and suppose that a particular query specifies ranges of size 10, 20, and

30, for .A, B, and C, respectively. Taking into account the edge effects

resulting from the fact that entire buckets must be searched if they may

contain even one record in the desired set, estimate the total number of

buckets that must be retrieved.

6.37: Suppose we are again handling range queries, and our file consists of a

million records. All queries specify a range for A equal to 1/ 10th of the

total range for that field, and also specify a range for either field B or field

C, but not both, equal to half the total range for the field specified.

** a) If we use a partitioned hash function with 16 bit addresses, how many

bits should we devote to each of the fields A, B, and C1

* b) Compare the performance in average number of blocks retrieved of

a partitioned hash table with 6, 5, and 5 bits devoted to A, B, and

C, respectively, against a B-tree organization. You may assume each

bucket fits on two blocks, and in the B-trees, each block contains 100

(key, pointer) pairs.

* 6.38: When deleting a node from a k-d-tree, we can get the replacing node from

many different places. Describe all the places where a suitable node can

be found.

BIBLIOGRAPHIC NOTES

General information about data structures can be found in Knuth [1968, 1973]

and Aho, Hopcroft, and Ullman [1974, 1983]. Wiederhold [1987] covers file

structures for database systems. The selection of physical database schemes is

discussed by Gotlieb and Tompa [1973].

BIBLIOGRAPHIC NOTES 375

Hashing

Two surveys of techniques for hashing are Morris [1968] and Maurer and Lewis

[1975]; Knuth [1973] also treats the subject extensively.

Some recent developments involve variations of hashing that adapt to

changing conditions, especially growth in file size. Larson [1978], Fagin, Niev-

ergelt, Pippenger, and Strong [1979], Litwin [1980], and Larson [1982] describe

these structures.

Interpolation Search

The O(loglogn) complexity of interpolation search appears in Yao and Yao

[1976] and Perl, Itai, and Avni [1978].

B-trees

The B-tree is from Bayer and McCreight [1972], where it was presented as a

dense index, as in Section 6.6. Comer [1978] surveys the area.

The performance of B-trees as a data structure for database systems is dis

cussed by Held and Stonebraker [1978], Snyder [1978], Gudes and Tsur [1980],

and Rosenberg and Synder [1981]. Also see the references to Chapter 9 for

articles on concurrent access to B-trees.

Secondary Indices

Optimal selection of secondary indices is discussed by Lum and Ling [1970] and

Schkolnick [1975]. Comer [1978] shows the problem to be ^/"P-complete.

Partial-Match and Range Queries

The use of partitioned hash functions was considered in its generality by Rivest

[1976], and the design of such functions was also investigated by Burkhard

[1976] and Bolour [1979].

The k-d-tree is from Bentley [1975]. Finkel and Bentley [1974], Bentley

and Stanat [1975], Lueker [1978], Willard [1978a, b], Culik, Ottmann, and

Wood [1981], Robinson [1981], Scheuermann and Ouksel [1982], Willard and

Lueker [1985], and Robinson [1986] consider related structures for range queries.

Bentley and Friedman [1979] and Samet [1984] survey the area.

There is a well-developed theory of how fast range queries can be answered.

See Burkhard, Fredman, and Kleitman [1981] and Fredman [1981].

Notes on Exercises

Exercise 6.30 is from Bolour [1979]. Exercise 6.32 is by Rothnie and Lozano

[1974] and 6.33 from Aho and Ullman [1979].

CHAPTER 7

Design Theory

for

Relational Databases

Our study of database scheme design in Chapter 2 drew heavily on our intuition

regarding what was going on in the "real world," and how that world could

best be reflected by the database scheme. In most models, there is little more

to design than that; we must understand the options and their implications

regarding efficiency of implementation, as was discussed in Chapter 6, then rely

on skill and experience to create a good design.

In the relational model, it is possible to be somewhat more mechanical

in producing our design. We can manipulate our relation schemes (sets of at

tributes heading the columns of the relation) according to a well-developed

theory, to produce a database scheme (collection of relation schemes) with cer

tain desirable properties. In this chapter, we shall study some of the desirable

properties of relation schemes and consider several algorithms for obtaining a

database scheme with these properties.

Central to the design of database schemes is the idea of a data dependency,

that is, a constraint on the possible relations that can be the current instance of

a relation scheme. For example, if one attribute uniquely determines another, as

SNAME apparently determines SADDR in relation SUPPLIERS of Figure 2.8,

we say there is a "functional dependency" of SADDR on SNAME, or "SNAME

functionally determines SADDR."

In Section 7.2 we introduce functional dependencies formally, and in the

following section we learn how to "reason" about functional dependencies, that

is, to infer new dependencies from given ones. This ability to tell whether a

functional dependency does or does not hold in a scheme with a given collection

of dependencies is central to the scheme-design process. In Section 7.4 we con

sider lossless-join decompositions, which are scheme designs that preserve all

the information of a given scheme. The following section considers the preser

vation of given dependencies in a scheme design, which is another desirable

376

7.1 WHAT CONSTITUTES A BAD DATABASE DESIGN? 377

property that, intuitively, says that integrity constraints found in the original

design are also found in the new design.

Sections 7.6-7.8 study "normal forms," the properties of relation schemes

that say there is no, or almost no, redundancy in the relation. We relate two

of these forms, Boyce-Codd normal form and third normal form, to the desir

able properties of database schemes as a whole—lossless join and dependency

preservation—that were introduced in the previous sections.

Section 7.9 introduces multivalued dependencies, a more complex form of

dependency that, like functional dependencies, occurs frequently in practice.

The process of reasoning about multivalued and functional dependencies to

gether is discussed in Section 7.9, and Section 7.10 shows how fourth normal

form eliminates the redundancy due to multivalued dependencies that is left

by the earlier normal forms. We close the chapter with a discussion of more

complex forms of dependencies that, while not bearing directly on the database

design problem as described here, serve to unify the theory and to relate the

subject of dependencies to logical rules and datalog.

7.1 WHAT CONSTITUTES A BAD DATABASE DESIGN?

Before telling how to design a good database scheme, let us see why some

schemes might present problems. In particular let us suppose that we had

chosen, in Example 2.14, to combine the relations SUPPLIERS and SUPPLIES

of Figure 2.8 into one relation SUPJNFO, with scheme:

SUPJNFO(SNAME, SADDR, ITEM, PRICE)

that included all the information about suppliers. We can see several problems

with this scheme.

1. Redundancy. The address of the supplier is repeated once for each item

supplied.

2. Potential inconsistency (update anomalies). As a consequence of the re

dundancy, we could update the address for a supplier in one tuple, while

leaving it fixed in another. Thus, we would not have a unique address for

each supplier as we feel intuitively we should.

3. Insertion anomalies. We cannot record an address for a supplier if that

supplier does not currently supply at least one item. We might put null

values in the ITEM and PRICE components of a tuple for that supplier,

but then, when we enter an item for that supplier, will we remember to

delete the tuple with the nulls? Worse, ITEM and SNAME together form

a key for the relation, and it might be impossible to look up tuples through

a primary index, if there were null values in the key field ITEM.

378 DESIGN THEORY FOR RELATIONAL DATABASES

4. Deletion anomalies. The inverse to problem (3) is that should we delete

all of the items supplied by one supplier, we unintentionally lose track of

the supplier's address.

The reader should appreciate that the problems of redundancy and poten

tial inconsistency are ones we have seen before and dealt with in other models.

In the network model, virtual fields were introduced for the purpose of eliminat

ing redundancy and inconsistency. In the hierarchical model, we used virtual

record types for the same purpose. The object model encourages references to

objects to be made by pointers rather than by copying the object.

In the present example, all the above problems go away if we replace

SUPJNFO by the two relation schemes

SUPPLIERS(SNAME, SADDR)

SUPPLIES(SNAME, ITEM, PRICE)

as in Figure 2.8. Here, SUPPLIERS, gives the address for each supplier exactly

once; hence there is no redundancy. Moreover, we can enter an address for a

supplier even if it currently supplies no items.

Yet some questions remain. For example, there is a disadvantage to the

above decomposition; to find the addresses of suppliers of Brie, we must now

take a join, which is expensive, while with the single relation SUPJNFO we

could simply do a selection and projection. How do we determine that the above

replacement is beneficial? Are there other problems of the same four kinds

present in the two new relation schemes? How do we find a good replacement

for a bad relation scheme?

Dependencies and Redundancy

The balance of the chapter is devoted to answering these questions. Before

proceeding though, let us emphasize the relationship between dependencies and

redundancy. In general, a dependency is a statement that only a subset of all

possible relations are "legal," i.e., only certain relations reflect a possible state

of the real world. If not all relations are possible, it stands to reason that there

will be some sort of redundancy in legal relations. That is to say, given the fact

that a relation R is legal, i.e., satisfies certain dependencies, and given certain

information about the current value of R, we should be able to deduce other

things about the current value of R.

In the case that the dependencies are functional, the form of the redun

dancy is obvious. If, in our relation SUPJNFO we saw the two tuples:

SNAME SADDR ITEM PRICE

Acme 16 River St. Brie 3.49

Acme ??? Perrier 1.19

we may use the assumption that SNAME functionally determines SADDR to

7.2 FUNCTIONAL DEPENDENCIES 379

deduce that the ??? stands for "16 Raver St." Thus, the functional depen

dency makes all but the first SADDR field for a given supplier redundant; we

know what it is without seeing it. Conversely, suppose we did not believe the

functional dependency of SADDR on SNAME holds. Then there would be no

reason to believe that the ??? had any particular value, and that field would

not be redundant.

When we have more general kinds of dependencies than functional depen

dencies, the form redundancy takes is less clear. However, in all cases, it appears

that the cause and cure of the redundancy go hand-in-hand. That is, the depen

dency, such as that of SADDR on SNAME, not only causes the redundancy, but

it permits the decomposition of the SUPJNFO relation into the SUPPLIERS

and SUPPLIES relations in such a way that the original SUPJNFO relation

can be recovered from the SUPPLIERS and SUPPLIES relations. We shall

discuss these concepts more fully in Section 7.4.

7.2 FUNCTIONAL DEPENDENCIES

In Section 2.3 we saw that relations could be used to model the "real world"

in several ways; for example, each tuple of a relation could represent an entity

and its attributes or it could represent a relationship between entities. In many

cases, the known facts about the real world imply that not every finite set of

tuples could be the current value of some relation, even if the tuples were of

the right arity and had components chosen from the right domains. We can

distinguish two kinds of restrictions on relations:

1. Restrictions that depend on the semantics of domain elements. These

restrictions depend on understanding what components of tuples mean.

For example, no one is 60 feet tall, and no one with an employment history

going back 37 years has age 27. It is useful to have a DBMS check for such

implausible values, which probably arose because of an error when entering

or computing data. The next chapter covers the expression and use of this

sort of "integrity constraint." Unfortunately, they tell us little or nothing

about the design of database schemes.

2. Restrictions on relations that depend only on the equality or inequality of

values. There are other constraints that do not depend on what value a

tuple has in any given component, but only on whether two tuples agree

in certain components. We shall discuss the most important of these con

straints, called functional dependencies, in this section, but there are other

types of value-oblivious constraints that will be touched on in later sec

tions. It is value-oblivious constraints that turn out to have the greatest

impact on the design of database schemes.

Let R(.Ai,...,A,) be a relation scheme, and let X and Y be subsets of

{Ait...,An}. We say X —» y, read "X functionally determines Y" or UY

380 DESIGN THEORY FOR RELATIONAL DATABASES

functionally depends on X" if whatever relation r is the current value for ft,

it is not possible that r has two tuples that agree in the components for all

attributes in the set X yet disagree in one or more components for attributes

in the set Y. Thus, the functional dependency of supplier address on supplier

name, discussed in Section 7.1, would be expressed

{SNAME} -» {SADDR}

Notational Conventions

To remind the reader of the significance of the symbols we use, we adopt the

following conventions:

1. Capital letters near the beginning of the alphabet stand for single at

tributes.

2. Capital letters near the end of the alphabet, U, V, . . . , Z, generally stand

for sets of attributes, possibly singleton sets.

3. R is used to denote a relation scheme. We also name relations by their

schemes; e.g., a relation with attributes A, B, and C may be called ABC.1

4. We use r for a relation, the current instance of scheme R. Note this con

vention disagrees with the Prolog convention used in Chapter 3, where R

was used for the instance of a relation and r for a predicate, i.e., the name

of the relation.

5. Concatenation is used for union. Thus, A\ • • • An is used to represent the

set of attributes {A\, . . . , An}, and XY is shorthand for X U Y. Also, XA

or AX, where A" is a set of attributes and A a single attribute, stands for

XLI{A}.

Significance of Functional Dependencies

Functional dependencies arise naturally in many ways. For example, if R repre

sents an entity set whose attributes are AI, . . , , An, and X is a set of attributes

that forms a key for the entity set, then we may assert X —» Y for any subset

Y of the attributes, even a set Y that has attributes in common with X. The

reason is that the tuples of each possible relation r represent entities, and en

tities are identified by the value of attributes in the key. Therefore, two tuples

that agree on the attributes in X must represent the same entity and thus be

the same tuple.

Similarly, if relation R represents a many-one relationship from entity set

EI to entity set E2, and among the .Aj's are attributes that form a key X for

EI and a key Y for JE2, then X —» Y would hold, and in fact, X functionally

1 Unfortunately, there are cases where the natural symbol for a single attribute, e.g., Z

for "zip code" or R for "room" conflicts with these conventions, and the reader will be

reminded when we use a symbol in a nonstandard way.

7.2 FUNCTIONAL DEPENDENCIES 381

determines any set of attributes of R. However, Y -» X would not hold unless

the relationship were one-to-one.

It should be emphasized that functional dependencies are statements about

all possible relations that could be the value of relation scheme R. We cannot

look at a particular relation r for scheme R and deduce what functional depen

dencies hold for R. For example, if r is the empty set, then all dependencies

appear to hold, but they might not hold in general, as the value of the relation

denoted by R changes. We might, however, be able to look at a particular

relation for R and discover some dependencies that did not hold.

The only way to determine the functional dependencies that hold for re

lation scheme R is to consider carefully what the attributes mean. In this

sense, dependencies are actually assertions about the real world; they cannot

be proved, but we might expect them to be enforced by a DBMS if told to do

so by the database designer. As we saw in Chapter 4, many relational systems

will enforce those functional dependencies that follow from the fact that a key

determines the other attributes of a relation.

Example 7.1: Let us consider some of the functional dependencies that we

expect to hold in the YVCB database of Example 2.14 (Figure 2.8). The most

basic dependencies are those that say a key determines all the attributes of the

relation scheme. Thus, in SUPPLIERS we get

SNAME -» SADDR

and in SUPPLIES we get

SNAME ITEM -» PRICE

In CUSTOMERS we have

CNAME -» CADDR BALANCE

and similar functional dependencies hold in the other relations of Figure 2.8.

We can also observe many trivial dependencies, like

SNAME -» SNAME

and some that are less trivial, such as

SNAME ITEM -» SADDR PRICE

which is obtained by combining the dependencies from SUPPLIERS and SUP

PLIES, and realizing that attribute SNAME represents the same concept (the

supplier name) in each relation. The reason we believe this functional de

pendency holds is that given a supplier's name and an item, we can uniquely

determine an address; we ignore the item and take the address of the supplier.

We can also determine a unique price, the price the given supplier charges for

the given item.

The reader should understand, however, that the above dependency, unlike

the others we have mentioned in this example, is not associated with a particular

382 DESIGN THEORY FOR RELATIONAL DATABASES

relation; it is rather something we deduce from our understanding about the

"semantics" of suppliers, items, addresses, and prices. We expect that this

dependency will have influence on any relation scheme in which some or all of

the attributes mentioned appear, but the nature of that influence, which we

discuss in Section 7.4, is often subtle.

On might wonder whether a dependency like

CADDR -» CNAME

holds. Looking at the sample data of Figure 4.2(a), we do not find two tuples

that agree on the address but disagree on the name, simply because there are

no two tuples with the same address. However, in principle, there is nothing

that rules out the possibility that two customers have the same address, so we

must not assert this dependency, even though it appears to hold in the only

sample relation we have seen. D

Satisfaction of Dependencies

We say a relation r satisfies functional dependency X —» Y if for every two

tuples n and v in r such that n[X] = v[X], it is also true that n[Y] = v[Y].

Note that like every "if • • • then" statement, it can be satisfied either by n[X]

differing from f[X] or by n[Y] agreeing with v[Y]. If r does not satisfy X —» Y,

then r violates that dependency.

If r is an instance of scheme R, and we have declared that X —» Y holds

for R, then we expect that r will satisfy X —» Y. However, if X —» Y does not

hold for R in general, then r may coincidentally satisfy X —» Y, or it might

violate X —» Y.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES

Suppose R is a relation scheme and A, B, and C are some of its attributes.

Suppose also that the functional dependencies A —» B and B —» C are known

to hold in R. We claim that A —» C must also hold in R. In proof, suppose r is

a relation that satisfies A —» B and B —» C, but there are two tuples n and v

in r such that n and v agree in the component for A but disagree in C. Then

we must ask whether /i and v agree on attribute B. If not, then r would violate

A—»B. If they do agree on B, then since they disagree on C, r would violate

B —» C. Hence r must satisfy A —» C.

In general, let F be a set of functional dependencies for relation scheme R,

and let X —» Y be a functional dependency. We say F logically implies X —» Y,

written F |= X —» Y , if every relation r for R that satisfies the dependencies in

F also satisfies X —» Y. We saw above that if F contains A —» B and B —» C,

then A —» C is logically implied by F. That is,

{,4 -» B, B -» C} \= A -» C

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 383

Closure of Dependency Sets

We define F+ , the closure of F, to be the set of functional dependencies that

are logically implied by F; i.e.,

F+ = F |= X

Example 7.2: Let R = ABC and F = {A -» B,B -» C}. Then F+ consists

of all those dependencies X —» V such that either

1. X contains A, e.g., ABC -» 4B, ,4B -» BC, OT A-»C,

2. A" contains B but not .A, and Y does not contain A, e.g., BC —» B, B —» C,

or B —» 0, and

3. X —» Y" is one of the three dependencies C —» C", C —» 0, or 0 —» 0.

We shall discuss how to prove the above contention shortly. D

Keys

When talking about entity sets we assumed that there was a key, a set of

attributes that uniquely determined an entity. There is an analogous concept for

relations with functional dependencies. If R is a relation scheme with attributes

A\A% • • • An and functional dependencies F, and X is a subset of A\A2 •• • An,

we say A" is a key of R if:

1. X —» A\A2 • • • An is in F+. That is, the dependency of all attributes on

the set of attributes X is given or follows logically from what is given, and

2. For no proper subset Y C X is Y —» A\A2 • • • An in F+.

We should observe that minimality, condition (2) above, was not present

when we talked of keys for entity sets in Section 2.2 or keys for files in Chapter

6. The reason is that without a formalism like functional dependencies, we can

not verify that a given set of attributes is minimal. The reader should be aware

that in this chapter the term "key" does imply minimality. Thus, the given key

for an entity set will only be a key for the relation representing that entity set

if the given key was minimal. Otherwise, one or more subsets of the key for the

entity set will serve as a key for the relation.

As there may be more than one key for a relation, we sometimes designate

one as the "primary key." The primary key might serve as the file key when the

relation is implemented, for example. However, any key could be the primary

key if we desired. The term candidate key is sometimes used to denote any

minimal set of attributes that functionally determine all attributes, with the

term "key" reserved for one designated ("primary") candidate key. We also use

the term superkey for any superset of a key. Remember that a key is a special

case of a superkey.

384 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.3: For relation R and set of dependencies F of Example 7.2 there

is only one key, A, since A —» ABC is in F+ , but for no set of attributes X

that does not contain A, is X —» ABC true.

A more interesting example is the relation scheme R(CITY, ST, ZIP),

where ST stands for street address and ZIP for zip code. We expect tuple

(c, s,z) in a relation for R only if city c has a building with street address 5,

and z is the zip code for that address in that city. It is assumed that the

nontrivial functional dependencies are:

CITY ST -» ZIP

ZIP -» CITY

That is, the address (city and street) determines the zip code, and the zip code

determines the city, although not the street address. One can easily check that

{CITY, ST} and {ST, ZIP} are both keys. D

Axioms for Functional Dependencies

To determine keys, and to understand logical implications among functional

dependencies in general, we need to compute F+ from F, or at least, to tell,

given F and functional dependency X —» Y, whether X —» Y is in F+. To do

so requires that we have inference rules telling how one or more dependencies

imply other dependencies. In fact, we can do more; we can provide a complete

set of inference rules, meaning that from a given set of dependencies F, the

rules allow us to deduce all the true dependencies, i.e., those in F+. Moreover,

the rules are sound, meaning that using them, we cannot deduce from F any

false dependency, i.e., a dependency that is not in F+ .

The set of rules is often called Armstrong's axioms, from Armstrong [1974],

although the particular rules we shall present differ from Armstrong's. In what

follows we assume we are given a relation scheme with set of attributes U, the

universal set of attributes, and a set of functional dependencies F involving

only attributes in U. The inference rules are:

Al: Refiexivity. IfYCXCU, then X -» Y is logically implied by F. This

rule gives the trivial dependencies, those that have a right side contained

in the left side. The trivial dependencies hold in every relation, which is

to say, the use of this rule depends only on U, not on F.

A2: Augmentation. If X —» Y holds, and Z is any subset of U, then XZ —» YZ.

Recall that X, Y, and Z are sets of attributes, and XZ is conventional

shorthand for X U Z. It is also important to remember that the given

dependency X —» Y might be in F, or it might have been derived from

dependencies in F using the axioms we are in the process of describing.

A3: Transitivity. If X -» Y and Y -» Z hold, then X -» Z holds.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 385

Example 7.4: Consider the relation scheme ABCD with functional depen

dencies A —» C and B —» D. We claim AB is a key for ABCD (in fact, it is

the only key). We can show AB is a superkey by the following steps:

1. A —» C (given)

2. AB -» .ABC [augmentation of (1) by AB]

3. B -» I> (given)

4. ABC -» ABCD [augmentation of (3) by ABC]

5. AB -» ABCD [transitivity applied to (2) and (4)]

To show AB is a key, we must also show that neither A nor B by them

selves functionally determine all the attributes. We could show that A is not a

superkey by exhibiting a relation that satisfies the given dependencies (1) and

(3) above, yet does not satisfy A —» ABCD, and we could proceed similarly

for B. However, we shall shortly develop an algorithm that makes this test

mechanical, so we omit this step here. D

Soundness of Armstrong's Axioms

It is relatively easy to prove that Armstrong's axioms are sound; that is, they

lead only to true conclusions. It is rather more difficult to prove completeness,

that they can be used to make every valid inference about dependencies. We

shall tackle the soundness issue first.

Lemma 7.1: Armstrong's axioms are sound. That is, if X —» Y is deduced

from F using the axioms, then X —» Y is true in any relation in which the

dependencies of F are true.

Proof: Al, the reflexivity axiom, is clearly sound. We cannot have a relation

T with two tuples that agree on X yet disagree on some subset of X. To prove

A2, augmentation, suppose we have a relation r that satisfies X —» V, yet there

are two tuples n and v that agree on the attributes of XZ but disagree on YZ.

Since they cannot disagree on any attribute of Z, /i and v must disagree on

some attribute in Y. But then n and v agree on X but disagree on Y, violating

our assumption that X —» Y holds for r. The soundness of A3, the transitivity

axiom, is a simple extension of the argument given previously that A —» B and

B —» C imply A —» C. We leave this part of the proof as an exercise. D

Additional Inference Rules

There are several other inference rules that follow from Armstrong's axioms.

We state three of them in the next lemma. Since we have proved the soundness

of Al, A2, and A3, we are entitled to use them in the proof that follows.

Lemma 7.2:

a) The union rule. {X -» Y, X -» Z} |= X -» YZ.

b) The pseudotransitivity rule. {X -» Y, WY -» Z} |= WX -» Z.

386 DESIGN THEORY FOR RELATIONAL DATABASES

c) The decomposition rule. If X -» Y holds, and Z C y, then X -» Z holds.

Proof:

a) We are given X —» y, so we may augment by X to infer X —» AT. We

are also given X —» Z, so we may augment by Y to get AT —» yZ. By

transitivity, X -» Xy and Xy -» yZ imply X -» yZ.

b) Given X —» y, we may augment by IV to get WX —» WT. Since we are

given JVT —» Z, transitivity tells us WX —» Z.

c) y —» Z follows from reflexivity, so by the transitivity rule, X —» Z. D

An important consequence of the union and decomposition rules is that if

AI, . . . , An are attributes, then X —» A\,...,An holds if and only if X —» Ai

holds for each t. Thus, singleton right sides on functional dependencies are

sufficient. We shall discuss this matter in more detail when we take up the

subject of "minimal covers" for sets of functional dependencies.

Closures of Attribute Sets

Before tackling the completeness issue, it is important to define the closure of

a set of attributes with respect to a set of functional dependencies. Let F be

a set of functional dependencies on set of attributes U, and let A be a subset

of U. Then X+, the closure of X (with respect to F) is the set of attributes A

such that X -» A can be deduced from F by Armstrong's axioms.2 The central

fact about the closure of a set of attributes is that it enables us to tell at a

glance whether a dependency X —» Y follows from F by Armstrong's axioms.

The next lemma tells how.

Lemma 7.3: X —» Y follows from a given set of dependencies F using Arm

strong's axioms if and only if y C X+ ; here, the closure of X is taken with

respect to F.

Proof: Let Y = A\ • • • An for set of attributes AI, . . . , An, and suppose y C

X+. By definition of X+, X —» A, is implied by Armstrong's axioms for all t.

By the union rule, Lemma 7.2(a), X —» Y follows.

Conversely, suppose X —» Y follows from the axioms. For each i, X —» Ai

holds by the decomposition rule, Lemma 7.2(c), so y C X+. O

Completeness of Armstrong's Axioms

We are now ready to prove that Armstrong's axioms are complete. We do so

by showing that if F is the given set of dependencies, and X —» Y cannot

be proved by Armstrong's axioms, then there must be a relation in which the

dependencies of F all hold but X —» Y does not; that is, F does not logically

imply X —» y.

2 Do not confuse closures of sets of dependencies with closures of sets of attributes, even

though the same notation is used for each.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 387

Theorem 7.1: Armstrong's axioms are sound and complete.

Proof: Soundness is Lemma 7.1, so we have to prove completeness. Let F

be a set of dependencies over attribute set [/, and suppose X —» Y cannot be

inferred from the axioms. Consider the relation r with the two tuples shown

in Figure 7.1. First we show that all dependencies in F are satisfied by r.

Intuitively, a dependency V —» W violated by r allows us to "push out" X+

beyond the value that it rightfully has when given set of dependencies F.

Suppose V —» W is in F but is not satisfied by r. Then V C X+ , or else the

two tuples of r disagree on some attribute of V, and therefore, could not violate

V —» W. Also, W cannot be a subset of X+, or V —» W would be satisfied by

the relation r. Let A be an attribute of W not in X+. Since V C X+, X —» V

follows from Armstrong's axioms by Lemma 7.3. Dependency V —» W is in F,

so by transitivity we have X —» W. By reflexivity, W —» A, so by transitivity

again, X —» A follows from the axioms. But then, by definition of the closure,

A is in X+ , which we assumed not to be the case. We conclude by contradiction

that each V —» W in F is satisfied by r.

Attributes of X+ Other attributes

1 1 ... 1 1 1 ... 1

1 1 ••• 1 0 0 ••• 0

Figure 7.1 A relation r showing F does not logically imply X —» Y.

Now we must show that X —» Y is not satisfied by r. Suppose it is satisfied.

As A" C X+ is obvious, it follows that Y C X+, else the two tuples of r agree on

X but disagree on Y. But then Lemma 7.3 tells us that X —» Y can be inferred

from the axioms, which we assumed not to be the case. Therefore, X —» Y

is not satisfied by r, even though each dependency in F is. We conclude that

whenever X —» Y does not follow from F by Armstrong's axioms, F does not

logically imply X —» Y. That is, the axioms are complete. D

Theorem 7.1 has some interesting consequences. We defined X+ to be the

set of attributes A such that X —» A followed from the given dependencies F

using the axioms. We now see that an equivalent definition of X+ is the set of

A such that F \= X —» A. Another consequence is that although we defined

F+ to be the set of dependencies that were logically implied by F, we can also

take F+ to mean the set of dependencies that follow from F by Armstrong's

axioms.

388 DESIGN THEORY FOR RELATIONAL DATABASES

Computing Closures

It turns out that computing F+ for a set of dependencies F is a time-consuming

task in general, simply because the set of dependencies in F+ can be large even

if F itself is small. Consider the set

Then F+ includes all of the dependencies A —» Y, where Y is a subset of

{Bi, B2, • • • , Bn}. As there are 2" such sets Y, we could not expect to list F+

conveniently, even for reasonably sized n.

At the other extreme, computing X+, for a set of attributes X, is not

hard; it takes time proportional to the length of all the dependencies in F,

written out. By Lemma 7.3 and the fact that Armstrong's axioms are sound

and complete, we can tell whether X —» Y is in F+ by computing X+ with

respect to F. A simple way to compute X+ is the following.

Algorithm 7.1: Computation of the Closure of a Set of Attributes with Re

spect to a Set of Functional Dependencies.

INPUT: A finite set of attributes U, a set of functional dependencies F on U,

and a set X C U.

OUTPUT: X+, the closure of X with respect to F.

METHOD: We compute a sequence of sets of attributes X(°\ X^, ... by the

rules:

1. A-<°> is X.

2. X(t+1) is X^ union the set of attributes A such that there is some depen

dency Y -» Z, in F, A is in Z, and Y C X®.

Since X = X<°> C • • • C X^ C • • • C U, and U is finite, we must eventually

reach i such that X^ = X^+i^. Since each X^+1^ is computed only in terms

of XU>, it follows that X™ = X(i+1) = X(i+2> = ••• . There is no need to

compute beyond X^ once we discover X^ = X(t+1\ We can (and shall) prove

that X+ is *«> for this value of t. D

Example 7.5: Let F consist of the following eight dependencies:

AB -» C D -» EG

C -» A BE-»C

BC^D CG^BD

ACD -» B CE-»AG

and let X = BD. To apply Algorithm 7.1, we let X(0> = BD. To compute X(1>

we look for dependencies that have a left side B, D, or BD. There is only one,

D -» FG, so we adjoin E and G to X<°> and make X™ = BDEG. For X™,

we look for left sides contained in X^ and find D —» EG and BE —» C. Thus,

= BCDEG. Then, for X(3) we look for left sides contained in BCDEG

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 389

and find, in addition to the two previously found, C —» A, BC —» D, CG —» BD,

and CE -» AG. Thus X(3) = ABCDEG, the set of all attributes. It therefore

comes as no surprise that X<3> = X<4> = • • • . Thus, (BD)+ = ABCDEG. D

Now we must address ourselves to the problem of proving that Algorithm

7.1 is correct. It is easy to prove that every attribute placed in some X^

belongs in X+, but harder to show that every attribute in X+ is placed in

some Xt»>.

Theorem 7.2: Algorithm 7.1 correctly computes X+.

Proof: First we show by induction on j that if A is placed in X^ during

Algorithm 7.1, then A is in X+; i.e., if A is in the set X® returned by Algorithm

7.1, then A is in X+.

Basis: j = 0. Then A is in X, so by reflexivity, X —» A.

Induction: Let j > 0 and assume that X^ ^ consists only of attributes in

X+. Suppose A is placed in X^ because A is in Z, Y —» Z is in F, and

Y C X(j-1). Since Y C X(j~1\ we know Y C X+ by the inductive hypothesis.

Thus, X -» Y by Lemma 7.3. By transitivity, X -» Y and Y -» Z imply

X —» Z. By reflexivity, Z —» A, so X —» A by another application of the

transitivity rule. Thus, A is in X+ .

Now we prove the converse: if A is in X+, then A is in the set returned by

Algorithm 7.1. Suppose A is in X+, but A is not in that set X(i) returned by

Algorithm 7.1. Notice that X^ = X(t+i\ because that is the condition under

which Algorithm 7.1 produces an answer.

Consider a relation r similar to that of Figure 7.1; r has two tuples that

agree on the attributes of X^ and disagree on all other attributes. We claim

r satisfies F. If not, let U —» V be a dependency in F that is violated by r.

Then U C X^ and V cannot be a subset of X^, if the violation occurs (the

same argument was used in the proof of Theorem 7.1). Thus, X(^t+1^ cannot be

the same as X^ as supposed.

Thus, relation r must also satisfy X —» A. The reason is that A is assumed

to be in X+, and therefore, X —» A follows from F by Armstrong's axioms.

Since these axioms are sound, any relation satisfying F satisfies X —» A. But

the only way X —» A could hold in r is if A is in X^, for if not, then the two

tuples of r, which surely agree on X, would disagree on A and violate X —» A.

We conclude that A is in the set X^ returned by Algorithm 7.1. D

Equivalences Among Sets of Dependencies.

Let F and G be sets of dependencies. We say F and G are equivalent if

F+ = G+

It is easy to test whether F and G are equivalent. For each dependency Y —» Z

390 DESIGN THEORY FOR RELATIONAL DATABASES

in F, test whether Y —» Z is in G+ using Algorithm 7.1 to compute Y+ with

respect to G and then checking whether Z C Y+. If some dependency Y —» Z

in F is not in G+, then surely F+ ^ G+. If every dependency in F is in G+,

then every dependency V —» W in F+ is in G+ , because a proof that V —» W

is in G+ can be formed by taking a proof that each Y -» Z in F is in G+, and

following it by a proof from F that V —» W is in F+.

To test whether each dependency in G is also in F+, we proceed in an

analogous manner. Then F and G are equivalent if and only if every dependency

in F is in G+, and every dependency in G is in F+.

Minimal Covers

We can find, for a given set of dependencies, an equivalent set with a number

of useful properties. A simple and important property is that the right sides of

dependencies be split into single attributes.

Lemma 7.4: Every set of functional dependencies F is equivalent to a set of

dependencies G in which no right side has more than one attribute.

Proof: Let G be the set of dependencies X —» A such that for some X —» Y

in F, A is in Y. Then X —» A follows from X —» Y by the decomposition rule.

Thus G C F+. But F C G+, since if Y = A^ • • • An, then X -»Y follows from

X —» AI, . . . , X —» An using the union rule. Thus, F and G are equivalent. D

It turns out to be useful, when we develop a design theory for database

schemes, to consider a stronger restriction on covers than that the right sides

have but one attribute. We say a set of dependencies F is minimal if:

1. Every right side of a dependency in F is a single attribute.

2. For no X -» A in F is the set F - (X -» A] equivalent to F.

3. For no X -» A in F and proper subset Z of X is F - {X -» ,4} U {Z -» A}

equivalent to F.

Intuitively, (2) guarantees that no dependency in F is redundant. Inciden

tally, it is easy to test whether X —» A is redundant by computing X+ with

respect to F — {X —» A}. We leave this observation as an exercise.

Condition (3) guarantees that no attribute on any left side is redundant.

We also leave as an exercise the fact that the following test checks for redundant

attributes on the left. Attribute B in X is redundant for the dependency X —» A

if and only if A is in (X — {B})+ when the closure is taken with respect to F.

As each right side has only one attribute by (1), surely no attribute on the

right is redundant. If G is a set of dependencies that is minimal in the above

sense, and G is equivalent to F, then we say G is a minima] cover for F.

Theorem 7.3: Every set of dependencies F has a minimal cover.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 391

Proof: By Lemma 7.4, assume no right side in F has more than one attribute.

We repeatedly search for violations of conditions (2) [redundant dependencies]

and (3) [redundant attributes in left sides], and modify the set of dependencies

accordingly. As each modification either deletes a dependency or deletes an at

tribute in a dependency, the process cannot continue forever, and we eventually

reach a set of dependencies with no violations of (1), (2), or (3).

For condition (2), we consider each dependency X —» Y in the current set

of dependencies F, and if F — [X —» F } is equivalent to F, then delete X —> Y

from F. Note that considering dependencies in different orders may result in

the elimination of different sets of dependencies. For example, given the set F:

A-» B A-»C

B^A C -> A

B-»C

we can eliminate both B —» A and A —» C, or we can eliminate B —» C, but we

cannot eliminate all three.

For condition (3), we consider each dependency A\-••Ak —» B in the

current set F, and each attribute Ai in its left side, in some order. If

is equivalent to F, then delete Ai from the left side of A\ • • • A/, —» B. Again,

the order in which attributes are eliminated may affect the result. For example,

given

AB-»C A^B B-»A

we can eliminate either A or B from AB —» C, but we cannot eliminate them

both.

We leave as an exercise the proof that it is sufficient first to eliminate all

violations of (3), then all violations of (2), but not vice versa. D

Example 7.6: Let us consider the dependency set F of Example 7.5. If we

use the algorithm of Lemma 7.4 to split right sides we are left with:

AB -» C £-»F CG -» 5

C-»A D-»G CG-»D

BC -» D BE-»C CE-»A

ACD -» B CE-»G

Clearly CE —» A is redundant, since it is implied by C —» A. CG —» B is

redundant, since CG -» D, C -» A, and ACD -» B imply CG -» B. Then

no more dependencies are redundant. However, ACD —» B can be replaced by

CD —» B, since C —» A is given, and therefore CD —» B can be deduced from

ACD —» B and C —» A. Now, no further reduction by (2) or (3) is possible.

Thus, one minimal cover for F is that shown in Figure 7.2(a).

Another minimal cover, constructed from F by eliminating CE —» A,

392 DESIGN THEORY FOR RELATIONAL DATABASES

CG -» D, and ACD -» B, is shown in Figure 7.2(b). Note that the two

minimal covers have different numbers of dependencies. D

AB -» C AB-»C

C-»A C -» A

BC -» D BC^D

B D -» F

D -. G BE-»C

BE-»C CG -» B

CG-»D CE-»G

CE-»G

(a) (b)

Figure 7.2 Two minimal covers.

7.4 LOSSLESS-JOIN DECOMPOSITION

The decomposition of a relation scheme # = {A\, A^, . . . , An} is its replacement

by a collection p — {Ri, R2, . . . , Rk} of subsets of R such that

R = Ri U R2 U • • • U Rk

There is no requirement that the /Zj's be disjoint. One of the motivations

for performing a decomposition is that it may eliminate some of the problems

mentioned in Section 7.1.

Example 7.7: Let us reconsider the SUPJNFO relation scheme introduced in

Section 7.1, but as a shorthand, let the attributes be 5 (SNAME), A (SADDR),

/ (ITEM), and P (PRICE). The functional dependencies we have assumed are

S —» A and 5/ —» P. We mentioned in Section 7.1 that replacement of the

relation scheme SAIP by the two schemes SA and SIP makes certain problems

go away. For example, in SAIP we cannot store the address of a supplier unless

the supplier provides at least one item. In SA, there does not have to be an

item supplied to record an address for the supplier. D

One might question whether all is as rosey as it looks, when we replace

SAIP by SA and SIP in Example 7.7. For example, suppose we have a relation

r as the current value of SAIP. If the database uses SA and SIP instead of

SAIP, we would naturally expect the current relation for these two relation

schemes to be the projection of r onto SA and SIP, that is TSA = KSA^) and

rsip = irs/p(r).

How do we know that TSA and rsip contain the same information as r?

One way to tell is to check that r can be computed knowing only TSA and

7.4 LOSSLESS-JOIN DECOMPOSITION 393

We claim that the only way to recover r is by taking the natural join of

and TSIP- The reason is that, as we shall prove in the next lemma, if we let

s = TSA oo rsip, then TTS/I(S) = rSA, and 7rS/P(S) = rs/p. If s ^ r, then given

TSA and TSIP there is no way to tell whether r or s was the original relation for

scheme SAIP. That is, if the natural join doesn't recover the original relation,

then there is no way whatsoever to recover it uniquely.

Lossless Joins

If R is a relation scheme decomposed into schemes Ri,R2, . . . ,Rk, and D is a

set of dependencies, we say the decomposition has a lossless join (with respect

to D), or is a lossless-join decomposition (with respect to D) if for every relation

r for R satisfying D:

r = 7rflt (r) txi TTflj (r) ixi • • • txt irRt (r)

that is, every relation r is the natural join of its projections onto the /Vs. As

we saw, the lossless-join property is necessary if the decomposed relation is to

be recoverable from its decomposition.

Some basic facts about project-join mappings follow in Lemma 7.5. First

we introduce some notation. If p — (Ri, RI, • • • ,Rk) is a decomposition, then

mp is the mapping defined by rnp(r) = t< jLi7rR,(r). That is, mp(r) is the join

of the projections of r onto the relation schemes in p. Thus, the lossless join

condition with respect to a set of dependencies D can be expressed as: for all

r satisfying D, we have r = mp(r).

Lemma 7.5: Let R be a relation scheme, p = (Ri, . • • , Rk) be any decomposi

tion of R, and r be any relation for R. Define rj = KR,(r). Then

a) r C mp(r).

b) If s = mp(r), then nR, (s) = rj.

c) mp(mp(r)) = mp(r).

Proof:

a) Let p, be in r, and for each t, let Hi=n[Ri].3 Then Hi is in rj for all i. By

definition of the natural join, /i is in mp(r), since n agrees with Hi on the

attributes of Ri for all i.

b) As r C s by (a), it follows that nR,(r) C irR.(s). That is, r* C irR,(s). To

show nRl(s) C n, suppose for some particular i that /ij is in 7rfl((s)- Then

there is some tuple /i in s such that fi\Ri] = Hi- As /i is in a, there is some

Vj in TJ for each j such that n[Rj] = Vj. Thus, in particular, n[Ri] is in rj.

But n[Ri] = Ait, so Hi is in TJ, and therefore irRt(s) C rj. We conclude that

3 Recall that v[X] refers to the tuple v projected onto the set of attributes X.

394 DESIGN THEORY FOR RELATIONAL DATABASES

c) If a = mp(r), then by (b), irR,(a) = ri. Thus mp(s) = ixijLirj = mp(r). D

Let us observe that if for each t, TJ is some relation for Ri, and

«= «ifc=1r*

then KR^S) is not necessarily equal to rt. The reason is that TJ may contain

"dangling" tuples that do not match with anything when we take the join. For

example, if RI = AB, R2 = BC, r\ = {0i&i}, and r2 = {fciCi^02}, then

a = {oi6iCi} and KBC(S) = {^i^i} / r2. However, in general, ir^s) C rj, and

if the TJ'S are each the projection of some one relation r, then ^Rt(s) = rj.

The ability to store "dangling" tuples is an advantage of decomposition.

As we mentioned previously, this advantage must be balanced against the need

to compute more joins when we answer queries, if relation schemes are decom

posed, than if they are not. When all things are considered, it is generally

believed that decomposition is desirable when necessary to cure the problems,

such as redundancy, described in Section 7.1, but not otherwise.

Testing Lossless Joins

It turns out to be fairly easy to tell whether a decomposition has a lossless join

with respect to a set of functional dependencies.

Algorithm 7.2: Testing for a Lossless Join.

INPUT: A relation scheme R = A\ • • • An, a set of functional dependencies F,

and a decomposition p = (Ri, . . . , Rk)-

OUTPUT: A decision whether p is a decomposition with a lossless join.

METHOD: We construct a table with n columns and k rows; column j corre

sponds to attribute Aj, and row t corresponds to relation scheme Ri. In row t

and column j put the symbol dj if Aj is in Ri . If not, put the symbol bij there.

Repeatedly "consider" each of the dependencies X —» Y in F, until no

more changes can be made to the table. Each time we "consider" X —» y,

we look for rows that agree in all of the columns for the attributes of X. If

we find two such rows, equate the symbols of those rows for the attributes of

Y. When we equate two symbols, if one of them is a,, make the other be Oj.

If they are 6^ and 6/,, make them both bij or both 6y, as you wish. It is

important to understand that when two symbols are equated, all occurrences of

those symbols in the table become the same; it is not sufficient to equate only

the occurrences involved in the violation of the dependency X —» Y.

If after modifying the rows of the table as above, we discover that some

row has become QI • • • on, then the join is lossless. If not, the join is lossy (not

lossless). D

7.4 LOSSLESS-JOIN DECOMPOSITION 395

Example 7.8: Let us consider the decomposition of SAIP into SA and SIP

as in Example 7.7. The dependencies are S —» A and 5/ —» P, and the initial

table is

5 A I P

,i] <i'2 &i3 b\,\

Oi 622 a3 a4

Since S -» A, and the two rows agree on S, we may equate their symbols for

A, making 622 become a2. The resulting table is

5 A I P

a\ a2 b\3 614

iii 02 u.t a .1

Since some row, the second, has all a's, the join is lossless.

For a more complicated example, let R = ABCDE, RI = AD, fl2 = AB,

RS = BE, R4 = CDE, and RS = AE. Let the functional dependencies be:

A -» C DE -» C

B —» C CE —» A

C-»D

The initial table is shown in Figure 7.3(a). We can apply A —» C to equate

&13, 623, and 653. Then we use B —» C to equate these symbols with 633; the

result is shown in Figure 7.3(b), where 613 has been chosen as the representative

symbol. Now use C -» D to equate 04, 624, 634, and 654; the resulting symbol

must be 04. Then DE —» C enables us to equate 613 with 03, and CE —» A

lets us equate 63i, 64i, and a\. The result is shown in Figure 7.3(c). Since the

middle row is all a's, the decomposition has a lossless join. D

It is interesting to note that one might assume Algorithm 7.2 could be

simplified by only equating symbols if one was an aj. The above example shows

this is not the case; if we do not begin by equating 613, 623, 633, and 653, we can

never get a row of all a's.

Theorem 7.4: Algorithm 7.2 correctly determines if a decomposition has a

lossless join.

Proof: Suppose the final table produced by Algorithm 7.2 does not have a

row of all a's. We may view this table as a relation r for scheme R; the rows

are tuples, and the Cj's and 6jj's are distinct symbols, each chosen from the

domain of Aj. Relation r satisfies the dependencies F, since Algorithm 7.2

modifies the table whenever a violation of the dependencies is found. We claim

that r ^ mp(r). Clearly r does not contain the tuple 01a2 • • • an. But for each

Ri, there is a tuple ^ in r, namely the tuple that is row t, such that Hi[Ri]

consists of all a's. Thus, the join of the TT/Z, (r)'s contains the tuple with all a's,

since that tuple agrees with /^ for all t. We conclude that if the final table from

396 DESIGN THEORY FOR RELATIONAL DATABASES

D

al bi2 ^13 a4 &15

01 O2 ^23 ^24 ^25

631 O2 633 ^34 05

^41 ^42 a3 a4 a5

a1 ^52 ^53 ^54 a5

BCD

01 612 bi3 a4 bis

O1 02 613 ''21 62S

''.Ml 02 ''13 634 OB

''•11 ''•12 03 04 OB

01 &52 ''K! &S4 OB

(b)

A B C D E

ai ba a3 a4 bis

O1 02 03 04 bat

f,' j 02 03 04 a5

a\ 642 o3 a4 OB

a ^
&S2 03 04 OB

(c)

Figure 7.3 Applying Algorithm 7.2.

Algorithm 7.2 does not have a row with all o's, then the decomposition p does

not have a lossless join; we have found a relation r for R such that mp(r) ^ r.

Conversely, suppose the final table has a row with all a's. We can in general

view any table T as shorthand for the domain relational calculus expression

• • • A R(wk)) } (7.1)

where Wi is the ith row of T. When T is the initial table, formula (7.1) defines

the function mp. In proof, note mp(r) contains tuple ai • • • an if and only if for

each t, r contains a tuple with Oj in the jth component if Aj is an attribute of

Ri and some arbitrary value, represented by 6y, in each of the other attributes.

Since we assume that any relation r for scheme R satisfies the dependencies

F, we can infer that each of the transformations to the table performed by

7.4 LOSSLESS-JOIN DECOMPOSITION 397

Algorithm 7.2 changes the table (by identifying symbols) in a way that does

not affect the set of tuples produced by (7.1), as long as that expression changes

to mirror the changes to the table. The detailed proof of this claim is complex,

but the intuition should be clear: we are only identifying symbols if in (7.1)

applied to a relation R which satisfies F, those symbols could only be assigned

the same value anyway.

Since the final table contains a row with all a's, the domain calculus ex

pression for the final table is of the form:

{a1...an|(3611)...(36fcn)(fi(a1...an)A...)} (7.2)

Clearly the value of (7.2) applied to relation r for R, is a subset of r.

However, if r satisfies F, then the value of (7.2) is mp(r), and by Lemma

7.5(a), r C mp(r). Thus, whenever r satisfies F, (7.2) computes exactly r, so

r = mp(r). That is to say, the decomposition p has a lossless join with respect

to F. H

Algorithm 7.2 can be applied to decompositions into any number of relation

schemes. However, for decompositions into two schemes we can give a simpler

test, the subject of the next theorem.

Theorem 7.5: If p = (Ri,R2) is a decomposition of R, and F is a set of

functional dependencies, then p has a lossless join with respect to F if and

only if (Ri fl R2) -» (Ri - R2) or (Ri n R2) -» (R2 - RI). Note that these

dependencies need not be in the given set F; it is sufficient that they be in F+ .

— R2 R2 — ^i

row for RI aa • • • a aa • • • a bb • • • b

row for R2 aa- • • a bb • • • b aa- ••a

Figure 7.4 A general two row table.

Proof: The initial table used in an application of Algorithm 7.2 is shown in

Figure 7.4, although we have omitted the subscripts on a and 6, which are

easily determined and immaterial anyway. It is easy to show by induction on

the number of symbols identified by Algorithm 7.2 that if the 6 in the column

for attribute A is changed to an a, then A is in (Ri D R2)+ . It is also easy to

show by induction on the number of steps needed to prove (Ri fl #2) —» V by

Armstrong's axioms, that any 6's in the columns for attributes in Y are changed

to a's. Thus, the row for RI becomes all a's if and only if R2 — Ri C (fllnBj)"*",

that is (Ri n R2) —» (R2 - RI), and similarly, the row for R2 becomes all o's if

and only if (Ri n R2) -» (fli - R2). D

398 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.9: Suppose R = ABC and F = {A -» B}. Then the de

composition of R into AB and AC has a lossless join, since AB n AC = A,

AB — AC = B,4 and A—»B holds. However, if we decompose R into RI = AB

and R2 = BC, we discover that RI D R^ = B, and B functionally determines

neither RI — R2, which is A, nor R2 — RI, which is C. Thus, the decomposi

tion AB and BC does not have a lossless join with respect to F = {A —» B},

as can be seen by considering the relation r = {aibici, 026102} for R. Then

irytfl(r) = {016i,0261}, 7rBc(0 = {bici,bic2}, and

irAB(r) ex 7rBC(r) = {fli6iCi, 016iC2,026iCi,026iC2}

which is a proper superset of r. D

7.5 DECOMPOSITIONS THAT PRESERVE DEPENDENCIES

We have seen that it is desirable for a decomposition to have the lossless-join

property, because it guarantees that any relation can be recovered from its

projections. Another important property of a decomposition of relation scheme

R into p = (Ri,...,Rk) is that the set of dependencies F for R be implied by

the projection of F onto the flj's. Formally, the projection of F onto a set of

attributes Z, denoted irz(F), is the set of dependencies X —» Y in F+ such

that XY C Z. (Note that X -» Y need not be in F; it need only be in F+.)

We say decomposition p preserves a set of dependencies F if the union of all the

dependencies in ir^ (F), for i = 1, 2, . . . , k logically implies all the dependencies

in F.5

The reason it is desirable that p preserves F is that the dependencies in

F can be viewed as integrity constraints for the relation R. If the projected

dependencies do not imply F, then should we represent R by p = (Ri, . . . , Rk),

we could find that the current value of the Ri 's represented a relation R that

did not satisfy F, even if p had a lossless-join with respect to F. Alternatively,

every update to one of the Ri 's would require a join to check that the constraints

were not violated.

Example 7.10: Let us reconsider the problem of Example 7.3, where we had

attributes CITY, ST, and ZIP, which we here abbreviate C, S, and Z. We

observed the dependencies CS —» Z and Z —» C. The decomposition of the

relation scheme CSZ into SZ and CZ has a lossless join, since

(SZ D CZ) -» (CZ - SZ)

That is, Z -» C. However, the projection of F = {CS -» Z, Z -» C} onto SZ

gives only the trivial dependencies (those that follow from reflexivity), while

4 To make sense of equations like these do not forget that . 1 ; . !•_• An stands for the set

of attributes {A\,At,.••,An}-

5 Note that the converse is always true; that is, F always implies all its projections, and

therefore implies their union.

7.5 DECOMPOSITIONS THAT PRESERVE DEPENDENCIES 399

the projection onto CZ gives Z —» C and the trivial dependencies. It can be

checked that Z —» C and trivial dependencies do not imply CS —» Z, so the

decomposition does not preserve dependencies.

For example, the join of the two relations in Figure 7.5(a) and (b) is the

relation of Figure 7.5(c). Figure 7.5(a) satisfies the trivial dependencies, as any

relation must. Figure 7.5(b) satisfies the trivial dependencies and the depen

dency Z —» C. However, their join in Figure 7.5(c) violates CS —» Z. D

5 Z

545 Tech Sq.

545 Tech Sq.

02138

02139

(a)

C Z

Cambridge, Mass.

Cambridge, Mass.

02138

02139

(b)

C 5 Z

Cambridge, Mass.

Cambridge, Mass.

545 Tech Sq.

545 Tech Sq.

02138

02139

(c)

Figure 7.5 A join violating a functional dependency.

We should note that a decomposition may have a lossless join with respect

to set of dependencies F, yet not preserve F. Example 7.10 gave one such

instance. Also, the decomposition could preserve F yet not have a lossless join.

For example, let F = {A -» B, C -» D}, R = ABCD, and p = (AB, CD).

Testing Preservation of Dependencies

In principle, it is easy to test whether a decomposition p = (Ri,. . . ,Rk) pre

serves a set of dependencies F. Just compute F+ and project it onto all of the

ftj's. Take the union of the resulting sets of dependencies, and test whether

this set is equivalent to F.

However, in practice, just computing F+ is a formidable task, since the

number of dependencies it contains is often exponential in the size of F. There

fore, it is fortunate that there is a way to test preservation without actually

computing F+; this method takes time that is polynomial in the size of F.

Algorithm 7.3: Testing Preservation of Dependencies.

INPUT: A decomposition p = (jRi, . . . , Rk) and a set of functional dependencies

F.

OUTPUT: A decision whether p preserves F.

400 DESIGN THEORY FOR RELATIONAL DATABASES

METHOD: Define G to be UjLi7r/e^F). Note that we do not compute G; we

merely wish to see whether it is equivalent to F. To test whether G is equivalent

to F, we must consider each X —» Y in F and determine whether X+, computed

with respect to G, contains Y. The trick we use to compute X+ without having

G available is to consider repeatedly what the effect is of closing X with respect

to the projections of F onto the various Ri 's.

That is, define an R-operation on set of attributes Z with respect to a set

of dependencies F to be the replacement of Z by Z(j((ZnR)+C\R), the closure

being taken with respect to F. This operation adjoins to Z those attributes A

such that (Z n R) —» A is in KR(F). Then we compute X+ with respect to G

by starting with X, and repeatedly running through the list of flj's, performing

the fli-operation for each t in turn. If at some pass, none of the /Zj-operations

make any change in the current set of attributes, then we are done; the resulting

set is X+. More formally, the algorithm is:

Z := X

while changes to Z occur do

for t := 1 to k do

Z := ZU ((Z n Ri)+ n Ri) /* closure wrt F */

If Y is a subset of the Z that results from executing the above steps, then

X —» Y is in G+. If each X —» Y in F is thus found to be in G+, answer "yes,"

otherwise answer "no." D

Example 7.11: Consider set of attributes ABCD with decomposition

{AB,BC,CD}

and set of dependencies F = {A -» B, B -» C, C -» D, D -» A}. That is,

in F+, each attribute functionally determines all the others. We might first

imagine that when we project F onto AB, BC, and CD, we fail to get the

dependency D —» A, but that intuition is wrong. When we project F, we really

project F+ onto the relation schemes, so projecting onto AB we get not only

A -» B, but also B -» A. Similarly, we get C -» B in KBc(F) and D -» C

in TTCD(F), and these three dependencies logically imply D —» A. Thus, we

should expect that Algorithm 7.3 will tell us that D —» A follows logically from

G =

We start with Z = {D}. Applying the AB-oper&t\on does not help, since

{D}u(({D}n{A,B})+n{A,B})

is just {D}. Similarly, the BC-operation does not change Z. However, when

we apply the CD-operation we get

7.6 NORMAL FORMS FOR RELATION SCHEMES 401

+ n{c,D})

= {D}U({A,B,C,D}n{C,D})

= {C,D}

Similarly, on the next pass, the BG-operation applied to the current Z — {C, D}

produces Z = {B,C,D}, and on the third pass, the /1B-operation sets Z to

[A, B, C, D}, whereupon no more changes to Z are possible.

Thus, with respect to G, {D}+ = {A,B,C,D}, which contains A, so we

conclude that G [= D —» A. Since it is easy to check that the other members

of F are in G+ (in fact they are in G), we conclude that this decomposition

preserves the set of dependencies F. D

Theorem 7.6: Algorithm 7.3 correctly determines if X —» Y is in G+.

Proof: Each time we add an attribute to Z, we are using a dependency in

G, so when the algorithm says "yes," it must be correct. Conversely, suppose

X —» Y is in G+. Then there is a sequence of steps whereby, using Algorithm

7.1 to take the closure of X with respect to G, we eventually include all the

attributes of Y. Each of these steps involves the application of a dependency in

G, and that dependency must be in TTR, (F) for some t, since G is the union of

these projections. Let one such dependency be U —» V. An easy induction on

the number of dependencies applied in Algorithm 7.1 shows that eventually U

becomes a subset of Z, and then on the next pass the /Zj-operation will surely

cause all attributes of V to be added to Z if they are not already there. D

7.6 NORMAL FORMS FOR RELATION SCHEMES

A number of different properties, or "normal forms" for relation schemes with

dependencies have been defined. The most significant of these are called "third

normal form" and "Boyce-Codd normal form." Their purpose is to avoid the

problems of redundancy and anomalies discussed in Section 7.1.

Boyce-Codd Normal Form

The stronger of these normal forms is called Boyce-Codd. A relation scheme R

with dependencies F is said to be in Boyce-Codd normal form (BCNF) if when

ever X —» A holds in R, and A is not in X, then X is a superkey for R; that is,

X is a key or contains a key. Put another way, the only nontrivial dependencies

are those in which a key functionally determines one or more other attributes.

In principal, we must look for violating dependencies X —» A not only among

the given dependencies, but among dependencies derived from them. However,

we leave as an exercise the fact that if there are no violations among the given

set F, and F consists only of dependencies with single attributes on the right,

then there are no violations among any of the dependencies in F+.

402 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.12: Consider the relation scheme CSZ of Example 7.10, with

dependencies CS —» Z and Z —» C. The keys for this relation scheme are

CS and SZ, as one can easily check by computing the closures of these sets

of attributes and of the other nontrivial sets (CZ, C, S, and Z). The scheme

CSZ with these dependencies is not in BCNF, because Z —» C holds in CSZ,

yet Z is not a key of CSZ, nor does it contain a key. D

Third Normal Form

In some circumstances BCNF is too strong a condition, in the sense that it is not

possible to bring a relation scheme into that form by decomposition, without

losing the ability to preserve dependencies. Third normal form provides most

of the benefits of BCNF, as far as elimination of anomalies is concerned, yet it

is a condition we can achieve for an arbitrary database scheme without giving

up either dependency preservation or the lossless-join property.

Before defining third normal form, we need a preliminary definition. Call

an attribute A in relation scheme R a prime attribute if A is a member of any

key for R (recall there may be many keys). If A is not a member of any key,

then A is nonprime.

Example 7.13: In the relation scheme CSZ of Example 7.12, all attributes

are prime, since given the dependencies CS —» Z and Z —» C, both CS and

SZ are keys.

In the relation scheme ABCD with dependencies AB —» C, B —» D, and

BC —» A, we can check that AB and BC are the only keys. Thus, A, B, and

C are prime, and D is nonprime. D

A relation scheme R is in third normal form6 (3NF) if whenever X —» A

holds in R and A is not in X, then either X is a superkey for R, or A is prime.

Notice that the definitions of Boyce-Codd and third normal forms are identical

except for the clause "or A is prime" that makes third normal form a weaker

condition than Boyce-Codd normal form. As with BCNF, we in principle must

consider not only the given set of dependencies F, but all dependencies in F+

to check for a 3NF violation. However, we can show that if F consists only of

dependencies that have been decomposed so they have single attributes on the

right, then it is sufficient to check the dependencies of F only.

Example 7.14: The relation scheme SAIP from Example 7.7, with dependen

cies SI -» P and 5 —» A violates 3NF. A is a nonprime attribute, since the only

key is SI. Then 5 —» A violates the 3NF condition, since 5 is not a superkey.

However, the relation scheme CSZ from Example 7.12 is in 3NF. Since all

6 Yes Virginia, there is a first normal form and there is a second normal form. First

normal form merely states that the domain of each attribute is an elementary type,

rather than a set or a record structure, as fields in the object model (Section 2.7) can

be. Second normal form is only of historical interest and is mentioned in the exercises.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF 403

of its attributes are prime, no dependency could violate the conditions of third

normal form. D

Motivation Behind Normal Forms

The purpose behind BCNF is to eliminate the redundancy that functional de

pendencies are capable of causing. Suppose we have a relation scheme R in

BCNF, yet there is some redundancy that lets us predict the value of an at

tribute by comparing two tuples and applying a functional dependency. That

is, we have two tuples that agree in set of attributes X and disagree in set of

attributes Y, while in the remaining attribute A, the value in one of the tuples,

lets us predict the value in the other. That is, the two tuples look like

x y\ a

x y2 ?

Here, x, y\, and 3/2 represent lists of values for the sets of attributes X and Y.

If we can use a functional dependency to infer the value indicated by a

question mark, then that value must be a, and the dependency used must be

Z —» A, for some Z C X. However, Z cannot be a superkey, because if it were,

then the two tuples above, which agree in Z, would be the same tuple. Thus, R

is not in BCNF, as supposed. We conclude that in a BCNF relation, no value

can be predicted from any other, using functional dependencies only. In Section

7.9 we shall see that there are other ways redundancy can arise, but these are

"invisible" as long as we consider functional dependencies to be the only way

the set of legal relations for a scheme can be defined.

Naturally, 3NF, being weaker than BCNF, cannot eliminate all redundancy.

The canonical example is the CSZ scheme of Example 7.12, which is in 3NF,

yet allows pairs of tuples like

CSZ

c 3\ Z

1 S2 Z

where we can deduce from the dependency Z —» C that the unknown value is

c. Note that these tuples cannot violate the other dependency, CS —» Z.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF

We have now been introduced to the properties we desire for relation schemes:

BCNF or, failing that, 3NF. In Sections 7.4 and 7.5 we saw the two most

important properties of database schemes as a whole, the lossless-join and

dependency-preservation properties. Now we must attempt to put these ideas

together, that is, construct database schemes with the properties we desire for

404 DESIGN THEORY FOR RELATIONAL DATABASES

database schemes, and with each individual relation scheme having the proper

ties we desire for relation schemes.

It turns out that any relation scheme has a lossless join decomposition

into Boyce-Codd Normal Form, and it has a decomposition into 3NF that

has a lossless join and is also dependency-preserving. However, there may be

no decomposition of a relation scheme into Boyce-Codd normal form that is

dependency-preserving. The CSZ relation scheme is the canonical example. It

is not in BCNF because the dependency Z —» C holds, yet if we decompose

CSZ in any way such that CSZ is not one of the schemes in the decomposition,

then the dependency CS —» Z is not implied by the projected dependencies.

Before giving the decomposition algorithm, we need the following property

of lossless-join decompositions.

Lemma 7.6: Suppose R is a relation scheme with functional dependencies F.

Let p = (#i, . . . , Rn) be a decomposition of R with a lossless join with respect

to F, and let a = (S1,S2) be a lossless-join decomposition of RI with respect

to TTft, (F). Then the decomposition of R into (5i, 52, #2, • • • , Rn) also has a

lossless join with respect to F.

Proof: Suppose we take a relation r for R, and project it onto RI , . . . , Rn to

get relations TI, . . . , rn, respectively. Then we project ri onto 5i and 52 to get

Si and «2. The lossless-join property tells us we can join s\ and s2 to recover

exactly ri, and we can then join ri, . . . , rn to recover r. Since the natural join

is an associative operation, by Theorem 2.1 (a), the order in which we perform

the join doesn't matter, so we recover r no matter in what order we take the

joinof Si,s2,r2,...,rn. D

We can apply Lemma 7.6 to get a simple but time-consuming algorithm

to decompose a relation scheme R into BCNF. If we find a violation of BCNF

in R, say X —» A, we decompose R into schemes R — A and XA. These are

both smaller than R, since XA could not be all attributes of R (then X would

surely be a superkey, and X —» A would not violate BCNF). The join of R — A

and XA is lossless, by Theorem 7.5, because the intersection of the schemes

is X, and X —» XA. We compute the projections of the dependencies for R

onto R — A and XA, then apply this decomposition step recursively to these

schemes. Lemma 7.6 assures that the set of schemes we obtain by decomposing

until all the schemes are in BCNF will be a lossless-join decomposition.

The problem is that the projection of dependencies can take exponential

time in the size of the scheme R and the original set of dependencies. However,

it turns out that there is a way to find some lossless-join decomposition into

BCNF relation schemes in time that is polynomial in the size of the given set of

dependencies and scheme. The technique will sometimes decompose a relation

that is already in BCNF, however. The next lemma gives some useful properties

of BCNF schemes.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF 405

Lemma 7.7:

a) Every two-attribute scheme is in BCNF.

b) If R is not in BCNF, then we can find attributes A and B in R, such that

(R — AB) —» A. It may or may not be the case that (R — AB) —» B as

well.

Proof: For part (a), let AB be the scheme. There are only two nontrivial

dependencies that can hold: A —» B and B —» A. If neither hold, then surely

there is no BCNF violation. If only A —» B holds, then A is a key, so we do

not have a violation. If only B —» A holds, then B is a key, and if both hold,

both A and B are keys, so there can never be a BCNF violation.

For (b), suppose there is a BCNF violation X —» A in R. Then R must

have some other attribute B, not in XA, or else X is a superkey, and X —» A

is not a violation. Thus, (R — AB) —» A as desired. D

Lemma 7.7 lets us look for BCNF violations in a scheme R with n attributes

by considering only the n(n— 1)/2 pairs of attributes {A, B} and computing the

closure of R— AB with respect to the given dependencies F, by using Algorithm

7.1. As stated, that algorithm takes O(n2) time, but a carefully designed data

structure can make it run in time O(n); in any event, the time is polynomial in

the size of R. If for no A and B does (R - AB)+ contain either A or B, then

by Lemma 7.7(b) we know R is in BCNF.

It is important to realize that the converse of Lemma 7.7(b) is not true.

Possibly, A is in BCNF, and yet there is such a pair {A, B}. For example, if

R = ABC, and F = {C -» A, C -» B}, then R is in BCNF, yet R-AB = C,

and C does functionally determine A (and B as well).

Before proceeding to the algorithm for BCNF decomposition, we need one

more observation, about projections of dependencies. Specifically:

Lemma 7.8: If we have a set of dependencies F on R, and we project them

onto RI C R to get FI, and then project FI onto #2 Q RI to get F2, then

That is, we could have assumed that F was the set of dependencies for RI , even

though F presumably mentions attributes not found in Ri.

Proof: If XY C R2, then X -» Y is in F+ if and only if it is in F/. D

Lemma 7.8 has an important consequence. It says that if we decompose

relation schemes as in Lemma 7.6, then we never actually have to compute

the projected dependencies as we decompose. It is sufficient to work with the

given dependencies, taking closures of attribute sets by Algorithm 7.1 when we

need to, rather than computing whole projections of dependencies, which are

exponential in the number of attributes in the scheme. It is this observation,

together with Lemma 7.7(1)). that allows us to take time that is polynomial in

the size of the given scheme and the given dependencies, and yet discover some

406 DESIGN THEORY FOR RELATIONAL DATABASES

lossless-join, BCNF decomposition of the given scheme.

Algorithm 7.4: Lossless Join Decomposition into Boyce-Codd Normal Form.

INPUT: Relation scheme R and functional dependencies F.

OUTPUT: A decomposition of R with a lossless join, such that every relation

scheme in the decomposition is in Boyce-Codd normal form with respect to the

projection of F onto that scheme.

METHOD: The heart of the algorithm is to take relation scheme ft, and decom

pose it into two schemes. One will have set of attributes XA; it will be in

BCNF, and the dependency X —» A will hold. The second will be ft - A, so the

join of R - A with XA is lossless. We then apply the decomposition procedure

recursively, with ft — A in place of R, until we come to a scheme that meets the

condition of Lemma 7.7(b); we know that scheme is in BCNF. Then, Lemma

7.6 assures us that this scheme plus the BCNF schemes generated at each step

of the recursion have a lossless join.

Z := ft; /* at all times, Z is the one scheme

of the decomposition that may not be in BCNF */

repeat

decompose Z into Z — A and XA, where XA is in BCNF

and X—» A; /* use the subroutine of Figure 7.6(b) */

add XA to the decomposition;

Z := Z-A;

until Z cannot be decomposed by Lemma 7.7(b);

add Z to the decomposition

(a) Main program.

if Z contains no A and B such that A is in (Z - AB)+ then

/* remember all closures are taken with respect to F */

return that Z is in BCNF and cannot be decomposed

else begin

find one such A and B;

Y := Z-B;

while Y contains A and B such that (Y - AB)+ -» A do

Y := Y-B;

return the decomposition Z — A and Y;

/* Y here is XA in the main program */

end

(b) Decomposition subroutine.

Figure 7.6 Details of Algorithm 7.4.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF 407

The details of the algorithm are given in Figure 7.6. Figure 7.6(a) is the

main routine, which repeatedly decomposes the one scheme Z that we do not

know to be in BCNF; initially, Z is R. Figure 7.6(b) is the decomposition

procedure that either determines Z cannot be decomposed, or decomposes Z

into Z — A and XA, where X —» A. The set of attributes XA is selected by

starting with Y = Z, and repeatedly throwing out the attribute B, the one of

the pair AB such that we found X —» A, where X = Y — AB. Recall that it

does not matter whether X —» B is true or not. EH

Example 7.15: Let us consider the relation scheme CTHRSG, where C =

course, T = teacher, H = hour, R = room, S = student, and G = grade. The

functional dependencies F we assume are

C —» T Each course has one teacher.

HR —» C Only one course can meet in a room at one time.

HT —» R A teacher can be in only one room at one time.

CS —» G Each student has one grade in each course.

HS —» R A student can be in only one room at one time.

Since Algorithm 7.4 does not specify the order in which pairs AB are

to be considered, we shall adopt the uniform strategy of preserving the order

CTHRSG for the attributes and trying the first attribute against the others,

in turn, then the second against the third through last, and so on.

We begin with the entire scheme, CTHRSG, and the first pair to consider

is CT. We find that (HRSG)+ contains C; it also contains T, but that is

irrelevant. Thus, we begin the while-loop of Figure 7.6(b) with A = C, B = T,

and Y = CHRSG.

Now, we try the CH pair as {A,B}, but (RSG)+ contains neither C nor

H. We have better luck with the next pair, CR, because (HSG)+ contains R.

Thus, we have A = R, B = C, and we set Y to HRSG, by throwing out B, as

usual. With Y = HRSG, we have no luck until we try pair RG, when we find

(HS)+ contains R. Thus, we have A = R and B — G, whereupon Y is set to

HRS.

At this point, no further attributes can be thrown out of Y, because the test

of Lemma 7.7(b) fails for each pair. We may therefore decompose CTHRSG

into

1. HRS, which plays the role of XA, with X = HS and A = R, and

2. Z = CTHRSG - R, which is CTHSG.

We now work on Z = CTHSG in the main program. The list of pairs AB

that work and the remaining sets of attributes after throwing out B, is:

1. In CTHSG: A = T,B = H, leaves Y = CTSG.

2. In CTSG: A = T,B = S, leaves Y = CTG.

3. In CTG: A = T,B = G, leaves Y = CT.

408 DESIGN THEORY FOR RELATIONAL DATABASES

Surely, CT is in BCNF, by Lemma 7.7(a). We thus add CT to our decompo

sition. Attribute T plays the role of A, so in the main program we eliminate

T and progress to the scheme Z = CHSG, which is still not in Boyce-Codd

normal form.

In CHSG, the first successful pair is A = G and B = H, which leaves

Y — CSG. No more pairs allow this scheme to be decomposed by Lemma

7.7(b), so we add CSG to the decomposition, and we apply the main program

to the scheme with A removed, that is, Z = CHS.

This scheme, we find, cannot be decomposed by Lemma 7.7(b), so it too is

in BCNF, and we are done. Notice that we get lossless joins at each stage, if we

combine the schemes in the reverse of the order in which they were found. That

is, CHS K CSG is lossless because of the dependency CS -» G; CHSG txj CT

is lossless because of the dependency C —» T, and CTHSG e*J HRS is lossless

because of HS —» R. In each case, the required functional dependency is the

one of the form X —» A that gets developed by the subroutine of Figure 7.6(b).

By Lemma 7.6, these lossless joins imply that the complete decomposition,

(MRS, CT, CSG, CHS) is lossless. D

Problems with Arbitrary BCNF Decompositions

In the decomposition of Example 7.15, the four relation schemes store the fol

lowing kinds of information:

1. The location (room) of each student at each hour.

2. The teacher of each course.

3. Grades for students in courses, i.e., the students' transcripts.

4. The schedule of courses and hours for each student.

This is not exactly what we might have designed had we attempted by hand to

find a lossless-join decomposition into BCNF. In particular, we cannot tell where

a course meets without joining the CHS and HRS relations, and even then we

could not find out if there were no students taking the course. We probably

would have chosen to replace HRS by CHR, which gives the allocation of rooms

by courses, rather than by students, and corresponds to the published schedule

of courses found at many schools. Unfortunately, the question of "merit" of

different decompositions is not one we can address theoretically. If one does

not have a particular scheme in mind, for which we can simply verify that it

has a lossless join and that each of its components is in BCNF, then one can

try picking AB pairs at random in Algorithm 7.4, in the hope that after a few

tries, one will get a decomposition that looks "natural."

Another problem with the chosen decomposition (one which is not fixed

by replacing HRS by CHR) is that some of the dependencies in F, specifically

TH —» R and HR —» C, are not preserved by the decomposition. That is, the

projection of F onto HRS, CT, CSG, and CHS is the closure of the following

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS 409

dependencies, as the reader may check.

CS^G HS-»R

C-»T HS^C

Note that the last of these, HS —» C is in the projection of F onto CHS, but

is not a given dependency; the other three are members of F itself. These four

dependencies do not imply TH —» R or HR —» C. For example, the relation

for CTHRSG shown below

C T H R S G

Ci t h T 1 51 fli

c t h r 2 «2 93

c t h r 1 «3 93

satisfies neither TH —» # nor ## —» C1, yet its projections onto HRS, CT,

CSG, and C7/5 satisfy all the projected dependencies.

Efficiency of BCNF Decomposition

We claim that Algorithm 7.4 takes time that is polynomial in n, which is the

length of the relation scheme R and the dependencies F, written down. We

already observed that computing closures with respect to F takes time that is

polynomial in n; in fact O(n) time suffices if the proper data structures are

used. The subroutine of Figure 7.6(b) runs on a subset Z of the attributes,

which surely cannot be more than n attributes. Each time through the loop,

the set Y decreases in size, so at most n iterations are possible. There are at

most n2 pairs of attributes A and B, so the test for (Y - AB)+ —» A is done at

most n3 times. Since this test takes polynomial time, and its time dominates

the time of the other parts of the loop body, we conclude that the algorithm of

Figure 7.6(b) takes polynomial time.

The principal cost of the main program of Figure 7.6(a) is the call to the

subroutine, and this call is made only once per iteration of the loop. Since Z

decreases in size going around the loop, at most n iterations are possible, and

the entire algorithm is thus polynomial.

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS

We saw from Examples 7.12 and 7.14 that it is not always possible to decompose

a relation scheme into BCNF and still preserve the dependencies. However, we

can always find a dependency-preserving decomposition into third normal form,

as the next algorithm and theorem show.

Algorithm 7.5: Dependency-Preserving Decomposition into Third Normal

Form.

INPUT: Relation scheme R and set of functional dependencies F, which we

assume without loss of generality to be a minimal cover.

410 DESIGN THEORY FOR RELATIONAL DATABASES

OUTPUT: A dependency-preserving decomposition of R such that each relation

scheme is in 3NF with respect to the projection of F onto that scheme.

METHOD: If there are any attributes of R not involved in any dependency

of F, either on the left or right, then any such attribute can, in principle,

form a relation scheme by itself, and we shall eliminate it from R.7 If one of

the dependencies in F involves all the attributes of R, then output R itself.

Otherwise, the decomposition p to be output consists of scheme XA for each

dependency X —» A in F. D

Example 7.16: Reconsider the relation scheme CTHRSG of Example 7.15,

whose dependencies have minimal cover F:

C-»T CS-»G

HR-»C HS -» R

HT -» R

Algorithm 7.5 yields the set of relation schemes CT, CHR, THR, CSG, and

MRS. O

Theorem 7.7: Algorithm 7.5 yields a dependency-preserving decomposition

into third normal form.

Proof: Since the projected dependencies include a cover for F, the decompo

sition clearly preserves dependencies. We must show that the relation scheme

YB, for each functional dependency Y —» B in the minimal cover, is in 3NF.

Suppose X —» A violates 3NF for YB; that is, A is not in X, X is not a su-

perkey for YB, and A is nonprime. Of course, we also know that XA C YB,

and X —» A follows logically from F. We shall consider two cases, depending

on whether or not A = B.

Case 1: A = B. Then since A is not in X, we know X C Y, and since X is

not a superkey for YB, X must be a proper subset of Y. But then X —» B,

which is also X —» A, could replace Y —» B in the supposed minimal cover,

contradicting the assumption that Y —» B was part of the given minimal cover.

Case 2: A / B. Since Y is a superkey for YB, there must be some Z C Y

that is a key for YB. But A is in Y, since we are assuming A ^ B, and A

cannot be in Z, because A is nonprime. Thus Z is a proper subset of Y, yet

Z —» B can replace Y —» B in the supposedly minimal cover, again providing a

contradiction. D

There is a modification to Algorithm 7.5 that avoids unnecessary decompo

sition. If X —» AI, . . . , X —» An are dependencies in a minimal cover, then we

7 Sometimes it is desirable to have two or more attributes, say A and B, appear together in

a relation scheme, even though there is no functional dependency involving them. There

may simply be a many-many relationship between A and B. An idea of Bernstein [1976]

is to introduce a dummy attribute 0 and functional dependency AB —• 9, to force this

association. After completing the design, attribute 9 is eliminated.

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS 411

may use the one relation scheme XA\ • • • An in place of the n relation schemes

i, . . . , XAn. It is left as an exercise that the scheme XA\ • • • An is in 3NF.

Decompositions into Third Normal Form with a Lossless Join and

Preservation of Dependencies

As seen, we can decompose any relation scheme R into a set of schemes

p = (/?1,..., Rk)

such that p has a lossless join and each Ri is in BCNF (and therefore in 3NF).

We can also decompose R into a = (Si, . . . , Sm) such that a preserves the set

of dependencies F, and each Sj is in 3NF. Can we find a decomposition into

3NF that has both the lossless join and dependency-preservation properties?

We can, if we simply adjoin to a a relation scheme X that is a key for R, as

the next theorem shows.

Theorem 7.8: Let a be the 3NF decomposition of R constructed by Algorithm

7.5, and let X be a key for R. Then r = a U {X} is a decomposition of R with

all relation schemes in 3NF; the decomposition preserves dependencies and has

the lossless join property.

Proof: It is easy to show that any 3NF violation in X implies that a proper

subset of X functionally determines X, and therefore R, so X would not be a

key in that case. Thus X, as well as the members of a, are in 3NF. Clearly r

preserves dependencies, since a does.

To show that r has a lossless join, apply the tabular test of Algorithm 7.2.

We can show that the row for X becomes all a's, as follows. Consider the order

AI, AZ, . . . , Ak in which the attributes of R — X are added to X+ in Algorithm

7.1. Surely all attributes are added eventually, since X is a key. We show by

induction on i that the column corresponding to Ai in the row for X is set to

Oi in the test of Algorithm 7.2.

The basis, i = 0, is trivial. Assume the result for i - 1. Then Ai is added

to X+ because of some given functional dependency Y -» Ai, where

YCXU{A,,...,At-i]

Then YAi is in a, and the rows for YAi and X agree on Y (they are all a's)

after the columns of the X-row for A\,...,Ai-i are made a's. Thus, these

rows are made to agree on Ai during the execution of Algorithm 7.2. Since the

YAi-Tow has a^ there, so must the X-TOW. O

Obviously, in some cases r is not the smallest set of relation schemes with

the properties of Theorem 7.8. We can throw out relation schemes in T one at

a time as long as the desired properties are preserved. Many different database

schemes may result, depending on the order in which we throw out schemes,

since eliminating one may preclude the elimination of others.

412 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.17: We could take the union of the database scheme produced for

CTHRSG in Example 7.16 with the key SH, to get a decomposition that has

a lossless join and preserves dependencies. It happens that SH is a subset of

HRS, which is one of the relation schemes already selected. Thus, SH may be

eliminated, and the database scheme of Example 7.16, that is

(CT, CHR, THR, CSG, HRS)

suffices. Although some proper subsets of this set of five relation schemes are

lossless join decompositions, we can check that the projected dependencies for

any four of them do not imply the complete set of dependencies F. D

A Cautionary Word About Decompositions

Given tools like Algorithms 7.4 and 7.5, one is often tempted to "decompose

the heck" out of a relation scheme. It is important to remember that not every

lossless-join decomposition step is beneficial, and some can be harmful. The

most common mistake is to decompose a scheme that is already in BCNF,

just because it happens to have a lossless-join decomposition that preserves

dependencies.

For example, we might have a relation giving information about employees,

say /, the unique ID-number for employees, .IV, the employee's name, D the

department in which he works, and S, the salary. Since / is the only key in this

situation, we have I —» A for each other attribute A. It is therefore possible

to decompose this scheme into IN, ID, and IS. This decomposition is easily

seen to have a lossless join, because /, the only attribute in the intersection of

any pair, functionally determines all the attributes; it also clearly preserves the

dependencies / —» NDS.

However, the scheme INDS is itself in BCNF, and offers significant advan

tages for the answering of queries relating attributes other than /. For example,

if we wanted to know the name and salary of all of the employees in the toy

department, we would have to join IN tx ID ex /5 in the decomposed data

base scheme, yet we could answer the query without taking any joins if we left

the relation scheme intact (and with an index on department, we could answer

this query quite efficiently). Further, the decomposed scheme requires that the

employee ID number be repeated in many places, although it is not, technically,

redundant.

The moral is that when applying the theory of decomposition, one should

remember that decomposition is a last resort, used to solve the problems of

redundancy and anomalies, not as an end in itself. When applying Algorithm

7.4, we should avoid doing a decomposition, even if Lemma 7.7(b) tells us it can

be done, should the scheme already be in BCNF. When using Algorithm 7.5,

consider combining the relation schemes that result, should there be no BCNF

violations created by doing so.

7.9 MULTIVALUED DEPENDENCIES 413

7.9 MULTIVALUED DEPENDENCIES

In previous sections we have assumed that the only possible kind of data depen

dency is functional. In fact there are many plausible kinds of dependencies, and

at least one other, the multivalued dependency, appears frequently in the "real

world." Suppose we are given a relation scheme R, and X and Y are subsets

of R. Intuitively, we say that X —»-» Y, read "X multidetermines Y" or "there

is a multivalued dependency of Y on X" if given values for the attributes of

X there is a set of zero or more associated values for the attributes of Y, and

this set of V-values is not connected in any way to values of the attributes in

R-X-Y.

Formally, we say X —»-» Y holds in R if whenever r is a relation for R, and

H and v are two tuples in r, with fi[X] = v[X] (that is, u, and v agree on the

attributes of X), then r also contains tuples </> and rp, where

1. tfX] = V[X] = n[X] = v[X].

2. <t>\Y] = n[Y] and 0[fl - X - Y] = v(R - X - Y}.

3. i]>[Y] = v[Y] and if>[R - X - Y] = n[R - X - Y}*

That is, we can exchange the K-values of n and v to obtain two new tuples

41 and V that must also be in r. Note we did not assume that X and Y are

disjoint in the above definition.

Example 7.18: Let us reconsider the relation scheme CTHRSG introduced

in the previous section. In Figure 7.7 we see a possible relation for this relation

scheme. In this simple case there is only one course with two students, but we

see several salient facts that we would expect to hold in any relation for this

relation scheme. A course can meet for several hours, in different rooms each

time. Each student has a tuple for each class taken and each session of that

class. His grade for the class is repeated for each tuple.

H R G

CS101 Deadwood M9 222 Weenie B+

CS101 Deadwood W9 333 Weenie B+

CS101 Deadwood F9 222 Weenie B+

CS101 Deadwood M9 222 Grind C

CS101 Deadwood W9 333 Grind c

CS101 Deadwood F9 222 Grind c

Figure 7.7 A sample relation for scheme CTHRSG.

* Note we could have eliminated clause (3). The existence of tuple V follows from the

existence of <f' when we apply the definition with ;/ and v interchanged.

414 DESIGN THEORY FOR RELATIONAL DATABASES

Thus, we expect that in general the multivalued dependency C —»-» HR

holds; that is, there is a set of hour-room pairs associated with each course and

disassociated from the other attributes. For example, in the formal definition

of a multivalued dependency we may take X —»-» Y to be C —»-» HR and choose

fi = CS101 Deadwood M9 222 Weenie B+

v = CS101 Deadwood W9 333 Grind C

i.e., n is the first tuple, and v the fifth, in Figure 7.7. Then we would expect

to be able to exchange n[HR] = (M9, 222) with v[HR] = (W9, 333) to get the

two tuples

<t> = CS101 Deadwood M9 222 Grind C

ip = CS101 Deadwood W9 333 Weenie B+

A glance at Figure 7.7 affirms that <j> and ip are indeed in r; they are the fourth

and second tuples, respectively.

It should be emphasized that C —»-> HR holds not because it held in the

one relation of Figure 7.7. It holds because any course c, if it meets at hour

hi in room r1; with teacher t\ and student s\ who is getting grade 9i, and it

also meets at hour h^ in room r2 with teacher <2 and student s2 who is getting

grade g2, will also meet at hour hi in room TI with teacher t2 and student s^

who is getting grade <?2.

Note also that C —»-» H does not hold, nor does C —»-» R. In proof, consider

relation r of Figure 7.7 with tuples u, and v as above. If C —»-» H held, we would

expect to find tuple

CS101 Deadwood M9 333 Grind C

in r, which we do not. A similar observation about C —>-» R can be made.

There are a number of other multivalued dependencies that hold, however, such

as C —»-» SG and HR —»-» SG. There are also trivial multivalued dependencies

like HR —»-» R. We shall in fact prove that every functional dependency X —» Y

that holds implies that the multivalued dependency X -»-» Y holds as well. D

Axioms for Functional and Multivalued Dependencies

We shall now present a sound and complete set of axioms for making inferences

about a set of functional and multivalued dependencies over a set of attributes

U. The first three are Armstrong's axioms for functional dependencies only; we

repeat them here.

Al: ReBexivity for functional dependencies. If Y C X C [/, then X —» Y.

A2: Augmentation for functional dependencies. If X —» Y holds, and Z C U,

then XZ -» YZ.

A3: Transitivity for functional dependencies. {X —» Y, Y —» Z} |= X —» Z.

The next three axioms apply to multivalued dependencies.

7.9 MULTIVALUED DEPENDENCIES 415

A4: Complementation for multivalued dependencies.

{X -« y} |= X -~ (U - X - Y)

A5: Augmentation for multivalued dependencies. If X —»-» V holds, and

V C W, then WX -»-» VT.

A6: Transitivity for multivalued dependencies.

{x —-» y, Y -H» z> }= x —-» (z - y)

It is worthwhile comparing A4-A6 with A1-A3. Axiom A4, the comple

mentation rule, has no counterpart for functional dependencies. Axiom Al,

reflexivity, appears to have no counterpart for multivalued dependencies, but

the fact that X —»-» Y whenever Y C X, follows from Al and the rule (Ax

iom A7, to be given) that if X —» Y then X —»-» Y. A6 is more restrictive

than its counterpart transitivity axiom, A3. The more general statement, that

X —»-» y and y —»-» Z imply X —»-» Z, is false. For instance, we saw in Exam

ple 7.18 that C —-» HR holds, and surely HR -»-» # is true, yet C -»-» # is

false. To compensate partially for the fact that A6 is weaker than A3, we use

a stronger version of A5 than the analogous augmentation axiom for functional

dependencies, A2. We could have replaced A2 by: X —» Y and V C W imply

WX —» VY, but for functional dependencies, this rule is easily proved from

Al, A2, and A3.

Our last two axioms relate functional and multivalued dependencies.

A7: {X -» y} \= X —» y.

A8: If X —»-» y holds, Z C Y, and for some W disjoint from Y, we have

W -» Z, then X -» Z also holds.

Soundness and Completeness of the Axioms

We shall not give a proof that axioms A1-A8 are sound and complete. Rather,

we shall prove that some of the axioms are sound, that is, they follow from the

definitions of functional and multivalued dependencies, leaving the soundness

of the rest of the axioms, as well as a proof that any valid inference can be

made using the axioms (completeness of the axioms), for an exercise.

Let us begin by proving A6, the transitivity axiom for multivalued depen

dencies. Suppose some relation r over set of attributes U satisfies X —»-» Y and

y —»-» Z, but violates X —>-» (Z — Y). Then there are tuples n and v in r,

where n(X\ = v[X], but the tuple 0, where j1[X] = n[X], <j>[Z -Y] = n(Z - Y},

and

4>[u-x-(z- y)] = v[u-x-(z- Y)]

is not in r.9 Since X —»-» Y holds, it follows that the tuple V, where i1[X] =

9 Recall that we pointed out the definition of multivalued dependencies could require

416 DESIGN THEORY FOR RELATIONAL DATABASES

i/[y], and

11[U - X - Y] = n[U - X - Y]

is in r. Now if1 and v agree on Y, so since Y —»-» Z, it follows that r has a tuple

w, where w[y] = i/[y], w[Z] = ^[Z], and

w[t/ - Y - Z] = v[V - Y - Z]

We claim that w[X] = n[X], since on attributes in Z n X, w agrees with

V', which agrees with n. On attributes of X — Z, u1 agrees with i/, and v agrees

with n on X. We also claim that w[Z — Y] = n[Z — Y], since w agrees with ip

on Z — Y, and V agrees with n on Z - Y . Finally, we claim that u[V] = v[V],

where V = U — X - (Z — Y). In proof, surely u> agrees with v on V — Z, and

by manipulating sets we can show V f~l Z = (Y n Z) — X. But u agrees with

V1 on Z, and V agrees with v on Y, so w agrees with v on V D Z as well as on

V - Z. Therefore u agrees with v on V. If we look at the definition of <£, we

now see that u = 41. But we claimed that u is in r, so <f1 is in r, contrary to our

assumption. Thus X —»-» Z — Y holds after all, and we have proved A6.

Now let us prove A8. Suppose in contradiction that we have a relation r

in which X —» Y and W -» Z hold, where Z C Y, and W n Y is empty, but

X —» Z does not hold. Then there are tuples v and /i in r such that i/[A] = n[X],

but i/[Z] / P\Z]. By X —»-» Y applied to v and fi, there is a tuple </1 in r, such

that <f>[X] = n[X] = v[X], 41[Y] = n[Y], and </1[[/ - X - Y] = v[U - X - Y].

Since W n V is empty, <j> and v agree on W. As Z C V, 0 and /i agree on Z.

Since v and /i disagree on Z, it follows that <j1 and i/ disagree on Z. But this

contradicts W —» Z, since ^ and i> agree on W but disagree on Z. We conclude

that X —» Z did not fail to hold, and we have verified rule A8.

The remainder of the proof of the following theorem is left as an exercise.

Theorem 7.9: (Beeri, Fagin, and Howard [1977]). Axioms A1-A8 are sound

and complete for functional and multivalued dependencies. That is, if D is a set

of functional and multivalued dependencies over a set of attributes I/, and D+

is the set of functional and multivalued dependencies that follow logically from

D (i.e., every relation over U that satisfies D also satisfies the dependencies in

D+), then D+ is exactly the set of dependencies that follow from D by A1-A8.

D

Additional Inference Rules for Multivalued Dependencies

There are a number of other rules that are useful for making inferences about

functional and multivalued dependencies. Of course, the union, decomposition,

only the existence of if>, not the additional existence of \l> as in the third clause of the

definition. Thus, the violation of a multivalued dependency can be stated as the absence

of <j> (not <t> or T/») from the relation r.

7.9 MULTIVALUED DEPENDENCIES 417

and pseudotransitivity rules mentioned in Lemma 7.1 still apply to functional

dependencies. Some other rules are:

1. Union rule for multivalued dependencies.

{x -~ y, x -~ z} \= x -~ YZ

2. Pseudotransitivity rule for multivalued dependencies.

{X -~ y, WY -~ Z} |= WX --» (Z - WY)

3. Mixed pseudotransitivity rule. (X -~ Y, XY -» Z} \= X -» (Z - Y).

4. Decomposition rule for multivalued dependencies. If X —»-» Y and X —>-» Z

hold, then X -~ (Y n Z), A" --» (K - Z), and X -~ (Z - y) hold.

We leave the proof that these rules are valid as an exercise; techniques similar

to those used for A6 and A8 above will suffice, or we can prove them from

axioms A1-A8.

We should note that the decomposition rule for multivalued dependencies is

weaker than the corresponding rule for functional dependencies. The latter rule

allows us to deduce immediately from X —» Y that X —» A for each attribute A

in y. The rule for multivalued dependencies only allows us to conclude X —»-» A

from X —»-» y if we can find some Z such that X —»-» Z, and either Z n Y = A

orY-Z = A.

The Dependency Basis

However, the decomposition rule for multivalued dependencies, along with the

union rule, allows us to make the following statement about the sets Y such

that X -~ Y for a given X.

Theorem 7.10: If U is the set of all attributes, then we can partition U — X

into sets of attributes Yi,...,Yk, such that if Z C U — X, then X —f» Z if and

only if Z is the union of some of the Y^s.

Proof: Start the partition ofU — X with all ofU — X in one block. Suppose at

some point we have partition W\, . . . , Wn, and X —»-» W, for i = 1, 2, . . . ,n. If

X —>-» Z, and Z is not the union of some HVs, replace each Wi such that Wif~\Z

and Wi — Z are both nonempty by Wi C\ Z and Wi — Z. By the decomposition

rule, X -*-» (Wi n Z) and X —»-» (Wi — Z). As we cannot partition a finite

set of attributes indefinitely, we shall eventually find that every Z such that

X —»-» Z is the union of some blocks of the partition. By the union rule, X

multidetermines the union of any set of blocks. D

We call the above sets Y\ , . . . , Yk constructed for X from a set of functional

and multivalued dependencies D the dependency basis for X (with respect to

D).

418 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.19: In Example 7.18 we observed that C -»-» HR. Thus, by the

complementation rule, C -»-» TSG. We also know that C —» T. Thus, by

axiom A7, C —»-» T. By the decomposition rule, C —»-» 5G. One can check

that no single attribute except T or C itself is multidetermined by C. Thus,

the dependency basis for C is {T,HR,SG}. Intuitively, associated with each

course are independent sets of teachers (there is only one), hour-room pairs that

tell when and where the course meets, and student-grade pairs, the roll for the

course. D

Closures of Functional and Multivalued Dependencies

Given a set of functional and multivalued dependencies D, we would like to

find the set D+ of all functional and multivalued dependencies logically implied

by D. We can compute D+ by starting with D and applying axioms Al-

A8 until no more new dependencies can be derived. However, this process

can take time that is exponential in the size of D. Often we only want to

know whether a particular dependency X —» Y or X —»-» Y follows from D.

For example, Theorem 7.11, below, requires such inferences to find lossless-join

decompositions of relation schemes in the presence of multivalued dependencies.

To test whether a multivalued dependency X —»-» Y holds, it suffices to

determine the dependency basis of X and see whether Y — X is the union

of some sets thereof. For example, referring to Example 7.19, we know that

C -»-» CTSG, since T5G is the union of T and SG. Also, C -»-» HRSG, but

C —»-» TH is false, since TH intersects block HR of the dependency basis, yet

TH does not include all of HR. In computing the dependency basis of X with

respect to D, a theorem of Beeri [1980] tells us it suffices to compute the basis

with respect to the set of multivalued dependencies M, where M consists of

1. All multivalued dependencies in D, and

2. For each functional dependency X -» Y in D, the set of multivalued de

pendencies X —»-» AI, . . . , X —»-» .An, where Y = A\ • • • An, and each Ai is

a single attribute.

Another theorem of Beeri [1980] gives us a way to extract the nontrivial

functional dependencies from the dependency basis computed according to the

set of multivalued dependencies M. It can be shown that if X does not include

A, then X —» A holds if and only if

1. A is a singleton set of the dependency basis for X according to the set of

dependencies M, and

2. There is some set of attributes Y, excluding A, such that Y —» Z is one of

the given dependencies of D, and A is in Z.

Furthermore, Beeri [1980] gives the following polynomial time algorithm

for computing the dependency basis of X with respect to M. Note that while

Theorem 7.10 convinces us that the dependency basis exists, it does not tell us

7.9 MULTIVALUED DEPENDENCIES 419

how to find the multivalued dependencies needed to apply the decomposition

rule.

Algorithm 7.6: Computing the Dependency Basis.

INPUT: A set of multivalued dependencies M over set of attributes [/, and a set

XCU.

OUTPUT: The dependency basis for X with respect to M.

METHOD: We start with a collection of sets 5, which eventually becomes the

dependency basis we desire. Initially, 5 consists of only one set, U - X; that is,

S = {U — X}. Until no more changes can be made to 5, look for dependencies

V —»-» W in M and a set Y in S such that Y intersects W but not V. Replace

Y by Y D W and Y - W in 5. The final collection of sets S is the dependency

basis for X. D

Since Algorithm 7.6 only causes sets in S to be split, and it terminates

when no more splitting can be done, it is straightforward the algorithm takes

time that is polynomial in the size of M and U. In fact, careful implementation

allows the algorithm to run in time proportional to the number of dependencies

in M times the cube of the number of attributes in U. A proof of this fact and

a proof of correctness for Algorithm 7.6 can be found in Beeri [1980].

Lossless Joins

Algorithm 7.2 helps us determine when a decomposition of a relation scheme

R into (Ri,. • • ,Rk) has a lossless join, on the assumption that the only depen

dencies to be satisfied by the relations for R are functional. That algorithm can

be generalized to handle multivalued dependencies, as we shall see in the next

section. In the case of a decomposition of R into two schemes, there is a simple

test for a lossless join.

Theorem 7.11: Let R be a relation scheme and p = (Ri,R2) a decomposi

tion of R. Let D be a set of functional and multivalued dependencies on the

attributes of R. Then p has a lossless join with respect to D if and only if

[or equivalently, by the complementation rule, (Ri r\R2) —»-» (R2 — Ri)].

Proof: Decomposition p has a lossless join if and only if for any relation r

satisfying D, and any two tuples n and v in r, the tuple </1 such that <j>[Ri] =

n[Ri] and <j>[R2] = v[R2] is in r if it exists. That is, 41 is what we get by joining

the projection of n onto Ri with the projection of v onto R2. But 0 exists if

and only if n[Ri f~l R2] = v[Ri D R2]. Thus, the condition that <f> is always in r

is exactly the condition that

420 DESIGN THEORY FOR RELATIONAL DATABASES

or equivalently, (Ri n R2) -» (R2 - RI). D

Note that by axiom A7, Theorem 7.5 implies Theorem 7.11 when the only

dependencies are functional, but Theorem 7.5 says nothing at all if there are

multivalued dependencies that must be satisfied.

7.10 FOURTH NORMAL FORM

There is a generalization of Boyce-Codd normal form, called fourth normal

form, that applies to relation schemes with multivalued dependencies. Let R

be a relation scheme and D the set of dependencies applicable to R. We say

R is in fourth normal form (4NF) if whenever there is, in D+, a multivalued

dependency X —»-» Y, where Y is not a subset of X , and XY does not include

all the attributes of #, it is the case that X is a superkey of R. Note that

the definitions of "key" and "superkey" have not changed because multival

ued dependencies are present; "superkey" still means a set of attributes that

functionally determines R.

Observe that if R is in 4NF, then it is in BCNF; i.e., 4NF is a stronger

condition than BCNF. In proof, suppose R is not in Boyce-Codd normal form,

because there is some functional dependency X —» A, where X is not a superkey,

and A is not in X. If XA = R, then surely X includes a key. Therefore XA

does not include all attributes. By A8, X —» A implies X —»-» A. Since XA / R

and A is not in X, X —»-» A is a 4NF violation.

We can find a decomposition of R into p = (Ri,. . . , Rk), such that p has a

lossless join with respect to D, and each Ri is in 4NF, as follows. We start with

p consisting only of R, and we repeatedly decompose relation schemes when we

find a violation of 4NF, as in the discussion of the simple but time-consuming

decomposition algorithm for BCNF decomposition preceding Algorithm 7.4. If

there is a relation scheme 5 in p that is not in 4NF with respect to D projected

onto 5,10 then there must be in S a dependency X —»-» Y, where X is not

a superkey of 5, Y is not empty or a subset of X, and XY jt S. We may

assume X and Y are disjoint, since X —>-» (Y — X) follows from X —»-» Y

using Al, A7, and the decomposition rule. Then replace 5 by 5i = XY and

52 = 5 — Y, which must be two relation schemes with fewer attributes than S.

By Theorem 7.11, since (5i n 52) —»-» (5i — 52), the join of 5i and S2 is lossless

with respect to irs(D), which we take in this section to be the set of functional

and multivalued dependencies that follow from D and involve only attributes

in the set S.

We leave it as an exercise the generalization of Lemma 7.6 to sets of func

tional and multivalued dependencies; that is, the repeated decomposition as

above produces a set of relation schemes that has a lossless join with respect

10 We shall discuss later how to find the projection of a set of functional and multivalued

dependencies.

7.10 FOURTH NORMAL FORM 421

to D. The only important detail remaining is to determine how one computes

rrs(D), given R, D, and SCR. It is a theorem of Aho, Beeri, and Ullman

[1979] that TTS(D) can be computed as follows.

1. Compute D+.

2. For each X -» Y in D+, if X C S, then X -» (Y n 5) holds in 5.11

3. For each X -»-» Y in D+, if X C 5, then X -~ (Y n 5) holds in 5.

4. No other functional or multivalued dependencies for S may be deduced

from the fact that D holds for R.

Example 7.20: Let us reinvestigate the CTHRSG relation scheme first intro

duced in Example 7.15. We have several times noted the minimal cover

C -» T CS-»G

HR^C

for the pertinent functional dependencies. It turns out that one multivalued

dependency, C —»-» HR, together with the above functional dependencies, al

lows us to derive all the multivalued dependencies that we would intuitively feel

are valid. We saw, for example, that C —»-» HR and C —» T imply C —»-» SG.

We also know that HR -» CT, so HR -»-» CT. By the complementation rule,

HR —»-» 5G. That is to say, given an hour and room, there is an associated set

of student-grade pairs, namely the students enrolled in the course meeting in

that room and that hour, paired with the grades they got in that course. The

reader is invited to explore further the set of multivalued dependencies following

from the given five functional dependencies and one multivalued dependency.

To place relation scheme CTHRSG in 4NF, we might start with

C-~HR

which violates the 4NF conditions since C is not a superkey (SH is the only

key for CTHRSG). We decompose CTHRSG into CHR and CTSG. The

relation scheme CHR has key HR. The multivalued dependency C -»-» HR

does not violate fourth normal form for CHR, since the left and right sides

together include all the attributes of CHR. No other functional or multivalued

dependency projected onto CHR violates 4NF, so we need not decompose CHR

any further.

Such is not the case for CTSG. The only key is CS, yet we see the multival

ued dependency C -*•» T, which follows from C -» T. We therefore split CTSG

into CT and CSG. These are both in 4NF with respect to their projected de

pendencies, so we have obtained the decomposition p = (CHR, CT, CSG),

which has a lossless join and all relation schemes in fourth normal form.

11 Note that since X —» Yl~\S is also in D+, this rule is equivalent to the rule for projecting

functional dependencies given earlier.

422 DESIGN THEORY FOR RELATIONAL DATABASES

It is interesting to note that when we ignore the multivalued dependency

C —«-» HR, the decomposition p does not necessarily have a lossless join, but

if we are allowed to use C —»-» HR, it is easy to prove by Theorem 7.11 that

the join of these relations is lossless. As an exercise, the reader should find a

relation r for CTHRSG such that mp(r) ^ r, yet r satisfies all of the given

functional dependencies (but not C —»-» HR, of course). D

Embedded Multivalued Dependencies

One further complication that enters when we try to decompose a relation

scheme R into 4NF is that there may be certain multivalued dependencies that

we expect to hold when we project any plausible relation r for R onto a subset

^ £ R, Yet we do not expect these dependencies to hold in r itself. Such a

dependency is said to be embedded in R, and we must be alert, when writing

down all the constraints that we believe hold in relations r for R, not to ignore

an embedded multivalued dependency. Incidentally, embedded functional de

pendencies never occur; it is easy to show that if Y —» Z holds when relation

r over R is projected onto X, then Y —» Z holds in r as well. The same is not

true for multivalued dependencies, as the following example shows.

Example 7.21: Suppose we have the attributes C (course), S (student), P

(prerequisite), and Y (year in which the student took the prerequisite). The

only nontrivial functional or multivalued dependency is SP —» Y, so we may

decompose CSPY into CSP and SPY; the resulting schemes are apparently

in 4NF.

The multivalued dependency C —»-» S does not hold. For example, we

might have in relation r for CSPY the tuples

CS402 Jones CS311 1988

CS402 Smith CS401 1989

yet not find the tuple

CS402 Jones CS401 1989

Presumably Jones took CS401, since it is a prerequisite for CS402, but perhaps

he did not take it in 1989. Similarly, C -~ P does not hold in CSPY.

However, if we project any legal relation r for CSPY onto CSP, we would

expect C —»-» S and, by the complementation rule, C —»-» P to hold, provided

every student enrolled in a course is required to have taken each prerequisite for

the course at some time. Thus, C —»-» S and C —»-» P are embedded multivalued

dependencies for CSP. As a consequence, CSP is really not in 4NF, and it

should be decomposed into CS and CP. This replacement avoids repeating the

student name once for each prerequisite of a course in which he is enrolled.

It is interesting to observe that the decomposition p = (CS, CP, SPY) has

a lossless join if we acknowledge that C —»-» S is an embedded dependency

7.11 GENERALIZED DEPENDENCIES 423

for CSP. For then, given any relation r for CSPY that satisfies SP -» Y

and the dependency C —»-» S1 in CSP, we can prove that mp(r) = r. Yet we

could not prove this assuming only the functional dependency SP —» V; the

reader is invited to find a relation r satisfying SP —» V (but not the embedded

dependency) such that mp(r) ^ r. D

We shall consider embedded multivalued dependencies further in the next

section. Here let us introduce the standard notation for such dependencies. A

relation r over relation scheme R satisfies the embedded multivalued depen

dency X —»-» Y \ Z if the multivalued dependency X —»-» Y is satisfied by the

relation 7rxuvuzC'"), which is the projection of r onto the set of attributes men

tioned in the embedded dependency. Note that there is no requirement that X,

Y, and Z be disjoint, and by the union, decomposition, and complementation

rules, X —»-» Y holds in nxuYuz(r) if and only if X —»-» Z does, so X —>-» Y \ Z

means the same as X —»-» Z \ Y. As an example, the embedded multivalued

dependency from Example 7.21 is written C —»-» 5 \ P or C —»-» P | 5.

7.11 GENERALIZED DEPENDENCIES

In this section we introduce a notation for dependencies that generalizes both

functional and multivalued dependencies. Modeling the "real world" does not

demand such generality; probably, functional and multivalued dependencies are

sufficient in practice.12 However, there are some key ideas, such as the "chase"

algorithm for inferring dependencies, that are better described in the general

context to which the ideas apply than in the special case of functional or multi

valued dependencies. The ideas associated with generalized dependencies also

get used in query optimization, and they help relate dependencies to logical

rules (Horn clauses), thereby allowing some of this theory to apply to optimiza

tion of logic programs as well.

We view both functional and multivalued dependencies as saying of rela

tions that "if you see a certain pattern, then you must also see this." In the

case of functional dependencies, "this" refers to the equality of certain of the

symbols seen, while for multivalued dependencies, "this" is another tuple that

must also be in the relation. For example, let U = ABCD be our set of at

tributes. Then the functional dependency A —» B says that whenever we see, in

12 Often, one observes inclusion dependencies, as well. These are constraints that say

a value appearing in one attribute of one relation must also appear in a particular

attribute of some other relation. For example, we would demand of the YVCB database

that a customer name appearing in the GUST field of an ORDERS tuple also appear

in the CNAME field of the CUSTOMERS relation; i.e., each order must have a real

customer behind it. The desire to enforce inclusion dependencies explains the mechanics

of insertion and deletion in the DBTG proposal (Section 5.3), and the constraints System

R places on a pair of relations that are stored "via set" (Section 6.11). As inclusion

dependencies do not influence the normalization process, their theory is mentioned only

in the exercises.

424 DESIGN THEORY FOR RELATIONAL DATABASES

some relation r, two tuples ab^cidi and ab2c2d?,, then 61 = 62 in those tuples.

The multivalued dependency A —»-» B says of the same two tuples that we must

also see the tuple abic^d2 in r, which is a weaker assertion than saying 61 = 62.

A convenient tabular form of such dependencies is shown in Figure 7.8.

a l>\ c\ d\

a 62 £2 f/2

(a) The functional dependency A —» B.

a b\ c\ d\

a 62 C2 <^2

a 61 02 d2

(b) The multivalued dependency A —»-» B.

Figure 7.8 Dependencies in tabular notation.

The two dependencies of Figure 7.8 are different in the kind of conclu

sion they allow us to draw. The functional dependency [Figure 7.8(a)] is called

an equality-generating dependency, because its conclusion is that two symbols

must in fact represent the same symbol. The multivalued dependency [Figure

7.8(b)] is called a tuple-generating dependency, because it allows us to infer

that a particular tuple is in the relation to which the dependency applies. In

the following pages, we wish to allow more than two tuples as hypotheses of

dependencies, and we wish to allow various combinations of symbols appear

ing in their components. The conclusions, though, will continue to be either

equalities or new tuples.

Define a generalized dependency over a relation scheme A\ • • • An to be an

expression of the form

where the *j's are n-tuples of symbols, and t is either another n-tuple (in which

case we have a tuple-generating dependency) or an expression x = y, where

x and y are symbols appearing among the ij's (then we have an equality-

generating dependency). We call the <j's the hypotheses and t the conclusion.

Intuitively, the dependency means that for every relation in which we find the

hypotheses, the conclusion holds. To see the hypothesis tuples, we may have

to rename some or all of the symbols used in the hypotheses to make them

match the symbols used in the relation. Any renaming of symbols that is done

applies to the conclusion as well as the hypotheses, and of course it applies to

7.11 GENERALIZED DEPENDENCIES 425

all occurrences of a symbol. We shall give a more formal definition after some

examples and discussion.

Frequently we shall display these dependencies as in Figure 7.8, with the

hypotheses listed in rows above a line and the conclusion below. It is sometimes

useful as well to show the attributes to which the columns correspond, above a

line at the top. In all cases, we assume that the order of the attributes in the

relation scheme is fixed and understood.

Typed and Typeless Dependencies

Frequently, we find, as in Figure 7.8, that each symbol appearing in a generalized

dependency is associated with a unique column. Functional and multivalued

dependencies have this property, for example. Such dependencies are called

typed, because we can associate a "type," i.e., an attribute, with each symbol.

Dependencies in which some symbol appears in more than one column are called

typeless.

Example 7.22: The second part of Example 7.8 showed that given a certain

collection of functional dependencies, the decomposition

(AD,AB,BE,CDE,AE)

is a lossless-join decomposition. What was really shown there was that

any relation that satisfies the functional dependencies A —» C, B —» C,

C —» D, DE —» C, and CE -» A must also satisfy the "join dependency"

tx (AD,AB,BE,CDE,AE). In general, a join dependency is a typed tuple-

generating dependency that says, about a relation r for scheme R, that if we

project r onto some set of schemes Ri,...,Rk, then take the natural join of the

projections, the tuples we get are all in r. We use the notation ex (fli, . . . , Rk)

for this dependency.

We can write our example join dependency as in Figure 7.9. In that fig

ure we use blanks to denote symbols that appear only once. The reader may

have noticed the similarity between the tabular representation of generalized

dependencies and the Query-by-Example notation of Sections 4.4 and 4.5; the

convention that a blank stands for a symbol that appears nowhere else is bor

rowed from there.

In general, the join dependency ex (Ri, . . . , Rk), expressed in the tabular

notation, has one hypothesis row for each Ri, and this row has the same symbol

as the conclusion row in the columns for the attributes in Ri; elsewhere in that

row are symbols, each of which appears nowhere else. The justification is that

the join dependency says about a relation r that whenever we have a tuple,

such as the conclusion row, that agrees with some tuple ^ of r in the attributes

of Ri for t = 1 . 2. A-. then that tuple is itself in r. D

426 DESIGN THEORY FOR RELATIONAL DATABASES

A B C D E

a d

a b

b e

c d e

a e

a b c d e

Figure 7.9 A join dependency in tabular notation.

Full and Embedded Dependencies

We shall not require that a symbol appearing in the conclusion of a tuple-

generating dependency also appear in the hypotheses. A symbol of the con

clusion appearing nowhere else is called unique. A generalized dependency is

called embedded if it has one or more unique symbols and full if it has no unique

symbols. This use of the term "embedded" generalizes our use of the term in

connection with multivalued dependencies. That is, if a multivalued depen

dency is embedded within a set of attributes 5, it must have unique symbols in

all the components not S.

Example 7.23: We could write the embedded multivalued dependency

C-~S\P

of Example 7.21 as

c S P y

c S1 Pi yi

c S2 p2 y2

c Si P2 y3

Notice that y3 is a unique symbol. L~H

As a general rule, we can write any embedded multivalued dependency

X —»-» V | Z over a set of attributes U by writing two hypothesis rows that agree

in the columns for the attributes in X and disagree in all other attributes. The

conclusion agrees with both hypotheses on X, agrees with the first hypothesis

on Y, agrees with the second on the attributes in Z, and has a unique symbol

everywhere else.

The justification is that the embedded multivalued dependency

says that if we have two tuples p. and v in relation r that project onto

7.11 GENERALIZED DEPENDENCIES 427

XUY\JZ

to give tuples p,' and i/, and n'[X] = v'[X], then there is some tuple w in r

that projects to u/ and satisfies u'[X] = n'[X] = v'[X], u1'[Y] = fJ.'[Y], and

w'[Z] = v'[Z]. Notice that nothing at all is said about the value of w for

attributes in U - X — Y — Z. Clearly, we can express all the above in our

generalized dependency notation, where n and v are the first and second hypo

theses, and w is the conclusion. Since we can only conclude that the tuple u>

has some values in the attributes U — X — Y — Z, but we cannot relate those

values to the values in /i or f , we must use unique symbols in our conclusion.

One reason for introducing the generalized dependency notation is that

it leads to a conceptually simple way to infer dependencies. The test works

for full dependencies of all sorts, although it may take exponential time, and

therefore, is not preferable to Algorithm 7.1 for inferring functional depen

dencies from other functional dependencies, or to the method outlined before

Algorithm 7.6 (computation of the dependency basis) when only functional and

multivalued dependencies are concerned. When there are embedded dependen

cies, the method may succeed in making the inference, but it may also give an

inconclusive result. There is in fact, no known algorithm for testing whether an

embedded dependency follows logically from others, even when the dependen

cies are restricted to an apparently simple class, such as embedded multivalued

dependencies.

Generalized Dependencies and Horn Clauses

Notice the similarity between full, tuple-generating dependencies and datalog

rules. Since dependencies apply to single relations, the head and all the subgoals

of the body have the same predicate symbol, but any datalog rule with no

negation and only one predicate symbol can be thought of as a (typeless) tuple-

generating dependency. For example, the dependency of Figure 7.8(b) can be

written as a rule:

r(A,Bl,C2,D2) :- r(A,Bl,Cl,Dl) ft r(A,B2,C2,D2) .

We could even view a full equality-generating dependency as a rule with a

built-in predicate at the head, and we could make inferences with such rules as

with any logical rules. For example, Figure 7.8(a) would appear as

Bl = B2 :- r(A,Bl,Cl,Dl) ft r(A,B2,C2,D2) .

However, we should be more careful interpreting embedded dependencies

as rules. If we blindly translated the embedded multivalued dependency of

Example 7.23 into a rule

r(C,Sl,P2,Y3) :- r(C,Sl,Pl,Yl) ft r(C,S2,P2,Y2) .

we would get a rule with a variable, Y3, that appears in the head but not in the

428 DESIGN THEORY FOR RELATIONAL DATABASES

body. The correct interpretation of such a rule is that, given values of C, SI,

and P2 that, together with values for the other variables of the body, satisfy

the subgoals of the body, the conclusion of the head is true for all values of Y3.

However, the meaning of the embedded dependency is that there exists some

value of Y3 that makes the head true for these values of C, SI, and P2.

Symbol Mappings

Before giving the inference test for generalized dependencies, we need to intro

duce an important concept, the symbol mapping, which is a function h from

one set of symbols 5 to another set T; that is, for each symbol a in 5, h(a) is

a symbol in T. We allow h(a) and h(b) to be the same member of T, even if

If n = 01a2 • • • an is a tuple whose symbols are in 5, we may apply the

symbol mapping h to /i and obtain the tuple h(n) = /i(01)/i(a2) • • -/i(an). If

{ni, . . . , Hk} is a set of tuples whose symbols are in 5, and (1/i, . . . , vm] are

tuples whose symbols are in T, we say there is a symbol mapping from the first

set of tuples to the second if there is some h such that for all i = 1, 2, . . . , fc,

h(Hi) is Vj for some j. It is possible that two or more /Vs are mapped to the

same i>j, and some i^'s may be the target of no /^.

Example 7.24: Let A = {abc, ade, fbe} and B = {xyz, wyz}. There are

several symbol mappings from A to B. One has h(a) = h(f) = x, h(b) =

h(d) = y, and h(c) = h(e) = z. Thus, h maps all three tuples in A to xyz.

Another symbol mapping has g(a) = x, g(b) = g(d) = y, g(c) = g(e) = z, and

g(f) = w. Symbol mapping g sends abc and ade to xyz, but sends fbe to wyz.

a

Our most important use for symbol mappings is as maps between sets of

rows as in Example 7.24. The reader should observe a duality that holds in that

situation. We defined symbol mappings as functions on symbols, and when

applied to sets of rows, we added the requirement that the mapping applied

to each row of the first set is a row of the second set. Dually, we could have

defined mappings from rows to rows, and added the requirement that no symbol

be mapped by two different rows to different symbols. Thus, in Example 7.24,

we could not map abc to xyz and also map ade to wyz, because a would be

mapped to both x and w.

Formal Definition of Generalized Dependency

With the notion of a symbol mapping, we can formally define the meaning

of generalized dependencies. We say a relation r satisfies the tuple-generating

dependency (ti, . . . , tn)/t if whenever ft is a symbol mapping from all the hypo

theses {ti,...,tn} to r, we can extend h to any unique symbols in t in such

a way that h(t) is in r. We also say that r satisfies the equality-generating

7.11 GENERALIZED DEPENDENCIES 429

dependency (ti,...,tn)/a = b if whenever h is a symbol mapping from the

hypotheses to r, it must be that h(a) = h(b).

Example 7.25: Let d be the generalized dependency in Figure 7.10(a), and

let r be the relation of Figure 7.10(b). Notice that d is not the same as the

multivalued dependency A —'-» B, since the symbol a2, which is a unique symbol

in Figure 7.10(a), would have to be GI instead. In fact, Figure 7.10(a) is an

example of a two-hypothesis tuple-generating dependency that is neither a full

nor embedded multivalued dependency; such dependencies were called subset

dependencies by Sagiv and Walecka [1982].

Oi 61 Ci

01 62 C2

Q2 b\ C2

(a) The dependency d.

ABC

012

034

032

5 1 4

(b) The relation r.

Figure 7.10 A generalized dependency and a relation satisfying it.

To see that r satisfies d, let us consider a symbol mapping h and the tuples

of r to which each of the hypotheses of d could be mapped. Since the two

hypotheses agree in the .A-column, and h(ai) can have only one value, we know

that either both hypotheses are mapped to the last tuple of r [if /i(01) = 5], or

both are mapped among the first three tuples [if /i(01) = 0]. In the first case,

h maps 61 and 62 to 1 and c\ and c2 to 4. Then we can extend h to the unique

symbol 02 by defining /i(a2) = 5. In that case, hfabic2) = 514, which is a

member of r, so we obtain no violation of d with mappings that have h(ai) = 5.

Now consider what happens if h(ai) = 0, so the only possible mappings

send the two hypotheses into the first three tuples of r. Any such mapping h

has h(bi) equal to either 1 or 3, and it has h(c2) equal to either 2 or 4. In any of

the four combinations, there is a tuple in r that has that combination of values

in its B and C components. Thus, we can extend h to the unique symbol 02 by

setting /i(02) = 5 if h(bi) = 1 and h(c2) = 4, and setting h(a2) = 0 otherwise.

We have now considered all symbol mappings that map each of the hypo

theses of d into a tuple of r, and have found that in each case, we can extend

430 DESIGN THEORY FOR RELATIONAL DATABASES

the mapping to the unique symbol 02 in such a way that the conclusion of d is

present in r. Therefore, r satisfies d. D

Applying Dependencies to Relations

Suppose we have an equality-generating dependency

and a relation r = {/ii,. .. ,^m}- We can apply d to r if we find a symbol

mapping h from {si,. •• ,«&} to {/ii,.. • , /im}- The effect of applying d to r

using symbol mapping h is to equate the symbols /i(a) and h(b) wherever they

appear among the /ij's; either may replace the other.

If we have a tuple-generating dependency instead, say e = (si, . . . , Sk)/s,

we apply e to r using h by adjoining to r the tuple h(s). However, if e is an

embedded dependency, then s will have one or more unique symbols, so h will

not be defined for all symbols of 5. In that case, if c is a unique symbol in

a, create a new symbol, one that appears nowhere else in r, and extend h by

defining h(c) to be that symbol. Of course, we create distinct symbols for each

of the unique symbols of s.

It may be possible, however, the unique symbols can all be replaced by

existing symbols of r so that h(s) becomes a member of r. In that case, the

requirement that h(a) be in r is already satisfied, and we have the option (which

we should take, because it simplifies matters) of not changing r at all.

Example 7.26: Let us consider the equality-generating dependency

(abc,ade,fbe)/a = f

applied to the relation r = {xyz, wyz}. If we use the symbol mapping g of

Example 7.24, we find that g(a) = x and g(f) = w. We apply the dependency

using this symbol mapping, by equating x and w; say we replace them both by

x. Then the effect on r of applying the dependency in this way is to change r

into {xyz}.

Suppose instead we had the tuple-generating dependency

(abc, ade, fbe)/abq

Then using the same symbol mapping, we would adjoin to r a tuple whose first

two components were g(a) = x and g(b) = y and whose third component was

a new symbol, not appearing in r, say u; that is, r becomes {xyz,wyz,xyu}.

However, we could replace u by the existing symbol z, and the result would

be xyz, a tuple already in r. Thus, we have the preferred option of leaving r

unchanged. D

The Chase Algorithm for Inference of Dependencies

Now we can exhibit a process that helps us resolve the question whether D ^= d,

7.11 GENERALIZED DEPENDENCIES 431

where D is a set of generalized dependencies, and d is another generalized de

pendency. The procedure is an algorithm when D has full dependencies only.

However, if D has some embedded dependencies, it tells the truth if it answers

at all, but it may run on forever inconclusively. We call the process the chase,

because we "chase down" all the consequences of the dependencies D.

The intuitive idea behind the chase process is that we start with the hypo

theses of the dependency d we wish to test, and we treat them as if they formed

a relation. We then apply the given dependencies D to this relation. If we

obtain a tuple that is the conclusion of d, then we have a proof that d follows

from D. The reason this test works is that, generalizing Algorithm 7.4, should

we fail to draw the desired conclusion, the relation that results when we finish

the process is a counterexample; it satisfies D but not d.13

First suppose that d is a tuple-generating dependency (<i,. .. ,tm)/t. We

begin with the relation r = {*1,..., tm}. We then apply all of the dependencies

in D, in any order, repeatedly, until either

1. We cannot apply the dependencies in any way that changes r, or

2. We discover in r a tuple that agrees with t on all components except,

perhaps, those places where t has a unique symbol.

However, when applying an equality-generating dependency, if one of the sym

bols being equated appears in t, change the other symbol to that one.

In case (2) above, we conclude that D |= d is true. If (1) holds, but

not (2), then we say that D (= d is false. In fact, the resulting r will be a

counterexample. To see why, first notice that r satisfies all dependencies in D

(or else one of them could be applied).

Second, we must show that r does not satisfy d. In proof, note that as we

apply equality-generating dependencies to r, the symbols in the original rows

<i, . . . , tm may change, but there is always a symbol mapping h that sends each

symbol of the hypothesis rows to what that symbol has become after these

equalities have been performed. Then h(ti) is in the final relation r for each

:. When we equate symbols, we do not change symbols in t, so h(a) = a for

any symbol a that appears in <, except for the unique symbols of t, for which

h is not defined. Thus, if d holds in r, that relation must have some tuple that

agrees with t on all but the unique symbols. However, (2) was assumed false,

so there can be no such tuple in r at the end of the chase process. Thus, r does

not satisfy d, and therefore serves as a counterexample to D \= d.

Now, let us consider the converse, why the implication holds whenever case

(2) applies. Recall the proof of Theorem 7.4, which is really a special case of

13 However, there is the problem that if some dependencies are embedded, the process

may not stop. In principle, it generates an infinite relation, and that infinite relation

forms a counterexample. Unfortunately, with embedded dependencies we cannot tell,

as we work, whether the process will go on forever or not, so the "test" is sometimes

inconclusive.

432 DESIGN THEORY FOR RELATIONAL DATABASES

our present claim. That is, Algorithm 7.2, the lossless join test, can now be

seen as a use of the chase process to test whether F (= j, where j is the join

dependency made from the decomposition to which Algorithm 7.2 is applied,

that is ex (Ri, . . . , Rk). As in Theorem 7.4, we can see the relation r used in the

chase as saying that certain tuples are in a hypothetical relation that satisfies

D.

Initially, these tuples are the hypotheses {<i,...,tm} of the dependency

being tested. Each time we apply a dependency, we are making an inference

about other tuples that must be in this hypothetical relation (if we use a tuple-

generating dependency), or about two symbols that must be equal (if we use

an equality-generating dependency). Thus, each application is a valid inference

from D, and if we infer the presence of t, that too is valid, i.e., we have shown

that any relation containing ti,...,tm also contains t (or a tuple that agrees

with t on nonunique symbols).

However, the dependency d says more than that a relation that contains the

exact tuples {t\, . . . , tm} also contains t. It says that if any relation whatsoever

contains the tuples formed by some symbol mapping h of the ti 's, then h can be

extended to the unique symbols of t, and h(t) will also be in the relation. We

can show this more general statement by following the sequence of applications

of dependencies in D during the chase. That is, start with (h(ti), ..., h(tm)}

and apply the same sequence of dependencies from D by composing the symbol

mapping used to apply each dependency, with the symbol mapping h, to get

another symbol mapping. The result will be the image, under h, of the sequence

of changes made to the original relation r — (t\, . . . , tm}.

We must also explain how to test, using the chase process, whether an

equality-generating dependency (t\, . . . , tm)/a = b follows from a set of depen

dencies D. Follow the same process, but end and say yes if we ever equate

the symbols a and 6; say no as for tuple-generating dependencies, if we can

make no more changes to r, yet we have not equated a and 6. The validity

of the inferences follows in essentially the same way as for tuple-generating

dependencies.

We can sum up our claim in the following theorem.

Theorem 7.12: The chase process applied to a set of full generalized de

pendencies D and a (possibly embedded) generalized dependency d determines

correctly whether D |= d.

Proof: Above, we argued informally why the procedure, if it makes an answer

at all, answers correctly. We shall not go into further detail; Maier, Mendelzon,

and Sagiv [1979] contains a complete proof of the result.

We must, however, show that if D has only full dependencies, then the

process is an algorithm; that is, it always halts. The observation is a simple

one. When we apply a full dependency, we introduce no new symbols. Thus,

7.11 GENERALIZED DEPENDENCIES 433

the relation r only has tuples composed of the original symbols of the hypothe

ses of d. But there are only a finite number of such symbols, and therefore r is

always a subset of some finite set. We have only to rule out the possibility that r

exhibits an oscillatory behavior; that is, it assumes after successive applications

of dependencies, a sequence of values

n.r2,...,rn = ri,r2-"

Tuple-generating dependencies always make the size of r increase, while

equality-generating dependencies either leave the size the same or decrease it.

Thus, the cycle must contain at least one equality-generating dependency. But

here, an equality of symbols permanently reduces the number of different sym

bols, since only the application of an embedded dependency could increase the

number of different symbols in r, and D was assumed to contain full depen

dencies only. Thus no cycle could involve an equality-generating dependency

and full tuple-generating dependencies only, proving that no cycle exists. We

conclude that either we reach a condition where no change to r is possible, or

we discover that the conclusion of d is in r. D

C2

01 61 02 0*3

(a) A —» B | C

02 b3 c3 d4

0.3 63 c4 d5

d4 = d5

(b) B -» D

a4 64 c5 d6

04 65 ce 0*7

04 6e c5 d^

(c) A -~ C | D

Figure 7.11 Example dependencies.

Example 7.27: Example 7.8 was really an application of the chase algorithm

to make the inferences {S -» A, SI -» P} (= txj (SA, SIP) and

434 DESIGN THEORY FOR RELATIONAL DATABASES

{A -» C, B -» C, C -» D, DE -» C, CE -» 4} |=

txi

As another example, we can show that over the set of attributes ABCD

We can write the three dependencies involved in tabular notation, as in Figure

7.11.

We begin with the hypotheses of Figure 7.11(c), as shown in Figure 7.12(a).

We can apply the dependency of Figure 7. 11 (a) by using the symbol mapping

fc(01) = a4, h(bi) = 65, h(ci) = cQ, h(di) = d7, hfa) = 64, h(c2) = c5, and

h(dj) = de- This mapping sends the two hypothesis rows of Figure 7.11(a) to

the two rows of Figure 7.12(a), in the opposite order. If we extend h to map d3

to a new symbol, say dg, then we can infer that the tuple "4 '-'.-, <v/s is in r, as

shown in Figure 7.12(b). Then, we can apply the dependency of Figure 7.11(b),

using a symbol mapping that the reader can deduce, to map the two hypotheses

of Figure 7.11(b) to the second and third rows of Figure 7.12(b) and prove that

dy = dg. The substitution of dj for dg is reflected in Figure 7.12(c). The third

tuple in Figure 7.12(c) agrees with the conclusion of Figure 7.11(c), except in

the B-column, where the latter has a unique symbol, 6e- We conclude that the

inference is valid. D

04 64 c5 de

04 65 Ce d7

(a) Initial relation.

a4 64 c5 de

04 65 ce d^

04 65 c5 dg

(b) After applying Figure 7. 11 (a).

04 64 c5 de

04 65 ce dj

04 65 GS df

(c) After applying Figure 7.11(b).

Figure 7.12 Sequence of relations constructed by the chase.

EXERCISES 435

EXERCISES

7.1: Suppose we have a database for an investment firm, consisting of the follow

ing attributes: B (broker), O (office of a broker), / (investor), S (stock), Q

(quantity of stock owned by an investor), and D (dividend paid by a stock),

with the following functional dependencies: 5 -» D, / —» B, IS —» Q, and

B-»O.

a) Find a key for the relation scheme R = BOSQID.

b) How many keys does relation scheme R have? Prove your answer.

c) Find a lossless join decomposition of R into Boyce-Codd normal form.

d) Find a decomposition of R into third normal form, having a lossless

join and preserving dependencies.

7.2: Suppose we choose to represent the relation scheme R of Exercise 7.1 by

the two schemes ISQD and IBO. What redundancies and anomalies do

you forsee?

7.3: Suppose we instead represent R by 5D, IB, ISQ, and BO. Does this

decomposition have a lossless join?

7.4: Suppose we represent R of Exercise 7.1 by ISQ, IB, SD, and ISO. Find

minimal covers for the dependencies (from Exercise 7.1) projected onto

each of these relation schemes. Find a minimal cover for the union of the

projected dependencies. Does this decomposition preserve dependencies?

7.5: In the database of Exercise 7.1, replace the functional dependency S —» D

by the multivalued dependency 5 —»-» D. That is, D now represents the

dividend "history" of the stock.

a) Find the dependency basis of /.

b) Find the dependency basis of BS

c) Find a fourth normal form decomposition of R.

7.6: Consider a database of ship voyages with the following attributes: 5 (ship

name), T (type of ship), V (voyage identifier), C (cargo carried by ong

ship on one voyage), P (port), and D (day). We assume that a voyage

consists of a sequence of events where one ship picks up a single cargo,

and delivers it to a sequence of ports. A ship can visit only one port in a

single day. Thus, the following functional dependencies may be assumed:

5 -» T, V -» SC, and SD -» PV.

a) Find a lossless-join decomposition into BCNF.

b) Find a lossless-join, dependency-preserving decomposition into 3NF.

* c) Explain why there is no lossless-join, dependency-preserving BNCF

decomposition for this database.

436 DESIGN THEORY FOR RELATIONAL DATABASES

7.7: Let U be a set of attributes and D a set of dependencies (of any type) on

the attributes of U. Define SAT(D) to be the set of relations r over U such

that r satisfies each dependency in D. Show the following.

a) SAT(DiUL>2) = SAT(D1)nSAT(D2).

b) If D\ logically implies all the dependencies in D2, then

SAT(DI) D SAT(Z>2)

7.8: Complete the proof of Lemma 7.1; i.e., show that the transitivity axiom

for functional dependencies is sound.

7.9: Complete the proof of Theorem 7.2 by showing statement (*):

If X1 C X2 then X^ C X(2j} for all j

7.10: Let F be a set of functional dependencies.

a) Show that X —» A in F is redundant if and only if X+ contains A,

when the closure is computed with respect to F — {X —» A}.

b) Show that attribute B in the left side X of & functional dependency

X —» A is redundant if and only if A is in (X — [B})+, when the

closure is taken with respect to F.

* 7.11: Show that singleton left sides are insufficient for functional dependencies.

That is, show there is some functional dependency that is not equivalent

to any set of functional dependencies {A\ —» BI, . . . , A^ —» Bk}, where the

A's and B's are single attributes.

* 7.12: Develop the theory of functional dependencies with single attributes on the

left and right sides (call them 5AFD's). That is:

a) Give a set of axioms for SAFD's; show that your axioms are sound

and complete.

b) Give an algorithm for deciding whether a set of SAFD's implies an

other SAFD.

c) Give an algorithm to test whether two sets of SAFD's are equivalent.

d) SAFD's look like a familiar mathematical model. Which?

* 7.13: In Theorem 7.3 we used two transformations on sets of functional depen

dencies to obtain a minimal cover:

t) Eliminate a redundant dependency.

it) Eliminate a redundant attribute from a left side.

Show the following:

a) If we first apply (it) until no more applications are possible and then

apply (t) until no more applications are possible, we always obtain a

minimal cover.

EXERCISES 437

b) If we apply first (i) until no longer possible, then apply (ii) until no

longer possible, we do not necessarily reach a minimal cover.

7.14: A relation scheme R is said to be in second normal form if whenever X —» A

is a dependency that holds in R, and A is not in X, then either A is prime

or X is not a proper subset of any key (the possibility that X is neither a

subset nor a superset of any key is not ruled out by second normal form).

Show that the relation scheme SAIP from Example 7.14 violates second

normal form.

7.15: Show that if a relation scheme is in third normal form, then it is in second

normal form.

7.16: Consider the relation scheme with attributes S (store), D (department),

/ (item), and M (manager), with functional dependencies SI —» D and

SD-»M.

a) Find all keys for SDIM.

b) Show that SDIM is in second normal form but not third normal form.

* 7.17: Give an O(n) algorithm for computing X+, where X is a set of at most n

attributes, with respect to a set of functional dependencies that require no

more than n characters, when written down.

* 7.18: Complete the proof of Theorem 7.5 by providing a formal proof that in the

row for RI, an a is entered if and only if RI fl R2 —» A.

7.19: Complete the proof of Lemma 7.5 by showing that if r C s then

7.20: In Example 7.10 we contended that Z -» C does not imply CS -» Z. Prove

this contention.

7.21: At the end of Section 7.5 it was claimed that p = (AB, CD] was a depend

ency-preserving, but not lossless-join decomposition of ABCD, given the

dependencies A —» B and C —» D. Verify this claim.

7.22: Let F = {AB -» C, A -» D, BD -» C}.

a) Find a minimal cover for F.

b) Give a 3NF, dependency-preserving decomposition of ABCD into only

two schemes (with respect to the set of functional dependencies F).

c) What are the projected dependencies for each of your schemes?

d) Does your answer to (a) have a lossless join? If not, how could you

modify the database scheme to have a lossless join and still preserve

dependencies?

438 DESIGN THEORY FOR RELATIONAL DATABASES

7.23: Let F = {AB -» C, A -» B}.

a) Find a minimal cover for F.

b) When (a) was given on an exam at a large western university, more

than half the class answered G = {A —» B, B —» C}. Show that

answer is wrong by giving a relation that satisfies F but violates G.

7.24: Suppose we are given relation scheme ABCD with functional dependencies

(A -» B, B -» C, .A -» D, D -» C1}. Let p be the decomposition

(AB,ACfBD).

a) Find the projected dependencies for each of the relation schemes of p.

b) Does p have a lossless join with respect to the given dependencies?

c) Does p preserve the given dependencies?

7.25: Show that (AB, ACD, BCD) is not a lossless-join decomposition of ABCD

with respect to the functional dependencies {A —» C, D —» C, BD —» A}.

7.26: Consider the relation scheme ABCD with dependencies

F = {A -» B, B^C, D-»B]

We wish to find a lossless-join decomposition into BCNF.

a) Suppose we choose, as our first step, to decompose ABCD into ACD

and BD. What are the projected dependencies in these two schemes?

b) Are these schemes in BNCF? If not, what further decomposition is

necessary?

7.27: For different sets of assumed dependencies, the decomposition

p = (AB, BC, CD)

may or may not have a lossless join. For each of the following sets of

dependencies, either prove the join is lossless or give a counterexample

relation to show it is not.

a) {A - B, B - C}.

b) {B -» C, C -. D}.

c) {B^C}.

* 7.28: At most how many passes does Algorithm 7.3 (the test for dependency-

preservation) need if F is a set of n functional dependencies over m at

tributes (an order-of-magnitude estimate is sufficient).

* 7.29: Let F be a set of functional dependencies with singleton right sides.

a) Show that if a relation scheme R has a BCNF violation X —» A,

where X —» A is in F+ , then there is some Y —» B in F itself such

that Y -» B is a BCNF violation for R.

b) Show the same for third normal form.

EXERCISES 439

7.30: Show the following observation, which is needed in Theorem 7.8. If R is a

relation scheme, and X C R is a key for R with respect to set of functional

dependencies F, then X cannot have a 3NF violation with respect to the

set of dependencies

7.31: Prove that there is no such thing as an "embedded functional dependency."

That is, if 5 C R, and X -» Y holds in 7rs(fl), then X -» Y holds in R.

* 7.32: Complete the proof of Theorem 7.9 by showing that axioms A1-A8 are

sound and complete. Hint: The completeness proof follows Theorem 7.1.

To find a counterexample relation for X —»-» Y, we generally need more

than a two-tuple relation as was used for functional dependencies; the

relation could have 26 tuples, if 6 is the number of blocks in the dependency

basis for X.

* 7.33: Verify the union, pseudotransitivity, and decomposition rules for multival

ued dependencies.

* 7.34: Verify the contention in Example 7.21, that there is a relation r satisfying

SP —» Y, such that ircs(r) *** Tcp(r) ^ ^spy(r) ^ r. Check that your

relation does not satisfy C —»-» S \ P.

7.35: Given the dependencies {A —>-» B, C —» B}, what other nontrivial multi

valued and functional dependencies hold over the set of attributes ABC!

* 7.36: Prove that in ABCD we can infer A -~ D from {A -~ B, A -» C} in

each of the following ways.

a) Directly from the definitions of functional and multivalued dependen

cies.

b) From axioms A1-A8.

c) By converting to generalized dependencies and "chasing."

* 7.37: Near the beginning of Section 7.10 we claimed that we could project a set

of multivalued and functional dependencies D onto a set of attributes 5 by

the following rules (somewhat restated).

t) X -» Y is in irs(D) if and only if XY C 5 and X -» Y is in D+.

ii) X —«-» Y is in irs(D) if and only if X C 5, and there is some multi

valued dependency X —~ Z in D+, such that Y = Z D 5.

Prove this contention.

7.38: Show that the decomposition (CHR, CT, CSG) obtained in Example 7.20

is not lossless with respect the the given functional dependencies only; i.e.,

the multivalued dependency C —»-» HR is essential to prove the lossless

join.

440 DESIGN THEORY FOR RELATIONAL DATABASES

7.39: Use the chase algorithm to tell whether the following inferences are valid

over the set of attributes ABCD.

a) [A —» B, A -» C} \= A -~ D

b) {A -~ B | C, B -~ C | D} \= A -~ C \ D

c) {A —» B | C, A -» Z?} (= A —» C | D

**d) {A-^B|C, A—»C|D} |=,4--»S|D

* 7.40: Show that no collection of tuple-generating dependencies can imply an

equality-generating dependency.

7.41: State an algorithm to determine, given a collection of functional, (full)

multivalued, and (full) join dependencies, whether a given decomposition

has a lossless join.

7.42: Show that the multivalued dependency X —»-» Y over the set of attributes

U is equivalent to the join dependency txi (XY, XZ), where Z = U—X — Y.

Hint: Write both as generalized dependencies.

7.43: What symbol mapping explains the application of Figure 7.11(b) to Figure

7.12(b) to deduce Figure 7.12(c)?

* 7.44: Show that Theorem 7.11, stated for functional and multivalued dependen

cies, really holds for arbitrary generalized dependencies. That is, (Ri,R2)

has a lossless join with respect to a set of generalized dependencies D if

and only if (Ri D fl2) -" (Ri - #2).

* 7.45: Show that if decomposition p = (Ri,...,Rk) has a lossless join with

respect to a set of generalized dependencies D, then the decomposition

(Ri, . . . , Rk, S) also has a lossless join with respect to D, where 5 is an

arbitrary relation scheme over the same set of attributes as p.

* 7.46 Show that it is AfP-haid (A/"P-complete or harder—see Garey and Johnson

[1979]) to determine:

a) Given a relation scheme R and a set of functional dependencies F on

the attributes of fl, whether R has a key of size k or less with respect

toF?

b) Given R and F as in (a), and given a subset S C R, is 5 in BNCF

with respect to Fl

c) Whether a given set of multivalued dependencies implies a given join

dependency.

* 7.47: A unary inclusion dependency A C B, where A and B are attributes (per

haps from different relations) says that in any legal values of the relation(s),

every value that appears in the column for A also appears in the column

for B. Show that the following axioms

t) A C A for all A.

ii) If A C B and B C C then A C C.

BIBLIOGRAPHIC NOTES 441

Are sound and complete for unary inclusion dependencies.

* 7.48: Suppose for some even n we have attributes A\,..., An. Also suppose that

Ai C Ai+i for odd t, that is, i = 1,3, . . . ,n — 1. Finally, suppose that for

t = 3, 5, . . . , n — 1 we have Ai —» Aj_i, and we have A\ —» An.

a) Show that if relations are assumed to be finite, then all the above

dependencies can be reversed; that is,

AI C AI, A^ -» ^3, At C A3, AH —» A5, . . . , An C An-i, An -» A\

b) Show that there are infinite relations for which (a) does not hold; that

is, they satisfy all the given dependencies but not of their reverses.

* 7.49 Show that if D is a set of functional dependencies only, then a relation R

is in BCNF with respect to D if and only if R is in 4NF with respect to D.

* 7.50 Show that if X -» AI, . . . , X -» An are functional dependencies in a mini

mal cover, then the scheme XA\ • • • An is in 3NF.

BIBLIOGRAPHIC NOTES

Maier [1983] is a text devoted to relational database theory, and provides a

more detailed treatment of many of the subjects covered in this chapter. Fagin

and Vardi [1986] and Vardi [1988] are surveys giving additional details in the

area of dependency theory. Beeri, Bernstein, and Goodman [1978] is an early

survey of the theory that provided the motivation for the area.

Functional Dependencies

Functional dependencies were introduced by Codd [1970]. Axioms for func

tional dependencies were first given by Armstrong [1974]; the particular set of

axioms used here (called "Armstrong's axioms") is actually from Beeri, Fagin,

and Howard [1977]. Algorithm 7.1, the computation of the closure of a set of

attributes, is from Bernstein [1976].

Lossless-Join Decomposition

Algorithm 7.2, the lossless join test for schemes with functional dependencies,

is from Aho, Beeri, and Ullman [1979]. The special case of the join of two

relations, Theorem 7.5, was shown in the "if direction by Heath [1971] and

Delobel and Casey [1972] and in the opposite direction by Rissanen [1977].

Liu and Demers [1980] provide a more efficient lossless join test for schemes

with functional dependencies. Testing lossless joins is equivalent to inferring a

join dependency, so the remarks below about inference of generalized depen

dencies are relevant to lossless-join testing.

442 DESIGN THEORY FOR RELATIONAL DATABASES

Dependency-Preserving Decomposition

Algorithm 7.3, the test for preservation of dependencies, is by Beeri and Hon-

eyman [1981].

The paper by Ginsburg and Zaiddan [1982] points out that when projected,

functional dependencies imply certain other dependencies, which happen to

be equality-generating, generalized dependencies, but are not themselves func

tional. As a result, when we discuss projected dependencies, we must be very

careful to establish the class of dependencies about which we speak.

Graham and Yannakakis [1984] discuss "independence," a condition on a

decomposition that allows satisfaction of dependencies to be checked in the

individual relations of a decomposition.

Gottlob [1987] gives an algorithm to compute a cover for ITR(F) directly

from F; that is, it is not necessary to compute F+ first. However, the algorithm

is not guaranteed to run in polynomial time.

Normal Forms and Decomposition

Third normal form is denned in Codd [1970] and Boyce-Codd normal form in

Codd [1972a]. The definitions of first and second normal forms are also found

in these papers.

The dependency-preserving decomposition into third normal form, Algo

rithm 7.5, is from Bernstein [1976], although he uses a "synthetic" approach,

designing a scheme without starting with a universal relation. Theorem 7.3,

the minimal cover theorem used in Algorithm 7.5, is also from Bernstein [1976];

more restrictive forms of cover are found in Maier [1980, 1983].

The lossless-join decomposition into BCNF given in Algorithm 7.4 is from

Tsou and Fischer [1982]. Theorem 7.8, giving a 3NF decomposition with a

lossless join and dependency preservation, is from Biskup, Dayal, and Bernstein

[1979]. A related result appears in Osborn [1977].

The equivalence problem for decompositions of a given relation was solved

by Beeri, Mendelzon, Sagiv, and Ullman [1981]. Ling, Tompa, and Kameda

[1981] generalize the notion of third normal form to account for redundancies

across several different relation schemes.

Schkolnick and Sorenson [1981] consider the positive and negative conse

quences of normalizing relation schemes.

Additional Properties of Decompositions

The problem of adequacy of a decomposition has been considered from sev

eral points of view. Arora and Carlson [1978] regard the lossless-join and

dependency-preservation conditions as a notion of adequacy, while Rissanen

[1977] defines a decomposition to have independent components if there is a

one-to-one correspondence between relations for the universal scheme that sat

BIBLIOGRAPHIC NOTES 443

isfy the dependencies, and projections of relations that satisfy the projected

dependencies. Maier, Mendelzon, Sadri, and Ullman [1980] show that these

notions are equivalent for functional dependencies, but not for multivalued de

pendencies.

Honeyman [1983] offers an appropriate definition for what it means for a

decomposition (database scheme) to satisfy a functional dependency. Graham,

Mendelzon, and Vardi [1986] discuss the extension of this question to generalized

dependencies.

Recognizing Normalized Relations

Osborn [1979] gives a polynomial-time algorithm to tell whether a given relation

scheme R is in BCNF, with respect to a given set of dependencies F over #.14

In contrast, Jou and Fischer [1983] show that telling whether R is in third

normal form with respect to F is .ATP-complete.

Multivalued Dependencies

Multivalued dependencies were discovered independently by Fagin [1977], Delo-

bel [1978], and Zaniolo [1976] (see also Zaniolo and Melkanoff [1981]), although

the earliest manifestation of the concept is in Delobel's thesis in 1973.

The axioms for multivalued dependencies are from Beeri, Fagin, and

Howard [1977]. The independence of subsets of these axioms was considered by

Mendelzon [1979], while Biskup [1980] shows that if one does not assume a fixed

set of attributes, then this set minus the complementation axiom forms a sound

and complete set. Lien [1979] develops axioms for multivalued dependencies on

the assumption that null values are permitted.

Sagiv et al. [1981] show the equivalence of multivalued dependency theory

to a fragment of prepositional calculus, thus providing a convenient notation in

which to reason about such dependencies.

The dependency basis and Algorithm 7.6 are from Beeri [1980]. Hagihara

et al. [1979] give a more efficient test whether a given multivalued dependency

is implied by others, and Galil [1982] gives an even faster way to compute the

dependency basis.

Embedded multivalued dependencies were considered by Fagin [1977], De-

lobel [1978] and Tanaka, Kambayashi, and Yajima [1979].

More Normal Forms

Fourth normal form was introduced in Fagin [1977]. In Fagin [1981] we find an

"ultimate" normal form theorem; it is possible to decompose relation schemes so

14 The reader should not be confused between this result and Exercise 7.46(b). The latter

indicates that telling whether a relation scheme R is in BCNP given a set of functional

dependencies, defined on a superset of R, is .ATP-complete.

444 DESIGN THEORY FOR RELATIONAL DATABASES

that the only dependencies remaining are functional dependencies of a nonkey

attribute on a key and constraints that reflect the limited sizes of domains for

attributes.

Join Dependencies

Join dependencies were first formalized by Rissanen [1979]. The condition on

relations corresponding to a join dependency on their schemes was considered

by Nicolas [1978] and Mendelzon and Maier [1979].

A sound and complete axiomatization for a class slightly more general than

join dependencies is found in Sciore [1982].

Generalized Dependencies

The notion of generalized dependencies was discovered independently several

times; it appears in Beeri and Vardi [1981], Paredaens and Janssens [1981], and

Sadri and Ullman [1981].

A somewhat more general class, called implicational dependencies in Fagin

[1982] and algebraic dependencies in Yannakakis and Papadimitriou [1980], has

also been investigated.

Implications of Generalized Dependencies

The "chase" as an algorithm for inferring dependencies has its roots in the

lossless join test of Aho, Beeri, and Ullman [1979]. The term "chase," and its

first application to the inference of dependencies, is found in Maier, Mendelzon,

and Sagiv [1979]. Its application to generalized dependencies is from Beeri and

Vardi [1984b].

The undecidability of implication for generalized tuple-generating depen

dencies was shown independently by Vardi [1984] and Gurevich and Lewis

[1982]. Key results leading to the undecidability proof were contained in earlier

papers by Beeri and Vardi [1981] and Chandra, Lewis, and Makowsky [1981].

Axiomatization of Generalized Dependencies

Several sound and complete axiom systems for generalized dependencies are

found in Beeri and Vardi [1984a] and Sadri and Ullman [1981]. Yannakakis and

Papadimitriou [1980] gives an axiom system for algebraic dependencies.

Inclusion Dependencies

Inclusion dependencies were studied by Casanova, Fagin, and Papadimitriou

[1982] and Mitchell [1983]. Kanellakis, Cosmadakis, and Vardi [1983] discuss

the important special case of unary inclusion dependencies (see Exercise 4.47),

where the domain of a single attribute is declared to be a subset of another

single attribute.

BIBLIOGRAPHIC NOTES 445

Notes on Exercises

Exercise 7.13 (on the order of reductions to produce a minimal cover) is from

Maier [1980]. Exercise 7.17 (efficient computation of the closure of a set of

attributes) is from Bernstein [1976], although the problem is actually equivalent

to the problem of telling whether a context-free grammar generates the empty

string.

Exercise 7.32, the soundness and completeness of axioms A1-A8 for func

tional and multivalued dependencies, is proved in Beeri, Fagin, and Howard

[1977]. The algorithm for projecting functional and multivalued dependencies,

Exercise 7.37, was proved correct in Aho, Beeri, and Ullman [1979].

Exercise 7.46(a), the J^fP-completeness of telling whether a relation scheme

has a key of given size, is by Lucchesi and Osborn [1978]; part (b), telling

whether a relation scheme is in BNCF, is from Beeri and Bernstein [1979], and

part (c), inferring a join dependency from multivalued dependencies, is from

Fischer and Tsou [1983].

Exercise 7.48 is from Kanellakis, Cosmadakis, and Vardi [1983]; it is the key

portion of a polynomial-time algorithm for making inferences of dependencies

when given a set of functional dependencies and unary inclusion dependencies.

CHAPTER 8

Protecting

the

Database

Against

Misuse

There are several dangers from which a DBMS must protect its data:

1. Accidents, such as mistyping of input or programming errors.

2. Malicious use of the database.

3. Hardware or software failures that corrupt data.

Chapters 9 and 10 deal with item (3), as well as with a class of potential

programming errors that are caused by concurrent access to the data by several

processes. In this chapter we cover the DBMS components that handle the first

two problems.

1. Integrity preservation. This component of a DBMS deals with nonmalicious

data errors and their prevention. For example, it is reasonable to expect a

DBMS to provide facilities for declaring that the value of a field AGE should

be less than 150. The DBMS can also help detect some programming bugs,

such as a procedure that inserts a record with the same key value as a record

that already exists in the database.

2. Security (or access contra/). Here we are concerned primarily with restrict

ing certain users so they are allowed to access and/or modify only a subset

of the database. It might appear that any attempt on the part of a user to

access a restricted portion of the database would be malicious, but in fact

a programming error could as well cause the attempted access to restricted

data.

In this chapter, we give some general principles and some simple examples

of how integrity constraints and access control are handled in existing database

446

8.1 INTEGRITY 447

systems. Sections 8.1 and 8.3 cover integrity and security, respectively, from a

general perspective. Section 8.2 discusses integrity in Query-by-Example. In

the last three sections we cover three examples of security mechanisms: Query-

by-Example, SQL, and OPAL.

8.1 INTEGRITY

There are two essentially different kinds of constraints we would like a DBMS to

enforce. As discussed at the beginning of Chapter 7, one type is structural, con

cerning only equalities among values in the database. By far the most prevalent

instances of such constraints are what we there called functional dependencies.

Many, but not all, functional dependencies can be expressed if the DBMS allows

the user to declare that a set of fields or attributes forms a key for a record

type or relation.

The need to express functional dependencies is not restricted to relational

systems, nor do all relational systems have such a facility, explicitly. For exam

ple, the hierarchical system IMS allows the user to declare one field of a logical

record type to be "unique," meaning that it serves as a key for that type. A

unique field in the root record type serves as a key for database records, as

well as for records of the root type. Also, the unique field for any record type,

together with the unique fields for all of its ancestor record types, will serve as

a key for that record type.

The second kind of integrity constraint concerns the actual values stored

in the database. Typically, these constraints restrict the value of a field to

some range or express some arithmetic relationship among various fields. For

example, a credit union might expect that the sum of the BALANCE field,

taken over all members of the credit union, equals the net assets of the union.

As another example, if the record for a course contained fields E%, H%, and

L%, indicating the percentage of the grade devoted to exams, homework, and

labs, we would expect that in each such record the sum of the values in these

fields is 100. This is the kind of integrity constraint we shall discuss here.

There are two important issues regarding integrity checking. First we dis

cuss the way constraints can be expressed, and we show how taking "derivatives"

of integrity constraints can often lead to an efficient way to perform the checks.

Second, we discuss how the system can determine when integrity checks need

to be made, and we illustrate with the DBTG approach one way the user can

control such checks.

Query Languages as Integrity Constraint Languages

Many common kinds of integrity constraints can be expressed in the data ma

nipulation language. As we shall see in Section 8.2, it is possible to use the

DML, or something very close to the DML, to serve as the integrity-constraint

448 PROTECTING THE DATABASE AGAINST MISUSE

language. In this section, we shall consider the matter abstractly, using rela

tional algebra as our constraint language.

Example 8.1: Referring to the YVCB database again, we could write as the

containment of two queries the constraint that orders can only be entered if

placed by people who are customers, i.e., those listed in the CUSTOMERS

relation. These queries can be expressed in any notation; we shall use relational

algebra as an example, and write

ircusT(ORDERS)C 7rCNAME(CUSTOMERS) (8.1)

D

The integrity constraint (8.1) is really an example of a unary inclusion

dependency, mentioned in Exercise 7.46. There are other integrity constraints

that cannot be expressed as the containment of one set within another, but

can be expressed as the special kind of Horn clause that we have ignored since

Section 3.1: the disjunction of negative literals. A Horn clause -'p\ V • • • V -'pn

is equivalent to -'(pi A • • • Apn). We can write this expression as

:- pi & • • • & pn

The missing head of the rule should be thought of as "false," so the rule says "pi

and • • • and pn implies false," i.e., these atoms cannot all be true simultaneously.

Example 8.2: Suppose we want to restrict customers of the YVCB to have

nonnegative balances. We could write the constraint

:- customers (C, A, B) ft B < 0. (8.2)

This rule says that if we have a customer C with address A and balance B, and

we also have B < 0, then we have a contradiction; i.e., we have inferred "false."

Equivalently, it says that we cannot have a value of B which is simultaneously

less than 0 and found in the BALANCE component of some CUSTOMERS

tuple. D

Checking Integrity Constraints

Some intelligence must be used when we plan how to check integrity constraints.

For example, on inserting a new order, we should realize that only the newly in

serted order could violate (8.1), so all we have to do is check its CUST attribute

for membership in TTcNAME(CUSTOMERS). Similarly, we can check (8.2) on

insertion of a new customer by considering only the balance of that new cus

tomer, rather than all the customers' balances, as we would do if we took (8.2)

literally.

There is a simple technique for getting a good upper bound on what we

must do to verify that an integrity constraint is not violated when one or more of

the underlying relations change. The idea is related to "semi-naive" evaluation

8.1 INTEGRITY 449

discussed in Algorithm 3.4. In both situations we take the "derivative" of an

algebraic expression to find the change in the expression resulting from the

changes in relations.

The four monotone operators of relational algebra can be related to "or

dinary" arithmetic operations as follows. We can treat Cartesian product as

multiplication, union as addition, and both selection and projection as forms of

multiplication by a constant. The set difference operator, which is not mono

tone, gives us some problems because insertion into the database can result in

the deletion of tuples from the answer, and vice versa. We can still get bounds

on the change to the value of an expression involving set difference, and these

bounds will often be useful. We leave the extension of the "derivative" idea to

nonmonotone expressions as an exercise.

Computing Derivatives

The rules for taking the "derivative" of monotone expressions are given below.

It should be understood that AF, the "change in the value of expression E,"

is really an upper bound on that change, because of the effects of projection,

which we shall discuss in the proof of Theorem 8.1, and of union. Suppose

we have a database with relations H\. H,,. and we insert into each relation

Ri the set of tuples A/Zj (which may be empty for some i's). Let E be an

expression of relational algebra involving the operations x, U, a, and ir. Then

A /-;. a set of tuples that includes all of those tuples that were not in the value

of E before the A/Y,"s were inserted into the flj's, but are in the value of E

afterward, is defined by:

1. If F is a constant relation, then AF = 0.

2. If E is a relation variable, say Ri, then AF = Aflj.

3. If E = ffF(E\) then AF = <TF(&Ei).

4. If F = 7r!,(F1) then AE = 7rL(A£;1).

5. If E = E\\JE2 then AE = AFiUA^.

6. If E = EI x E2 then AF = (E\ x AF2) U (A^i x F2) U (AFi x AF2).

The same rules apply if the A/I', "s are deletions from each of the fij's.

Then, AE is an upper bound on the set of tuples deleted from E. However, if

we want to develop rules that handle combinations of insertions and deletions

at the same tune, then we have much of the complexity that we face when we

consider set difference with insertions only.

Fortunately, if we are only concerned with checking integrity constraints

expressible in monotone relational algebra, then deletions cannot contribute

to violations of the constraints. If E is an integrity constraint, a function of

database relations Ri,...,Rn, we have only to compute A.E, by the above

rules, and check that this relation is empty. As we mentioned, A / is only an

upper bound on the set of tuples that newly appear in the value of expression

450 PROTECTING THE DATABASE AGAINST MISUSE

F. However, as we shall show in Theorem 8.1, any tuples in AF that are not

newly inserted are tuples that were in the relation denoted by F even before

insertion, and thus these are violations of the integrity constraint anyway.

Example 8.3: The rule body (8.2) is easily seen equivalent to the relational

algebra expression

E = aB<0(CUSTOMERS(C, A, B))

Then by rule (3),

AF = <7B<o(ACUSTOMERS(C',,4,B))

That is, if we insert a new customer or customers (the members of the set of

tuples ACUSTOMERS), the change in the expression F, which represents the

violations of the integrity constraint (8.2), is computed by applying the selection

for B < 0 to the inserted tuple or tuples.

As another, abstract example, consider

F = R(A, B) ixj S(B, C) = 7n,2,4(<7$2=s3(/Z x 5))

Then

AF = 7r1,2,4(<7$2=$3((fl x A5) U (Afl x 5) U (Afl x A5))) =

(R 1X3 A5) U (Afl txj S) U (Afl ixj A5)

Note that the above steps did not depend on the particular attributes of R and

5, and therefore illustrate the fact that natural join also behaves like multipli

cation as far as the taking of "derivatives" is concerned. D

Theorem 8.1: If the A//,"s above are sets of insertions, then AF contains all

of the new tuples in the relation produced by expression F; if the AAj's are

sets of deletions, then AF contains all of the tuples that are no longer in F.

In each case, there can be some tuples in AF that are not inserted into (resp.

deleted from) F, but these tuples are in F both before and after the insertions

(resp. deletions).

Proof: The proof is an induction on the number of operators in the expression

F. We shall do only the case of insertions and rule (4), the projection rule. The

basis and the remaining cases of the induction are left as an exercise.

Suppose that F = ?r£,(F) [F is E\ in rule (4)], and the values of F and

F before the insertion are E0id and Fojd; after insertion their values are Enew

and Fnew. Then by the inductive hypothesis, Fnew — F0id C AF, and the

tuples in AF that are not in Fnew — Fgid are in both Fnew and FQ/J. Put in

an algebraically equivalent way, AF C Fnew. Now the set of tuples in /:'„,„.

that are not in F0|d is 7rt(Fnetu) — 7rt(FoJd). Call this set 5; we must show that

5 C AF = 7r£,(AF) and that tuples in AF - 5 are in E0id (and therefore in

both Enew and F0<d, since we assume only insertions are made).

8.1 INTEGRITY 451

Suppose /i is in S. Then n is in nL(Fnew) and not in irL(F0id)- Then there

exists a tuple v that agrees with /i in the components on the list L, such that

v is in Fneu,; if not, p, could not be in irL(Fnew). Further, v is not in F0id,

or else n would be in -n^Foid)- Thus, v is in Fnew — F0jd, which is, by the

inductive hypothesis, a subset of AF. We conclude v is in AF. Hence, n is in

7r/,(AF) = AF, as was to be proved.

For the second part of the induction, we must show that AF — S contains

only tuples in E0id- By the inductive hypothesis, AF C Fnew. Thus,

AF = 7rL(AF) C 7rL(Fneu))

and therefore

AF - S C 7rL(Fnetu) - S C irL(FM)

The latter follows since S = irL(Fnew) - *L(F0id)- But ^L(F0id) = EM, so

AF/ - 5 C Foid, as desired. D

Note that the projection operator can actually introduce tuples into AF

that are in both Enew and F0jd- That is, we could have, for example,

Fnetu = {01,02}

and FM = {02}, with AF = {01}. If F = ^(F), then

AF = TT^AF) = {0}

while Enew = F0jd = {0}, so Enew — EM = 0; that is, there is really no change

to the value of expression F. A similar situation can occur when we apply rule

(5), for union.

Checking Existence Constraints by Derivatives

An existence constraint like (8.1), which relates two monotone expressions by

set inclusion, can also be checked efficiently by taking the derivatives of the two

expressions involved. First, we note that if our constraint is F C F, and the

relations involved in expression F are disjoint from those involved in F, then

insertions into the relations of F cannot violate the constraint, and deletions

from F cannot violate the constraint. If we insert into a relation involved in

F, then we compute AF. This relation will include all the new tuples of F, as

well, perhaps, as some old ones. It is certainly sufficient to check that each of

these tuples is in F. Similarly, if we delete from a relation of F, we compute

AF and check that none of these tuples are in F.

Example 8.4: Consider (8.1). Here, F = TTCUST(ORDERS), and

F = TTCNAME(CUSTOMERS)

If we insert set of tuples AORDERS into ORDERS, we must consider set of

names AF = 7rcusx(AORDERS), and check that each is in F. That is, we must

452 PROTECTING THE DATABASE AGAINST MISUSE

check that the customer name in each inserted order is already a customer in the

CUSTOMERS relation. Note that some of the customers placing new orders

may already have orders on record, so they are not really "new" customers;

they are in AU, but not in Enew — E0id, using the notation found in the proof

of Theorem 8.1. D

The cases where E or F are not monotone and where these expressions

share relations as operands are harder. We leave it as an exercise to develop

useful bounds on the set of tuples that must be checked.

Controlling the Time of Integrity Checks

Instead of trying to check automatically only those integrity checks that could

be violated when an insertion or deletion is made, many DBMS's simply allow

the user to execute a checking program that is triggered by certain events that

the user declares to be triggering events, such as insertion into, or deletion from,

a given relation. The general idea is that the integrity constraints are allowed

to function as high-level "interrupts," like ON conditions in PL/I.

For example, the DBTG proposal allows ON clauses of the form

ON <command list> CALL <procedure>

in the declaration of DBTG sets and record types. For a DBTG set, the

<command list> may include any of INSERT, REMOVE, and FIND. The

<procedure> is an arbitrary routine written in the DBTG data manipulation

language, which is an extension of COBOL, and thus has full computing capa

bility as well as the ability to access any part of the database. For example, if

we declare for DBTG set S:

ON INSERT CALL P1

the procedure PI could check that certain fields of the current of run-unit, which

is the member record being inserted, are not already present in the selected set

occurrence. Thus, these fields, plus a key for the owner record type, functionally

determine the rest of the fields of the member type.

The <command list> for an ON clause in a record type declaration can

include any of the above three commands that are permitted in DBTG set

declarations and also the remaining four: STORE, DELETE, MODIFY, and

GET. Such an ON clause is triggered whenever a command in the list is executed

and the current of run-unit is of the relevant record type.

8.2 INTEGRITY CONSTRAINTS IN QUERY-BY-EXAMPLE

To demonstrate how the ideas of the previous section can be put into practice,

we shall discuss integrity in the Query-by-Example system in detail. First, if

we review Section 4.5, we note that when a relation is declared in QBE, we are

allowed to specify whether each field is key or nonkey. The system then enforces

8.2 INTEGRITY CONSTRAINTS IN QUERY-BY-EXAMPLE 453

the functional dependency of each nonkey field on the set of key fields taken

together. This integrity check is triggered on each insertion or modification

of a tuple in the relation, and operations that would cause a violation of the

dependency are not done; rather, a warning is printed.

The QBE system maintains a constraint table for each relation. To create

a constraint on relation R, we call for a table skeleton for R. We enter one or

more rows representing the constraints into the skeleton. Below the relation

name we enter

I. CONSTR(<condition list» . I.

The first I. refers to the constraint itself and the second I. to the entries

defining the constraint, which are in the portion of the row that follows to

the right. The <condition list> can consist of any or all of I. (insert), D.

(delete), U. (update), and identifiers that represent user defined conditions, to

be described subsequently. The terms in the <condition list> indicate when

the integrity constraint is to be tested; for example, CONSTR(I. ,U.) . tells

us to test the constraint whenever an insertion or modification occurs in the

relevant relation. CONSTR. is short for CONSTR(I. ,D. ,U.). In principle, the

constraint applies to all of the tuples in the relation. However, for many simple

constraints, the system can deduce that only the tuple inserted or modified

needs to be checked, as we discussed in Section 8.1.

In the rows of the skeleton, we place entries for some or all of the attributes.

An entry may be a constant, which says the tuple being inserted, deleted, or

modified must have that constant value for that attribute, or the constraint

does not apply. An entry may be of the form Oc, where c is a constant and 0 an

arithmetic comparison, which says that the corresponding component of a tuple

must stand in relation 0 to c, whenever the constraint applies to the tuple. An

entry can be blank or have a variable name beginning with underscore, which

means the tuple can be arbitrary in that attribute. Moreover, there can be

additional rows entered in the skeleton for R or in another skeleton; these rows

place additional constraints on the values that may appear in the tuple being

inserted, deleted, or modified, according to the semantics of the QBE language.

Example 8.5: Let us once more consider the YVCB database. To place the

constraint on balances that no one owe more than 100 dollars, we could call for

a CUSTOMERS skeleton and enter

CUSTOMERS NAME ADDR BALANCE

I. CONSTRU..U.). I. >= -100

To guarantee that no order include an item for which no supplier exists,

we can call for INCLUDES and SUPPLIES skeletons and enter the information

shown in Figure 8.1. This constraint says that the inserted tuple, which defines

454 PROTECTING THE DATABASE AGAINST MISUSE

a value for Jiotdog equal to the value of the ITEM attribute in the inserted

tuple, must be such that some tuple in the SUPPLIES relation has that value

for its ITEM attribute. D

INCLUDES O# ITEM QUANTITY

I. CONSTRd.). I. Jiotdog

SUPPLIES NAME ITEM PRICE

Jiotdog

Figure 8.1 Constraint that orders may only include supplied items.

Defined Triggers for Integrity Checks

In QBE, we may define a condition that, when satisfied by an inserted or

modified tuple, causes an associated integrity check or checks to be made on

that tuple. As mentioned above, in the phrase

CONSTR(<condition list>) .

the <condition list> can include arbitrary character strings as well as I . , D . ,

and U . . These character strings, called defined triggers, are the names of con

ditions expressed as rows in the QBE language.

Example 8.6: Suppose we wish to constrain Zack Zebra so that he cannot owe

as much as 50 dollars. We could write

CUSTOMERS NAME ADDR BALANCE

ZZlim

I. CONSTR(ZZlim) . I.

Zack Zebra

> -50

The first row indicates that there is a defined trigger called ZZlim that is "trig

gered" whenever we modify or insert a tuple for Zebra. The second row says

that if the CUSTOMERS tuple for Zebra is inserted or modified, check that his

new balance is not lower than —49.99. The tuples for other members are not

affected by this constraint. D

Old-New Constraints

Sometimes one wishes to constrain updates in such a way that there is a re

lationship between the old and new values for certain attributes. We include

8.2 INTEGRITY CONSTRAINTS IN QUERY-BY-EXAMPLE 455

in the constraint specification a line representing the old tuple as well as the

constraint tuple itself. Often the QBE language allows the relationship between

the old and new tuples to be expressed in the tuples themselves, but if not, a

condition box can be used.

Example 8.7: To create a constraint that a supplier cannot raise the price of

Brie we enter:

SUPPLIES NAME ITEM PRICE

I. CONSTR(U.). I. _bmw Brie <= -P

I. -bmv Brie -P

The row with the keyword CONSTR . represents the new value, and the other row

represents the old value. The presence of I . in the latter row distinguishes the

old-new type of constraints from a general constraint requiring more than one

row to express, as in the second part of Example 8.5. The presence of variable

-bmw in both rows is necessary, or else we would only check that the new price

for the supplier involved in the change is less than the price charged for Brie

by at least one other supplier. D

Timing of Constraint Enforcement

The QBE system allows one to enter an entire screenful of commands at once,

and this collection of commands may include several insertions, deletions, or

updates. It is important to note that integrity constraints are not checked as

each command in the collection is executed, but only after all of the commands

in the collection are executed. This feature allows us certain freedoms in the

order in which we specify commands, as long as the commands are entered

together.

Thus, in Example 8.5 we constrained our YVCB database in such a way

that we could not place an order for an item not supplied. If we enter as

one "screenload" an order for Goat Cheese and fact that Acme now sells Goat

Cheese, we would not violate the constraint. However, if the system entered

the orders and checked the integrity constraints before entering the new supply

information, we would have had an integrity violation.

The Constraint Table

All integrity constraints declared are available to the user. We can print the

constraints pertaining to a relation R if we enter

P. CONSTR. P.

under the relation name in a skeleton for R. Alternatively, we could print only

the constraints of specified type; for example

456 PROTECTING THE DATABASE AGAINST MISUSE

P. CONSTRU.). P.

prints only the insertion constraints.

We can delete a constraint on R by entering under R in a skeleton for this

relation

D. CONSTR(<condition list>) .

followed, in the columns for the attributes, by a description of the constraint.

Note that a trailing D . is not needed the way a second I . or P . is needed when

we insert or print a constraint.

8.3 SECURITY

Many of the problems associated with security are not unique to database sys

tems, but must be faced by the designer of an operating system, for exam

ple. Therefore, let us touch on some of the techniques common to security

for database systems and more general systems, and then turn to some of the

specialized problems and techniques germane to existing database systems.

1. User identification. Generally, different users are accorded different rights

to different databases or different portions of the database, such as particu

lar relations or attributes. These rights may include the reading of portions

of the database, and the insertion, deletion, or modification of data. The

most common scheme to identify users is a password known only to the

system and the individual. Presumably, the passwords are protected by

the system at least as well as the data, although to be realistic, guarantees

or proofs of security are nonexistent.

2. Physical Protection. A completely reliable protection scheme must take

into account the possibility of physical attacks on the database, ranging

from forced disclosure of a password to theft of the physical storage de

vices. We can protect against theft fairly well by encrypting the data. A

high security system needs better identification than a password, such as

personal recognition of the user by a guard.

3. Maintenance and Transmittal of Rights. The system needs to maintain a

list of rights enjoyed by each user on each protected portion of the database.

One of these rights may be the right to confer rights on others. For exam

ple, the DBTG proposal calls for DBTG sets, record types, and "areas"

(essentially regions of the physical memory) to be protectable; the mech

anism could be a password for each protected object. The proposal does

not call for a table of user rights to protected objects, and transmission of

rights can be handled outside the system, by informing users of passwords,

for example. Both System R and the Query-by-Example System (to be

discussed further in Section 8.4) maintain a table of rights and permit the

granting of rights to others.

8.3 SECURITY 457

Now, let us consider two mechanisms of protection that are specially de

signed for use in database systems.

Views as Protection Mechanisms

The view, in addition to making the writing of application programs easier by

allowing some redefinition of the conceptual database and promoting logical

data independence, serves as a convenient protection mechanism. There are

two distinct kinds of view facilities. The first, which we discussed in connection

with ISBL and Query-by-Example (Sections 4.2 and 4.5), allows no modification

to the view. We call such a view facility read-only. There are many situations

in which the owner of a database (or of any protectable object for that mat

ter) wishes to give the public the privilege of reading his data but wishes to

reserve the privilege of modifying the database to himself or to a limited set of

associates. The read-only view is ideal for this purpose.

For example, in ISBL or QBE, we may define a view equal to a given

database relation and allow public (read-only) access to this view. There is

also the option of creating a view containing only part of the information of a

relation, or parts of several relations, thus shielding certain attributes or tuples

from public view.

The other type of view permits both reading and writing of the objects

that are part of the view, and modifications to the view are reflected in the

conceptual scheme. IMS, SQL, and the DBTG proposal permit read/write

views to a limited extent. Clearly this facility is more versatile than the read

only view, as far as the design of application programs is concerned.

A serious problem with read/write views is that updates to a view often

have side effects on parts of the database that are not in the view. For example,

in a hierarchical system, we might have a particular record type in the view,

but not its descendants. If we delete an occurrence of that record type, we must

delete its descendants as well, for they no longer fit anywhere in the database.

This action could be a surprise to the user, or it could be illegal, as we would

ordinarily not give a user authorization to delete an object that we would not

even allow him to see in his view.

A similar situation occurs in the network model, where we wish to delete

an owner record but do not know about its owned records because they are

outside the view. Likewise, those relational systems that borrow network and

hierarchical ideas for structuring the storage of their relations face the same

problems. It is also unclear, in relational systems, what the deletion of some

components of a tuple means if there are other attributes of the relation that

are outside the view and that therefore should not be deletable by a user seeing

only the view. For these reasons, all DBMS's limit the user's ability to update

views to a few unambiguous cases.

458 PROTECTING THE DATABASE AGAINST MISUSE

The Use of Query Languages to Define Rights

Another important idea concerning security as it pertains to database systems

is that the data manipulation language can be used to define the privileges each

user has for accessing the database. For example, we may write a selection and

projection to be included automatically with every query posed by designated

users about a designated relation. This selection and projection have the effect

of making certain values invisible.

Example 8.8: If a user querying the YVCB database is required to project

the CUSTOMERS relation onto NAME and ADDR, whether or not he specifies

that projection, then that user cannot see balances. If employees of Acme are

required to select for NAME="Acme" in every query about the SUPPLIES

relation, then they cannot find the prices charged by other suppliers.

For example, if the latter constraint is declared in Quel, then a query like

range of s is SUPPLIES

retrieve (s. price)

where s.item = "Brie"

is automatically translated by the INGRES system into

range of s is SUPPLIES

retrieve (s. price)

where s.item = "Brie"

and s.name = "Acme"

D

Quel and QBE follow this general approach; we shall discuss Query-by-

Example's security mechanism in detail in the next section. The DBTG pro

posal allows the "privacy lock" for a protectable object to be an arbitrary pro

cedure, so we are able to implement arbitrary checks, expressed in the DBTG

data manipulation language, for granting or denying a request to access a pro

tected object. For example, we could check that NAME = "Acme" in every

tuple retrieved.

8.4 SECURITY IN QUERY-BY-EXAMPLE

The QBE system recognizes the four rights: insert (I.), delete (D.), update

(U.), and read (P., for "print"). To confer one or more rights to a relation R

upon a person or group of people, the owner of relation R enters a tuple in an

R skeleton. Under the relation name R appears the entry

I. AUTR(<list». <name> I.

where <list> is a list of one or more of the four rights, I., D., U., and P.;

<name> is either the name of the person being given the rights or a variable,

representing an arbitrary person. We may omit (<list>) if we intend to grant

8.4 SECURITY IN QUERY-BY-EXAMPLE 459

all four rights, and we may omit <name> if we wish to grant a set of rights to

all users.

To complete the row with the AUTR. keyword, we enter variables or con

stants in some or all of the columns for the attributes. A variable indicates

that the right applies to the column. A constant indicates the right applies

only to tuples with that constant value in that column. A blank indicates that

the column cannot be accessed. Note that this rule differs from the general

QBE policy that blanks are synonymous with variables mentioned only once.

The full power of the QBE language can be brought to bear to refine the set of

tuples in the relation R to which the right is granted. For example, we can use

condition boxes to constrain the values of variables, and we can add additional

rows that also restrict values of variables.

Example 8.9: Let us again use the YVCB database as an example. To give

user Zebra the right to read the ORDERS relation we say

ORDERS O# DATE CUST

I. AUTR(P.). Zebra I. _n _d _c

To grant Zebra all four access rights to the ORDERS relation we can write

ORDERS O# DATE CUST

I. AUTR. Zebra I. _n _d _c

To give anyone the right to read names and balances (but not addresses) from

the CUSTOMERS relation, provided the balance is nonnegative, we say

CUSTOMERS NAME ADDR BALANCE

I. AUTR(P.). -Snake I. _n >= 0

Note that the variable .Snake matches any user's name.

As a final example, to allow anyone access to find, from the INCLUDES

relation, the order numbers for items supplied by Acme, we may write the

command shown in Figure 8.2. D

Constraints on the Name of the Grantee

We have so far shown two kinds of grants: to anyone or to one specific person.

We can use the QBE language to express subsets of the set of users, and we

can even allow the set of accessible tuples to be different for different users.

The technique is to use a variable for <name> in the AUTR. entry, and to

use the same name in the tuple or tuples describing the right granted to each

individual user. The system provides a facility to relate the name of the user

460 PROTECTING THE DATABASE AGAINST MISUSE

INCLUDES O# ITEM QUANTITY

I. AUTR(P.). -Snake I. _n Jiotdog

SUPPLIES NAME ITEM PRICE

Acme Jiotdog

Figure 8.2 Anyone may read order numbers for items supplied by Acme.

to the representation of his name as it appears in the database.

Example 8.10: We can give everyone authorization to read only his own

balance by:

CUSTOMERS NAME ADDR BALANCE

I. AUTR(P.). _Snake I. -Snake _b

D

The Authorization Table

As for integrity constraints, all AUTR. statements are placed in a table. From

this table we can print the rights granted to an individual concerning a rela

tion, or all grants concerning a relation, in much the same manner as we print

integrity constraints. Similarly, the owner of a relation can delete rights from

the table concerning that relation.

8.5 SECURITY IN SQL/RT

The version of SQL for the IBM PC/RT, which was described in Sections 4.6-

4.8, uses a very simple security mechanism. This simplicity is appropriate for a

system running on a computer that is in essence a large personal computer, to

be shared by a few people at most. The SQL database system runs under the

AIX operating system, which is essentially UNIX. Thus, SQL is able to make

use of the protection facilities that UNIX provides for files.

UNIX divides the world, as far as access to a file is concerned, into three

parts: the owner of the file, the "group" to which the owner belongs, and the

rest of the world. Of these, only the notion of a group requires explanation.

There is the underlying assumption that users are divided into groups, and the

privileges the owner assigns to "group" are available only to those users who

are in the same group as the owner. The privileges that the owner may grant

8.5 SECURITY IN SQL/RT 461

or withold from himself, his group, or the world are read, write, and execute;

the latter is not relevant when access to a database is concerned.

To grant an access privilege to a relation ft, the owner says one of the six

combinations of:

GRANT READ/WRITE/ALL ON R TO GROUP/WORLD

The possible privileges are READ and WRITE; ALL stands for both of these privi

leges. The privilege of writing includes inserting, deleting, and modifying tuples,

as well as other operations such as index creation for the relation, or dropping

the relation itself. The read privilege includes only the right to use the relation

in queries. The owner is assumed to have all privileges, so there is no need to

grant them explicitly.

To cancel a privilege, say

REVOKE READ/WRITE/ALL ON R FROM GROUP/WORLD

Privileges may be granted and revoked for views as well as for relations,

and we need to use views if we are to allow anything more refined than all-or-

nothing access to relations. The ability to exercise the write privilege on a view

is limited, because there are many views we can express in SQL for which ^no

natural translation from the change in the view to the appropriate change in

the database exists. SQL/RT permits modification of views only when the view

is obtained from a single relation by selection and projection. When projection

is involved in the view, we can modify the underlying relation in response to

an insertion into the view by padding the inserted tuple with nulls in those

attributes not found in the view.

Example 8.11: Louise Ledger, manager of the accounting department at the

YVCB, is the owner of the CUSTOMERS relation. Other employees in the

accounting department are members of the same group as Ledger, and other

employees of the YVCB are not. It is desired that:

1. Only Ledger can change balances of customers.

2. Only accounting employees can read balances of customers, insert or delete

new customers, or change addresses of customers.

3. All employees can read names and addresses of customers.

Initially, only Ledger has access privileges to CUSTOMERS, so condition

(1) is satisfied, but (2) and (3) are not. To permit the second and third types

of access, we need a view that has only the NAME and ADDR attributes of

CUSTOMERS. All employees will have read access to this view, and accounting

department employees will have write access. The view is defined by:

CREATE VIEW PUBLIC-CUST(NAME, ADDR) AS

SELECT NAME, ADDR

FROM CUSTOMERS;

462 PROTECTING THE DATABASE AGAINST MISUSE

When we insert into PUBLIC-CUST, the new tuple is given a null BAL

ANCE. Deletion from this view is performed by deleting all tuples in CUS

TOMERS with the same name and address; there should be only one. Modi

fications are similarly reflected by modification to all matching tuples of CUS

TOMERS.

To grant the proper accesses to the accounting group and to all the users

of the database, Ledger should issue the following SQL commands:

GRANT READ ON CUSTOMERS TO GROUP;

GRANT READ ON PUBLIC-CUST TO WORLD;

GRANT WRITE ON PUBLIC-CUST TO GROUP;

D

8.6 SECURITY IN OPAL/GEMSTONE

The Opal language discussed in Sections 5.6 and 5.7 is part of the Gemstone

object-oriented database system. Security issues for Gemstone are addressed

through built-in objects and methods of Opal.

The basic unit to which access can be granted or denied is called a segment.

All objects created are assigned to a segment. In the simplest situation, each

user has one segment, containing all of his objects, and there are several owned

by the system itself. However, it is possible for users to have more than one

segment. For example, to control access on a relation-by-relation or view-by-

view basis, as we did in the previous section, we would have to divide objects

into segments according to the "relation" to which they belong.

There are three authorizations understood by Gemstone, and they are

represented by the Opal symbols #read, #write, and Onone.1 Their meanings

should be obvious. The privilege to write includes the privilege to read, and

the #none privilege denies all access to the protected segment.

User Profiles

There is an object called System that can be sent messages of various types,

some involving security. One of the messages System understands is

System myUserProfile

which returns an object called the user profile, the profile belonging to the user

who sends System the message.

We may send to the user profile object certain messages to read or change

some of the facts about the status of the user. One of these facts concerns the

default segment, which is the "current" segment, the one into which objects

1 Recall from Section 5.6 that "symbols," indicated by the leading #, are essentially

internal representations for character strings.

8.6 SECURITY IN OPAL/GEMSTONE 463

newly created by this user would be placed. If we send the user profile the

message

defaultSegment

we are returned the default segment as an object. We can then send this object

messages that read or modify authorizations to that segment. For each segment,

we may specify an authorization for the owner, for up to four groups, and for

the "world." The forms of the messages are illustrated in the next example.

Example 8.12: A user can give himself write authorization, the most general

authorization that Gemstone uses, for his own segment by sending the following

messages.2

(1) ((System myUserProfile)

(2) defaultSegment)

(3) ownerAuthorization: #write.

That is, line (1) produces the user profile object as a result. The message sent

this object on line (2) produces the default segment object as a result. On

line (3), this segment is sent a message that gives the owner of that segment

authorization to write into the segment.

Generally, it is not possible to send the

ownerAuthorization

message, or similar messages, to any segment but one's own.

To authorize the accounting group (represented by the symbol #account-

ing) to read his default segment, a user may say:

((System myUserProfile)

defaultSegment)

group: ^accounting

authorization: Oread.

Finally, to deny either read or write access to this user's default segment

by users not in the accounting group, he can say:

((System myUserProfile)

defaultSegment)

worldAuthorization: tfnone.

D

Privileges

There are certain activities that require a higher degree of protection than is

afforded, through the authorization mechanism, to the reading and writing of

In all the following messages, the parentheses are redundant, because messages are

applied left-to-right.

464 PROTECTING THE DATABASE AGAINST MISUSE

objects. These activities include shutting down the system, reading or changing

(other people's) passwords, creating new segments, and changing authorization

for segments belonging to others.

To provide the necessary security, certain messages can only be sent by

users whose profiles explicitly contain the corresponding privilege. For example,

the privilege

SegmentProtection

allows a user whose profile contains this privilege to change the authorization

on other users' segments. Thus, if Profile is a variable whose current value is

the user profile of user .A, then user B might send the message

Profile worldAuthorization: #write.

If the SegmentProtection privilege appears in B's user profile, then this action

will be taken, and all objects in A's defualt segment will become publicly read

able and writable. If B does not have this privilege, the message will not be

accepted. Of course, A may send the same message to his own profile without

any special privilege.

Curiously, the "privilege" of adding privileges is not itself protected by the

privilege mechanism. In principle, any user could send to Profile the message

Profile addPrivilege : 'SegmentProtection' .

and gain the SegmentProtection privilege for the user whose profile was the

current value of Profile. The normal way to prevent this situation is to store

the user profiles themselves in a segment owned by the "data curator," who

is thus the only one who can send such messages legally, as long as write-

authorization for this segment is withheld from any other users.

EXERCISES

8.1: Compute AE for the following expressions E.

a) R x *A,B(S).

b) (R(JS)x(<rA=0(R)U*A(S)).

* 8.2: Explain how to extend A to set difference in such a way that the estimates

are conservative (AE1 contains all of the additional tuples of E when in

sertions are made into the argument relations of E) and as close to the

minimum set as you can manage.

8.3: Show the law for the derivative of a natural join E = E\ ixi E^:

U (AEi tx E2) U

EXERCISES 465

8.4: Complete the proof of Theorem 8.1 by considering the operators selection,

union, and product, and by considering the situation in which the changes

to the argument relations are deletions rather than insertions.

* 8.5: Explain how to check whether E C F holds after insertions to argument

relations of expressions E and F, when

a) E and F share arguments.

b) E and F involve the set difference operator.

8.6: Suppose we have a database consisting of the following relations.

EMPS(EMP_NO, NAME, ADDR, SALARY, DEPT_NO)

DEPTS(DEPTJSTO, DNAME, MANAGER)

Express the following integrity constraints in the Query-by-Example con

straint language.

a) No employee earns more than $100,000.

b) No employee in Department number 72 earns more than $50,000.

c) No employee in the Toy Department earns more than $50,000.

* d) No two departments have the same number. Hint: Use the CNT.

(count) operator.

** 8.7: Show that every functional and multivalued dependency can be expressed

in the Query-by-Example integrity-constraint language.

8.8: Express in the Query-by-Example authorization language of Section 8.4

the following authorizations for the database of Exercise 8.6.

a) Anyone can read the EMPS relation, except for the salary attribute.

b) Any employee can read his own salary.

c) The manager of a department can read the salary of any employee in

his department.

d) Employee Warbucks can insert and delete EMPS tuples and can mod

ify salaries.

8.9: Repeat Exercise 8.8 (a) and (d) in the SQL/RT authorization mechanism

described in Section 8.5. What makes (b) and (c) difficult in SQL/RT?

8.10: Suppose that we create an OPAL database with employee and depart

ment objects corresponding to the two relations in Exercise 8.6. Suppose

EmpSegment is the name of a segment in which all of the employee objects

are found, and DeptSegment is a segment holding the department objects.

a) How would we arrange that Warbucks and only Warbucks has write-

access to the employee objects?

b) How would we arrange that all the managers (and only Warbucks and

the managers) have read-access to the employee objects?

466 PROTECTING THE DATABASE AGAINST MISUSE

* c) How can we arrange that everyone has read-access to the employee ob

jects except for the salary instance variable? Hint: Create a "view."

BIBLIOGRAPHIC NOTES

Fernandez, Summers, and Wood [1980] is a survey of database security and

integrity.

Integrity

The general idea of integrity constraints through query modification is from

Stonebraker [1975].

The Query-by-Example integrity subsystem discussed in Section 8.2 is

based on Zloof [1978]. This mechanism did not appear in the commercial QBE

discussed in IBM [1978a].

Authorization

The discussion of security in Query-by-Example in Section 8.4 is taken from

Zloof [1978].

The authorization mechanism of SQL/RT (Section 8.5) is discussed in IBM

[1985b], and authorization in OPAL (Section 8.6) by Servio Logic [1986].

Authorization in INGRES is discussed in Stonebraker and Rubinstein

[1975]. The general idea of security by query modification is from Stonebraker

and Wong [1974].

The paper by Fagin [1978] studies and proves correct an algorithm for

granting authorizations to a database with the possibility that the right to

grant further authorizations can itself be granted. This idea was earlier studied

by Griffiths and Wade [1976].

CHAPTER 9

Transaction

Management

Until now, our concept of a database has been one in which programs accessing

the database are run one at a time (serially). Often this is indeed the case.

However, there are also numerous applications in which more than one program,

or different executions of the same program, run simultaneously (concurrently).

An example is an airline reservation system, where at one time, several agents

may be selling tickets, and therefore, changing lists of passengers and counts

of available seats. The canonical problem is that if we are not careful when

we allow two or more processes to access the database, we could sell the same

seat twice. In the reservations system, two processes that read and change the

value of the same object must not be allowed to run concurrently, because they

might interact in undesirable ways.

A second example is a statistical database, such as census data, where

many people may be querying the database at once. Here, as long as no one

is changing the data, we do not really care in what order the processes read

data; we can let the operating system schedule simultaneous read requests as

it wishes. In this sort of situation, where only reading is being done, we want

to allow maximum concurrent operation, so time can be saved. For contrast, in

the case of a reservation system, where both reading and writing are in progress,

we need restrictions on when two programs may execute concurrently, and we

should be willing to trade speed for safety.

In this chapter we shall consider models of concurrent processes as they

pertain to database operation. The models are distinguished primarily by the

detail in which they portray access to elements of the database. For each model

we shall describe a reasonable way to allow those concurrent operations that

preserve the integrity of the database while preventing concurrent operations

that might, as far as a model of limited detail can tell, destroy its integrity. As

a rule, the more detailed the model, the more concurrency we can allow safely.

Section 9.1 introduces most of the necessary concepts, including "locking,"

the primary technique for controlling concurrency. In Section 9.2 we discuss the

467

468 TRANSACTION MANAGEMENT

simplest model of transactions. That model leads to a discussion of the "two-

phase locking protocol" in Section 9.3; that protocol is the most important

technique for managing concurrency. Sections 9.4 and 9.6 discuss more realistic

models, where reading and writing are treated as distinct operations. Section

9.5 talks about "lock modes" in general; reading and writing are the most

common "modes." Access to tree-structured data is covered in Section 9.7.

In Section 9.8 we begin to discuss how the theory must be modified to

account for the possibility that software or hardware failures may occur, and

in the following section we consider what options exist for containing the effect

of an error. Section 9.10 discusses logging and other mechanisms for avoiding

the loss of data after a system error. Finally, Section 9.11 discusses all of these

issues in the context of "timestamps," which after locking, is the most common

approach to concurrency control.

9.1 BASIC CONCEPTS

A transaction is a single execution of a program. This program may be a simple

query expressed in one of the query languages of Chapters 4-5 or an elaborate

host language program with embedded calls to a query language. Several in

dependent executions of the same program may be in progress simultaneously;

each is a different transaction.

Our model of how a transaction interacts with the database is close to what

we discussed in Chapter 4, in connection with the DBTG and IMS systems. A

transaction reads and writes data to and from the database, into a private

worlcspace, where all computation is performed. In particular, computations

performed by the transaction have no effect on the database until new values

are written into the database.

Atomicity

To a large extent, transaction management can be seen as an attempt to make

complex operations appear atomic. That is, they either occur in their entirety or

do not occur at all, and if they occur, nothing else apparently went on during

the time of their occurrence. The normal approach to ensuring atomicity of

transactions is "serialization," to be discussed shortly, which forces transactions

to run concurrently in a way that makes it appear that they ran one-at-a-time

(serially). There are two principal reasons why a transaction might not be

atomic.

1. In a time-shared system, activities associated with two or more transactions

might be done simultaneously or be interleaved. For example, several disk

units might be reading or writing data to and from the database at the

same time. The time slice for one transaction T might end in the middle of

a computation, and activities of some other transaction performed before

9.1 BASIC CONCEPTS 469

T completes.

2. A transaction might not complete at all. For example, it could have to

abort (terminate) because it tried to perform an illegal calculation (e.g.,

division by 0), or because it requested some data to which it did not have

the needed access privilege. The database system itself could force the

transaction to abort for several reasons, which we shall discuss. For exam

ple, it could be involved in a deadlock, contending for resources.

In case (1), it is the job of the database system to ensure that, even though

things happen in the middle of a transaction, the effect of the transaction on

the database is not influenced by those interstitial activities. In case (2), the

system must ensure that the aborted transaction has no effect at all on the

database or on other transactions.

In reality, transactions are sequences of more elementary steps, such as

reading or writing of single items from the database, and performing simple

arithmetic steps in the workspace. We shall see that when concurrency control

is provided, other primitive steps are also needed, steps which set and release

locks, commit (complete) transactions, and perhaps others. We shall always

assume that these more primitive steps are themselves atomic. Even though,

for example, the end of a time slice could occur in the middle of an arithmetic

step, we may, in practice, view that step as atomic, because it occurs in a

local workspace, and nothing can affect that workspace until the transaction

performing the arithmetic step resumes.

Items

To manage concurrency, the database must be partitioned into items, which are

the units of data to which access is controlled. The nature and size of items are

for the system designer to choose. In the relational model of data, for example,

we could choose large items, like relations, or small items like individual tuples

or even components of tuples. We could also choose an intermediate size item,

such as a block of the underlying file system, on which some small number

of tuples are stored. The size of items used by a system is often called its

granularity. A "fine-grained" system uses small items and a "coarse-grained"

one uses large items.

The most common way in which access to items is controlled is by "locks,"

which we discuss shortly. Briefly, a lock manager is the part of a DBMS that

records, for each item /, whether one or more transactions are reading or writing

any part of /. If so, the manager will forbid another transaction from gaining

access to /, provided the type of access (read or write) could cause a conflict,

such as the duplicate selling of an airline seat.1

1 Reading and writing are the most common types of access, but we shall see in Section

9.5 that other kinds of access can be controlled by other "lock modes." as well.

470 TRANSACTION MANAGEMENT

Choosing large granularity cuts down on the system overhead needed to

maintain locks, since we need less space to store the locks, and we save time

because fewer actions regarding locks need to be taken. However, small gran

ularity allows many transactions to operate in parallel, since transactions are

then less likely to want locks on the same items.

At the risk of oversimplifying the conclusions of a number of analyses men

tioned in the bibliographic notes, let us suggest that the proper choice for the

size of an item is such that the average transaction accesses a few items. Thus,

if the typical transaction (in a relational system) reads or modifies one tuple,

which it finds via an index, it would be appropriate to treat tuples as items.

If the typical transaction takes a join of two or more relations, and thereby

requires access to all the tuples of these relations, then we would be better off

treating whole relations as items.

In what follows, we shall assume that when part of an item is modified,

the whole item is modified and receives a value that is unique and unequal

to the value that could be obtained by any other modification. We make this

assumption not only to simplify the modeling of transactions. In practice, it

requires too much work on the part of the system to deduce facts such as: the

result of one modification of an item gives that item the same value as it had

after some previous modification. Furthermore, if the system is to remember

whether part of an item remains unchanged after the item is modified, it may

as well divide the item into several smaller items.

Locks

As we mentioned, a lock is an access privilege to a single item, which the lock

manager can grant or withhold from a transaction. While our initial model of

transactions will have only a single kind of lock, we shall subsequently meet

more complex models where there are several kinds of locks. For example, it is

normal to use "read-locks," that only allow a transaction to read an item, but

not to write a new value, and "write-locks," where both reading and writing

(or just writing) is permitted.

As it is typical for only a small subset of the items to have locks on them

at any one time, the lock manager can store the current locks in a lock table,

which consists of records

(<item>, <lock type>, <transaction>)

The meaning of record (/, L, T) is that transaction T has a lock of type L on

item /. As we shall see in Section 9.4, it is possible for several transactions

to hold locks of certain types on the same item simultaneously. However, the

item can almost serve as a key for lock records. Thus, we could, for example,

use a hash table with the item field as "key" to store these records. Since the

operations the lock manager does on the lock table is to find locks on a given

9.1 BASIC CONCEPTS 471

item, insert lock records, and delete lock records, this or a similar data structure

will allow efficient management of locks.

How Locks Control Concurrency

To see the need for using locks (or a similar mechanism) when transactions

execute in parallel, consider the following example.

Example 9.1: Let us consider two transactions 7\ and T2. Each accesses an

item A, which we assume has an integer value, and adds one to A. The two

transactions are executions of the program P defined by:

P: READ A; A:=A+1; WRITE A;

The value of A exists in the database. P reads A into its workspace, adds one to

the value in the workspace, and writes the result into the database. In Figure

9.1 we see the two transactions executing in an interleaved fashion,2 and we

record the value of A as it appears in the database at each step.

Am 5555 6 6

database

TI: READ A A:=A+1 WRITE A

T2: READ A A:=A+1 WRITE A

A in TI'S 5 5 6 6 6 6

workspace

A in T2's 5 5 6 6

workspace

Figure 9.1 Transactions exhibiting a need to lock item A.

We notice that although two transactions have each added 1 to A, the

value of A has only increased by 1. This problem is serious if A represents seats

sold on an airplane flight, for example. D

The most common solution to the problem represented by Example 9.1

is to provide a lock on A. Before reading A, a transaction T must lock A,

which prevents another transaction from accessing A until T is finished with

A. Furthermore, the need for T to set a lock on A prevents T from accessing

A if some other transaction is already using A. T must wait until the other

transaction unlocks A, which it should do only after finishing with A.

2 We do not assume that two similar steps necessarily take the same time, so it is pos

sible that TI finishes before TI , even though both transactions execute the same steps.

However, the point of the example is not lost if TI writes before Tj .

472 TRANSACTION MANAGEMENT

Let us now consider programs that interact with the database not only

by reading and writing items but by locking and unlocking them. We assume

that a lock must be placed on an item before reading or writing it, and that the

operation of locking acts as a synchronization primitive. That is, if a transaction

tries to lock an already locked item, the transaction may not proceed until the

lock is released by an unlock command, which is executed by the transaction

holding the lock. We assume that each transaction will unlock any item it locks,

eventually.3 A schedule of the elementary steps of two or more transactions,

such that the above rules regarding locks are obeyed, is termed legal.

Example 9.2: The program P of Example 9.1 could be written with locks as

P: LOCK A; READ A; A:=A+1; WRITE A; UNLOCK A;

Suppose again that T\ and T2 are two executions of P. If T\ begins first, it

requests a lock on A. Assuming no other transaction has locked A, the lock

manager grants this lock. Now TI, and only T\ can access A. If T2 begins

before TI finishes, then when T2 tries to execute LOCK A, the system causes T2

to wait. Only when TI executes UNLOCK A will the system allow T2 to proceed.

As a result, the anomaly indicated in Example 9.1 cannot occur; either T\ or

T2 executes completely before the other starts, and their combined effect is to

add 2 to A. D

Livelock

The system that grants and enforces locks on items cannot behave capriciously,

or certain undesirable phenomena occur. As an instance, we assumed in Exam

ple 9.2 that when TI released its lock on A, the lock was granted to T2. What

if while TI was waiting, a transaction T3 also requested a lock on A, and T3

was granted the lock before T2? Then while TS had the lock on A, T4 requested

a lock on A, which was granted after T3 unlocked A, and so on. Evidently, it

is possible that T2 could wait forever, while some other transaction always had

a lock on A, even though there are an unlimited number of times at which T2

might have been given a chance to lock A,

Such a condition is called livelock. It is a problem that occurs potentially

in any environment where processes execute concurrently. A variety of solutions

have been proposed by designers of operating systems, and we shall not discuss

the subject here, as it does not pertain solely to database systems. A simple

way to avoid livelock is for the system granting locks to record all requests that

are not granted immediately, and when an item A is unlocked, grant a lock on

A to the transaction that requested it first, among all those waiting to lock A.

3 Strictly speaking, since some transactions will abort before completing, the system itself

must take responsibility for releasing locks held by aborted transactions.

9.1 BASIC CONCEPTS 473

This first-come-first-served strategy eliminates livelocks,4 and we shall assume

from here on that livelock is not a problem.

Deadlock

There is a more serious problem of concurrent processing that can occur if we

are not careful. This problem, called "deadlock," can best be illustrated by an

example.

Example 9.3: Suppose we have two transactions 7\ and T2 whose significant

actions, as far as concurrent processing is concerned are:

TI: LOCK A; LOCK B; UNLOCK A; UNLOCK B;

T2: LOCK B; LOCK A; UNLOCK B; UNLOCK A;

Presumably TI and T2 do something with A and B, but what they do is not

important here. Suppose T\ and T2 begin execution at about the same time.

TI requests and is granted a lock on A, and T2 requests and is granted a lock

on B. Then TI requests a lock on B, and is forced to wait because T2 has a

lock on that item. Similarly, T2 requests a lock on A and must wait for TI to

unlock A. Thus neither transaction can proceed; each is waiting for the other

to unlock a needed item, so both TI and T2 wait forever. D

A situation in which each member of a set S of two or more transactions

is waiting to lock an item currently locked by some other transaction in the set

S is called a deadlock. Since each transaction in 5 is waiting, it cannot unlock

the item some other transaction in S needs to proceed, so all wait forever. Like

livelock, the prevention of deadlock is a subject much studied in the literature of

operating systems and concurrent processing in general. Among the solutions

to deadlock are:

1. Require each transaction to request all its locks at once, and let the lock

manager grant them all, if possible, or grant none and make the process

wait, if one or more are held by another transaction. Notice how this rule

would have prevented the deadlock in Example 9.3. The system would

grant locks on both A and B to TI if that transaction requested first; TI

would complete, and then T2 could have both locks.

2. Assign an arbitrary linear ordering to the items, and require all transactions

to request locks in this order.

Clearly, the first approach prevents deadlock. The second approach does

also, although the reason why may not be obvious. In Example 9.3, suppose

A precedes B in the ordering (there could be other items between A and B in

the ordering). Then T2 would request a lock on A before B and would find A

already locked by TI. T2 would not yet get to lock B, so a lock on B would be

4 Although it may cause "deadlock," to be discussed next.

474 TRANSACTION MANAGEMENT

available to T\ when requested. T\ would complete, whereupon the locks on A

and B would be released. TI could then proceed.

To see that no deadlocks can occur in general, suppose we have a set 5

of deadlocked transactions, and each transaction Ri in 5 is waiting for some

other transaction in 5 to unlock an item A\. We may assume that each Rj

in S holds at least one of the Aj's, else we could remove Rj from S and still

have a deadlocked set. Let Ak be the first item among the Ai's in the assumed

linear order. Then Rk, waiting for Ak, cannot hold any of the A^s, which is a

contradiction.

Another approach to handling deadlocks is to do nothing to prevent them.

Rather, periodically examine the lock requests and see if there is a deadlock.

Draw a waits-hr graph, whose nodes are transactions and whose arcs 7\ —» T2

signify that transaction T\ is waiting to lock an item on which T2 holds the lock.

Then every cycle indicates a deadlock, and if there are no cycles, neither are

there any deadlocks. If a deadlock is discovered, at least one of the deadlocked

transactions must be restarted, and its effects on the database must be canceled.

This process of abort-and-restart can be complicated if we are not careful about

the way transactions write into the database before they complete. The subject

is taken up in Section 9.8, and until then we shall assume that neither livelocks

nor deadlocks will occur when executing transactions.

Serializability of Schedules

Now we come to a concurrency issue of concern primarily to database system

designers, rather than designers of general concurrent systems. By way of intro

duction, let us review Example 9.1, where two transactions executing a program

P each added 1 to A, yet A only increased by 1. Intuitively, we feel this situ

ation is wrong, yet is it not possible that these transactions did exactly what

the writer of P wanted? We argue not, because if we run first TI and then

TZ, we get a different result; 2 is added to A. Since it is always possible that

transactions will execute one at a time (serially), it is reasonable to assume that

the normal, or intended, result of a transaction is the result we obtain when we

execute it with no other transactions executing concurrently. Thus, we shall

assume from here on that the concurrent execution of several transactions is

correct if and only if its effect is the same as that obtained by running the same

transactions serially in some order.

Let us define a schedule for a set of transactions to be an order in which the

elementary steps of the transactions (lock, read, and so on) are done. The steps

of any given transaction must, naturally, appear in the schedule in the same

order that they occur in the program of which the transaction is an execution.

A schedule is serial if all the steps of each transaction occur consecutively. A

schedule is serializable if its effect is equivalent to that of some serial schedule;

we shall make the notion of "equivalent" more precise in the next section.

9.1 BASIC CONCEPTS 475

Example 9.4: Let us consider the following two transactions, which might

be part of a bookkeeping operation that transfers funds from one account to

another.

TI: READ A; A:=A-10; WRITE A; READ B; B:=B+10; WRITE B;

T2: READ B; B:=B-20; WRITE B; READ C; C:=O20; WRITE C;

Clearly, any serial schedule has the property that the sum A+B+C is preserved.

In Figure 9.2(a) we see a serial schedule, and in Figure 9.2(b) is a serializable,

but not serial, schedule. Figure 9.2(c) shows a nonserializable schedule. Note

that Figure 9.2(c) causes 10 to be added, rather than subtracted from B as a

net effect, since TI reads B before T2 writes the new value of B. It is possible to

prevent the schedule of Figure 9.2(c) from occurring by having all transactions

lock B before reading it. D

TI T2 TI T2 TI T2

READ A READ A READ A

A: =A- 10 READ B A:=A-10

WRITE A A:=A-10 READ B

READ B B:=B-20 WRITE A

B:=B+10 WRITE A B:=B-20

WRITE B WRITE B READ B

READ B READ B WRITE B

B:=B-20 READ C B:=B+10

WRITE B B:=B+10 READ C

READ C C:=C+20 WRITE B

C:=O20 WRITE B C:=C+20

WRITE C WRITE C WRITE C

(a) (b) (c)

Figure 9.2 Some schedules.

Recall that we have defined a schedule to be serializable if its effect is

equivalent to that of a serial schedule. In general, it is not possible to test

whether two schedules have the same effect for all initial values of the items,

if arbitrary operations on the items are allowed, and there are an infinity of

possible initial values. In practice, we make some simplifying assumptions about

what operations do to items. In particular, it is convenient to assume that values

cannot be the same unless they are produced by exactly the same sequence of

operations. Thus, we do not regard (A+IQ)—20 and (A+20)-30 as producing

the same values.

Ignoring algebraic properties of arithmetic causes us to make only "nonfa

476 TRANSACTION MANAGEMENT

tal" errors, in the sense that we may call a schedule nonserializable, when in

fact it produces the same result as a serial schedule, but we shall never say a

schedule is serializable when in fact it is not (a "fatal" error). Nonfatal errors

may rule out some concurrent operations, and thereby cause the system to run

more slowly than it theoretically could. However, these errors never cause an

incorrect result to be computed, as a fatal error might. Succeeding sections will

use progressively more detailed models that enable us to infer that wider classes

of schedules are serializable, and therefore, to achieve more concurrency while

guaranteeing correctness. We can thus approach, though never reach, the con

dition where every schedule of every collection of transactions is allowed if its

effect happens to be equivalent to some serial schedule and forbidden otherwise.

Schedulers

We have seen that arbitrary transactions can, when executed concurrently, give

rise to livelock, deadlock, and nonserializable behavior. To eliminate these

problems we have two tools, schedulers and protocols. The scheduler is a portion

of the database system that arbitrates between conflicting requests. We saw,

for example, how a first-come, first-serve scheduler can eliminate livelock. A

scheduler can also handle deadlocks and nonserializability by

1. Forcing a given transaction to wait, for example, until a lock it wants is

available, or

2. Telling the transaction to abort and restart.

It might appear that (2) is never desirable, since we lose the cycles that were

spent running the transaction so far. However, forcing many transactions to

wait for long periods may cause too many locks to become unavailable, as wait

ing transactions might already have some locks. That in turn makes deadlock

more likely, and may cause many transactions to delay so long that the effect

becomes noticeable, say to the user standing at an automatic teller machine.

Also, in situations where we already have a deadlock, we often have no choice

but to abort at least one of the transactions involved in the deadlock.

Protocols

Another tool for handling deadlock and nonserializability is to use one or more

protocols, which all transactions must follow. A protocol, in its most general

sense, is simply a restriction on the sequences of atomic steps that a transaction

may perform. For example, the deadlock-avoiding strategy of requesting locks

on items in some fixed order is a protocol. We shall see in Section 9.3 the

importance of the "two-phase locking" protocol, which requires that all needed

locks be obtained by a transaction before it releases any of its locks.

The importance of using a nontrivial protocol (i.e., a protocol more restric

tive than "any sequence is OK") will be seen throughout this chapter. We shall

9.2 A SIMPLE TRANSACTION MODEL 477

see how schedulers that can assume all transactions obey a particular protocol

can be made much simpler than those that cannot make such an assumption.

For example, there are variants of the two-phase locking protocol that allow

a scheduler to guarantee no deadlocks in a simple manner. The overall rela

tionship of the lock manager, scheduler, and protocol is suggested in Figure

9.3

Lock ^ Lock

Table Manager

i

\ •

T Grant or

Deny Lock

i

Request

Lock

Scheduler

T Grant Access,

Wait, or Abort/MN Request

i Locke

*^

o o c 1

Transactions

Following

Protocol

Figure 9.3 Protocol, scheduler, and lock manager.

9.2 A SIMPLE TRANSACTION MODEL

Let us begin by introducing the simplest model of transactions in which we can

talk about locking and serializability. In this model, a transaction is viewed as

a sequence of lock and unlock statements. Each item locked must subsequently

be unlocked. Between a step LOCK A and the next UNLOCK A, a transaction is

said to hold a lock on A. We assume a transaction does not try to lock an item

if it currently holds a lock on that item, nor does it try to unlock an item on

which it does not currently hold a lock.

Further, we assume that whenever a transaction locks an item A it reads

and writes A. That is, each LOCK step implies reading of the value locked,

and each UNLOCK implies writing. We shall see that serializability under this

simple lock model implies serializability under more complex lock models. The

converse is not true, however; more detailed models allow us to do certain steps

concurrently that the simple model implies must be done sequentially.

Transaction Semantics

In principle, the "meaning" of a transaction is whatever the code that the

transaction executes does to the database. In order to understand the design of

478 TRANSACTION MANAGEMENT

protocols and schedulers, we need to relate this informal semantics to a reliable

computational test that tells whether a given sequence of steps of interleaved

transactions is serializable. In a sense, we face the same problem now that we

faced in Chapter 3, when we had to relate the informal semantics of datalog

programs to a concrete computation in relational algebra.

For the case at hand, we shall define an abstract semantics of transactions.

We shall indicate after an example, why this semantics is appropriate, in the

sense that when it differs from reality, it does so in a "nonfatal" manner, by

prohibiting certain schedules that are in fact serializable, rather than by per

mitting schedules that are not serializable. Then, we relate the semantics of

transactions to a computation, involving graphs, that lets us decide whether

a schedule is serializable according to our semantics. In the next section, we

discuss a protocol, called "two-phase locking." Transactions obeying this pro

tocol can be scheduled in a serializable manner by a simple scheduler that only

checks legality; i.e., it does not allow two transactions to hold locks on the same

item at the same time, but permits transactions to proceed otherwise.

Formally, we associate with each pair LOCK A and its following UNLOCK A,

a distinct function /. This function takes as arguments the values of all items

that are locked by the transaction prior to the unlocking of A. Note that one

transaction may have more than one such function for a given A, since, although

it is not generally a good idea, we may lock and unlock the same item more than

once. Let AQ be the initial value of A before any transactions are executed.

Values that A may assume during the execution of the transaction are

formulas built by applying these functions to the initial values of the items.

Two different formulas are assumed to be different values; this assumption is

a formal equivalent to our informal statement in the previous section that we

would assume no algebraic laws when determining the effect of transactions on

items. Two schedules are equivalent if the formulas for the final value of each

item are the same in both schedules.

LOCK A

LOCK B

UNLOCK A fi(A,B)

UNLOCK B h(A,B)

LOCK B

LOCK C

UNLOCK B f3(B,C)

LOCK A

UNLOCK C fa(A,B,C)

UNLOCK A f5(A,B,C)

LOCK A

LOCK C

UNLOCK C U(A,C)

UNLOCK A f7(A,C)

Figure 9.4 Three transactions.

9.2 A SIMPLE TRANSACTION MODEL 479

Example 9.5: In Figure 9.4 we see three transactions and the functions as

sociated with each LOCK—UNLOCK pair; the function appears on the same line

as the UNLOCK. For example, /i, associated with A in 7\, takes A and B as

arguments, because these are the items that 7\ reads. Function /3 takes only

B and C as arguments, because T2 unlocks B, and therefore writes its value,

before it locks and reads A.

Figure 9.5 shows a possible schedule of these transactions and the resulting

effect on items A, B, and C. We can observe that this schedule is not serializ-

able. In proof, suppose it were. If T\ precedes T2 in the serial schedule, then

the final value of B would be

rather than

h(A0J3(B0,C0))

If TI precedes T\ , then the final value of A would apply f\ to a subexpression

involving fa. Since the actual final value of A in Figure 9.5 does not apply j\ to

an expression involving /5, we see that TI cannot precede T\ in an equivalent

serial schedule. Since T2 can neither precede nor follow T\ in an equivalent

serial schedule, such a serial schedule does not exist. D

Fatal and Nonfat al Errors

Note how our assumption that functions produce unique values is essential in

the argument used in Example 9.5. For example, if it were possible that

/3(/2(Ao,flb),Cb) = h(A0J3(B0,C0)) (9.1)

then we could not rule out the possibility that T\ precedes Tg. Let us reiterate

that our assumption of unique values is not just for mathematical convenience.

The work required to enable the database system to examine transactions and

detect possibilities such as (9.1), thereby permitting a wider class of schedules

to be regarded as serializable, is not worth the effort in general.

An assumption such as the unavailability of algebraic laws is a discrepancy

in the nonfatal direction, since it can rule out opportunities for concurrency but

cannot lead to a fatal error, where transactions are allowed to execute in parallel

even though their effect is not equivalent to any serial schedule. Similarly, our

assumption that locks imply both reading and writing of an item is a nonfatal

departure from reality. The reader should observe that schedules which are

equivalent under our assumption about locks will still be equivalent if, say, a

transaction locks an item but does not write a new value. We shall consider in

the next sections how relaxing our assumption regarding what happens when

locks are taken allows more schedules to be considered serializable, but still

only calls schedules serializable if in fact they are.

480 TRANSACTION MANAGEMENT

Step A B C

(1) TI: LOCK A AO Bo C0

(2) T2: LOCK B AO Bo Co

(3) T2: LOCK C A0 Bo Co

(4) T2: UNLOCK B A0 /3(Bo,Co) C0

(5) TI: LOCK B A0 /3(Bo,Co) C0

(6) TI: UNLOCK A .M^o.-Bo) fs(Bo,Co) Co

(7) T2: LOCK A fi(Ao,B0) fs(Bo,Co) Co

(8) T2: UNLOCK C fi(A0, B0) /S(BO,CO) f*(Ao, BO, Co)

(9) T2: UNLOCK A f5(fi(A0,B0), BQ, CQ) f3(Bo,Co) U(AQ, BO, CQ)

(10) T3: LOCK A f5(fi(A0,B0), BO, CQ) fs(Bo,Co) f*(Ao, BQ,CQ)

(11) T3: LOCK C f5(h(A0,B0),B0,C0) f3(B0,C0)

(12) TI: UNLOCK B f5(fi(A0,B0),B0,C0) h(AQ, f3(BQ,CQ)} f*(A0,B0,C0)

(13) T3: UNLOCK C f5(fi(A0,B0),B0,C0) h(A0,h(B0,CQ)} (i)

(14) T3: UNLOCK A (it) h(A0, f3(B0,C0)} (i)

Key:

Figure 9.5 A schedule.

An example of a fatal assumption would be to suppose that all transac

tions wrote values of items that did not depend on the values they read. While

some transactions do behave this way, others do not, and scheduling all trans

actions on this assumption might permit activities to occur in parallel that led

to nonserializable behavior.

A Serializability Test

In order to determine that a given scheduler is correct, we must prove that every

schedule it allows is serializable. Thus, we need a simple test for serializability

of a schedule.

If we consider Example 9.5 and the argument that the schedule of Figure

9.5 is not serializable, we see the key to a serializability test. We examine a

schedule with regard to the order in which the various transactions lock a given

item. This order must be consistent with the hypothetical equivalent serial

schedule of the transactions. If the sequences induced by two different items

force two transactions to appear in different order, then we have a paradox,

since both orders cannot be consistent with one serial schedule. We can express

9.2 A SIMPLE TRANSACTION MODEL 481

this test as a problem of finding cycles in a directed graph. The method is

described formally in the next algorithm.

Algorithm 9.1: Testing Serializability of a Schedule.

INPUT: A schedule 5 for a set of transactions TI, . . . , Tfc.

OUTPUT: A determination whether 5 is serializable. If so, a serial schedule

equivalent to 5 is produced.

METHOD: Create a directed graph G (called a serialization graph), whose nodes

correspond to the transactions. To determine the arcs of the graph G, let S be

or. 02; • •• ;a«

where each aj is an action of the form

TJ: LOCK Am or Tf. UNLOCK Am

Tj indicates the transaction to which the step belongs. If «, is

TJ: UNLOCK Am

look for the next action ap following Oj that is of the form T,: LOCK Am. If

there is one, and s ^ j, then draw an arc from Tj to Tt. The intuitive meaning

of this arc is that in any serial schedule equivalent to 5, Tj must precede Tt .

If G has a cycle, then 5 is not serializable. If G has no cycles, then find

a linear order for the transactions such that Tj precedes Tj whenever there is

an arc Tj —» Tj. This ordering can always be done by the process known as

topological sorting, defined as follows. There must be some node Tj with no

entering arcs, else we can prove that G has a cycle. List Tj and remove Ti from

G. Then repeat the process on the remaining graph until no nodes remain. The

order in which the nodes are listed is a serial order for the transactions. D

Figure 9.6 Graph of precedences among transactions.

482 TRANSACTION MANAGEMENT

Example 9.6: Consider the schedule of Figure 9.5. The graph G, shown in

Figure 9.6 has nodes for 7\, T2, and 7V To find the arcs, we look at each

UNLOCK step in Figure 9.5. For example step (4),

T2: UNLOCK B

is followed by TI: LOCK B. In this case, the lock occurs at the next step. We

therefore draw an arc T2 —» 7\. As another example, the action at step (8),

T2: UNLOCK C

is followed at step (11) by T3: LOCK C, and no intervening step locks C. There

fore we draw an arc from T2 to T3. Steps (6) and (7) cause us to place an arc

7\ —» T2. As there is a cycle, the schedule of Figure 9.5 is not serializable. D

LOCK A

UNLOCK A

LOCK A

time UNLOCK A

i LOCK B

UNLOCK B

LOCK B

UNLOCK B

TI T2 T3

Figure 9.7 A serializable schedule.

Example 9.7: In Figure 9.7 we see a schedule for three transactions, and

Figure 9.8 shows its serialization graph. As there are no cycles, the schedule of

Figure 9.7 is serializable, and Algorithm 9.1 tells us that the serial order is TI,

TI, TS- It is interesting to note that in the serial order, TI precedes T3, even

though in Figure 9.7, TI did not commence until T3 had finished. D

Theorem 9.1: Algorithm 9.1 correctly determines if a schedule is serializable.

Proof: Suppose G has a cycle

Let there be a serial schedule R equivalent to S, and suppose that in R, Tj-p

appears first among the transactions in the cycle. Let the arc Tjp_, —» Tjp (take

jp-i to be jt if p = 1) be in G because of item A. Then in R, since Tjp appears

before Tjp_,, the final formula for A applies a function / associated with some

LOCK A—UNLOCK A pair in Tjp before applying some function g associated with

a LOCK A—UNLOCK A pair in Tjp_t. In S, however, the effect of Tjr_t on A

9.2 A SIMPLE TRANSACTION MODEL 483

Figure 9.8 Serialization graph for Figure 9.7.

precedes the effect of Tjp on A, since there is an arc Tj„_, -» Tjp, representing

the fact that Tjp uses the value of A produced by Tjp_, . Therefore, in schedule

5, g is applied to an expression involving /, in the formula for A. Thus the

final value of A differs in R and 5, since the two formulas for A are not the

same. We conclude that R and S are not equivalent. As R is an arbitrary serial

schedule, it follows that S is equivalent to no serial schedule.

Conversely, suppose the serialization graph G has no cycles. Define the

depth of a transaction in an acyclic serialization graph to be the length of the

longest path to the node corresponding to that transaction. For example, in

Figure 9.8, T\ has depth 0 and T3 has depth 2. Note that a transaction of depth

d can only read values written by transactions of length less than d.

We can show by induction on d that a transaction T of depth d reads the

same value for each item it locks, both in the given schedule 5 (from which the

serialization graph was constructed) and in the serial schedule R constructed

by Algorithm 9.1. The reason is that if transaction T reads a value of item A,

then in both schedules, the same transaction T' was the last to write A (or in

both schedules T is the first to read A).

Suppose in contradiction that in 5, transaction T reads the value of A

written by T', but in R, it is the value written by T" that T reads. Let

•Mi , -Ma, • • • I -Mr

be the sequence of transactions, in order, that lock A in schedule 5. Then in

G there are arcs

Ti,-»^-» »Tir

In this sequence, T' immediately precedes T. Then in the topological sort of

G, it is not possible that T", which also locks A and therefore appears in the

sequence, appears between T1 and T.

Now, we have established that T reads the value of A written by T' in both

schedules R and 5. We also know that the depth of T' must be less than the

depth of T, because there is an arc T' —» T. By the inductive hypothesis, the

value written into A by T' is the same in both schedules. Since this argument

applies to any item locked by T, we see that T reads the same value for each

item it locks. Thus, in both R and S, the values written by transaction T for

each of the items it locked are the same, proving the induction. D

484 TRANSACTION MANAGEMENT

Example 9.8: Let us consider an example of the reasoning behind the second

part of the proof of Theorem 9.1. Suppose a transaction T locks items A and

B, and in a particular schedule 5, item A is locked, in turn, by T\, T2, and then

T, while item B is locked by Tjj, 7\, T*, and T in that order (other transactions

may lock A or B after T does). Figure 9.9 suggests how the values of A and B

are changed, in both S and its equivalent serial schedule R.

Ao -» -» -» Ti -. T2 - -» T

BO -» T3 -» 7\ -» -» T4 -» r

Figure 9.9 Transactions changing values of .4 and B.

Because of the arcs in (7, we can be sure that in R, TZ precedes T, and no

transaction locking A can come between Tj and T. Likewise, reasoning about

B, we see that T^ precedes T and no transaction locking B comes between them

in R. The value written by T for A depends only on the values read for A and

B, and we know that these values were those written by 7-j and T.J, respectively,

in both R and 5. D

9.3 THE TWO-PHASE LOCKING PROTOCOL

The reason we need to understand the conditions under which a schedule is

serializable is so that we can select a combination of a scheduler and a protocol

that together guarantee any schedule they allow is serializable. In this section

we shall introduce what is by far the simplest and most popular approach;

Sections 9.7 and 9.11 discuss other techniques that have been used.

This protocol, called the two-phase protocol, requires that in any transac

tion, all locks precede all unlocks. Transactions obeying this protocol are said

to be two-phase; the first phase is the locking phase, and the second is the

unlocking phase. For example, in both Figure 9.4 and Figure 9.7, TI and T3

are two-phase, while T^ is not.

The two-phase protocol has the property that any collection of transactions

obeying the protocol cannot have a legal, nonserializable schedule. That is, the

associated scheduler simply grants any lock request if the lock is available, and

makes the transaction wait or abort if the lock is unavailable. Moreover, the

two-phase protocol is, in a sense to be discussed subsequently, the best general

protocol. We first show that the two-phase protocol guarantees serializability.

Theorem 9.2: If 5 is any schedule of two-phase transactions, then 5 is serial

izable.

9.3 THE TWO-PHASE LOCKING PROTOCOL 485

Proof: Suppose not. Then by Theorem 9.1, the serialization graph G for S

has a cycle,

Then some lock by Tja follows an unlock by T^ ; some lock by Tj3 follows an

unlock by Tj2 , and so on. Finally, some lock by Tj, follows an unlock by Tip .

Therefore, a lock by Tj, follows an unlock by Tj, , contradicting the assumption

that Tj, is two-phase. D

Another way to see why two-phase transactions must be serializable is to

imagine that a two-phase transaction occurs instantaneously at the moment it

obtains the last of its locks (called the lock point). Then if we order transactions

according to the time at which they reach this stage in their lives, the order

must be a serial schedule equivalent to the given schedule. For if in the given

schedule, transaction TI locks some item A before T2 locks A, then T\ must

unlock A before T2 locks A. If TI is two-phase, then surely TI obtains the last

of its locks before T2 obtains the last of its locks, so TI precedes T2 in the serial

order according to lock points. Thus, the order of transactions we constructed

will conform to all the arcs of the serialization graph, and thus, by Theorem

9.1, be an equivalent serial schedule.

Optimality of Two-Phase Locking

We mentioned that the two-phase protocol in is a sense the most liberal possible

protocol. Precisely, what we can show is that if TI is any transaction that is

not two-phase, then there is some other transaction T2 with which T\ could be

run in a legal, nonserializable schedule. Suppose T\ is not two-phase. Then

there is some step UNLOCK A of TI that precedes a step LOCK B. Let T2 be:

T2: LOCK A; LOCK B; UNLOCK A; UNLOCK B

Then the schedule of Figure 9.10 is easily seen to be legal but nonserializable,

since the treatment of A requires that T\ precede T2, while the treatment of B

requires the opposite.

Note that there are particular collections of transactions, not all two-phase,

that yield only serial schedules. We shall consider an important example of such

a collection in Section 9.7. However, since it is normal not to know the set of all

transactions that could ever be executed concurrently with a given transaction,

we are usually forced to require all transactions to be two-phase. Similarly, we

could use a more complex scheduler that did not always grant a lock when it

was available, and such a scheduler could deal with non-two-phase transactions.

This prospect, too, is not attractive in most situations.

486 TRANSACTION MANAGEMENT

LOCK

UNLOCK A

LOCK A

LOCK B

UNLOCK A

UNLOCK B

LOCK B

UNLOCK B

Figure 9.10 A nonserializable schedule.

9.4 A MODEL WITH READ- AND WRITE-LOCKS

In Section 9.2 we assumed that every time a transaction locked an item it

changed that item. In practice, many times a transaction needs only to obtain

the value of the item and is guaranteed not to change that value. If we dis

tinguish between a read-only access and a read-write access, we can develop a

more detailed model of transactions that will allow some concurrency forbidden

in the model of Section 9.2.5 Let us distinguish two kinds of locks.

1. Read-locks (or shared locks). A transaction T wishing only to read an item

A executes RLOCK A, which prevents any other transaction from writing a

new value of A while T has locked A. However, any number of transactions

can hold a read-lock on A at the same time.

2. Write-locks (or exclusive locks). These are locks in the sense of Section 9.2.

A transaction wishing to change the value of item A first obtains a write-

lock by executing WLOCK A. When some transaction holds a write-lock on

an item, no other transaction can obtain either a read- or write-lock on the

item.

Both read- and write-locks are removed by an UNLOCK statement. As in

5 Note that we still do not have write-only locks. The ability of transactions to write

an item without reading it first will be seen in Section 9.6 to complicate greatly the

question of serializability.

9.4 A MODEL WITH READ- AND WRITE-LOCKS 487

Section 9.2, we assume no transaction tries to unlock an item on which it does

not hold a read- or write-lock, and no transaction tries to read-lock an item

on which it already holds any lock. Further, a transaction does not attempt

to write-lock an item if it already holds a write-lock on that item, but under

some circumstances, it may request a write-lock for an item on which it holds

a read-lock. The latter makes sense because a write-lock is more restrictive on

the behavior of other transactions than is a read-lock.

Transaction Semantics

As in Section 9.2, we assume that each time a write-lock is applied to an item

A, a unique function associated with that lock produces a new value for A; that

function depends on all the items locked prior to the unlocking of A. However,

we also assume here that a read-lock on A does not change the value of A.

Also as in Section 9.2, we suppose that each item A has an initial value AO,

and the effect of a schedule on the database can be expressed by the formulas

that are the values of each of the items that were written at least once by the

transactions. However, since there might be a transaction that reads items

without writing any, or that reads some items only after writing for the last

time, we also treat as part of the value of a schedule the values that each

item has when it is read-locked by a given transaction. Thus, we may say two

schedules are equivalent if

1. They produce the same value for each item, and

2. Each read-lock applied by a given transaction occurs in both schedules at

times when the item locked has the same value.

From Semantics to Serialization Graphs

Let us now consider the conditions under which we can infer, from the semantics

of transactions and schedules, when one transaction must precede another in an

equivalent serial schedule. Suppose we have a schedule 5 in which a write-lock

is applied to A by transaction 7\ , and let / be the function associated with that

write-lock. After TI unlocks A, let TI be one of the (perhaps many) transactions

that subsequently read-lock A before any other transaction write-locks A. Then

surely J\ must precede TI in any serial schedule equivalent to S. Otherwise, T2

reads a value of A that does not involve the function /, and no such value is

identical to a value that does involve /. Similarly, if T3 is the next transaction,

after TI, to write-lock A, then TI must precede T3. The argument is essentially

that of Theorem 9.1.

Now suppose T4 is a transaction that read-locks A before T\ write-locks A.

If TI appears before T4 in a serial schedule, then T4 reads a value of A involving

/, while in schedule 5, the value read by T4 does not involve /. Thus, T4 must

precede TI in a serial schedule. The only inference we cannot make is that if

488 TRANSACTION MANAGEMENT

in 5 two transactions read-lock the same item A in a particular order, then

those transactions should appear in that order in a serial schedule. Rather,

the relative order of read-locks makes no difference on the values produced

by concurrently executing transactions. These observations suggest that an

approach similar to that of Section 9.2 will allow us to tell whether a schedule

is serializable.

Algorithm 9.2: Serializability test for schedules with read/write-locks.

INPUT: A schedule S for a set of transactions TI, . . . , Tfc.

OUTPUT: A determination whether S is serializable, and if so, an equivalent

serial schedule.

METHOD: We construct a serialization graph G as follows. The nodes corre

spond to the transactions as before. The arcs are determined by the following

rules.

1. Suppose in 5, transaction Ti read-locks or write-locks item A, Tj is the

next transaction to write-lock A, and i ^ j. Then place an arc from Ti to

Tj.

2. Suppose in 5, transaction 7i write-locks A. Let Tm, m / i, be any transac

tion that read-locks A after Ti unlocks its write-lock, but before any other

transaction write-locks A. Then draw an arc Ti —» Tm.

If G has a cycle, then S is not serializable. If G is acyclic, then any

topological sort of G is a serial order for the transactions. D

Example 9.9: In Figure 9.11 we see a schedule of four transactions; Figure

9.12 is the serialization graph for this schedule. The first UNLOCK is step (3),

where T3 removes its write-lock from A. Following step (3) are read-locks of A

by TI and T2 (steps 4 and 7) and a write-lock of A by T4 at step (12). Thus

TI, T2, and T4 must follow T3, and we draw arcs from T3 to each of the other

nodes.

Notice that there is nothing wrong with both TI and T2 holding read-locks

on A after step (7). However, T4 could not write-lock A until both TI and T2

released their read-locks. As another example, T4 releases a read-lock on B at

step (5), and the next write-lock on B is by T3, so we draw an arc from T4 to

T3. We now have a cycle, so the schedule of Figure 9.11 is not serializable. The

complete set of arcs is shown in Figure 9.11. D

Theorem 9.3: Algorithm 9.2 correctly determines if schedule S is serializable.

Proof: It is straightforward to argue, whenever we draw an arc from Tj to

TJ, that in any equivalent serial schedule Tj must precede Tj. Thus, if G has

a cycle, we may prove as in Theorem 9.1 that no such serial schedule exists.

Conversely, suppose G has no cycles. Then an argument like Theorem 9.1 shows

that the final value of each item is the same in 5 as in the serial schedule R

that is constructed from the topological sort of G. We must also show that

9.4 A MODEL WITH READ- AND WRITE-LOCKS 489

(1) WLOCK A

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

UNLOCK A

RLOCK A

(11)

(12)

WLOCK B

RLOCK A

UNLOCK B

WLOCK B

UNLOCK A

UNLOCK A

(13)

(14)

(15)

(16)

UNLOCK B

RLOCK B

UNLOCK B

T3

Figure 9.11 A schedule.

RLOCK B

UNLOCK B

WLOCK A

UNLOCK A

Figure 9.12 Serialization graph of Figure 9.11.

corresponding read-locks on item A obtain the same value in R and S. But this

proof is easy, since the arcs of G guarantee the write-locks on A that precede

the given read-lock must be the same in R and S and that they must occur in

the same order. D

The Two-Phase Protocol

As with the model in the previous section, a two-phase protocol, in which all

read- and write-locks precede all unlocking steps, is sufficient to guarantee seri

490 TRANSACTION MANAGEMENT

alizability. Moreover, we have the same partial converse, that any transaction

in which some UNLOCK precedes a read- or write-lock can be run in a nonserial-

izable way with some other transaction. We leave these results as exercises.

9.5 LOCK MODES

We saw in the previous section that locks can be issued in different "flavors,"

called lock modes, and different modes have different properties when it comes

to deciding whether a lock of one mode can be granted while another transaction

already has a lock of the same or another mode on the same item. In Section 9.4,

the two modes were "read" and "write," and the rules regarding the granting

of locks were:

1. A read-lock can be granted as long as no write-lock is held on the same

item by a different transaction.

2. A write-lock can be granted only if there are no read- or write-locks held

on the same item by a different transaction.

Note that these rules do not apply to the situation where a transaction is

requesting a lock and also holds another lock on the same item.

Lock Compatibility Matrices

We can summarize the rules for read- and write-locks by a lock compatibility

matrix. The rows correspond to the mode of lock being requested, and the

columns correspond to the mode of lock already held by another transaction.

The entries are Y (yes, the requested lock may be granted), and AT (no, it may

not be granted). The lock compatibility matrix for read and write is shown in

Figure 9.13.

Lock Held by

Another Transaction

Read Write

Read

Lock

Requested

Write

Y N

N N

Figure 9.13 Lock compatibility matrix for read and write.

9.5 LOCK MODES 491

General Sets of Lock Modes

More complex sets of lock modes can be developed and used. The principle we

must follow when deciding what the entry for row L and column M should be

is whether the operations corresponding to lock modes L and M commute; i.e.,

is the final result unaffected by the order in which the two operations are done?

For example, when L and M are both "read," their order is unimportant, so

the (Read, Read) entry in Figure 9.13 is Y. However, the order in which a read

and a write are performed generally does affect the value read, and therefore

might affect the final result.

Example 9.10: Suppose we allow, in addition to read- and write-locks, an

incr-lock, which allows the holder to add or subtract atomically a constant to

or from the current value of an item, without reading that item. Then the

order in which two incrementations takes place does not affect the final result.

However, reading and writing do not commute with incrementation. Thus, the

compatibility matrix for read-, write-, and incr-locks is the one given in Figure

9.14. D

Read Write Incr

Read Y N N

Write N N N

Incr N N Y

Figure 9.14 Compatibility of read, write, and increment.

The serializability test of Algorithm 9.2 generalizes to arbitrary compati

bility matrices. We construct a serialization graph by putting an arc 7\ —» TI

whenever in the given schedule a lock of an item A in mode L by T\ precedes a

lock by T2 on A in mode M, and the entry in row M and column L is 'W."6 As

before, the test for serializability is the test for absence of cycles in the graph.

8 It should be noted that T1 may not be the last transaction prior to Tj to lock A in a

mode incompatible with M. Since some !", between them may lock A in a mode that

forbids the granting of M, but is not itself forbidden by a lock in mode L, we must draw

arcs from both T\ and TS to "/"-.. In the read/write case, we could take advantage of the

simplicity of the compatibility matrix for read and write to omit the arc TI —» Tj if TS

write-locked A; for then we knew arcs TI —» TS and Ts —» TI would be present.

TRANSACTION MANAGEMENT

ILOCK A

UNLOCK A

ILOCK A

UNLOCK A

ILOCK B

UNLOCK B

ILOCK B

UNLOCK B

Figure 9.15 Schedules with incr-locks.

Example 9.11: Consider the schedule of Figure 9.15, where ILOCK means a

lock in "increment" mode. According to the compatibility matrix of Figure

9.14, no items are locked in incompatible modes, so no arcs in the serialization

graph are needed, as shown in Figure 9.16(a). Either order, 7\T2 or T27\ is

an equivalent serial order for the schedule of Figure 9.15. That makes sense,

because the relative order in which A and B are incremented by the two trans

actions is unimportant; the result will be the same in any case.

(a) With incr-locks. (b) With write-locks.

Figure 9.16 Serialization graphs for Example 9.11.

On the other hand, if we did not have incr-locks, we would have to use write-

locks in Figure 9.15, because read-locks do not permit items to be changed in

any way, including incrementation. Then we would get the serialization graph

of Figure 9.16(b) from the schedule of Figure 9.15, with WLOCK replacing ILOCK.

That graph is cyclic, so the schedule of Figure 9.15 is not serializable when

write-locks are used. D

9.6 A READ-ONLY, WRITE-ONLY MODEL

A subtle assumption with profound consequences that was made in Sections 9.2

and 9.4 is that whenever a transaction writes a new value for an item A, then

it previously read the value of A, and more importantly, the new value of A

depends on the old value. A more realistic model would admit the possibility

9.6 A READ-ONLY, WRITE-ONLY MODEL 493

that a transaction reads a set of items (the read-set) and writes a set of items

(the write-set), with the option that an item A could appear in either one of

these sets, or both.

Example 9.12: Any transaction that queries a database but does not alter it

has an empty write-set. In the transaction

READ A; READ B; C:=A+B; A:=A-1; WRITE C; WRITE A

the read-set is {A, B} and the write-set is {A,C}. D

Semantics of Transactions and Schedules

Our semantics of transactions differs from the model of Section 9.4 only in one

point. We do not assume that write-locking an item implies that the item is

read. Thus, associated with each write-lock on an item A is a function that

computes a new value for A only in terms of the read-set of the transaction. In

particular, this new value does not depend on the old value of A if A is not in

the read-set.

When attributing semantics to schedules, we shall abandon the requirement

of Section 9.4 that the value of item A read by a transaction is significant,

whether or not that value affects the final value of any item in the database.

Should we care about the values read by a read-only transaction, then we can

modify the transaction to write an imaginary item. Thus, two schedules are

equivalent if and only if they produce the same values for each database item

written, as functions of the initial values of the items read.

Two Notions of Serializability

Following the pattern of Sections 9.2 and 9.4, we should define a schedule to

be "serializable" if it is equivalent to some serial schedule. Unfortunately, this

definition leads to difficulties, such as the fact that a simple graph-theoretic test

does not exist in this model as it did in the previous models. Thus, equivalence

to a serial schedule is considered only one possible definition of "serializability,"

and it is usually referred to as view-serializability. This notion of serializability

will be discussed later in the section.

A more useful definition of serializability is called conflict-serializability.

This notion is based on local checks regarding how pairs and triples of transac

tions treat a single item. We shall now develop the mechanics needed to define

conflict-serializability and to present a graph-theoretic test for this property,

albeit a more complicated test than was needed for previous models.

Serialization Graphs for Read-Only, Write-Only Transactions

When we allow write-only access, we must revise our notion of when one transac

tion is forced to precede another in an equivalent serial schedule. One important

494 TRANSACTION MANAGEMENT

difference is the following. Suppose (in the model of Section 9.4), that in given

schedule S, the transaction T\ wrote a value for item A, and later T2 wrote a

value for A. Then we assumed in Section 9.4 that TI write-locked A after 7\

unlocked A, and by implication, T2 used the value of A written by 7\ in com

puting a new value. Therefore, when dealing with serializability, it was taken

for granted that in a serial schedule R equivalent to 5, TI appears before TI,

and, incidentally, that no other transaction T write-locking A appears between

TI and T2. One gets the latter condition "for free" in Algorithm 9.2, since that

algorithm forced T to appear either before TI or after TI in R, whichever was

the case in 5.

However, if we assume that TI has written its value for A without reading

A, then the new value of A is independent of the old; it depends only on the

values of items actually read by T2. Thus, if between the times that 7\ and T2

write their values of A, no transaction reads A, we see that the value written

by TI "gets lost" and has no effect on the database. As a consequence, in a

serial schedule, we need not have TI appearing before T2 (at least as far as the

effect on A is concerned). In fact, the only requirement on TI is that it be done

at a time when some other transaction TS will later write A, and between the

times that TI and T3 write A, no transaction reads A.

We can now formulate a new definition of a serialization graph, based

on the semantics that the values written by a transaction are functions only

of the values read, and distinct values read produce distinct values written.

The conditions under which one transaction is required to precede another are

stated informally (and not completely accurately) as follows. If in schedule 5,

transaction T2 reads the value of item A written by 7\ , then

1. TI must precede T2 in any serial schedule equivalent to S.

2. If TS is a transaction that writes A, then in any serial schedule equivalent

to S, TS may either precede TI or follow T2, but may not appear between

TI and T2.

There are also two details needed to make the above definition an accurate

one. First, there are "edge effects" involving the reading of an item before

any transaction has written it or writing an item that is never rewritten. These

rules are best taken care of by postulating the existence of an initial transaction

TO that writes every item, reading none, and a final transaction T/ that reads

every item, writing none.

The second detail concerns transactions T whose output is "invisible" in

the sense that no value T writes has any effect on the value read by T/ . Note

that this effect need not be direct, but could result from some transaction T'

reading a value written by T, another transaction T" reading a value written by

T', and so on, until we find a transaction in the chain that writes a value read

by T/. Call a transaction with no effect on T/ useless. Our second modification

9.6 A READ-ONLY, WRITE-ONLY MODEL 495

of the above rules is to rule out the possibility that T2, in (1) and (2) above, is

a useless transaction.7

Testing for Useless Transactions

It is easy, given a schedule S, to tell which transactions are useless. We create

a graph whose nodes are the transactions, including the dummy transaction Tf

assumed to exist at the end of S. If 7\ writes a value read by T2, draw an arc

from TI to T2. Then the useless transactions are exactly those with no path to

Tf. An example of this algorithm follows the discussion of a serializability test.

Conflict-Serializability

The simple serialization graph test of previous sections does not work here.

Recall that there are two types of constraints on a potential serial schedule

equivalent to a given schedule S.

1. Type 1 constraints say that if TI reads a value of A written by TI in 5,

then TI must precede T2 in any serial schedule. This type of constraint

can be expressed graphically by an arc from T\ to T2.

2. Type 2 constraints say that if T2 reads a value of A written by TI in S, then

any TS writing A must appear either before TI or after T2. These cannot

be expressed by a simple arc. Rather, we have a pair of arcs TS -» TI and

T2 —» T3, one of which must be chosen.

The above constraints apply to the dummy initial and final transactions, but

do not apply to useless transactions.

Then schedule 5 is said to be conBict-serializable if there is some serial

schedule that respects all the type 1 and type 2 constraints generated by S. As

we saw in Theorems 9.1 and 9.3, the notions of view- and conflict-serializability

are equivalent in the simpler models of Sections 9.2 and 9.4. We shall, how

ever, see that conflict-serializability implies view-serializability, but not vice

versa, in the present model. There is a relatively easy-to-state test for conflict-

serializability, which is one reason we prefer this notion, even though it misses

detecting some serializable schedules.

The Polygraph Test for Conflict-Serializability

A collection of nodes, arcs, and pairs of alternative arcs has been termed a

polygraph. A polygraph is acyclic if there is some series of choices of one

arc from each pair that results in an acyclic graph in the ordinary sense. The

obvious conflict-serializability test is to construct the appropriate polygraph and

7 We cannot simply remove useless transactions from 5, since the portion of the system

that schedules transactions cannot know that it is scheduling a transaction that will

later prove to be useless.

4% TRANSACTION MANAGEMENT

determine if it is acyclic. Unfortunately, testing a polygraph for acyclicness is

a hard problem; it has been shown A/"P-complete by Papadimitriou, Bernstein,

and Rothnie [1977]. We summarize the construction in the next algorithm.

Algorithm 9.3: Conflict-Serializability Test for Transactions with Read-Only

and Write-Only Locks.

INPUT: A schedule S for a set of transactions TI, T2, . . . , Tk-

OUTPUT: A determination whether 5 is conflict-serializable, and if so, an equiv

alent serial schedule.

METHOD:

1. Augment 5 by appending to the beginning a sequence of steps in which a

dummy transaction TO writes each item appearing in 5 and appending to

the end steps in which dummy transaction Tf reads each such item.

2. Begin the creation of a polygraph P with one node for each transaction,

including dummy transactions 7O and Tf. Temporarily, place an arc from

Ti to Tj whenever Tj reads an item A that in the augmented S was last

written by T<.

3. Discover the useless transactions. A transaction T is useless if there is no

path from T to Tf.

4. For each useless transaction T, remove all arcs entering T.

5. For each remaining arc Ti —» Tj, and for each item A such that Tj reads

the value of A written by Ti, consider each other transaction T / TO that

also writes A. If Tj = T0 and T, = T/, add no arcs. If Tj = T0 but Tj ^ T/,

add the arc T, -» T. If Tj = T/, but Tj / T0, add the arc T -» Ti. If

Ti ^ TO and T, ^ T/, then introduce the arc pair (T -» Ti,Tj -» T).

6. Determine whether the resulting polygraph P is acyclic. For this step there

is no substantially better method than the exhaustive one. If there are n

arc pairs, try all 2™ choices of one arc from each pair to see if the result is

an acyclic graph.8 If P is acyclic, let G be an acyclic graph formed from

P by choosing an arc from each pair. Then any topological sort of G, with

TO and Tf removed, represents a serial schedule equivalent to S. If P is

not acyclic, then no serial schedule equivalent to 5 exists. D

Example 9.13: Consider the schedule of Figure 9.17. The arcs constructed

by step (2) of Algorithm 9.3 are shown in Figure 9.18; for clarity, the arcs are

labeled with the item or items justifying their presence. In understanding how

Figure 9.18 was created it helps first to observe that the schedule of Figure 9.17

is legal, in the sense that two transactions do not hold write-locks, or a read-and

8 Obviously one can think of some heuristics to make the job somewhat simpler than it

appears at first glance. For example, if one of a pair of arcs causes a cycle with existing

arcs, we must choose the other of the pair. However, there are cases where neither arc

in a pair causes an immediate cycle, yet our choice influences what happens when we

try to select arcs from other pairs.

9.6 A READ-ONLY, WRITE-ONLY MODEL 497

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

RLOCK A

RLOCK A

WLOCK C

UNLOCK C

WLOCK B

UNLOCK B

UNLOCK A

UNLOCK A

WLOCK D

RLOCK B

UNLOCK B

UNLOCK D

RLOCK C

WLOCK A

UNLOCK C

UNLOCK A

T2 T3

Figure 9.17 A schedule.

RLOCK B

RLOCK C

UNLOCK B

WLOCK A

WLOCK B

UNLOCK B

UNLOCK C

UNLOCK A

write-lock simultaneously. Thus, we may assume all reading and writing occurs

at the time the lock is obtained, and we may ignore the UNLOCK steps.

Let us consider each read-lock step in turn. The read-locks on A at steps

(1) and (2) read the value "written" by the dummy transaction TQ. Thus, we

draw arcs from T0 to TI and T2. At step (5) T3 reads the value of C written

by TI at step (3), so we have arc 7\ -» T3. At step (8), T4 reads what 7\

wrote at step (6), so we have arc TI —» T4, and so on. Finally, at the end, T/

"reads" A,B,C, and D, whose values were last written by T4, TI, Ti, and T2,

respectively, explaining the three arcs into Tf.

Now we search for useless transactions, those with no path to T/ in Figure

9.18; T3 is the only such transaction. We therefore remove the arc TI -» T3

from Figure 9.18.

TRANSACTION MANAGEMENT

In step (5) of Algorithm 9.3 we consider the arcs or arc pairs needed to

prevent interference of one write operation with another. An item like C or D

that is written by only one nondummy transaction does not figure into step (5).

However, A is written by both T3 and T4, as well as dummy transaction TQ.

The value written by T3 is not read by any transaction, so T4 need not appear

in any particular position relative to T3. The value written by T4 is "read" by

Tf. Therefore, as TS cannot appear after T/, it must appear before T4. In this

case, no arc pair is needed; we simply add to P the arc TS —» T4. The value of

A written by TO is read by T\ and T2. As T3 and T4 cannot appear before TO,

we place arcs from T\ and T2 to T3 and T4; again no arc pair is necessary.

B,C

B

Figure 9.18 First step in construction of a polygraph.

Item B is written by TI and T4. The value of B written by T4 is read only

by Tf, so we need arc TI —» T4. The value of B written by TI is read by T2

and T4. The writing of B by T4 cannot interfere with the reading of B by T4.

Thus no requirement that "T4 precedes 7\ or follows T4" is needed. However,

T4 must not be interposed between TI and T2, so we add the arc pair (T4 —» TI,

T2 —» T4). The resulting polygraph is shown in Figure 9.19, with the one arc

pair shown dashed. Note that arc TI —» TS, removed in step (4), returns in step

(5).

If we choose arc T4 —» TI from the pair we get a cycle. However, choosing

Tj —» T4 leaves an acyclic graph, from which we can take the serial order TI,

T2, T3, T4. Thus, the schedule of Figure 9.17 is serializable. D

Algorithms 9.1 and 9.2 are correct in the strong sense that they produce an

equivalent serial schedule if and only if there is one, according to the semantics

of transactions used in Sections 9.2 and 9.4, respectively. Algorithm 9.3 is not

that strongly correct. If it finds a serial schedule, then that schedule is surely

equivalent to the given schedule, under the semantics of read-only, write-only

transactions of this section. However, if it fails to find a serial schedule, it

only means that there is no serial schedule that meets the type-1 and type-

2 constraints on transaction order. Thus, after proving this weaker form of

9.6 A READ-ONLY, WRITE-ONLY MODEL 499

Figure 9.19 Final polygraph.

correctness for Algorithm 9.3, we shall consider an example of a schedule that

has an equivalent serial schedule, according to our transaction semantics, i.e.,

it is view-serializable, yet it fails the test of Algorithm 9.3. We shall also

discuss why there is not much use in regarding view-serializable schedules to be

"serializable."

Theorem 9.4:

a) If Algorithm 9.3 succeeds on given schedule S, then there is a serial schedule

equivalent to S under the read-only, write-only semantics.

b) If Algorithm 9.3 fails on 5, then there is no serial schedule that meets the

type-1 and type-2 constraints for S.

Proof: (a) Suppose first that the resulting polygraph is acyclic. That is, there

is some choice between arcs in each pair that results in an acyclic graph G. The

construction of P in Algorithm 9.3 assures that each nonuseless transaction,

including T/, reads the same copy of each item in 5 as it does in the serial

schedule resulting from a topological sort of G. Thus, the corresponding values

produced for each item are the same in both schedules.

(b) Conversely, suppose there is a serial schedule R that meets the type-1

and type-2 constraints generated by given schedule 5. Then by the reasoning

used in Theorem 9.1, if Tj —» Tj is any arc introduced in step (2) and not

removed in step (4), Tj must precede Tj in R. Suppose the arc pair

(Tn - Tj, Tj - Tn)

is introduced in step (5). Then Tn cannot appear between Tj and Tj in R. Pick

arc Tn —» Ti from the pair if Tn precedes Tj in R, and pick Tj —» Tn otherwise.

The linear order implied by R will be consistent with this choice from arc pairs.

Similarly, a single arc added in step (5) must be consistent with this linear

order, so we have a way of constructing, based on R, an acyclic graph from

polygraph P. D

500 TRANSACTION MANAGEMENT

The Two-phase Protocol, Again

As with the previous models, a two-phase protocol, requiring each transaction

to do all locking before any unlocking, guarantees conflict-serializability of any

legal schedule. To see why, let us suppose 5 is a legal schedule of transactions

obeying the two-phase protocol. Suppose (T3 —» TI, TI —» T3) is an arc pair in

the polygraph P. Then there is some item A such that T2 reads the copy of A

written by T\ . If in 5, T$ unlocks A before T\ read-locks A, then select TS —» TI

from the pair. If T3 write-locks A after TI unlocks it, select TI —» T3. No other

possibilities exist, since the arc pair was placed in P by Algorithm 9.3.

We now have a graph G constructed from P. Suppose G has a cycle

TI —» TI -»•••—» Tn —» TI. Surely, neither dummy transaction can be part of

a cycle. Examination of Algorithm 9.3 and the above rules for constructing G

from P indicates that for every arc Tj —» Tj+i (with Tn+i = TI) in the cycle,

there is an item A, such that in S, Ti unlocks A, before TJ+I locks A,. By the

two-phase protocol, Tj+i must unlock Ai+i after it locks Ai. Thus T\ unlocks

AI before Tn+i locks An. But Tn+i is TI, and the two-phase protocol forbids

TI from unlocking A\ before it locks An. We have thus proved the following

theorem.

Theorem 9.5: In the model of this section, if transactions obey the two-phase

protocol, then any legal schedule is serializable. D

View-Serializability

There is a subtlety in the model of this section that allows certain schedules to

have the same effect as a serial schedule on all the items, yet not be conflict-

serializable; i.e., they fail the test of Algorithm 9.3. Intuitively, the problem is

that some, but not all, of the effects of a transaction may be made invisible by

other transactions. The next example, illustrates this phenomenon.

Example 9.14: Consider the three transactions of Figure 9.20. Because T2

reads the value of A written by TI, we have a type-1 arc TI —» T2. Because

TI reads the value of C written by T2 we likewise have an arc T2 -» TI, so

the transactions of Figure 9.20 are not conflict-serializable. The polygraph for

Figure 9.20 is shown in Figure 9.21; note that it is an ordinary graph, with no

pairs of alternative arcs.

Yet the schedule of Figure 9.20 is equivalent to a serial schedule, and in

fact, the order of TI and T2 is immaterial; the only real requirement is that TS

follow both. The reason is that TS writes new values of B and D before any

other transaction reads the values written by T\ or T2. If we, say, run TI then

TZ and finally TS in a serial order, the value TI produces for D will be wrong

(because it uses the initial value of C, rather than the value written by T2).

However, after T3 runs, the value of D becomes correct again, in the sense that

it agrees with what the schedule of Figure 9.20 produces. Thus, the schedule

9.6 A READ-ONLY, WRITE-ONLY MODEL 501

WLOCK A

UNLOCK A

RLOCK C

WLOCK D

UNLOCK C

UNLOCK D

WLOCK C

UNLOCK C

RLOCK A

WLOCK B

UNLOCK A

UNLOCK B

WLOCK B

WLOCK D

UNLOCK B

UNLOCK D

Figure 9.20 View-serializable transactions.

Figure 9.21 Polygraph for Figure 9.20.

of Figure 9.20 is view-serializable. D

Unfortunately, it is A/"P-complete to determine whether a schedule is view-

serializable (Yannakakis [1984]). Perhaps more importantly, there is something

unsatisfying about the claim that the schedule of Figure 9.20 is "serializable."

What would happen if TS had never occurred, or if the system failed before

T3 ran? If the scheduler had permitted the interleaving of 7\ and T2 it would

have to be sure that T3 would be executed before any transaction could read

the values of B or D. Since that is far from a realistic assumption, schedulers

based on view-serializability are not found in practice.

502 TRANSACTION MANAGEMENT

9.7 CONCURRENCY FOR HIERARCHICALLY STRUCTURED

ITEMS

There are many instances where the set of items accessed by a transaction can

be viewed naturally as a tree or forest. Some examples are:

1. Items are logical records in a database structured according to the hierar

chical model.

2. Items are nodes of a B-tree (recall Section 6.5).

3. Items of various sizes are denned, with small items nested within larger

ones. For example, a relational database could have items at four levels:

t) The entire database,

it) Each relation,

tit) Each block in which the file corresponding to a relation is stored, and

iv) Each tuple.

There are two different policies that could be followed when items are

locked. First, a lock on an item could imply a lock on all its descendant items.

This policy saves time, as locking many small items can be avoided. For ex

ample, in situation (3) above, a transaction that must read an entire relation

can lock the relation as a whole, rather than locking each tuple individually.

The second policy is to lock an item without implying anything about a lock

on its descendants. For example, if we are searching a B-tree, we shall read a

node and select one of its children to read next. In this case, it is preferable

not to lock all descendants at the time we read a node. We shall consider these

policies, in turn.

A Simple Protocol for Trees of Items

Let us revert to the model of Section 9.2 using only the LOCK and UNLOCK

operations.9 We assume that locking an item (node of a tree) does not auto

matically lock any descendants. As in Section 9.2, only one transaction can

lock an item at a time. We say a transaction obeys the tree protocol if

1. Except for the first item locked (which need not be the root), no item can

be locked unless a lock is currently held on its parent.

2. No item is ever locked twice by one transaction.

Observe that a transaction obeying the tree protocol need not be two-

phase. For example, it might lock an item A, then lock its child B, unlock

A and lock a child of B. This situation is quite realistic, for example, in the

case that the transaction is performing an insertion into a B-tree. If B is a

node of the B-tree that has room for another pointer, then we know that no

restructuring of the tree after insertion can involve the parent of B. Thus, after

9 The bibliographic notes contain pointers to generalizations of this protocol, where both

read- and write-locks are permitted.

9.7 CONCURRENCY FOR HIERARCHICALLY STRUCTURED ITEMS 503

examining B we can unlock the parent A, thereby allowing concurrent updates

to the B-tree involving descendants of A that are not descendants of B.

F

^.—<

Figure 9.22 A hierarchy of items.

Example 9.15: Figure 9.22 shows a tree of items, and Figure 9.23 is the

schedule of three transactions T\, T2, and TI, obeying the tree protocol. Note

that TI is not two-phase, since it locks C after unlocking B. D

The Tree Protocol and Serializability

While we shall not give a proof here (see Silberschatz and Kedem [1980]), all

legal schedules of transactions that obey the tree protocol are serializable. The

algorithm to construct a serial ordering of the transactions begins by creating

a node for each transaction. Suppose Tj and Tj are two transactions that lock

the same item (at different times, of course). Let FIRST(T) be the item first

locked by transaction T. If FIRST(Tj) and FIRST(Tj) are independent (neither

is a descendant of the other), then the tree protocol guarantees that Tj and Tj

do not lock a node in common, and we need not draw an arc between them.

Suppose therefore, without loss of generality, that FIRST(Tj) is an ancestor

of FIRST(Tj). If TJ locks FIRST(Tj) before Tj does, then draw arc Tj -» Tj.

Otherwise draw an arc Tj —» Tj.

It can be shown that the resulting graph has no cycles, and any topological

sort of this graph is a serial order for the transactions. The intuition behind

the proof is that, at all times, each transaction has a frontier of lowest nodes

in the tree on which it holds locks. The tree protocol guarantees that these

frontiers do not pass over one another. Thus, if the frontier of Tj begins above

the frontier of Tj, it must remain so, and every item locked by both Tj and Tj

will be locked by Tj first.

504 TRANSACTION MANAGEMENT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

0)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

LOCK A

LOCK B

LOCK D

UNLOCK B

LOCK C

UNLOCK D

UNLOCK A

UNLOCK C

LOCK B

LOCK E

LOCK F

LOCK G

UNLOCK E

UNLOCK F

UNLOCK G

LOCK E

UNLOCK B

UNLOCK E

T\ T2 T3

Figure 9.23 A schedule of transactions obeying the tree protocol.

Example 9.16: Let us reconsider the schedule of Figure 9.23. In this schedule

we have FIRST(7\) = A, FIRST(T2) = B, and FIRST(T3) = E. 7\ and T2 both

lock B, and TJ does so first, so we have arc TI —» T2. Also, T2 and T3 each lock

E, but T3 precedes T2 in doing so. Thus we have arc T3 —» T2. The precedence

graph for this schedule is shown in Figure 9.24, and there are two possible serial

schedules, 7\, T3, T2 and T3, TI, T2. D

Figure 9.24 Serialization graph for Figure 9.23.

A Protocol Allowing Locks on Subtrees

We now consider the second kind of hierarchy, a nested structure. It is con

venient, when the hierarchy of items includes some that are subsets of other

9.7 CONCURRENCY FOR HIERARCHICALLY STRUCTURED ITEMS 505

items, as in our introductory example (3):

database-relations-blocks-tuples

to assume that a lock on an item implies a lock on all its descendants. For

example, if a transaction must lock most or all the tuples of a relation, it may

as well lock the relation itself. At a cost of possibly excluding some concurrent

operations on the relation, the system does far less work locking and unlocking

items if we lock the relation as a whole.

However, indiscriminate locking can result in illegal schedules, where two

transactions effectively hold a lock on the same item at the same time. For

example, suppose transaction TI locks E of Figure 9.22 (and therefore, by our

new assumptions, also locks F and G). Then let T' lock B, thereby acquiring

a conflicting lock on E, F and G. To avoid this conflict, a protocol has been

devised in which a transaction cannot place a lock on an item unless it first

places a "warning" at all its ancestors. A warning on item A prevents any

other transaction from locking A, but it does not prevent it from also placing

a warning at A or from locking some descendant of A that does not have a

warning.

This approach is patterned after that used for concurrency control in Sys

tem R. What we present here is a simplification of the ideas found in that

system, which uses both read- and write-locks, as well as warnings for both

types of locks. We shall here consider transactions to consist of operations:

1. LOCK, which locks an item and all its descendants. No two transactions

may hold a lock on an item at the same time.

2. WARN, which places a "warning" on an item. No transaction may lock an

item on which some other transaction has placed a warning.

3. UNLOCK, which removes a lock and/or a warning from an item.

The semantics of transactions follows that of Section 9.2. When an item is

locked, its value, and the values of all its descendants, are assumed to change in a

way that depends uniquely on the values of all the items (and their descendants)

locked by the transaction. However, placing a warning on an item does not, by

itself, allow the value of that item or any of its descendants to change.

A transaction obeys the warning protocol on a hierarchy of items if

1. It begins by placing a lock or warning at the root.

2. It dos not place a lock or warning on an item unless it holds a warning on

its parent.10

3. It does not remove a lock or warning unless it holds no locks or warnings

on its children.

10 Note that there is no need to place a lock on an item if a lock on its parent is already

held.

506 TRANSACTION MANAGEMENT

4. It obeys the two-phase protocol, in the sense that all unlocks follow all

warnings and locks.

We assume that this protocol acts in conjunction with the simple scheduler that

allows any lock to be placed on an item A only if no other transaction has a

lock or warning on A, and allows a warning to be placed on A as long as no

transaction has a lock on A.

D\ (EJ (FJ (G

Figure 9.25 A hierarchy.

Example 9.17: Figure 9.25 shows a hierarchy, and Figure 9.26 is a schedule

of three transactions obeying the warning protocol. Notice, for example that at

step (4) TI places a warning on B. Therefore, TS was not able to lock B until

TI unlocked its warning on B at step (10). However, at steps (l)-(3), all three

transactions place warnings on A, which is legal.

The lock of C by T2 at step (5) implicitly locks C, F, and G. We assume

that any or all of these items are changed by T-j before the lock is removed at

step (7). D

Theorem 9.6: Legal schedules of transactions obeying the warning protocol

are serializable.

Proof: Parts (l)-(3) of the warning protocol guarantee that no transaction

can place a lock on an item unless it holds warnings on all of its ancestors. It

follows that at no time can two transactions hold locks on two ancestors of the

same item. We can now show that a schedule obeying the warning protocol is

equivalent to a schedule under the model of Section 9.2, in which all items are

locked explicitly (not implicitly, by locking an ancestor). Given a schedule S

satisfying the warning protocol, construct a schedule R in the model of Section

9.2 as follows.

1. Remove all warning steps, and their matching unlock steps.

2. Replace all locks by locks on the item and all its descendants. Do the same

for the corresponding unlocks.

Let R be the resulting schedule. Its transactions are two-phase because those of

S are two-phase, by part (4) of the warning protocol. We have only to show that

9.7 CONCURRENCY FOR HIERARCHICALLY STRUCTURED ITEMS 507

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

0)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

WARN A

UNLOCK A

WARN A

WARN B

LOCK C

LOCK D

UNLOCK C

UNLOCK D

UNLOCK A

UNLOCK B

WARN A

LOCK B

WARN C

LOCK F

UNLOCK B

UNLOCK F

UNLOCK C

UNLOCK A

Figure 9.26 A schedule of transactions satisfying the warning protocol.

R is legal, since we know that every legal schedule of two-phase transactions is

serializable by Theorem 9.2.

Suppose in contradiction that in R, two transactions 7\ and T^ hold locks

on item A at the same time. Then in 5, T\ must have held a lock on some

ancestor B of A, at the same time T2 held a lock on an ancestor C of A (any

of .A, B, and C could be the same). Suppose without loss of generality that

B is an ancestor of C. If, in S, 7\ locks B before T2 places a warning on B,

then T2 can never place a warning on B until T\ unlocks B. By condition (2)

of the warning protocol, T2 cannot lock C until 7\ unlocks B, contrary to our

assumption that the locks on B and C were held simultaneously.

The remaining possibility is that TI locks C before T\ locks B. But then,

by condition (3) of the warning protocol, T2 holds a lock or warning on B until

it releases its lock on C. Thus, in S, T\ was prohibited from locking B while

T2 locks C, another contradiction. D

Compatibility Matrix For Warnings and Locks

The matrix of Figure 9.27 expresses the definition of LOCK and WARN. This com

patibility matrix is no different from the matrix of Figure 9.13, which expressed

508 TRANSACTION MANAGEMENT

Warn Lock

Warn

Lock

Y N

N N

Figure 9.27 Compatibility of warn and lock.

the compatibility of read- and write-locks. However, we should not suppose that

a warning is really the same as a read-lock. The difference between read/write

locks on one hand, and warn/lock on the other is that in the latter case, one

accesses items through a hierarchy, placing warnings and locks all along a path

to the desired item. In the read/write lock case, each item is locked directly,

independently of locks held on any other item.

In fact, one can use both read and write versions of locks and warnings

for each type of lock. For example, a single transaction could place both a

read-lock and a warning-to-write lock on the same item in a hierarchy. The

exercises explore the way locks of these modes interact.

9.8 HANDLING TRANSACTION FAILURES

Until now, we have assumed that each transaction runs happily to completion.

In practice, there are several reasons why a transaction might perform some

actions and then abort (terminate without completing).

1. The transaction fails for some reason. The user interrupts it, an arithmetic

failure such as division by zero occurs, or it tries to access an item of the

database for which it does not have access privileges, for example.

2. The scheduler detects a deadlock, and decides to abort the transaction so

it can release its locks and allow other transactions to proceed.

3. As we shall discuss in Sections 9.9 and 9.11, there are certain scheduling

algorithms that sometimes need to abort a transaction to enforce serializ-

ability.

4. A software or hardware error causes the entire database system to fail.

The simplest to deal with are failures of a single transaction, such as (1)-

(3) above. It is harder to handle failures of the software system, since usually all

the transactions active at the time of the crash will have to be redone. Unless

we are careful how transactions are managed, we shall have lost some essential

information about what was going on at the time of the crash, and it will be

impossible to resume operations correctly, from that time. Still more serious is

a media failure, where the data in the permanent database is lost. The only

way to recover from a media failure is to have a backup copy of the database

up-to-date at all times.

9.8 HANDLING TRANSACTION FAILURES 509

The methods for recovery from system-wide software and hardware failures

will be discussed in Section 9.10. Here, we consider only the problems caused by

single-transaction failures or by the scheduler's decision to abort a transaction.

Commitment of Transactions

When dealing with transactions that may abort, it helps to think of active

transactions, which have not yet reached the point at which we are sure they

will complete, and completed transactions, which we are sure cannot abort for

any of the reasons suggested by (l)-(3) above, such as an attempted illegal step

or involvement in a deadlock. The point in the transaction's execution where

it has completed all of its calculation and done everything, such as ask for

locks, that could possibly cause the transaction to abort, we call the commit

point. In what follows, we shall assume that COMMIT is an action taken by

transactions, just like locking, writing, and computation in the workspace are

steps. In Section 9.10 we shall see that particular actions must be taken when

reaching the commit point, but for the moment, let us simply regard the COMMIT

action as marking the commit point of the transaction.

Transactions That Read "Dirty" Data

In several of the examples we have seen so far, transactions read items that

had been written by other transactions, and the reading occurred prior to the

commit point of the writing transaction. For example, in Figure 9.17, TS reads

C at step (5), and the value it reads was written by T\ at step (4), yet T\

could not possibly have committed until step (7), when it wrote the value of

B.11 Data written into the database by a transaction before that transaction

commits is called dirty data.

We are severely punished for reading dirty data in any situation where the

writing transaction could abort. The following example illustrates what can

happen.

Example 9.18: Consider the two transactions of Figure 9.28. Fundamentally

these transactions follow the model of Section 9.2, although to make clear cer

tain details of timing, we have explicitly shown commitment, reads, writes, and

the arithmetic done in the workspace of each transaction. We assume that the

WRITE action stores a value in the database, while arithmetic steps, such as (3),

are done in the workspace and have no effect on the database.

Suppose that after step (14) transaction T\ fails, perhaps because division

by 0 occurred at step (14), or because a deadlock involving other transactions

caused the scheduler to decide to abort T\. We have to take the following

actions.

11 Recall we have assumed that writing of an item occurs at the time that item is unlocked.

510 TRANSACTION MANAGEMENT

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

LOCK A

READ A

WRITE A

LOCK B

UNLOCK A

READ B

B : =B/A

LOCK A

READ A

A:=A*2

WRITE A

COMMIT

UNLOCK A

Figure 9.28 A schedule.

1. TI still holds a lock on item B. That lock must be removed by the system.

2. The value of A written by TI at step (4) must be restored to the value A

had prior to step (1). There appears not to be a record of the old value

of A; when we discuss recovery from crashes in Section 9.10 we shall see it

is essential in this situation that we have written the old value of A into a

"journal" or "log."

3. The value of A read by T2 at step (8) is now wrong. T2 has performed

an incorrect calculation and written its result in A. Thus, not only do we

have to restore the value of A from before step (1), we have to undo all

effects of T2 and rerun that transaction.12

4. Suppose that some other transaction T3 read the value of A between steps

(13) and (14). Then T3 is also using invalid data and will have to be

redone, even if, like T2, it has already reached its commit point. Further,

any transaction that read a value written by T3 will have to be redone, and

so on. D

The phenomenon illustrated in point (4) of Example 9.18 is called cascading

rollback. It is the consequence of our decision to allow T2 read dirty data. That

is, once we allow even one transaction to read dirty data, then completion of

any transaction T is no guarantee that sometime in the far future it will be

discovered that T read a value which should not have been there, and therefore

In this simple example, nothing but A was changed by Tj.

9.9 AGGRESSIVE AND CONSERVATIVE PROTOCOLS 511

T must be redone.

Strict Two-Phase Locking

Since this situation is generally not tolerable, it is normal to use the follow

ing version of the two-phase locking protocol, which is called strict two-phase

loddng.

1. A transaction cannot write into the database until it has reached its commit

point.

2. A transaction cannot release any locks until it has finished writing into the

database; therefore locks are not released until after the commit point.

Example 9.19: TI of Figure 9.28 is not quite a strict two-phase transaction.

For it to be strict, the COMMIT at line (12) would have to be moved prior to the

WRITE at line (11). D

Clearly condition (2) is necessary to avoid cascading rollback, for without

it, another transaction could read a value written by a transaction that later

aborted. Condition (1) is also important. True, until the lock is released, no

other transaction can read the dirty data, but if we find the writing transaction

has to abort, we may have no way to restore the old value of the item written.

Section 9.10 will discuss ways, such as logging, to solve that problem.

If all transactions obey the strict two-phase locking protocol, we know that

a value, once found in the database, was written by a committed transaction,

and a committed transaction cannot abort. Thus, no cascading rollback is

possible, and once a transaction commits, writes its data into the database,

and releases its locks, that transaction is a permanent part of history; it will

never need to be rolled back or redone.

9.9 AGGRESSIVE AND CONSERVATIVE PROTOCOLS

In the previous section we saw why writing and unlocking at the very end of a

transaction is a wise strategy. We might ask whether it makes sense to begin

transactions in a special way, such as by taking all of the locks the transaction

needs. The answer is that there are different options, even among strict two-

phase protocols, that can be "right" in certain situations. We do not face a

problem as severe as cascading rollback, but our choice affects the performance

that we can obtain from the system. There are two performance issues that

need to be faced.

1. We want the best possible throughput, i.e., the largest possible rate of

transaction completion for a machine of given processing speed and for a

given mix of transactions.

512 TRANSACTION MANAGEMENT

2. We want any particular transaction to finish without too much delay.

Sometimes, (1) and (2) are incompatible, and there are situations where

no user is waiting around for a transaction to finish, so (2) is not important.

There could even be situations where (1) is not vital, because we have much

more than adequate computing power for the transactions being processed.

The choice of protocol and scheduler affects (1), the throughput, in several

ways.

a) Cycles spent deciding whether to grant or deny locks, maintaining lock

tables, enqueueing and dequeueing waiting transactions, detecting and re

solving deadlocks, and so on, are cycles that do not contribute to the

execution of transactions. We wish to minimize the time spent on these

operations, which is the overhead of scheduling transactions concurrently.

b) The cycles spent on transactions that later abort are wasted and do not

contribute to throughput. Moreover, additional cycles may have to be

spent finding and releasing locks of aborted transactions.

c) If the protocol used is not strict two-phase, then additional cycles must be

spent restoring the database after a transaction aborts and checking for

and fixing cascading rollback problems.

If we assume strict two-phase locking, (c) is not an issue. Then the compe

tition is really between (a) and (b); shall we try to avoid aborting transactions

as much as possible, in particular by using a protocol and scheduler that avoids

deadlock,13 or shall we opt for simplicity of the scheduler, hoping to save more

time managing locks than we lose by occasionally having to resolve deadlocks?

We can classify protocols as

1. Aggressive, meaning that they try to proceed as quickly as possible, even

if there is the possibility that they will be led to a situation where they

must abort, and

2. Conservative, meaning that the protocol tries to avoid performing the be

ginning part of a transaction if it is not sure the transaction can complete.

Different protocols can exhibit different degrees of aggressiveness. We shall here

consider only locking protocols, but in Section 9.11 we shall consider some other

protocols of the aggressive and conservative variety, that do not use locks.

A Conservative Protocol

The most conservative version of two-phase locking is for each transaction T to

request all of the locks it will ever need, at the beginning of the transaction. The

scheduler grants the locks and allows T to proceed if all the locks are available.

13 Of course, we cannot avoid aborting transactions altogether, because there are always

system errors and transaction-specific errors such as illegal database access, that leave

us no choice.

9.9 AGGRESSIVE AND CONSERVATIVE PROTOCOLS 513

If one or more locks are unavailable, T is put on a queue to wait. This scheme

clearly avoids deadlock resulting from competition for locks (which is the only

resource that, in our model, can cause deadlock).

We must be more careful if livelock is to be avoided. To prevent livelock,

the scheduler cannot allow a transaction T to proceed, even if all of its desired

locks are available, as long as any transaction in the queue is waiting for one of

the locks T needs. Furthermore, once a transaction enters the queue, it cannot

proceed, even when all of its locks are available, if there is another transaction

ahead of it in the queue that wants any of the same locks.14

Example 9.20: Suppose there is a sequence of transactions

t/o,Vi,£/i,V2,C/2,...

with the property that each f/j locks item A, while each Vi locks B and C.

Suppose also that a transaction T\ is initiated immediately after (/0, and T\

needs locks on A and B, Then T\ must wait for its lock on A and is placed

on the queue. However, before U0 terminates, V\ initiates and is granted locks

on B and C. Thus, when UQ terminates, it releases the lock on A, but now,

B is unavailable, and T\ cannot proceed. Before Vi terminates, f/i initiates,

which again prevents 7\ from proceeding when V\ releases its lock on B. In

this manner, T\ can wait in the queue forever.

However, following the livelock-prevention policy described above, the

scheduler should not grant a lock on B to V\, because T\ is waiting on the

queue, and T\ wants a lock on B. Thus, the correct action by the scheduler

when Vi requests its locks is to place V\ on the queue behind T\. Then, when

UQ finishes, the locks on both A and B become available and are granted to T\ .

When T\ finishes, its lock on B is released and given to Vi , along with the lock

on C, which we assume has remained available.

A similar example can be developed where, if we do not follow the livelock-

prevention policy outlined above, T\ waits at the front of the queue forever,

never in a situation where all of its locks are available at once, while transactions

behind it on the queue are repeatedly given all of their locks. This construction

is left as an exercise. D

Theorem 9.7: Suppose that we use a protocol in which all locks are obtained

at the beginning of the transaction, and we use a scheduler that allows a trans

action T (which may be on the queue or not) to receive its requested locks if

and only if:

1. All of the locks are available, and

14 We can, though, grant locks to a transaction not at the head of the queue if all the locks

are available, and no transaction ahead of it on the queue wants any of those locks.

Thus, strictly speaking, our "queue" is not a true queue.

514 TRANSACTION MANAGEMENT

2. No transaction ahead of T on the queue wants any of the locks requested

byT.

Then livelocks and deadlocks resulting from contention for locks cannot occur.

Proof: That deadlocks do not occur is an immediate consequence of (1); no

transaction that holds a lock can ever be in a situation where it is waiting for

another lock.

To see that no livelocks can occur, suppose transaction T is placed on the

queue. At this time, there are only a finite number of transactions ahead of T

on the queue, say Ui, . . . , Uk- The locks desired by the first of these, Ui, will

all be released within a finite amount of time, and none of them can be granted

to any other transaction. Thus, U\ initiates after a finite amount of time and

is removed from the queue. We can argue similarly about C/2, . . . , Uk- Thus, T

eventually reaches the head of the queue, and it too will be granted its locks

after a finite amount of time. Thus, no livelock occurs. D

While the conservative protocol seems attractive, there are two drawbacks.

1. Transactions may be delayed unnecessarily, because they need a certain

lock late in their execution that they are required to take at the beginning.

If that lock is unavailable, the transaction cannot begin, even though it

could do a number of steps without the lock.

2. Transactions must lock any item they might need, even though they may

have to do some computation to tell whether or not they really need the

lock.

Example 9.21: In Figure 9.29 we see an SQL query to find the customers who

ordered Brie. Let us assume that items are physical blocks, each containing a

few tuples from one of the relations ORDERS or INCLUDES, or from part of

an index structure. Let us also assume that there is a secondary index on ITEM

for INCLUDES and a primary index on O# for ORDERS, perhaps among other

indices.

SELECT CUST

FROM ORDERS, INCLUDES

WHERE ORDERS. O# = INCLUDES. O#

AND ITEM = ' Brie ' ;

Figure 9.29 Find who ordered Brie.

The most efficient way to answer the query is to enter the ITEM index,

read-locking blocks as we need them, to find the tuples of INCLUDES that

have "Brie" in the ITEM component. Then, with the set of order numbers that

include Brie, we enter the O# index on ORDERS, to find the tuples for these

9.9 AGGRESSIVE AND CONSERVATIVE PROTOCOLS 515

orders, again locking index blocks and blocks of the ORDERS relation as we

go

If we had to lock initially every block we might need during the execution

of the query of Figure 9.29, we would have to ask for a lock on every block of

the two relations and the two indices. Or, if we were using a hierarchy of locks,

we would take locks on the entire relations and indices. However, if we can let

the query run while we decide on the locks we want, we could begin with a lock

on the root of the ITEM index, examine it to find the next step on the path to

the Brie tuples, and so on. Typically, we would wind up locking only a small

fraction of the blocks.

The advantage to limiting the number of blocks that get locked is that we

can allow updating, insertion, and deletion to go on in parallel with our query,

as long as those operations don't require the rewriting of any of the blocks our

query accesses. Additionally, by taking locks as we need them, our query is

allowed to proceed even if, say, an ORDERS tuple we needed was being written

during the time we accessed the INCLUDES relation. D

Aggressive Protocols

The most aggressive version of two-phase locking requests a lock on an item

immediately before reading or writing the item. If an item is to be written after

reading, the read-lock is taken first and upgraded to a write-lock when needed.

Of course locks can only be released after all of the locks are taken, or we are

outside the realm of two-phase locking, and nonserializable behavior becomes

possible. Also, locks still must be released at the end if we wish to follow the

strict protocol.

As was mentioned, this aggressive behavior can lead to deadlocks, where

two or more transactions are each waiting to acquire a lock that another has,

and none can proceed. The possibility that locks will be upgraded from read to

write introduces another possibility for deadlock. For example, T\ and TI each

hold a read-lock on item A and cannot proceed without upgrading their locks

to a write-lock, as each wants to write a new value of A. There is a deadlock,

and either 7', or '!"•' must abort and run again.

Incidentally, one might suppose that we could avoid deadlocks by the trick

of ordering the items and having each transaction lock items in order. The

problem is that when running transactions like Figure 9.29 aggressively, we

cannot choose the order in which many of the blocks are locked. We have to

traverse the index in the way it was designed to be traversed, for example. If

the index is, say a B-tree, we could order the blocks top-to-bottom, so locking

would occur in the right order, but how to we decide on the order for the index

on ITEMS, relative to the index on O# for ORDERS? If we place the latter

first, Figure 9.29 cannot get its locks in the right order. If we place the former

first, then we have problems with a query that runs in the opposite direction

516 TRANSACTION MANAGEMENT

from Figure 9.29, e.g., "find all the items ordered by Zack Zebra."

Choosing an Aggressive or Conservative Protocol

Suppose that the nature of items and transactions is such that the chances of two

transactions trying to lock the same item is very small. Then the probability of

deadlock is very likely to be small, and an aggressive protocol is best. Aborting

transactions will not reduce throughput by much, and by being aggressive we

are avoiding the excess locking and unnecessary transaction delay that was

illustrated in Example 9.21.

On the other hand, suppose that the typical transaction locks a large

enough fraction of the items that unavailable locks are the norm rather than

a rare occurrence. In this case, there is a high probability that a transaction

will be involved in a deadlock, and if we are too aggressive, the probability that

any given transaction will complete is small. Thus, the cost in wasted cycles

may be too great, and a conservative protocol can easily turn out to be more

efficient.

9.10 RECOVERY FROM CRASHES

In Section 9.8 we considered what must be done to handle single transactions

that fail. Now, we must consider the more difficult cases of software and hard

ware failure. Such failures come in two degrees of seriousness, depending on

what is lost. Memory can be divided into volatile storage, whose contents will

not survive most failures such as loss of power, and stable storage, which can

survive all but the most serious physical problems such as a head crash on a

disk or a fire. Memory and cache are examples of volatile storage, while disks

and tapes are stable. In what follows, we shall often use "secondary storage"

as a synonym for "stable storage," and "main memory" may be regarded as

meaning "volatile storage."

We shall refer to loss of volatile storage only as a system failure, while loss

of stable storage is termed a media failure. A database system that does not

lose data when a failure of one of these types occurs is said to be resident in

the face of that kind of failure.

The Log

The most common tool for protecting against loss of data in the face of system

failures is the log or journal, which is a history of all the changes made to the

database, and the status of each transaction. That is, the following events are

recorded by appending records to the end of the log.

1. When a transaction T initiates, we append record (T, begin).

9.10 RECOVERY FROM CRASHES 517

2. When transaction T asks to write a new value v for item A, we first append

record (T, A,v). If there is the possibility that we shall have to undo

transactions, as we discussed in Example 9.18, then this record must also

include the old value of A. Also, if item A is a large object, such as a

relation or memory block, we would be better off letting v be an encoding

of the changes in A (e.g., "insert tuple ^") than the entire new value of A.

3. If transaction T commits, we append (T, commit).

4. If transaction T aborts, we append (T, abort).

Example 9.22: The following is really an example of how a log could be

used to handle transaction abort, but it will illustrate several points about logs

and system failures. Suppose we execute the fourteen steps of Figure 9.28,

after which T\ aborts. Since a system that allows the schedule of Figure 9.28

evidently is not using strict two-phase locking, we must allow for the fact that

rollback of transactions is possible, and therefore, when we write new value v

for an item A that had old value w, we write the record (T, A, io, v). To allow

actual values to be computed, we shall assume that item A starts with the value

10.

Figure 9.30 shows the records written into the log and indicates the step at

which the log entry is written. As we shall see, it is essential that the log entry

be written before the action it describes actually takes place in the database.

n

Step Entry

Before (1) (7\, begin)

(T1tA,10,9)

(T2, begin)

(T2,-4,9,18)

(T2, commit)

(Zi, abort)

(4)

Before (7)

(11)

(12)

After (14)

Figure 9.30 Log entries for Figure 9.28.

Example 9.22 also suggests how the system could use the log to recover

from the failure which we suppose happened after step (14) of Figure 9.28. It

will also suggest some of the problems faced when we do not use the strict

protocol. First, we examine the log and discover that T\ has aborted, and

therefore we must roll back the database to its state before T\ began. It is not

hard to find the record (Ti, begin) by scanning backwards from the end of the

log. We can also find the record (7\, A, 10, 9) and discover that 10 is the value

that must be restored to A.

518 TRANSACTION MANAGEMENT

What is not so obvious is that T2 must be redone. Although evidently T2

wrote A, the log does not record that T^ read A after T\ wrote A. Thus, if we

are going to deal with cascading rollback, we need to record read actions as well

as write actions in the log. Worse, we now have to redo T2 with the proper value

of A, which is 10, in place of the value 9 that it used before. However, while we

have the record (T2, begin) on the log, and TI is presumably a unique identifier

for that transaction, we don't know exactly what code T2 represents. Thus, if we

are going to redo T2 we need to keep an indication of what procedure underlies

the transaction T2. Moreover, we need to keep that code around indefinitely,

since there is no limit to how much time could elapse between the running of a

transaction and the discovery that it was involved in a cascading rollback.

Some Efficiency Considerations

Recall from Section 6.1 that the cost of reading and writing data found on

secondary storage is primarily the cost of moving blocks between main and

secondary storage. Since only secondary storage is stable, whenever we want

the ability to recover from system failures we must keep data on secondary

storage, even if the database is small enough that it could fit completely in

main memory. Typically, blocks of the database are moved in and out of main

memory, and the system remembers in a page taWe the blocks that are currently

in main memory. The portion of the system that moves blocks (pages) in and

out of main memory is often termed the page manager, and the strategy it uses

to decide on the page that must be sent back to secondary storage when space

for a new page is needed we call the paging strategy.

A block B of the database, once read into main memory, may be used for

many reads and writes before it is written out into secondary storage again.

That will occur either because

1. We are lucky, and some general-purpose paging strategy left B in main

memory for a long time, or

2. A special-purpose paging strategy used by the database system has rec

ognized that B is likely to be used several times and elected to keep it in

main memory.

When we keep a log, we have, in effect, two copies of the database. On

updating an item, we have a choice of writing the item itself into secondary

storage or writing the corresponding log entry into secondary storage, or both.

Before we take one of these steps, the change will be lost if the system crashes.

For efficiency's sake, we would like to write only one into secondary storage,

but which one?

A monent's thought tells us we are frequently better off writing the log into

stable storage. The reason is that the log is created as a stream of data, and we

can store many log records, say 10-100, on a single block. If we have n write

9.10 RECOVERY FROM CRASHES 519

records per log block, then we need to do only 1/nth as much block writing as

if we wrote the block of the affected item each time a write occurred. Of course,

the paging strategy will probably cause some fraction of the database blocks to

be written out anyway, during the time it takes to fill up one log block. Yet

we are still likely to save time if we write log blocks into stable storage as they

are created (or after each transaction, which we shall see is required) and write

database blocks into stable storage only when required by the paging manager.

A Resilient Protocol

We are now ready to discuss a protocol that is resilient in the face of sys

tem failures. There are several other methods in use, but this one is probably

the simplest to understand and implement; others are mentioned in the bibli

ographic notes. This protocol is called the redo protocol, because to recover

from system failure we have only to redo certain transactions, never undo them

as was the case in Example 9.22.

The redo protocol is a refinement of strict two-phase locking. On reaching

the commit point of a transaction T, the following things must happen in the

order indicated.

1. For each item A for which a new value, v, is written by the transaction T,

append (T, A, v) to the log.

2. Append the record (T, commit) to the log.

3. Write to stable storage the block or blocks at the end of the log that have

not yet been written there. At this point, T is said to be committed.

4. For each item A, write its new value v into the place where A belongs

in the database itself. This writing may be accomplished by bringing the

block for A to main memory and doing the update there. It is optional to

write the block of A back into stable storage immediately.

Example 9.23: In Figure 9.31 we see a transaction T following the redo pro

tocol, and next to T we see the log entries made in response to T. The commit

point is reached between steps (3) and (4); we assume all calculations in the

workspace are performed between steps (3) and (4). The log is written into

stable storage between steps (6) and (7). CH

The "Redo" Recovery Algorithm

When a system failure occurs, we execute a recovery algorithm that examines

the log and restores the database to a consistent state, i.e., one that results from

the application of some sequence of transactions. It is also necessary that any

locks held at the time of the crash be released by the system, since either the

transaction that held them will be reexecuted and will ask for them again, or

the transaction has already committed but not released its locks. In the latter

case, the transaction will not be resumed, and so will not have an opportunity

520 TRANSACTION MANAGEMENT

(1) (T, begin)

(2) LOCK A

(3) LOCK B

(4) (T,A,v)

(5) (T,B,w)

(6) (T, commit)

(7) WRITE A

(8) WRITE B

(9) UNLOCK A

(10) UNLOCK B

Figure 9.31 Transaction following the redo protocol.

to release the locks itself.

If transactions follow the redo protocol, we can repair the database by

executing the following simple redo algorithm. Examine the log from the most

recent entry back into history, and determine which transactions T have a log

record (T, commit). For each such transaction T we examine each write-record

(T, A, v) and write the value v for the item A into the database that exists in

stable storage. Note that v may already be the value of A at that time, since

the original execution of T may have progressed far enough that the change

reached stable storage.

Transactions that did not yet write their commit record in the log, or

that wrote an abort record, are ignored by the redo algorithm; it is as if they

never ran. Observe that such transactions cannot have had any effect on the

database, either in main or secondary storage, because of the order in which

steps are taken in the redo protocol. It is not desirable that such transactions

are lost, but there is nothing more we can do given only the log with which to

create a stable state. As we have (T, begin) records in the log, we can at least

print a warning that transaction T did not complete, if we find (T, begin) but

not (T, commit).15

Once we determine which transactions committed, we can scan the log in

the forward direction. Each time we come to a record (T, A,v), where T is a

committed transaction, we write v into item A. Notice that we have no way

of telling from the log whether the copy of A belonging to the database had

already been updated to correspond to this log record. It is possible that

1. The crash occurred so soon after the (T, commit) record was placed in the

log that there was no time to update the copy of A in main memory, or

15 If we include the procedure and arguments that constituted the transaction T, along

with the begin record, we can rerun T after reestablishing a consistent state.

9.10 RECOVERY FROM CRASHES 521

2. The copy of A in main memory was updated, but the crash occurred before

the block holding A was written into stable memory.

We cannot tell whether one of these cases holds, or if the writing of A is

in fact unnecessary. However, it doesn't matter, because either way, the value

of A winds up as v in the database copy on secondary storage.16 The reason

is that we have recorded actions on the log in a way that makes their effect on

the database idempotent; that is, the effect of applying the update any positive

number of times is the same as applying it once. Consider in contrast what

would happen had we recorded actions like "add 1 to A11 on the log. This

operation is not idempotent, so we would have to know for certain whether the

update had been applied to stable storage before we allowed it to be redone.

Because that is not something we can know, we are constrained to express

updates in an idempotent way, such as by giving the new value as we have

done.

Idempotence is also important if there is another crash during the time we

are executing the redo algorithm. When the system is again operational, we

simply begin the redo algorithm again, knowing that no updates performed or

not performed during the previous attempt at recovery can affect our present

execution of the redo algorithm.

Example 9.24: Consider the steps of Figure 9.31, supposing that a system

failure occurs at some point. If the failure is prior to step (6), T will not have

committed as far as the log is concerned, so when we execute the redo algorithm,

we ignore the update steps (4) and (5). If the crash occurs immediately after

step (6), then T has committed as far as the log is concerned, and when we

recover we perform steps (4) and (5), thereby updating the values of A and

B in stable storage. Since steps (7) and (8) were never done, we are certainly

updating A and B with their values from transaction T for the first time.

If the crash occurs after step (7), then A will have been written before,

but may or may not have its value written in stable storage [the writing of

step (7) could have been in the main-memory copy of A's block only]. Either

way, the correct thing will be done when the redo algorithm performs the write

indicated by step (4). Similarly, if the crash occurs later than step (7), we store

the correct values in A and B, regardless of whether they were correct already.

Finally, note that during recovery, all locks held by transactions must be

released. If not, a crash occurring between steps (6) and (9), followed by recov

ery, would leave locks on A and B, even though transaction T had completed.

D

16 That is, unless a later update to A appears in the log.

522 TRANSACTION MANAGEMENT

Checkpointing

One might suppose from our example that recovery only involved scanning the

log for entries made by the most recent transaction or a few recent transactions.

In truth, there may be no limit to how far back in the log we must look. We

need to find a point far enough back that we can be sure any item written

before then has had its main-memory copy written into stable storage.

Unfortunately, depending on the paging strategy used, it may be hard or

easy to find such a point, or to be sure one exists. In the extreme case, the

entire database fits into main memory, and there is thus no reason why the page

manager ever needs to write a page onto secondary memory. Thus, a database

system needs occasionally to perform a checkpoint operation, which guarantees

that any prior writes have been copied to stable storage. The easiest way to

perform checkpointing is to do the following.

1. Temporarily forbid the initiation of transactions and wait until all active

transactions have either committed or aborted.

2. Find each block whose main-memory copy has been updated but not re-

copied into secondary memory. A bit associated with each page in the page

table can warn us that the page has been modified.

3. Copy the blocks found in (2) into secondary storage.

4. Append to the end of the log a record indicating that a checkpoint has

occurred, and copy the end of the log onto stable storage.

If we need to recover from a crash, we run the redo algorithm, but we only

consult the log as far back as the most recent checkpoint. In fact, the log prior

to the most recent checkpoint record will never be consulted for recovery from

a system failure, and as long as that part of the log is not needed for any other

purpose, such as to help recover from a media failure or to act as a record of

activity in case of a security violation, it can be discarded.

Example 9.25: If we decide to do a checkpoint during the time that transac

tion T of Figure 9.31 runs, we must wait until after step (10). 17 By the end of

step (10), the values of A and B have at least been written into main memory.

To perform the checkpoint, the values of A and B (and any other items that

weer updated in main memory only) are written into secondary memory. A

checkpoint record is appended to the log somewhere after step (10). If we need

to recover from a later crash, the existence of the checkpoint record will prevent

the redo algorithm from consulting the log as far back as transaction T. That

is the right thing to do, because the effects of T and previous transactions have

already appeared in stable storage, and so were not lost during the crash. CH

Evidently, checkpointing incurs some cost; not only might we have to do a

17 If a crash occurs before then, the checkpoint will not have occurred and will not be

written into the log.

9.10 RECOVERY FROM CRASHES 523

lot of writing from main to secondary storage, but we need to delay transactions

that want to initiate during the checkpoint process. Fortunately, checkpointing

does not have to occur too frequently, since as long as crashes are rare, we prefer

to spend a lot of time recovering (examining a long log) than to spend a lot

of time during normal operation protecting against a time-consuming recovery

process.

Protecting Against Media Failures

Everything we have said so far was intended to help deal with system failures,

but not with media failures, where the stable database itself is destroyed. Media

failures can result from a "head crash" of a disk, a fire, or a small child with

a large magnet running amok in the computer room; a nuclear holocaust will

also do the trick. Clearly, there is nothing that will prevent loss of data in all

these situations, but we can do better than what happens in most computer

systems, where a head crash usually results in a message

We had a head crash; all your work of

the past week has been destroyed.

In many general-purpose computer systems, the main protection against

a media failure is periodic backups, or archiving. For example, once a night a

backup copy is made of every file that has been changed since the last backup.

If a file is changed during the backup, it may or may not have its change

recorded on the backup, and nobody cares too much except the owner of the

file. That casualness is sufficient for some database systems, but there are

also some critical database applications where we must make the probability

that anything gets lost in a media failure as low as possible; electronic banking

systems and airline reservation systems are two examples.

Our principal tool for assuring resiliency against media failures is the (al

most) continuous creation of an archive copy of the entire database. If we

keep the archive copy on a set of disks distinct from those used for the "real"

database, and we keep the two sets of disks sufficiently far apart that they are

unlikely both to be destroyed at the same time, then we have good protection

against losing data irretrievably. We can modify our techniques of logging and

checkpointing to accommodate the creation of an archive copy of the database

by observing the following points.

1. The log itself must be duplicated. When we write a block of the log to

secondary memory, we must also copy that log block into the archive. If a

media failure occurs between the times that the two copies are made, then

that portion of the log will or will not survive, depending on which copy's

medium failed. The transaction whose commitment caused the attempt

to write the log into stable storage thus may or may not appear to have

committed, but that is the worst loss that can occur. On recovery, we can

524 TRANSACTION MANAGEMENT

issue a message that the transaction was lost, since we shall find a begin

record in one of the logs.

2. When checkpointing, we must make sure that any blocks that were modified

since the last checkpoint are also copied into the archive. These blocks

include those that were in main memory at the time the current checkpoint

operation started, and which therefore will be copied into the stable storage

of the database itself during the checkpoint operation. Also included are

blocks that were previously written into the stable storage of the database,

during the normal operation of the page manager. These blocks can be

found by examining the log, since the last checkpoint, for items whose

values have been written at least once.

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL

Until this section, we have assumed that the only way to assure serializable

behavior of transactions was to maintain and enforce locks on items. There are

other ways one could enforce serializability as well. As an extreme example, the

scheduler could construct the conflict graph based on all reads and writes it has

issued to active transactions, and only allow an additional access to take place

if it does not cause a cycle in that graph. While such a scheme is possible, it is

hardly practical. However, another approach has been used in practice, and it

is appropriate in situations where aggressive locking makes sense, that is, when

it is unlikely that two transactions executing at about the same time will need

to access the same item.

The general idea is to give each transaction a "timestamp," which indicates

when the transaction began. For example, the scheduler could be called when

each transaction begins and a timestamp issued then, or a timestamp could be

issued to a transaction the first time the scheduler is asked for access to any

item.

With two-phase locking, the order in which transactions reach their lock

points (obtain the last of their locks) is the serial order that is guaranteed to be

equivalent to the actual schedule. With the timestamp approach, the equivalent

serial order is simply the order of the transactions' timestamps. These two

approaches are incommensurate; a schedule could be equivalent to the lock-

point-based serial schedule and not to the timestamp-based serial schedule, or

vice-versa, as the next example shows.

Example 9.26: Consider the transactions of Figure 9.32. Since T^ initiated

before T\, the timestamp-based serial order is T2,T\. On the other hand, if

locking is used to serialize these transactions, then evidently, TI got a lock on

C before T2 did. Thus, T\ reached its lock point before step (3), while T2 could

not reach its lock point until after step (3). It follows that if locking is used,

the equivalent serial order is TI, TZ. Since the final value of C is the one written

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL 525

by T2, we conclude that in this case, the order based on lock points agrees with

the actual schedule. Put another way, if we use two-phase locking, the schedule

seen in Figure 9.32 is a possible schedule, but if we use timestamps to control

concurrency, we could not allow such a sequence of events.

(1) READ B

(2) READ A

(3) WRITE C

(4) WRITE C

T\ TI

Figure 9.32 Schedule serializable by locks, not timestamps.

On the other hand, consider the schedule of Figure 9.33. We can tell that

T2 did not reach its lock point until after step (7), because 7\ had a lock on

B until that time, and therefore, T2 could not have locked B until that time.

However, T3 finished by step (6), and therefore reached its lock point before T2

did. Thus, in a serial schedule based on lock points, T3 precedes T2. However,

evidently, in a serial order based on the time of initiation, T2 precedes T3.

Which of these orders can be correct? Only the order T2, T3 could appear in an

equivalent serial schedule, because in Figure 9.33, T3 writes a value of A after

T2 reads A, and if the serial order had T3 before T2, then T2 would erroneously

read the value written by T3. Thus, Figure 9.33 is an example of a schedule

we could see if timestamps were used to control concurrency, but not if locking

were used. D

(1) READ A

(2) READ A

(3) READ D

(4) WRITE D

(5) WRITE A

(6) READ C

(7) WRITE B

(8) WRITE B

Figure 9.33 Schedule serializable by timestamps, not locks.

526 TRANSACTION MANAGEMENT

The point of Example 9.26 is that neither locking nor timestamps can

be said to dominate the other. Each permits some schedules that the other

forbids. Since we generally want a concurrency control method that permits as

many serializable schedules as possible, we cannot rule out either timestamps

or locking on the basis of the set of schedules they permit.

Establishing Timestamps

If all transactions must go through the scheduler to get their timestamps, then

timestamps may be created by having the scheduler keep a count of the number

of transactions it has ever scheduled, and assigning the next number to each

transaction in turn. Then, we can be sure that no two transactions get the same

timestamp, and that the relative order of timestamps corresponds to the order

in which the transactions initiated. An alternative approach is to use the value

of the machine's internal clock at the time a process initiates, as that process'

timestamp.

If there are several processes that can assign timestamps, e.g., because:

1. The database system is running on a machine with more than one proces

sor, and several incarnations of the scheduler are possible, or

2. The database is distributed over several machines, as discussed in Chapter

10,

then we must choose a unique suffix of some fixed length for each processor, and

we must append this suffix to each timestamp generated by that processor. For

example, if there were no more than 256 processors, we could append an 8-bit

sequence to each timestamp, to identify the processor. We must also arrange

that the counts or clocks used by each processor remain roughly in synchronism;

how to do so is explained in Section 10.6.

Enforcing Serializability by Timestamps

Now, we must consider how timestamps are used to force those transactions

that do not abort to behave as if they were run serially. The particular scheme

we describe is analogous to a locking scheme using read- and write-locks; we

could have a timestamp-based system that did not distinguish between reading

and writing (analogous to the simple locking scheme of Section 9.2). We could

even have a timestamp-based scheme that distinguished more kinds of access,

such as incrementation, as we discussed in Example 9.10.

In the read/write scheme, we associate with each item in the database

two times, the read-time, which is the highest timestamp possessed by any

transaction to have read the item, and the write- time, which is the highest

timestamp possessed by any transaction to have written the item. By so doing,

we can maintain the fiction that each transaction executes instantaneously, at

the time indicated by its timestamp.

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL 527

We use the timestamps associated with the transactions, and the read- and

write-times of the items, to check that nothing physically impossible happens.

What, we may ask, is not possible?

1. It is not possible that a transaction can read the value of an item if that

value was not written until after the transaction executed. That is, a

transaction with a timestamp t\ cannot read an item with a write-time of

<2, if t2 > t\. If such an attempt is made, the transaction with timestamp

ti must abort and be restarted with a new timestamp.

2. It is not possible that a transaction can write an item if that item has its

old value read at a later time. That is, a transaction with timestamp ti

cannot write an item with a read-time t^, if t^ > t\. The transaction with

timestamp <i must abort and be restarted with a new timestamp.

Notice that the other two possible conflicts do not present any problems.

Not surprisingly, two transactions can read the same item at different times,

without any conflict. That is, a transaction with timestamp of t\ can read an

item with a read-time of t2, even if t^ > t\. Less obviously, a transaction with

timestamp t\ need not abort if it tries to write an item A with write-time t2,

with <2 > t\. We simply do not write anything into A. The justification is

that in the serial order based on timestamps, the transaction with timestamp

ti wrote A, then the transaction with timestamp t^ wrote A. However, between

ti and <2, apparently no transaction read A, or else the read-time of A would

exceed t\ when the transaction with timestamp t\ came to write, and that

transaction would abort by rule (2).

To summarize, the rule for preserving serial order using timestamps is the

following. Suppose we have a transaction with timestamp t that attempts to

perform an operation X on an item with read-time tr and write-time tw.

a) Perform the operation if X = READ and t > tw or if X = WRITE, t > tr,

and t >tw. In the former case, set the read-time toti{t>tr, and in the

latter case, set the write-time to t if t > tw.

b) Do nothing if X = WRITE and tr < t< tw.

c) Abort the transaction if X = READ and t < tw or X = WRITE and t < tr.

Example 9.27: Let us review the transactions of Figure 9.1, which are shown in

Figure 9.34, with the read-time (RT) and write-time (WT) of item A indicated

as it changes. Suppose that TI is given timestamp 150 and T2 has timestamp

160. Also, assume the initial read- and write-times of A are both 0. Then A

would be given read-time 150 when T\ reads it and 160 at the next step, when

it is read by T^. At the fifth step, when TI writes A, T2s timestamp, which is

160, is not less than the read-time of A, which is also 160, nor is it less than the

write-time, which is 0. Thus the write is permitted, and the write-time of A is

set to 160. When 7\ attempts to write at the last step, its timestamp, which

is 150, is less than the read-time of A (160), so T\ is aborted, preventing the

528 TRANSACTION MANAGEMENT

TI T2 A

150 160 RT=0

WT=0

(1) READ A RT=150

(2) READ A RT=160

(3) A:=A+1

(4) A:=A+1

(5) WRITE A WT=160

(6) WRITE A

TI aborts

Figure 9.34 Transactions of Figure 9.1 using timestamps.

anomaly illustrated in Figure 9.1.

A similar sequence of events occurs if the timestamp of TI is larger than

that of T2. Then, T2 aborts at step (5). D

Example 9.28: Figure 9.35 illustrates three transactions, with timestamps

200, 150, and 175, operating on three items, A, B, and C, all of which are

assumed to have read and write-times of 0 initially. The last three columns

indicate changes to the read-times and write-times of the items.

B

200 150 175 RT=0

WT=0

RT=0

WT=0

RT=0

WT=0

(1) READ B RT=200

(2) READ A RT=150

(3) READ C RT=175

(4) WRITE B WT=200

(5) WRITE A WT=200

(6) WRITE C

T2 aborts

(7) WRITE A

Figure 9.35 Transactions controlled by timestamps.

At step (6), an attempt to write C is made. However, the transaction doing

the writing, T2, has a timestamp of 150, and the read-time of C is then 175.

Thus, TI cannot perform the write and must be aborted. Then, at step (7), TS

tries to write A. As T3 has a timestamp, 175, that is bigger than the read-time

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL 529

of A, which is 150, T3 need not abort. However, the write-time of A is 200,

so the value of A written by T3 is not entered into the database, but rather is

discarded. D

Maintaining Timestamp Data

When we use locks, we save a lot of time and space by keeping in the lock table

only facts about currently locked items. That is, there is a "default" status

of "no locks," which applies to any item not mentioned in the lock table. In

contrast, it appears that every item will eventually be given both a read-time

and a write-time, other than the initial time (which was 0 in Examples 9.27 and

9.28, e.g.). We might then suppose that the table of timestamps must include

entries for all items, or that the timestamps themselves must be stored with

the items.

If the number of items is small, and the items themselves are large, then

storing timestamps with items is feasible. However, if items are small, as often

they are, we need to take advantage of a default value that will cover most

of the items, and avoid storing the items with default timestamps explicitly.

The "trick" is to realize that any item's read- or write-time that is less than

the timestamp of all the active transactions may as well be — oo, because the

serialization rule for timestamps only cares about the relative values of the

transaction's timestamp and the read- and write-times of the items it accesses.

Thus, we can maintain the earliest active timestamp, updating it as transactions

abort and commit, thereby becoming inactive. When the earliest active time-

stamp increases, we can delete the timestamp entries that are earlier than the

new earliest active timestamp. The deleted timestamps become —oo, which by

the argument above does not change the decisions made by a timestamp-based

scheduler.

Logs and Cascading Rollback

The scheme described above only works if we assume no transaction aborts.

The problem is that a transaction may write a new value for an item, and later

abort, leaving the value it wrote to be read by some other transaction. The

transaction that read this "dirty" data must abort, and transactions that read

what this transaction wrote must abort, and so on. The situation is one of

cascading rollback, as discussed in Section 9.8.

We can handle this problem if we maintain a log, as described in the

Section 9.10; the log is essential anyway, if our system is to be resilient. As

in Example 9.22, when cascading rollback is a prospect, we need to append a

record with the old value as well as the new, whenever a new value is written.

If the likelihood that two transactions initiating at about the same time access

the same item is low, then cascading rollback will be rare, and performance

530 TRANSACTION MANAGEMENT

will not suffer seriously because of it. Since the timestamp concurrency control

algorithm that we described here is an aggressive strategy, we probably only

want to use it when access conflicts are rare anyway.

When we allow writing into the database before the commit point of

a transaction is reached, we also face problems if we must recover from a

system failure; it matters not whether concurrency control is maintained by

timestamps, locking or another mechanism. We still need to place records

(T, begin), and (T, commit) or (T, abort) on the log for each transaction T.

However, it is no longer adequate to simply redo the transactions T for which

(T, commit) appears. If that record does not appear, then we also must undo

any writes of T, using the old value that was placed in the log record for this

purpose. Further, undoing T may result in cascading rollback, just as if T had

aborted.

Strict Timestamp-Based Concurrency Control

To avoid cascading rollback, and to allow the redo algorithm of Section 9.10 to

suffice for recovery from system failures, we can adopt may of the ideas used for

locking-based algorithms. First, we can perform all updates in the workspace,

and write into the database only after the transaction reaches its commit point.

This approach is analogous to strict two-phase locking, as discussed in Section

9.8, and we shall refer to this protocol as "strict" as well. As in Section 9.10, we

perform our writes in two stages. First a record is written into the log, which

is copied to stable storage; second the value is written into the database itself.

Also as before, a commit record is written on the log between the two stages.

When we use timestamps, there is a subtlely that strictness introduces.

We abort transaction T if we try to write an item A and find the read-time

of A exceeds T's timestamp. Thus, the checking of timestamps must be done

prior to the commit point, because by definition, a transaction may not abort

after reaching its commit point.

Suppose, for example, T has timestamp 100, and T decides to write A. It

must check that the read-time of A is less than 100, and it must also change

the write-time of A to 100; if it does not change the write-time now, another

transaction, say with a timestamp of 110, might read A between now and the

time T reaches its commit point. In that case, T would have to check again on

the read-time of A (which is now 110) and abort after T thought it reached its

commit point.

However, now we are faced with the situation where T has changed the

write-time of A, but has not actually provided the database with the value

supposedly written at that time; T cannot actually write the value, because T

still might abort, and we wish to avoid cascading rollback. The only thing we

can do is to give transaction T what amounts to a lock on A that will hold

between the time T changes the write-time of A and the time T provides the

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL 531

corresponding value. If T aborts during that time, the lock must be released

and the write-time of A restored.18

There are two different approaches to making the checks that are needed

when a transaction T read or writes an item A:

1. Check the write-time of A at the time T reads A, and check the read-time

of A at the time T writes the value of A in its workspace, or

2. Check the read-time of A (if T wrote A) and the write-time of A (if T read

A) at the time T commits.

In either case, when writing A, we must maintain a lock on A from the time

of the check to the time the value is written. However, in approach (1), these

locks are held for a long time, while in (2) the lock is held for a brief time,

just long enough for the other items written by A to have similar checks made

on their read-times. On the other hand, strategy (2), often called optimistic

concurrency control, checks timestamps later than (1), and therefore will abort

more transactions than (1).

To summarize, the steps to be taken to commit a transaction running under

the optimistic strategy, item (2) above, are the following.

t) When the transaction T finishes its computation, we check the read-times

of all items T wants to write into the database; "locks" are taken on all

these items. If any have a read-time later than the timestamp of T, we

must abort T. Also check the write-times of items read by T, and if any

are too late, abort T. Otherwise, T has reached its commit point.

«) Write T's values into the log.

iii) Append a commit record for T to the log and copy the tail of the log into

stable storage.

iv) Write T's values into the database.

u) Release the "locks" taken in step (t).

If we use strategy (1), then the only difference is that step (t) is not done.

Rather, the "locks" will have been taken, and the checks made, during the

running of the transaction.

A Multiversion Approach

To this point we have assumed that when we write a new value of an item,

the old value is discarded. However, there are some applications where it is

desirable to keep the history of an item available in the database. For example,

a hospital may wish to store not only a patient's temperature today, but his

temperature throughout his stay. The hospital may in fact wish to retain records

18 If we do not restore the write-time, then a transaction with timestamp 90, say, might

assume it did not have to write its value of A because its value would be overwritten

before being read in the equivalent serial schedule.

532 TRANSACTION MANAGEMENT

of a patient's condition indefinitely, because that information is relevant in the

event of future treatment.

Even if we do not wish to keep old values indefinitely, keeping them for a

while can help reduce the need for transaction abort at a small cost in extra

space. Each time an item is written (with the exception noted below), we create

a new version and give it a write-time equal to the timestamp of the transaction

doing the writing. When a transaction with timestamp t wishes to read an item

A, it finds the version of A with the highest write-time not exceeding t and reads

that version.

The only way we can have a problem is if a transaction T with timestamp t

wishes to write A, and we find that there is a version Ai of A with a write-time

less than t and a read time greater than t. For the transaction that read Ai had

a timestamp bigger than t, and therefore should have read the value written by

T, which has timestamp t, rather than the earlier version that it did read. The

only way to fix things now is to abort T.

Example 9.29: The use of multiple versions does not help with the problem

of the transactions of Figure 9.1, which we discussed in connection with time-

stamps in Example 9.27 (Figure 9.34). Let A0 be the version of A which exists

before the transactions 7\ and T^ run. At steps (1) and (2), the read-time of AQ

is raised first to 150, then 160. At step (5), T2 writes a new version of A, call it

AI, which gets write-time 160. At step (6), T\ tries to create a new version of A,

but finds that there is another version, AQ, with a read-time (160) bigger than

TI'S timestamp (150) and a write-time (0) less than 7\'s timestamp. Thus, 7\

must still abort. D

100 200 RT=0

WT=0

RT=0

WT=0

(1) READ A RT=100

(2) READ A RT=200

(3) WRITE B WT=200

(4) READ B RT=100

(5) WRITE A WT=100

Figure 9.36 A multiversion schedule.

Example 9.30: Consider the schedule of Figure 9.36. Two transactions, 7\

with timestamp 100 and T2 with timestamp 200 access items A and B. The

initial versions of these items we call AO and BQ, and we assume these have

read- and write-times of 0. T? creates a new version of B with write-time 200,

9.11 TIMESTAMP-BASED CONCURRENCY CONTROL 533

and TI creates a new version of A with write-time 100; we call these B\ and

AI, respectively. The advantage of multiple versions is seen at step (4), where

TI reads B. Since TI has timestamp 100, it needs to see the value of B that

existed at that time. Even though TI wrote B at step (3), the value BQ, which

existed from time 0 to time 199, is still available to TI, and this value is the

one returned to TI by the scheduler. D

Multiversion scheduling is the most conservative variety of timestamp-

based concurrency control that we have covered. It clearly causes fewer aborts

than the other approaches studied in this section, although it causes some aborts

that conservative two-phase locking would not cause (the latter causes none at

all). The disadvantages of multiversion scheduling are that:

1. We use extra space,

2. The retrieval mechanism is more complicated than for single-version meth

ods, and

3. The DBMS must discover when an old version is no longer accessible to

any active transaction, so the old version can be deleted.

We leave the discovery of an algorithm to achieve (3) as an exercise.

Summary

There are four variants of timestamp-based concurrency control that we have

considered in this section.

1. Unconstrained, with cascading rollback possible.

2. Check read- and write-times when an item is read from the database or

written in the workspace.

3. Check read- and write-times just before the commit point (optimistic con

currency control).

4. Multiversion method. Here we could handle the read- and write-time

checks as in any of (l)-(3); we shall assume (2).

The relative advantages of each are summarized in Figure 9.37.

Restart of Transactions

The timestamp-based methods we have covered do not prevent livelock, a situ

ation where a transaction is aborted repeatedly. While we expect transactions

to be aborted rarely, or the whole approach should be abandoned in favor of

the locking methods described earlier, we should be aware that the potential

for cyclic behavior involving only two transactions exists.

Example 9.31: Suppose we have transaction TI that writes B and then reads

A, while T2 writes A and then reads B.19 If TI executes, say with timestamp

19 These transactions may read and write other items, so writing before reading need not

534 TRANSACTION MANAGEMENT

Locks Abort Rollback Weak Point

Unconstrained None Possible Cascading

Aborts

Rollback

Check when read Long

or write occurs Time

Possible Redo Locking

Algorithm

Optimistic Short

Time

More Likely Redo

Algorithm

Aborts

Multiversion None Less Likely Redo Flushing Use-

Algorithm less Values

Figure 9.37 Advantages of different timestamp methods.

100, and Tj executes with timestamp 110, we might find that T2 wrote A before

TI read it. In that case, 7\ would abort, because it cannot read a value with a

write-time greater than its own timestamp. If we immediately restart TI, say

with timestamp 120, it might write B before T2 reads it, causing TI to abort

and restart, say with timestamp 130. Then the second try at T2 might write

A before the second try of TI reads A, causing that to abort, and so on. The

pattern is illustrated in Figure 9.38. D

B

100 110 120 130 RT=0

WT=0

RT=0

WT=0

(1) WRITE B WT=100

(2) WRITE A WT=110

(3) READ A

(4) WRITE B WT=120

(5) READ B

(6) WRITE A WT=130

(7) READ A

Figure 9.38 Indefinite repetition of two conflicting transactions.

The solution to the problem indicated by Example 9.31 is not easy to find.

Probably the simplest approach is to use a random number generator to select a

random amount of time that an aborted transaction must wait before restarting.

mean that the transactions are unrealistic.

EXERCISES 535

In principle, new transactions could arise forever to cause a given transaction

to abort each time it is run. However, if few transactions conflict, then the

probability of having to restart a given transaction k times shrinks as cfc, where

c is some constant much less than one. Further, the random delay each time

a transaction aborts guarantees that the probability that a cyclic behavior like

Figure 9.38 will go on for k cycles shrinks in the same fashion.

EXERCISES

9.1: In Figure 9.39 we see a schedule of four transactions. Assume that write-

locks imply reading, as in Section 9.4. Draw the serialization graph and

determine whether the schedule is serializable.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

RLOCK A

WLOCK B

UNLOCK A

UNLOCK B

RLOCK B

RLOCK A

WLOCK C

UNLOCK A

UNLOCK B

UNLOCK C

RLOCK A

WLOCK A

UNLOCK A

RLOCK B

UNLOCK B

WLOCK A

UNLOCK A

TI T3

Figure 9.39 A schedule.

9.2: Repeat Exercise 9.1 under the assumptions of Section 9.6, where a write-

lock does not imply that the value is read.

* 9.3: In Figure 9.40 are two transactions. In how many ways can they be sched

uled legally? How many of these schedules are serializable?

536 TRANSACTION MANAGEMENT

LOCK A LOCK B

LOCK B UNLOCK B

UNLOCK A LOCK A

UNLOCK B UNLOCK ^

2i T2

Figure 9.40 Two schedules.

9.4: Give an example of why the assumption of Section 9.2, that a unique

function can be associated with each time that a transaction locks an item,

is too strong. That is, give a schedule of transactions that Algorithm 9.1

says is not serializable, but that actually has the same effect as some serial

schedule.

9.5: Prove that if a transaction on a tree of items does not obey the tree pro

tocol, then there is some transaction (that, in fact, does obey the tree

protocol) such that the two transactions have a legal schedule that is not

serializable.

9.6: Suppose we are using timestamp-based concurrency control. Reinterpret

the operations of Figure 9.39 as if RLOCK were a READ operation, WLOCK

were WRITE, and the UNLOCK steps did not exist. Which, if any of the four

transactions in Figure 9.22 abort on the assumption that the timestamps

of TI through Tt are respectively

a) 300, 310, 320, and 330.

b) 250, 200, 210, and 275.

In each case, what are the final read and write times of A, B, and C1

* 9.7: Suppose we have three transactions that obey the tree protocol on the

hierarchy of Figure 9.25 in Section 9.7. The first transaction locks A, B, C,

and E; the second locks C and F; the third locks B and E. In how many

ways can these transactions be scheduled legally?

** 9.8: A generalization of the warning protocol of Section 9.7 allows both read-

and write-locks and warnings regarding these locks, with the obvious se

mantics. There are thus in principle sixteen lock modes an item may be

given by a transaction, corresponding to the sixteen subsets of two kinds

of lock and two kinds of warning. However, some combinations are use

less. For example, it is not necessary to place a read-warning and a write-

warning on the same item, since a write-warning forbids any action that a

read-warning does. In how many different lock modes might a transaction

wish to place an item? Give the compatibility matrix for these lock modes.

For example, two transactions can each place a read-warning on an item.

EXERCISES 537

but one cannot place a read-lock when the other has a write-warning.

9.9: Two lock modes are equivalent in a given compatibility matrix if they have

identical rows and columns. Show that there are only five inequivalent lock

modes in your table from Exercise 9.8.

* 9.10: Suppose a set of items forms a directed, acyclic graph (DAG). Show that

the following protocol assures serializability.

t) The first lock can be on any node.

it) Subsequently, a node n can be locked only if the transaction holds a

lock on at least one predecessor of n, and the transaction has locked

each predecessor of n at some time in the past.

* 9.11: Show that the following protocol is also safe for DAG's.

i) The first lock can be on any node.

tt) Subsequently, a transaction can lock a node only if it holds locks on a

majority of its predecessors.

* 9.12: Show that two-phase locking is necessary and sufficient for serializability in

the model of Section 9.4 (read-locks and write-locks that imply reading).

9.13: In Example 9.10 we claimed that incrementation does not commute with

either reading or writing. Give examples to show that is the case.

* 9.14: Instead of storing locks in a lock table, we could store locks with the items

themselves. What problems would this approach cause? Hint: Consider

the number of block accesses needed, on the assumption that a lock table

fits in main memory, but the entire database does not. Also, what data

structure would be necessary to store locks with items, assuming a lock

mode like READ, which can be held by several transactions at once, were

used?

* 9.15: Timestamps could also be stored with items instead of in a table. To

what extent do the disadvantages of doing so with locks (as mentioned in

Exercise 9.14) apply to timestamps?

* 9.16: Let us consider a database with a relation R representing accounts at a

bank. Suppose that items are tuples of R; i.e., each tuple is locked sep

arately. There are many transactions that write new values of the BAL

ANCE attribute of R, so many that it is unlikely for there to be a time

when none of the tuples of R are write-locked. Occasionally, we wish to

run a long transaction that sums all the balances of //. Some potential

problems are:

i) Lack of serializability; i.e., the sum of the balances does not reflect the

situation that existed at any time in the history of the bank,

it) Livelock; i.e., the sum-of-balances transaction has to wait indefinitely.

538 TRANSACTION MANAGEMENT

tit) Long delays; i.e., the short transactions must wait for the sum-of-

balances to complete.

i«) Cascading rollback in case of system failure.

v) Inability to recover from system (not media) failures.

Indicate which of these problems may occur if we use each of the following

concurrency-control strategies.

a) Strict two-phase locking, with locks taken at the time a transaction

needs them.

b) Strict two-phase locking, with all locks taken at the beginning of the

transaction.

c) Nonstrict two-phase locking, with locks taken at the time they are

needed and released as soon after the lock point as they are no longer

needed.

d) Non-two-phase locking, with locks taken immediately before reading

or writing and released immediately after reading or writing.

e) Timestamp-based, optimistic concurrency control, with timestamps

checked at the end of the transaction.

f) As in (e), but with timestamps checked when the items are read or

written.

g) A multiversion, timestamp-based scheme, with appropriate versions

read, and timestamps checked at the time of writing.

* 9.17: How do the fraction of cycles lost to aborted transactions compare in

the situation of Exercise 9.16, for the seven concurrency-control methods

listed?

* 9.18: Suppose that in the situation of Exercise 9.16 we instead used a hierarchy

of items and the "warning protocol." That is, it is possible to place a read-

or write-warning on the entire relation R. How would this approach fare

with respect to problems (t)-(«) mentioned in Exercise 9.16?

* 9.19: Extend the idea of warnings on a hierarchy of items to timestamp-based

concurrency control.

* 9.20: In Example 9.20 we mentioned that it was possible for transaction 7\

to wait at the beginning of the queue forever, if locks could be given to

following transactions on the queue, should all locks that such a transaction

needs be available. Give an example of such a situation.

9.21: In Figure 9.41 is a list of transactions and the items they lock. We suppose

that these five transactions become available to initiate in the order shown.

TI, the first to initiate, finishes after T3 becomes available but before T4

does. No other transaction finishes until after all five become available.

Suppose we use the conservative, deadlock- and livelock-avoiding protocol

of Theorem 9.7. Indicate the order in which the transactions actually

EXERCISES 539

Transaction Locks Items

Ti {A,B}

T2 {A,C}

T3 {B,C}

T4 {B}

Ts {C}

Figure 9.41 Transactions for Exercise 9.20.

initiate and the queue at each step.

* 9.22: Suppose we have a database that occupies 10,000 blocks, and 1,000 blocks

will fit in main memory. Also assume each transaction reads and writes in

10 blocks, with all blocks equally likely to be accessed. The paging strategy

is to write a random block back into secondary memory whenever space

for a new block is needed.

a) What is the average number of blocks per transaction read or written

to or from main memory, if we copy into secondary storage all blocks

accessed by a transaction at the time that transaction commits?

b) Repeat (a) on the assumption that we only write blocks into secondary

storage if they are thrown out of main memory by the paging strategy.

c) Suppose we want to minimize the total number of block accesses, in

cluding both normal operation and the work that must be done reading

the log and redoing transactions. Each log block may be assumed to

hold the records for five transactions. What is the optimal number of

transactions to wait between checkpoints, assuming a system failure

occurs after every 105 transactions?

9.23: Verify that T2 aborts in Figure 9.34 if TI has a larger timestamp than TI.

9.24: Does the multiversion approach of Section 9.11 solve the problem of the

transactions in Figure 9.1 if T2 has a smaller timestamp than T\!

* 9.25: Suggest an appropriate data structure for maintaining read- and write-

times, and deleting those that are earlier than the timestamp of the earliest

active transaction.

9.26: Does the schedule of Figure 9.36 succeed (no transaction aborts) if single

versions of items are used? Show what happens when the transactions are

run.

* 9.27: Give an algorithm to tell when an old version in a multiversion system is

no longer necessary.

540 TRANSACTION MANAGEMENT

BIBLIOGRAPHIC NOTES

Much of the theory and practice of transaction management was first organized

in the survey by Gray [1978]. Papadimitriou [1986] is an excellent summary of

the theory of concurrency control in database systems, and Bernstein, Hadzi-

lacos, and Goodman [1987] is likewise an important study of the theory and

pragmatics of the subject. The organization of concurrency-control policies

into families such as "strict," "aggressive," and "conservative," which we have

followed here, comes from the latter text.

Serializability

Eswaran, Gray, Lorie, and Traiger [1976] is the origin of the notion of serial-

izability as the appropriate notion of correctness for concurrent database sys

tems. Similar ideas appeared in Stearns, Lewis, and Rosenkrantz [1976], which

includes the notion of a serialization graph.

The model of Section 9.6 and the polygraph-based serializability test are

from Papadimitriou, Bernstein, and Rothnie [1977] and Papadimitriou [1979].

Locking

The two-phase locking protocol is from Eswaran, Gray, Lorie, and Traiger

[1976].

Some recent studies of the performance of different locking policies are

found in Tay, Goodman, and Suri [1985], Tay, Suri, and Goodman [1985], and

Franaszek and Robinson [1985].

Lock Modes

The theory of lock modes is discussed in Korth [1983]. Stonebraker [1986]

discusses the use of lock modes as a technique for implementing more expressive

query languages, such as logic-based languages.

Lock Granularity

The choice of lock granularity is discussed by Gray, Lorie, and Putzolo [1975]

and Reis and Stonbraker [1977, 1979].

Non-Two-Phase Locking

Two-phase locking is necessary and sufficient to assure serializability when an

abstract model of transactions, such as appeared in Sections 9.2, 9.4, and 9.6,

is used. If we model transactions in more detail, e.g., by using normal seman

tics for arithmetic operations, then we can use less restrictive protocols and

still have serializability. This theory has been developed by Kung and Pa

padimitriou [1979], Yannakakis, Papadimitriou, and Kung [1979], Yannakakis

BIBLIOGRAPHIC NOTES 541

[1982a], Papadimitriou [1983], and Yannakakis [1984].

There have also been studies of particular algorithms that apply to specific

situations. The tree protocol discussed in Section 9.7, is from Silberschatz and

Kedem [1980]. A generalized version with read- and write-locks appears in

Kedem and Silberschatz [1980]. The DAG protocol of Exercise 9.10 is from

Yannakakis, Papadimitriou, and Kung [1979], and that of Exercise 9.11 from

Kedem and Silberschatz [1979]. Further extensions are found in Buckley and

Silberschatz [1985].

Serializability for Hierarchies

The "warning protocol" is a simplification of ideas (sketched in Exercises 9.8

and 9.9) described in Gray, Putzolo, and Traiger [1976]. Carey [1983] discusses

the theory of granularity hierarchies.

Timestamp-Based Concurrency Control

The SDD-1 distributed database system (Bernstein, Goodman, Rothnie, and

Papadimitriou [1978]) implemented timestamps as a concurrency control mech

anism. Some of the theory for these methods is developed in Bernstein and

Goodman [1980b] and Kung and Robinson [1981].

Multiversion Systems

Reed [1978] was an early work proposing multilevel concurrency control. The

formal study of multiversion scheduling began with Papadimitriou and Kanel-

lakis [1984]. Later work was done by Bernstein and Goodman [1983] and Hadzi-

lacos and Papadimitriou [1985].

Predicate Locks

An interesting proposal in Eswaran, Gray, Lorie, and Triager [1976] is that

locks should be taken on predicates. For example, consider what happens in

the situation of Exercise 9.16 if, while balances are being summed, another

transaction inserts a new tuple with a new balance. That tuple wasn't locked

by the summing transaction because it didn't exist. Yet in principle, it should

have been locked; i.e., it should not have been created until after the sum

was complete. The trouble comes from our inability to lock the set of all

balances, existing or not. Hunt and Rosenkrantz [1979] discuss the complexity

of maintaining such predicate locks.

Concurrency Control for Special Structures

Concurrent access to B-trees has received considerable attention. Bayer and

Schkolnick [1977], Ellis [1980], Lehman and Yao [1981], Sagiv [1985], and Biliris

[1987] cover the subject.

544 DISTRIBUTED DATABASE MANAGEMENT

nodes could be dedicated telephone lines, for example. While it is possible that

there is a link from every node to every other, it is more likely that only a

subset of the possible links exist.

Whether we are talking about a local-area network or a more widely dis

tributed network, it should be apparent that communication between nodes is

likely to be costly. In the local-area network, the capacity is large, but small

messages such as "please grant me a lock on item An bear considerable overhead.

In a network composed of phone lines, the rate at which data can be transmitted

is low compared with the instruction-execution speed of a computer. In either

case, we are motivated to keep communication to a minimum as we execute

transactions, manage locks or timestamps, and commit transactions.

Resiliency of Networks

Naturally, a distributed database is vulnerable to a failure at any of its nodes.

The links between nodes may also fail, either because the link itself fails, or

because the computer at either end fails. We would like the distributed database

system to continue to function when a link or node fails; i.e., the system should

be resilient in the face of network failure.

One way to promote resiliency is to keep more than one copy of each item,

with different copies at different sites. If we do so, then part of the transaction

management problem for the distributed database is to guarantee that all of

the copies have the same value; more specifically, we must ensure that changes

to an item with several copies appears to be an atomic operation. That is

especially difficult if one of the copies of item A is at a node that has failed.

When a node N with a copy of A fails, we may access other copies of A; that

ability is what the redundancy provided by the multiple copies buys. When

node N eventually recovers, it is necessary that the changes made to A at the

other nodes are made at TV as well.

A more complex failure mode occurs when a link or links fail and thereby

partition the network into two or more pieces that cannot communicate. For

example, any tree becomes disconnected if a nonleaf node fails, or if any link

fails.

Example 10.1: The failure of node D in the tree of Figure 10.1 disconnects

the tree into three pieces {A, B, C}, {E}, and {F, G, H}. The failure of the link

(B,D) separates the network into two pieces, {A,B, C} and {D, E, F, G, H}.

D

Disconnection of the network makes it more difficult to keep the database

system operational. For one problem, all the copies of an item may be in one

block of the network partition, and the other blocks cannot access that item.

For another problem, in different blocks, different changes may be made to

the same item, and these changes will have to be integrated when the network

10.1 DISTRIBUTED DATABASES 545

4 E

B D^ G

C F

Figure 10.1 Tree network.

is reconnected. Thus, when designing a network, there is an advantage to

providing enough links that the network does not partition often. For example,

linking the nodes in a circle protects against disconnection in the face of the

failure of any one node or one link.

Local and Global Items

As we have seen, that which .we think of logically as an item may in fact be

composed of many fragments, distributed among the nodes. For example:

1. An item may have several identical copies, each of which is a "fragment."

For resiliency, the fragments are stored at different sites.

2. An item may be physically partitioned into several disjoint pieces. For

example, a bank may maintain one relation

ACCOUNTS(NUMBER, BALANCE)

that is partitioned so the tuples for the accounts of each branch are physi

cally located at that branch.

3. Some combination of (1) and (2) may occur. For example, backup copies of

the accounts at all the branches in a district are kept at the district office,

and a copy of the entire ACCOUNTS relation is kept at the bank's main

office.

It is, therefore, necessary to distinguish between an item in the global or

logical sense, which is the item as seen from the point of view of the database

as a whole, and local or physical items, which are the individual copies of an

item that exist in the database.1 For example, we wish to think about the

action of locking a logical item as an atomic action. In reality, the action of

taking a lock on logical item A involves taking locks on the physical copies of

A. and these lower-level actions may be separated in time, with many other

intervening actions. We must, therefore, think carefully about how the action

1 The distinction between "logical" and "physical" here should not be confused with the

use of the same terms in Section 1.2.

546 DISTRIBUTED DATABASE MANAGEMENT

of talking a logical lock is translated into taking physical locks, in such a way

that the logical lock appears to be granted as an atomic action.

Global Transactions, Local Subtransactions, and Serializability

Similarly, global transactions may be composed of many local subtransactions,

each executing at a different site, and it is the job of the database system

to assure that the global transactions behave in a serializable manner. The

notion of "serializability" in a distributed database is a natural generalization

of the definition given in Chapter 9. A schedule of transactions on a distributed

database is serializable if its effect on the logical items is the same as that of

the transactions executing serially, that is, one-at-a-time, with each in its turn

performing all of its subtransactions at all the sites before the next transaction

begins.

Example 10.2: Suppose transaction T transfers $10 from account A to account

B. Suppose also that T is initiated at node NI, copies of A exist at nodes

NZ and N3, and copies of B exist at N^ and N$. Then T must initiate two

subtransactions that deduct 10 from the physical copies of item A at TV2 and JVj,

and also must initiate two subtransactions that add 10 to the physical copies of

B at N4 and N5. Thus, the global transaction T consists of local transactions

at each of the five nodes Ni,...,N5, and the effects of these transactions must

be coordinated and made serializable. For example, the change to one copy of

an item must not be made in the permanent database if the same change to the

other copy is not guaranteed to be made eventually. That requirement holds

even if, say, AT3 fails after A is updated at TV2. In that case, we must be sure

that A will be updated at N3 when that node recovers. D

10.2 DISTRIBUTED LOCKING

Our first task, as we extend concurrency control concepts from the single-site

case to the distributed case, is to consider how locks on logical, or global, items

can be built from locks on physical, or local, items. The only thing we can do

with physical items is take a lock on a single physical copy Ai of a logical item

A, by requesting the lock from the lock manager that is local to the site of .Aj.

Whatever we do with physical copies must support the properties we expect

from locks on the logical items. For example, if we use read- and write-locks,

then we need to know that at no time can two transactions hold write-locks,

or a read- and a write-lock, on the same logical item. However, any number of

transactions should be able to get read-locks on the same logical item at the

same time.

If there is but one copy of an item, then the logical item is identical with

its one physical copy. Thus, we can maintain locks on the logical item if and

only if we maintain locks on the copy correctly. Transactions wishing to lock

10.2 DISTRIBUTED LOCKING 547

an item A with one copy send lock-request messages to the site at which the

copy resides. The lock manager at that site can grant or deny the lock, sending

a back a message with its decision in either case.

However, if there are several copies of an item, then the translation from

physical locks to logical locks can be accomplished in several ways, each with

its advantages. We shall consider some of these approaches and compare the

numbers of messages required by each.

Write-Locks-All—Read-Locks-One

A simple way to maintain logical locks is to maintain ordinary locks on copies of

items, and require transactions to follow a protocol consisting of the following

rules defining locks on logical items.

1. To obtain a read-lock on logical item A, a transaction may obtain a read-

lock on any copy of A.

2. To obtain a write-lock on logical item A, a transaction must obtain write-

locks on all the copies of A.

This strategy will be referred to as write-locks-all.

At each site, the rules for granting and denying locks on copies are exactly

the same as in Chapter 9; we can grant a read-lock on the copy as long as no

other transaction has a write-lock on the copy, and we can only grant a write-

lock on the copy if no other transaction has either a read- or write-lock on the

copy.

The effect of these rules is that no two transactions can hold a read- and

write-lock on the same logical item A at the same time. For to hold a write-

lock on logical item A, one transaction would have to hold write-locks on all the

physical copies of A. However, to hold a read-lock on A, the other transaction

would have to hold a read-lock on at least one copy, say A\. But the rules

for locks on the physical copy A\ forbid a transaction from holding a read-

lock at the same time another transaction holds a write-lock. Similarly, it is

not possible for two transactions to hold write-locks on A at the same time,

because then there would have to be conflicting write-locks on all the physical

copies of A.

Analysis of Write-Locks-All

Let us see how much message traffic is generated by this locking method. Sup

pose that n sites have copies of item A. If the site at which the transaction is

running does not know how many copies of A exist, or where they are, then we

may take n to be the total number of sites.2 To execute WLOCK A, the trans-

It is worth noting that considerable space and effort may be required if each site is to

maintain an accurate picture of the entire distributed database, at least to the extent

548 DISTRIBUTED DATABASE MANAGEMENT

action must send messages requesting a lock to all n sites. Then, the n sites

will reply, telling the requesting site whether or not it can have the lock. If it

can have the lock, then the n sites are sent copies of the new value of the item.

Eventually, a message UNLOCK A will have to be sent, but we may be able to

attach this message to messages involved in the commitment of the transaction,

as discussed in Sections 10.4 and 10.5.

The messages containing values of items may be considerably longer than

the lock messages, since, say, a whole relation may be transmitted. Thus, we

might consider sending only the changes to large items, rather than the complete

new value. In what follows, we shall distinguish between

1. Control messages, which concern locks, transaction commit or abort, and

other matters of concurrency control, and

2. Data messages, which carry values of items.

Under some assumptions, control and data messages cost about the same, while

under other conditions, data messages could be larger and/or more expensive.

It is unlikely that control messages will be more costly than data messages.

Sometimes, we shall have the opportunity to attach control messages to data

messages, in which case we shall count only the data message.

When a transaction write-locks a logical item A, we saw by the analysis

above that it needed to send 2n control messages and n data messages. If one

of A's copies is at the site running the transaction, we can save two control

messages and one data message, although we must still request and reserve a

lock at the local site. If one or more sites deny the lock request, then the lock

on A is not granted.

To obtain a read-lock, we have only to lock one copy, so if we know a site

at which a copy of A exists, we can send RLOCK A to that site and wait for a

reply granting the lock or denying the lock request. If the lock is granted, the

value of A will be sent with the message. Thus, in the simplest case, where

we know a site at which A can be found and the lock request is granted, only

two messages are exchanged, one control (the request), and one data (the reply,

including the value read). If the request is denied, it probably does not pay to

try to get the read-lock from another site immediately, since most likely, some

transaction has write-locked A, and therefore has locks on all the copies.

The Majority Locking Strategy

Now let us look at another, seemingly rather different protocol for defining locks

on logical items.

of knowing what items exist throughout the database, and where the copies are. For

this reason, among others, there is an advantage to using large items in a distributed

environment.

10.2 DISTRIBUTED LOCKING 549

1. To obtain a read-lock on logical item A, a transaction must obtain read-

locks on a majority of the copies of A.

2. To obtain a write-lock on logical item A, a transaction must obtain write-

locks on a majority of the copies of A.

We call this strategy the majority approach.

To see why majority locking works, note that two transactions each holding

locks on A (whether they are read- or write-locks doesn't matter) would each

hold locks on a majority of the copies. It follows that there must be at least one

copy locked by both transactions. But if either lock is a write-lock, then there

is a lock conflict for that copy, which is not permitted by the lock manager at

its site. Thus, we conclude that two transactions cannot hold write-locks on

logical item A simultaneously, nor can one hold a read-lock while the other holds

a write-lock. They can, of course, hold read-locks on an item simultaneously.

Analysis of Majority Locking

To obtain a write-lock, a transaction must send requests to at least a majority

of the n sites having copies of the item A. In practice, the transaction is better

off sending requests to more than the minimum number, (n + l)/2,3 since, for

example, one site may not answer, or another transaction may be competing

for the lock on A and already have locks on some copies. While a transaction

receiving a denial or no response at all from one or more sites could then send

the request to additional sites, the delay inherent in such a strategy makes it

undesirable unless the chances of a failed node or a competing transaction are

very small. We shall, however, take as an estimate of the number of request

messages the value (n+ 1)/2 and use the same value for the number of response

messages. Thus, assuming the lock is granted, n + 1 control messages are used.

Eventually n data messages with a new value of A will be sent, as well.

For a read, we must again send requests to at least (n + l)/2 nodes and

receive this number of replies, at least one of which will be a data message

including the value that is read along with the lock on this copy of A. If the

transaction runs at the site of one of the copies, we can omit this message.

Thus, we estimate the number of messages for a read operation at n control

messages and one data messages (including a control portion).

Comparison of Methods

Before proceeding to some other methods for distributed locking, let us compare

the write- locks-all and majority methods. Each uses n data messages for a write

and one data message for a read. Write-locks-all uses 2n control messages for a

write and one for a read, while majority uses n+1 for write and n for read. Thus,

3 In what follows, we assume n is odd, and use (n + l)/2 for the more precise {(n + 1)/2"|.

550 DISTRIBUTED DATABASE MANAGEMENT

if an equal number of read and write-locks are requested by typical transactions,

there is no advantage to either method. On the other hand, if most locks are

for reading, the write-locks-all method is clearly preferable, and if write-locks

dominate, we might prefer the majority method.

The two methods differ in a subtle way that affects the likelihood of a

deadlock. Using the write-locks-all approach, two transactions, each trying to

write logical item A, that begin at about the same time are likely each to

manage to obtain a lock on at least one copy of A. The result is a deadlock,

which must be resolved by the system, in one of a number of costly ways. In

comparison, under the majority approach, one of two competing transactions

will always succeed in getting the lock on the item, and the other can be made

to wait or abort.

A Generalization of the Two Previous Methods

The two strategies we have mentioned are actually just the extreme points in

a spectrum of strategies that could be used. The "fc-of-n" strategy, for any

n/2 < k < n, is defined as follows:

1. To obtain a write-lock on logical item A, a transaction must obtain write-

locks on any k copies of A.

2. To obtain a read-lock on logical item A, a transaction must obtain read-

locks on any n — k + 1 copies of A.

To see that the method defines locks properly, observe that if one transac

tion held a read-lock on logical item A, it would hold read-locks on n — k + 1

copies of A, while if another transaction simultaneously held a write-lock on

A, it would hold write-locks on k copies of A. Since there are only n copies of

A, some copy is read-locked and write-locked by different transactions at the

same time, an impossibility. Similarly, if two transactions simultaneously hold

write-locks on logical item A, then each holds locks on k copies of A. Since

k > n/2, some copy is write-locked by both transactions at the same time,

another impossibility.

What we referred to as "write-locks-all" is strategy n-of-n, while the ma

jority strategy is (n + l)/2-of-n. As k increases, the strategy performs better

in situations where reading is done more frequently. On the other hand, the

probability that two transactions competing for a write-lock on the same item

will deadlock, by each obtaining enough locks to block the other, goes up as

k increases. It is left as an exercise that we cannot do better. That is, if the

sum of the number of copies needed for a read-lock and a write-lock, or for two

write-locks is n or less, then physical locks do not imply logical locks.

Primary Copy Protocols

A rather different point of view regarding lock management is to let the re

10.2 DISTRIBUTED LOCKING 551

sponsibility for locking a particular logical item A lie with one particular site,

no matter how many copies of the item there are. At the extreme, one node

of the network is given the task of managing locks for all items; this approach

is the "central node method," which we describe shortly. However, in its most

general form, the assignment of lock responsibility for item A can be given to

any node, and different nodes can be used for different items.

A sensible strategy, for example, is to identify a primary site for each

item. For example, if the database belongs to a bank, and the nodes are bank

branches, it is natural to consider the primary site for an item that represents

an account to be the branch at which the account is held. In that case, since

most transactions involving the account would be initiated at its primary site,

frequently locks would be obtained with no messages being sent.

If a transaction, not at the primary site for A, wishes to lock A, it sends

one message to the primary site for A and that site replies, either granting or

withholding the lock. Thus, locking the logical item A is the same as locking

the copy of A at the primary site. In fact, there need not even be a copy of A

at the primary site, just a lock manager that handles locks on A.

Primary Copy Tokens

There is a more general strategy than the simple establishment of a primary site

for each item. We postulate the existence of read- tokens and writs-tokens, which

are privileges that nodes of the network may obtain, on behalf of transactions,

for the purpose of accessing items. For an item A, there can be in existence

only one write-token for A. If there is no write-token, then there can be any

number of read tokens for A. If a site has the write-token for A, then it can

grant a read or write-lock on A to a transaction running at that site. A site

with only a read-token for A can grant a read-lock on A to a transaction at

that site, but cannot grant a write-lock. This approach is called the primary

copy token method.

If a transaction at some site N wishes to write-lock A, it must arrange

that the write-token for A be transmitted to its site. If the write-token for A

is already at the site, it does nothing. Otherwise, the following sequence of

messages is exchanged:

1. N sends a message to all sites requesting the write-token.

2. Each site M receiving the request replies, either:

a) M either has no (read or write) token for A, or it has, but is willing

to relinquish it so N can have a write-token.

b) M has a read- or write-token for A and will not relinquish it (because

some other transaction is either using the token, or M has reserved

that token for another site).

552 DISTRIBUTED DATABASE MANAGEMENT

In case (a), M must remember that N has asked it for the token, but does

not know whether it can have it yet [another site could answer (b)]. M

"reserves" the token for N; doing so prevents another site P from also

being told by M that it has no objection to P's obtaining the token.4

3. If all sites reply (a) to N, then N knows it can have the write-token. It

sends a message to each site that replied (a), telling it that N has accepted

the write-token, and they should destroy whatever tokens they have for A.

If some site replies (b), then N cannot have the write-token, and it must

send messages to the nodes that replied (a) telling them they can cease

reserving the write-token for A, and may allow another site to get that

token.

To read A, essentially the same process takes place, except that if the local

site has any of the read-tokens for A, no messages need to be sent. In (2) above,

the responding site M does not object [send message (b)] if it has a read-token

for A, only if it has a write-token. In (3), if N is allowed to obtain a read-token

for A, then only write-tokens, not read-tokens, are destroyed at other sites.

More Comparisons Among Methods

Evidently, the primary copy token method uses considerably more messages

than the other methods so far; both reading and writing can use 3m control

messages, where m is number of nodes in the network, while other methods

use a number of messages that is proportional to the number of copies of an

item, at worst. On the other hand, the primary copy token approach averages

much less than 3m control messages per lock operation when one site runs most

of the transactions that reference a particular item. Then the write-token for

that item will tend to reside at that site, making control messages unneeded for

most transactions. Thus, a direct comparison with the fc-of-n methods is not

possible; which is preferable depends on the site distribution of the transactions

that lock a particular item.

Similarly, we cannot compare the primary site method directly with the

write-locks-all method; while the former uses smaller numbers of messages on

the average, the latter has the advantage when most locks are read-locks on

copies that are not at the primary site for that item. It appears that the

primary site approach is more efficient than the k-of-n methods for k > 1.

However, there are other considerations that might enter into the picture. For

example, the primary site method is vulnerable to a failure at the primary site

4 The reason we must be careful is that there might be no tokens for A at all. For example,

none might have been created, or the last one could have been lost, because the node

holding it failed. If we did not use "reservations," two sites could ask for the write-token

for A at the same time, and each be told by all of the sites (including each other) that

they did not have any token on A. Then, each would create a write-token for A and

there would be two tokens when at most one should exist.

10.2 DISTRIBUTED LOCKING 553

for an item, as the sites must then detect the failure and send messages to

agree on a new primary site. In comparison, fc-of-n type strategies can continue

locking that item with no interruption.

We can also compare primary copy token methods with the primary site

approach. In the later method, a write requires two control messages to request

and receive a lock from the primary site, then n data messages, as usual, to

write the new value. Reading requires a control message asking for a lock

and a data message in response, granting the request and sending the value.

If all transactions referencing A run at the primary site for A, then the two

approaches are exactly the same; no messages are sent, except for the obligatory

writes to update other copies of A, if any. When other sites do reference A, the

primary site method appears to save a considerable number of messages.

However, the token method is somewhat more adaptable to temporary

changes in behavior. For example, in a hypothetical bank database, suppose a

customer goes on vacation and starts using a branch different from his usual

one. Under the primary site method, each transaction at the new branch would

require an exchange of locking messages. In comparison, under the token ap

proach, after the first transaction ran at the new branch, the write-token for the

account would reside at that branch as long as the customer was on vacation.

The Central Node Method

The last approach to locking that we shall consider is that in which one partic

ular node of the network is given the responsibility for all locking. This method

is almost like the primary site method; the only difference is that the primary

site for an item, being the one centra] node, may not be a site that has a copy

of the item. Thus, a read-lock must be garnered by the following steps:

1. Request a read-lock from the central node.

2. If not granted, the central node sends a message to the requesting site to

that effect. If granted, the central node sends a message to a site with a

copy of the item.

3. The site with the copy sends a message with the value to the requesting

site.

Hence, the central node method often requires an extra control message to

tell some other site to ship the value desired. Similarly, when writing, the site

running the transaction must often send an extra message to the central node

telling it to release the lock. In the primary site method, this message would

be included with the messages committing the transaction.

Therefore, it seems that the central node approach behaves almost like the

primary site method, but slower. Moreover, while it does not show in our model,

which only counts messages without regard for destination, there is the added

disadvantage that most of the message traffic is headed to or from one node,

554 DISTRIBUTED DATABASE MANAGEMENT

thus creating a potential bottleneck. Additionally, this method is especially

vulnerable to a crash of the central node.

However, the algorithm has its redeeming features, also in areas not covered

by our model. For example, under certain assumptions about loads on the

system, there is an advantage to be had by bundling messages to and from the

central site. The case for the central node approach is made by Garcia-Molina

[1979].

Summary

The relative merits and demerits of the various approaches are summarized in

Figure 10.2. We use n for the number of copies of an item and m for the total

number of nodes. We assume in each case that the lock is granted and we ignore

the possible savings that result if we can read or write at the same site as the

transaction, thus saving a data message. The tabulation of Figure 10.2 counts

only control messages, since each write requires n data messages, and each read

requires one data message, no matter what the locking method.

Method Control Msgs. Control Msgs.

to Write to Read

Comments

Write-Locks- 2n

All

1 Good if read

dominates

Majority > n + 1 > n Avoids some

deadlock

Primary Site 2 1 Efficient; some

vulnerability

to crash

Primary Copy 0 4m

Token

0-4m Adapts to changes

in use pattern

Central Node Vulnerable to

crash; efficiencies

may result from

centralized traffic

pattern

Figure 10.2 Advantages and disadvantages of distributed locking methods.

10.3 DISTRIBUTED TWO-PHASE LOCKING 555

10.3 DISTRIBUTED TWO-PHASE LOCKING

From the last section, we see that it is feasible to define locks on logical items

in various ways. Now, we must consider how to use locking to ensure the seri-

alizability of transactions that consist of several subtransactions, each running

at a different site. Recall that a schedule of transactions in a distributed envi

ronment is a sequence of events, each occurring at one site. While several sites

may perform actions simultaneously, we shall break ties arbitrarily, and assume

that, according to some global clock, there is a linear order to events. A sched

ule is serial if it consists of all the actions for one transaction, followed by all

the actions for another, and so on. A schedule is serializable if it is equivalent,

in its effect on the database, to a serial schedule.

Recalling the strong relationship between serializability and two-phase

locking from Section 9.3, let us consider how two-phase locking can be gen

eralized to the distributed environment. Our first guess might be that at each

node, the subtransactions should follow the two-phase protocol. However, that

is not enough, as the following example shows.

Example 10.3: Suppose that logical transaction T\ has two subtransactions:

1. TI.I, which runs at site Si d writes a new value for copy A\ of logical

item A, and

2. 7\.2, which runs at site #2 and writes the same new value for copy A2 of

A.

Also, transaction T2 has two subtransactions, TZ.I running at 5i and writing a

new value of A\, and T2.2, running at 52 and writing the same value into A^. We

shall assume that write-locks-all is the protocol followed by these transactions

for defining locks on logical items, but as we shall see, other methods cause

similar problems.

TI.I ^2.1 TI.Z T2.2

WLOCK A\ WLOCK AI

UNLOCK >1i UNLOCK A3

WLOCK AI WLOCK AI

UNLOCK A i UNLOCK AI

At 5i At 52

Figure 10.3 Transactions with two-phase locking at each node.

For the example at hand, we see in Figure 10.3 a possible schedule of actions

at the two sites. Pairs of events on each line could occur simultaneously, or we

could assume they occur in either order; it doesn't matter. Evidently, the

situation at site 5i tells us that TI.I must precede T^.\ in the serial order. At

556 DISTRIBUTED DATABASE MANAGEMENT

52 we find that T2.2 must precede 7\.2. Unfortunately, a serial order must be

formed not just from the subtransactions, but from (logical) transactions. Thus,

if we choose to have 7\ precede T2, then Ji.2 precedes T2.2, violating the local

ordering at 52. Similarly, if the serial order is T2,7\, then the local ordering at

5i is violated. In fact, in the order of events indicated in Figure 10.3, the two

copies of A receive different final values, which should immediately convince us

that no equivalent serial order exists.

The problem indicated above is not restricted to write-locks-all. For exam

ple, suppose we use the primary site method of locking. We can modify Figure

10.3 by letting A\ be the sole copy of A and letting A2 be the sole copy of

another logical item B. Therefore, 5i and 52 are the primary sites for A and

B, respectively. The schedule of Figure 10.3 is still not serializable, since the

final value of B is that written by 7\ and the final value of A is what T2 writes.

In fact, notice that all the locking methods of Section 10.2 become the same

when there is only one copy of each item; thus this problem of nonserializability

comes up no matter what method we use. D

Strict Two-Phase Locking

The problem illustrated by Example 10.3 is that in order for distributed trans

actions to behave as if they are two-phase locked, we must consider not only the

local schedules, but the global schedule of actions, and that schedule must be

two-phase locked. The consequence is that a subtransaction of T cannot release

any lock if it is possible that another subtransaction of T at another site will

later request a lock. For example, TI.I of Figure 10.3 violated this principle by

unlocking A\ before 7\.2 got its lock on .A2.

Thus, each subtransaction of a given transaction must inform the other

subtransactions that it has requested all of its locks. Only after all subtransac

tions have reached their individual lock points has the transaction as a whole

reached its lock point, after which the subtransactions may release their locks.

The problem of all subtransactions agreeing that they have reached the lock

point is one example of a distributed agreement problem. We shall study an

other, the distributed agreement to commit, in the next section. It will then

become clear that distributed agreement, especially in the face of possible net

work failures, is very complex and expensive. Thus, the sending of control

messages to establish that the subtransactions have reached their lock points is

not normally sensible.

Rather, there are many reasons to insist that transactions in a distributed

environment be strict, that is, they unlock only after reaching their commit

point. For example, Section 9.8 discussed the problem of reading dirty data

and consequent cascading rollback, e.g., which strict two-phase locking solves.

If our transactions obey the strict protocol, then we can use the commit point

as the lock point. The subtransactions agree to commit, by a process described

10.4 DISTRIBUTED COMMITMENT 557

in the next section, and only after committing are locks released.

In a situation like Figure 10.3, T\.i and T^.2 would not release their locks at

the second line, if the strict protocol were followed. In this case, there would be

a deadlock between T\ and T2, since each has a subtransaction that is waiting

for a lock held by a subtransaction of the other. We shall discuss distributed

deadlock detection in Section 10.8. In this case, one of T\ and T^ has to abort,

along with all of its subtransactions.

10.4 DISTRIBUTED COMMITMENT

For the reason just discussed (supporting distributed two-phase locking), as

well as for the reasons discussed in Sections 9.8 and 9.10 (resiliency), it is

necessary for a distributed transaction to perform a commit action just before

termination. The existence of subtransactions at various sites complicates the

process considerably.

Suppose we have a transaction T which initiated at one site and spawned

subtransactions at several other sites. We shall call the part of T that executes

at its home site a subtransaction of the logical transaction T; thus logical T

consists solely of subtransactions, each executing at a different site. We distin

guish the subtransaction at the home site by calling it the coordinator, while

the other subtransactions are the participants. This distinction is important

when we describe the distributed commitment process.

In the absence of failures, distributed commitment is conceptually simple.

Each subtransaction Tj of logical transaction T decides whether to commit

or abort. Recall, Tj could abort for any of the reasons discussed in Chapter

9, such as involvement in a deadlock or an illegal database access. When /',

decides what it wants to do, it sends a vote-commit or vote-abort message

to the coordinator. If the vote-abort message is sent, Ti knows the logical

transaction T must abort, and therefore Ti may terminate. However, if Ti sends

the vote-commit message, it does not know whether T will eventually commit,

or whether some other subtransaction will decide to abort, thus causing T to

abort.

Thus, after voting to commit, Tj must wait for a message from the coordina

tor. If the coordinator receives a vote-abort message from any subtransaction,

it sends abort messages to all of the subtransactions, and they all abort, thus

aborting the logical transaction T. If the coordinator receives vote-commit

messages from all subtransactions (including itself), then it knows that T may

commit. The coordinator sends commit messages to all of the subtransactions.

Now, the subtransactions all know that T can commit, and they take what

steps are necessary at their local site to perform the commitment, e.g., writing

in the log and releasing locks.

It is useful to visualize the subtransactions changing state in response to

their changes in knowledge about the logical transaction. In Figure 10.4, the

558 DISTRIBUTED DATABASE MANAGEMENT

Send Receive

vote-commit commit

Initial ^ /^Willing\ (Committed"

.. to commit

Send vote-abort

or Receive abort

(a) Participant.

Receive all Send

vote-commit commit

Initial) +S MustN, >H Committed

commit

Receive any

vote-abort

Send

abort

Aborted
/

(b) Coordinator.

Figure 10.4 State transactions for distributed commitment.

transitions among states are indicated. The following comments are useful in

understanding the diagram.

1. Do not forget to distinguish between voting messages, which are sent by

participant transactions to the coordinator, and decision messages sent by

the coordinator to the participants.

2. The coordinator is a participant, and in principle sends messages to itself,

although we do not "pay" for these messages with network traffic. For

example, the coordinator might decide to abort because it divides by zero,

which we regard, in Figure 10.4(b), as if the coordinator had "received" a

vote-abort message from itself.

10.4 DISTRIBUTED COMMITMENT 559

3. The Committed and Aborted states really are not entered until the sub-

transactions perform whatever steps are required, such as releasing locks

and writing in the log.

4. When a participant is in the Initial state, it will eventually decide to send

vote-abort or vote-commit, entering the Aborted or Willing-to-commit

states, respectively. This decision is based on the circumstances of the

participant; for example, it "decides" to abort if the system tells it that it

is involved in a deadlock and must abort.

5. It is also possible that a participant will enter the Aborted state because

the coordinator tells it to. That may happen if some other participant has

decided to abort and informed the coordinator, which relays the message

to all participants.

6. The use of a coordinator is not essential. All participants could broadcast

their votes to all others. However, the number of messages would then

be proportional to the square of the number of participants, rather than

linearly proportional to this number. Commitment algorithms of this type

are discussed in the exercises.

Blocking of Transactions

When there are network failures, the simple distributed commitment protocol

of Figure 10.4 can lead to blocking, a situation where a subtransaction at a

site that has not failed can neither commit nor abort until failures at other

sites are repaired. Since a site may be down indefinitely, and since the blocked

subtransaction may be holding locks on items, which it cannot release, we are

in a difficult situation indeed. There are many circumstances that can cause

blocking; perhaps the simplest is the following.

Example 10.4: Suppose a subtransaction 7 ', holds a lock on one copy of item

A, and Ti reaches its commit point. That is, Ti sends vote-commit to its coor

dinator and enters the state Willing-to-commit in Figure 10.4(a). After a long

time, Ti receives neither a commit nor an abort message from the coordinator.

We claim that Ti must remain in this state and hold its lock on the local copy

of A; i.e., Ti is blocked. Any other action can lead to an error.

1. If Ti decides to commit without instructions from the coordinator, it may

be that some other subtransaction with a local copy of A decided to abort,

but the coordinator has failed and cannot tell Ti to abort. If Tj commits,

another transaction may read the local copy of A, which should not have

been changed; i.e., the local copy of A is dirty data.

2. If Ti decides to abort without instructions from the coordinator, it could be

that the coordinator received vote-commit messages from all participants,

but afterward, the network failed, cutting Tj off from the coordinator.

However, some other participants were not cut off from the coordinator;

560 DISTRIBUTED DATABASE MANAGEMENT

they received the commit message and wrote new values for their copies of

A. Thus, the copies of A no longer hold the same value.

Other options could be considered, such as releasing the lock on A without

committing or aborting. However, all options can lead to an inconsistent value

for the copies of A, because Tj is in a state where it does not know whether the

logical transaction of which Tj is a part will eventually commit or abort, and

there are scenarios where either could happen. D

Two-Phase Commit

The most common approach to distributed commitment is a variant of the sim

ple algorithm of Figure 10.4. The protocol is called two-phase commit, because

of the two phases, voting followed by decision, that we see in Figure 10.4. Two-

phase commit does not avoid all blocking, but it does reduce the likelihood of

blocking. We shall later mention an improvement, called "three-phase commit,"

which does avoid blocking when nodes fail (although not necessarily when the

network disconnects).

Two-phase commit offers two improvements over the simplest protocol.

First, subtransactions measure the time since a response message was first ex

pected, and if the message is delayed so long that it is probable a network failure

has occurred, the subtransaction "times out," entering a state from which it

will attempt to recover. The most serious problem, as we saw in Example 10.4,

is when a participant is in the Willing-to-commit state, and a timeout occurs,

i.e., the elapsed time since it sent the vote-commit message exceeds a preset

time limit. To help avoid blocking, such a transaction sends a message help-me

to all other participants.

On receiving a help-me message:

1. A participant in the Committed state replies commit. It can do so safely,

because it must have received the commit message from the coordinator,

and thus knows that all participants have voted to commit.

2. A participant that is in the Aborted state can send the abort message,

because it knows that the transaction must abort.

3. A participant that has not voted yet (i.e., one in the Initial state) can help

resolve the problem by deciding arbitrarily to abort, so it too makes an

abort reply and sends vote-abort to the coordinator.5

4. A participant in the Waiting-to-commit state cannot help resolve the prob

lem, so it makes no reply.

A blocked transaction that receives an abort or commit message follows that

instruction, going to the appropriate state. That this choice is always correct

5 We leave as an exercise the observation that should a participant in the Initial state

decide to commit in this situation there is the possibility of inconsistent data.

10.4 DISTRIBUTED COMMITMENT 561

is expressed by the following theorem.

Theorem 10.1: A participant 7i that sends a help-me message

a) Cannot receive both commit and abort as replies from different partici

pants.

b) Cannot receive commit from a participant if the coordinator can eventually

send abort.

c) Cannot receive abort from a participant if the coordinator can eventually

send commit.

Proof: Ti can receive commit only if some other participant has received com

mit, which means the coordinator has already sent commit. Thus, (b) follows.

Ti can receive abort in cases (2) and (3) above. In case (2), the sending

participant either

a) Has received abort from the coordinator, or

b) Has decided to abort.

In case (a), the coordinator has already sent abort; in case (b), it will receive,

or has received, vote-abort, or it will fail, and so can never send commit. In

case (3), the sending participant has not voted previously, so the coordinator

has sent neither commit nor abort. However, that participant now sends vote-

abort, so the coordinator can never send commit. Thus, (c) follows.

For (a), we noted above that Tj receives commit from a participant only if

the coordinator has sent commit. Thus, cases (2) and (3) are impossible, so Ti

cannot also receive abort from a participant. D

The second modification to Figure 10.4 that two-phase commit uses is to

initiate the voting by a begin-vote message sent by the coordinator to all par

ticipants. Under some circumstances, this message could be dispensed with,

as each subtransaction could assume it was to vote as soon as possible. How

ever, as we just saw, if recovery from the Willing-to-commit state is necessary,

then each subtransaction needs to know the other participants, from whom

it requests help. We cannot necessarily know the full set of participants when

each subtransaction is created, because the transaction may execute conditional

statements, and use different subtransactions in different branches (see Exam

ple 9.21, for the effect of conditionals in transactions). Thus, a possible function

of the begin-vote message is to transmit the full list of participants, in case

help is necessary.

Figure 10.5 shows the state transitions of the two-phase commit protocol,

both for the participants and for the coordinator. The points made in connec

tion with Figure 10.4 still apply. In addition, we note that when a participant

times out in the Willing-to-commit state, it goes to the Recover state, from

which it issues the help-me message. It then goes to the Blocked state, and

waits for a commit or abort message from another participant. If it never re

562 DISTRIBUTED DATABASE MANAGEMENT

Receive Send Receive

begin-vote, vote-commit commit

Initial) ^(Deciding) ^^\VillingN »4 Committed

to commit

Timeout

Send

, , help-me

Receive

abort (Blocked

(a) Participant.

Receive

commit

Send Receive all

.begin-vote^.---- vote-commit

Initial 1-* Waiting

Send

commit

Timeout or

Receive any

vote-abort

Must

abort

Send

abort

(b) Coordinator.

Figure 10.5 Two-phase Commit.

10.4 DISTRIBUTED COMMITMENT 563

ceives one, because all other participants are either cut off from the sender,

failed, or also in the Willing-to-commit state, then this participant remains

blocked.

There are two other conditions under which a timeout occurs and some

action to avoid blocking occurs. In Figure 10.5(b), the coordinator times out

if, after it sends begin-vote, one or more participants do not vote, after a

predetermined and long time limit. If so, the coordinator decides to abort

and sends abort messages to all the participants that can hear it.6 Of course,

participants that are cut off from the coordinator at this time will not get the

message; they remain blocked, if they heard the earlier begin-vote, voted to

commit, and are unable to recover successfully when they time out.

The last place a timeout can occur is in Figure 10.5(a), where a participant

has finished its task and a long time elapses, during which it is never asked to

vote. Possibly the coordinator has failed or been cut off from this participant.

The participant decides to abort, so it can release its locks. Not shown in Figure

10.5(a) is the fact that if subsequently, this participant does get a begin-vote

message from its coordinator, it simply votes to abort. Some additional points

about the transitions of Figure 10.5 follow.

1. A transaction may have entered the Aborted or Committed state and still

be asked to send messages in response to a help-me. There is nothing

wrong with the supposition that a nonactive transaction will respond to

messages. In reality, the system consults its log and responds for the trans

action. In fact, normally all messages and state changes are managed by

the system, rather than being built into transactions.

2. In the blocked state, it makes sense to repeat the help-me message after

a while, in the hope that a node that was failed or disconnected will now

be available to help. In many systems, a node that recovers from a failure

will make its presence known anyway, since it must find out about what

happened to the transactions it was involved in and the items they changed.

Thus, a blocked subtransaction can resend help-me whenever a node with

a participant subtransaction reestablishes communication.

Recovery

In addition to logging all of the information discussed in Section 9.10, a dis

tributed system that is resilient against network failures must enter into the

log at each site the messages it sends and receives. When a node recovers,

or becomes reconnected to parts of the network that it could not reach for a

while, it is the responsibility of that node to find out what has happened to the

8 Notice that deciding to abort in ambiguous situations is always safe as long as no

participant can then decide to commit; that possibility is what makes the Willing-to-

commit state the source of most of the complexity.

564 DISTRIBUTED DATABASE MANAGEMENT

transactions it was running when the failure or disconnection occurred. The

log at a node tells it what subtransactions began but did not commit at that

node. If the begin-vote message was received, that is recorded in the log, and

with it the participants in the vote are listed. Thus, the recovering node knows

whom to ask about the outcome.

For example, participant Tj might have received the begin-vote message,

voted to commit, and then failed. The coordinator may have sent commit, which

Tj never heard. However, some other participant, perhaps the coordinator,

certainly knows that the decision was to commit, so it can tell the node of Ti

that it too should commit. As another example, if the begin-vote is recorded

in the log, but no vote is recorded, then surely the coordinator timed out while

waiting for a response, so we know that the decision to abort was made, and Ti

can abort.

10.5 A NONBLOCKING COMMIT PROTOCOL

The two-phase commit protocol that we discussed in the previous section does

not avoid blocking, although it reduces the probability of blocking below what

the simplest voting scheme (Figure 10.4) produces. No scheme can avoid block

ing (or worse, causing different participants to make different commit/abort

decisions) in situations where the network may disconnect. However, we can

reduce the number of situations where blocking occurs by adding an additional

phase to the commitment process.

Intuitively, the two-phase commit protocol allows a participant to commit

as soon as it knows that all participants have voted to commit. In a "three-

phase commit," a participant does not commit until it not only knows that all

participants have voted to commit, but it knows that all participants know that

too (or they have failed, and will know it when they recover).

Example 10.5: Let us see why merely knowing that everyone is willing to

commit, without knowing that they all know that fact, can be inadequate. In

two-phase commit, a participant Ti might send vote-commit and then be cut off

from the coordinator. The coordinator might collect the votes and send commit

to another participant Tj. Then, the coordinator and Tj both fail or are cut

off. Now, Tj, and any participants it can talk to, are in the Willing-to-commit

state, but do not know whether all participants are willing to commit; therefore,

they block. However, Tj knew that all were willing, and so committed. The

fact that Tj committed, before it knew that Ti knew everyone was willing to

commit, forces Ti to block. D

In a three-phase commit, there is a third round of messages. The second

message from the coordinator (which we now call prepare-commit rather than

commit), tells all participants that all are willing to commit, as before. How

ever, a participant does not commit upon receiving this message. Rather, it

10.5 A NONBLOCKING COMMIT PROTOCOL 565

acknowledges its receipt with a message ready-commit.7 In the third phase,

the coordinator collects all of these messages, and when all are received, it

sends commit messages to all, which lets them know that everyone knows that

everyone is willing to commit; at that point, the participants commit.

While the distinction between "knowing" and "knowing that everyone

knows" appears subtle, it is in fact fundamental in understanding what dis

tributed commit algorithms (and many other distributed operations) do. Hadzi-

lacos [1987] characterizes the entire family of two-phase commit protocols as

those where a participant commits as soon as it knows everyone is willing to

commit. While we discussed only one such protocol, a "centralized" version

with a coordinator, there are other versions where, for example, all participants

communicate with each other, or information is passed around a ring of par

ticipants. Similarly, all known variants that are called "three-phase" allow a

participant to commit as soon as it knows that all know that all are willing to

commit.

A Model of Failures

We are going to present a variant of three-phase commit that can be shown

to avoid blocking as long as failures take a reasonable, but limited form. In

particular, we assume that:

1. Only node failures occur, and the network never disconnects into two or

more groups of live nodes that cannot communicate with the other groups.

For example, an Ethernet generally has the property that it can support

communication between any two live nodes, no matter how many have

failed, assuming the net itself has not failed.

2. When a node fails, it does not communicate at all. It cannot send false

messages (e.g., send abort when it should send commit), and it does not

send some messages while omitting others.

3. When a node fails, it is out of action for the duration of the commitment

process for any one transaction. That is, a node that fails will know it

failed when it recovers, and will not resume participation in commitment

processes without first announcing itself to the other nodes and finding out

what has happened, as discussed at the end of the previous section.

4. A node that has not failed will respond to a request for a message within

a time that is shorter than the timeout period used to detect failed nodes.

5. The network does not lose messages, and delivers messages from node A

to node B in the order they were received.8

7 In the simple model of failures that we shall discuss here, this acknowledgement is not

needed. However, the acknowledgement can help detect certain errors, such as a lost

message, and so is generally included in three-phase commit protocols.

8 It is possible, however, that if A sends a message to B, then a message to C, the latter

566 DISTRIBUTED DATABASE MANAGEMENT

We shall now describe a protocol that guarantees no transaction will block, as

long as failures conform to the assumptions above.

Throe-Phase Commit

We shall give a simple version of a three-phase commit protocol that, under

the failure model just described, assures that as long as one or more processors

remain alive during the commitment process, no processor is blocked. Our

version eliminates the ready-commit acknowledgements in the second phase,

because, as we shall see, it is unnecessary. However, an implementation of

the algorithm would probably include that acknowledgement, since it protects

against certain other failure modes like lost or garbled messages.

Figure 10.6 formalizes the discussion above of a commitment protocol with

a third phase to determine that all participants know of the willingness of all to

commit. In Figure 10.6(a) are the transitions of the participants. We omit what

happens when the Recover state is entered; that will be described separately.

Figure 10.6(b) shows the transitions of the coordinator.

In Phase 1, the coordinator sends begin-vote to all participants, and

each votes, exactly as in two-phase commit. Phases 2 and 3 occur only if

the coordinator receives vote-commit from all participants. In Phase 2, the

coordinator sends prepare-commit to all participants, and in Phase 3, the

coordinator sends commit, and the participants receiving it commit.

There are several places where a failure could occur, resulting in one or

more of these messages not being received. As with two-phase commit, a sub-

transaction waiting for a message times out after a period sufficiently long that

the sending subtransaction has surely failed. First, the participants may not

receive the expected begin-vote from the coordinator. As shown in Figure

10.6(a), such a participant merely aborts. If other participants did receive the

begin-vote message, they will discover the coordinator has failed while they

are waiting for a prepare-commit message.

The second place where a timeout can occur is while the coordinator is

waiting for votes. If any do not arrive within the timeout period, then, as in

two-phase commit, the coordinator decides to abort the transaction.

Third, a participant that is willing to commit may time out waiting for a

prepare-commit or abort message. If so, it goes to a recovery state, which we

shall describe later.

Finally, the last place a timeout can occur is when a participant that

is in the Ready-to-commit state does not get the commit message from the

coordinator. In this situation too, we go to the recovery state, where the live

participants will resolve the problem.

may receive its message first.

10.5 A NONBLOCKING COMMIT PROTOCOL 567

Receive

begin-vote

Send

vote-commit

Knows all are

willing to

commit

Knows all know

that all are

willing to

commit

Receive

prepare-commit

Receive

commit

Timeout

Figure 10.6(a) Participant in three-phase commit.

Our first (but erroneous) thought is that the two messages, prepare-

commit and commit, which the coordinator sends in sequence to the partic

ipants, cannot both be necessary. That is, the receipt of prepare-commit

assures the participant that commit will eventually be sent, unless the coordi

nator fails; in the latter case, surely the coordinator would have sent commit

if it could. However, if we eliminate one of the messages, then we are back

to two-phase commit, and Example 10.5 should convince the reader that par

ticipants can block, even under our restrictive failure model. Furthermore, if

we interleave the two messages, say by sending both to one participant, then

both to a second participant, and so on, we again behave like two-phase com

mit, and blocking is possible. In fact, the reader can show as an exercise that

568 DISTRIBUTED DATABASE MANAGEMENT

Send

begin-vote

Receive all

vote-commit

Receive any

vote-abort Send

or Timeout abort
^- •.

Must

abort

Should

^commit „

Send

prepare-commit

Send

commit

Committed

V >

Figure 10.6(b) Coordinator in three-phase commit.

should the coordinator send any commit message prior to sending the last of

the prepare-commit messages, then blocking is possible.

What is essential about three-phase commit is that the coordinator sends

all of the prepare-commit messages out before it sends any commit message.

The intuitive reason is that the prepare-commit message informs each partic

ipant that all are willing to commit. If any participant Ti receives commit, it

knows that the coordinator has sent all its prepare-commit messages, and thus

every participant that is still live has received prepare-commit or is about to

do so, since the message could be delayed but not lost by the network. That is,

the receipt of a commit message by /', tells /', that all know all are willing to

commit.

Technically, Tj only knows that every participant T either knows that all

are willing to commit, or T will know it shortly, or T will fail before it re

ceives the prepare-commit. However, since the protocol of Figure 10.6 only

involves messages between the coordinator and participants, and because as

10.5 A NONBLOCKING COMMIT PROTOCOL 569

sumption (5) assures us messages are not lost, it can be assumed that messages

are received instantaneously. That is, when Tj commits, every participant has

either received prepare-commit or has already failed. The reason is that if

some TJ actually fails after the time Tj receives commit, but before Tj receives

prepare-commit, then there would be no observable change in the activity of

the network if we assumed that Tj had failed before Tj received commit. What

we have shown is that it is impossible for two participants to be simultaneously

in the Willing-to-commit and Committed states, respectively. This fact and

other useful observations about the protocol of Figure 10.6 are summarized in

the following lemma.

Lemma 10.1: Prior to transactions entering the recovery state, and under

the (justifiable) assumption that messages are delivered instantaneously, the

following states are incompatible.

a) One (live or failed) participant cannot have entered the Committed state

while any live participant is still in the Willing-to-commit state.

b) One (live or failed) participant cannot have entered the Aborted state while

another (live or failed) participant has entered the Committed state, or any

live participant has entered the Ready-to-commit state.9

Proof: For (a), we note that in order for a participant to enter the Committed

state before any recovery takes place, it must receive a commit message. By

the argument given above, we know that every live participant has (on the

assumption of instantaneous messages) received prepare-commit, and therefore

has left the Willing-to-commit state.

We leave (b) as an exercise. The reader has only to examine Figure 10.6 and

argue that a prepare-commit message cannot be sent if one or more participants

have aborted. D

Recovery in Three-Phase Commit

The consequence of Lemma 10.1 is that we cannot have a failed participant that

has aborted if any live transaction has reached as far as the Ready-to-commit

state, and we cannot have a failed participant that has committed if any live

transaction is still in the Willing-to-commit state. Thus, when one or more

participants detect the need for recovery, because of a timeout, we have only

to arrange that each live participant discloses to the others its state, or more

precisely, its state just before it entered the Recovery state. If all are in Willing-

to-commit or Aborted, then we know no failed participant has committed, and

it is safe for all to abort. If any has reached the Ready-to-commit state or the

9 In fact, it is not even possible for a failed participant to have entered Ready-to-commit,

but we state the conditions this way because we want them to be weak enough that

they are preserved during the recovery process.

570 DISTRIBUTED DATABASE MANAGEMENT

Committed state, then no failed transaction can have aborted, so it is safe for

all to commit.

In the latter case, the distributed commitment process must be taken by

steps. That is, any participants still in the Willing-to-commit state must first

be brought to the Ready-to-commit state, and then all those in that state must

be made to commit. The reason we must continue in stages is that at any time,

more participants may fail, and we must avoid creating a situation where one

participant is in Willing-to-commit while another has already committed.

Electing a New Coordinator

As with two- or three-phase commit in general, the recovery process can be con

ducted in several different ways. As we have considered only the centralized, or

coordinator-based approach, because it tends to save messages, let us continue

with that approach now. Then as soon as one participant realizes recovery is

needed, it sends a message to all the other participants. Several participants

may reach this conclusion at about the same time, so many redundant messages

will be sent in the worst case, but not in the typical case.

Then, the live participants must attempt to elect a new coordinator, be

cause the only time we enter the Recovery state is if a participant has timed out

waiting for the coordinator to send a message. Each participant knows the orig

inal set of participants, although some now are failed. We may assume that the

participants are numbered 7\,...,T]b, and the lowest-indexed live participant

will be the new coordinator. Since T\ may have failed, we cannot just assume

T\ is the new coordinator. Rather, each participant must make known to the

others that it is live. If done properly, at most one live participant will conclude

that it is the new coordinator (because it never heard from any lower-numbered

participant).

One relatively efficient way to make the decision is for each Tj to send a

message with its index, i, to Tj+i,Tj+2,. .. ,Tfc in that order. However, if Tj

receives a message from a lower-numbered participant, then Trf knows it is not

the coordinator, and so stops sending messages. Most participants will stop

sending messages very quickly, but if some messages are delayed inordinately,10

then on the order of k2 messages could be sent.

After this step, each live participant will have a notion of who the new

coordinator is. If no failures occurred during the election, then all will have

the same notion. However, if the lowest-numbered participant failed during the

election, then there may be disagreement regarding who is the coordinator.

10 Note we are no longer assuming messages are sent instantaneously; that assumption was

justified only by the pattern of messages (to and from the coordinator) that is present

in the basic three-phase commit algorithm.

10.5 A NONBLOCKING COMMIT PROTOCOL 571

Example 10.6: Suppose there are participants 7\, . . . , 7V Also suppose that

during the election, the following sequence of events occurs.

1. TI sends a message to T2 before TI can send its own message to T3. Thus,

TI never sends any messages.

2. TI fails.

3. T3 sends a message to 7V T^ is thereby inhibited from sending any mes

sages.

The net effect of these events is that T2 thinks T\ is the coordinator, while

TS and T4 both think T3 is the coordinator. After a suitable timeout period, so

it can be determined that no more messages are being sent, T3 starts its roll as

coordinator by requesting the state of all participants.11 D

It is easy to show that no more than one live participant can think it is the

new coordinator. For suppose Ti and Tj both are live and think they are the

coordinator, where t < j. Since Ti thinks it is the coordinator, it never received

a message from any participant lower than t. Thus, it continued to send out

messages to the participants numbered above i, and in particular to Tj. Thus,

TJ would not think it is the coordinator.

It is possible that no live participant thinks it is the coordinator, in which

case the live participants will time out waiting for the recovery to begin. They

will then elect a new coordinator.

The Recovery Algorithm

With these tools, we can describe an appropriate recovery algorithm to use

with three-phase commit. This recovery strategy has the property that it never

causes a participant to block, as long as at least one participant remains live.

Unfortunately, it is not possible to avoid blocking in a situation where all par

ticipants fail, and then one recovers and finds it is in the Willing-to-commit

state. As discussed in Example 10.4, in connection with two-phase commit,

such a participant cannot rule out the possibility that some other participant

is aborted, nor can it rule out the possibility that another committed. Thus,

it must block and wait for more participants to recover. The steps taken for

recovery are summarized as follows:

1. The live participants elect a new coordinator.

2. The new coordinator sends messages to all participants requesting their

state immediately prior to recovery, which must be Aborted, Willing-to-

commit, Ready-to-commit, or Committed. Failed participants, of course,

will not reply, so the coordinator waits for the timeout period and then

11 The timeout period need not be long. It can be based on the expected time for each Tj

to receive a message from TI. If some "/", thinks it is the coordinator and isn't, it will

get a message to that effect from some participant.

572 DISTRIBUTED DATABASE MANAGEMENT

assumes it has all the "votes" it is ever going to receive.

3. If any Ready-to-commit or Committed states were found, the coordinator

decides to commit the transaction. By Lemma 10.1, no participant could

have aborted in this case. If only Aborted and Willing-to-commit responses

were received, then the coordinator decides to abort the transaction.

4. If the decision was to abort the transaction, then the coordinator sends

abort to each participant. If the decision was to commit then the coordi

nator sends

a) prepare-commit to every participant in the Willing-to-commit state,

and then

b) commit to every participant that was not already in the Committed

state.

As long as the coordinator does not fail, the above steps will complete; the

fact that other participants may fail meanwhile does not affect the algorithm.

If the coordinator fails at any intermediate point, one of the participants will

discover this fact through the timeout mechanism, and the entire process will

begin again at step (1). If the recovery algorithm stops at some intermediate

point, the effect may be that some state changes have occurred, e.g., from

Willing-to-commit to Abort or to Ready-to-commit. The important property

of the algorithm is that the pairs of states that Lemma 10.1 said were impossible

remain impossible.

Lemma 10.2: Conditions (a) and (b) of Lemma 10.1 hold at all times during

the above recovery algorithm.

Proof: There are a number of details that we leave for the reader to check. For

one example, in step (4), some Ti could go from the Willing-to-commit state

to the Aborted state. No violation of Lemma 10.1(b) could occur, because the

coordinator only decides to abort if there are no live participants in states other

than Aborted and Willing-to-commit. Then Lemma 10.1 (a) says that there can

be no live or failed participant in the Committed state, which implies that part

(b) continues to hold.12 D

Theorem 10.2: The three-phase commit algorithm described above does not

block, as long as at least one participant does not fail. Also, it makes a con

sistent decision, in the sense that two participants cannot abort and commit,

respectively.

Proof: Since the recovery algorithm always makes a decision, each time it is

invoked it either completes or a failure causes it to time out and be run again.

Eventually, the algorithm will either succeed, or the last participant will fail.

12 As an exercise, the reader should find a scenario in which several rounds of recovery are

necessary, during which a participant gets into the Ready-to-commit state then fails,

and the final decision is to abort.

10.6 TIMESTAMP-BASED, DISTRIBUTED CONCURRENCY 573

Thus, the transaction does not block.

For the correctness of the algorithm, Lemma 10.2 tells us that the condi

tions of Lemma 10.1 are preserved by recovery, and of course, Lemma 10.1 tells

us they hold before recovery. If the outcome is that the transaction commits,

then Lemma 10.1(b) says that no failed transaction can be in the Aborted state.

If the transaction aborts, Lemma 10.1(b) implies that no failed participant can

be in the Committed state. Failed participants that recover and find themselves

in states other than Committed or Aborted will inquire of the nodes live at that

time to (if possible) determine what the decision was.13 D

10.6 TIMESTAMP-BASED, DISTRIBUTED CONCURRENCY

The tiniestamp approach to concurrency control, covered in Section 9.11, can

be carried over to distributed databases. In essence, transactions run at any

site, and they read and write any copy when they will, leaving their timestamp

at the site of the copy as the read- or write-time of the copy, respectively. Of

course, if they write a new value for one copy of an item, they must write the

same value into all copies of that item, and a distributed commitment algorithm

along the lines of Sections 10.4 and 10.5, must be used before any of the values

are written into the database.

As in Section 9.11, we need some way of checking that the transaction

is not doing something impossible, such as reading a value before it would

have been written if the transactions were run in the serial order according to

timestamps. In Section 9.11, we used timestamps and read- and write-times

for items, in order to maintain a behavior that mimicked a serial order. Recall

that the hypothetical serial order is one in which a transaction is assumed to

run instantaneously at the time given by its timestamp.

This approach is still valid in the distributed environment. However, the

"timestamp" notion must be generalized to apply to distributed databases. For

nondistributed systems, timestamps were assumed given out by the computer

system at large. If there is but one computer, this assumption surely can be

satisfied. But what if computers at many sites are assigning timestamps? How

do we know they can do so consistently?

Distributed Timestamps

While it may not be obvious, the most elementary approach to distributed

timestamping actually works. That is, we may let the computers at each node of

the network keep their own clocks, even though the clocks cannot possibly run in

synchronism. To avoid the same timestamp being given to two transactions, we

13 In unfortunate circumstances, these participants will find none of the participants that

made the final decision live at the moment, and then the recovering participant must

block.

574 DISTRIBUTED DATABASE MANAGEMENT

require that the last fc bits of the "time" be a sequence that uniquely identifies

the node. For example, if there were no more than 256 nodes, we could let

k = 8 and give each node a distinct eight-bit sequence that it appended to its

local clock, as the low-order bits, to form the timestamp.

Even setting aside the theory of relativity, it is not realistic to suppose

that all of the clocks at all of the nodes are in exact synchronism. While minor

differences in the clocks at two nodes are of no great consequence, a major

difference can be fatal. For example, suppose that at node N, the clock is five

hours behind the other clocks in the system. Then, on the assumption that most

items are read and written within a five hour period, a transaction initiating at

TV will receive a timestamp that is less than the read- and write-times of most

items it seeks to access. It is therefore almost sure to abort, and transactions,

in effect, cannot run at N.

There is, fortunately, a simple mechanism to prevent gross misalignment

of clocks. Let each message sent bear its own timestamp, the time at which the

message left the sending node according to the clock of the sender. If a node

ever receives a message "from the future," that is, a message with a timestamp

greater than its current clock, it simply increments its clock to be greater than

the timestamp of the received message. If, say, a node was so inactive that it

did not discover that its clock had become five hours slow, then the first time it

ran a transaction it would receive a message telling it to abort the transaction it

was running. That message would include the "correct time." The node would

then update its clock and rerun the transaction with a realistic timestamp. We

shall thus assume from here on that the creation of timestamps that have global

validity is within the capability of a distributed DBMS.

A Timestamp-Based Algorithm

Next, let us consider the steps necessary to read and write items in such a way

that the effect on the database is as if each transaction ran instantaneously, at

the time given by its timestamp, just as was the case in Section 9.11. As in

Section 10.1, we shall consider the elementary step to be an action on a copy

of an item, not on the copy itself. However, when dealing with timestamps,

the elementary steps are not locking and unlocking, but examining and setting

read- and write-times on copies.

Many of the locking methods discussed in Section 10.2 have timestamp-

based analogs. We shall discuss only one, the analog of write-locks-all. When

reading an item A, we go to any copy of A and check that its write-time does

not exceed the timestamp of the transaction doing the reading. If the write-

time is greater than the timestamp, we must abort the transaction.14 Looking

14 In terms of the distributed commitment algorithms discussed in Sections 10.4-5, the

subtransaction attempting to write must vote to abort.

10.7 RECOVERY OF NODES 575

for another copy of A to read is a possible alternative strategy, but it is likely

to be futile.

When writing A, we must write all copies of A, and we must check that for

each, the read-time is less than the timestamp of the transaction. If the read-

time of any copy exceeds the timestamp, the transaction must abort. If the

read-time is less than the timestamp, but the write-time exceeds the timestamp,

then we do not abort, but neither do we write the item, for the reason discussed

in Section 9.11.

It is easy to check that by following these rules, a transaction can never

read a value that was created "in the future," nor can a transaction write a

value if a value written previously will be read in the future. Thus, the method

is guaranteed to produce an effect equivalent to that of the serial order in which

transactions occur in the order of their timestamps.

Locking Vs. Timestamps

The timestamp approach saves some messages, even compared to the best of

the methods mentioned in Figure 10.2. A read takes only one control message

and one data message to request and receive the data, while a write takes n

data messages to do the writing if n is the number of sites with copies.

The other side of the coin, as for the nondistributed case, is that timestamp

methods will cause many transactions to abort and restart if there are frequent

situations where two transactions are trying to access the same item at the

same time. Thus, neither approach can be said to dominate the other.

10.7 RECOVERY OF NODES

As we mentioned in Sections 10.4 and 10.5, when a node fails and then recovers,

it cannot simply resume operation. To begin, it must examine its log and

determine what transactions were being committed when it failed. Often, it

will not be able to tell from its log whether a transaction ultimately committed

or aborted; thus it must send a message to at least one of the other participants

to determine what happened.

However, getting up-to-date on these transactions is not sufficient. While

a node N was down, transactions involving items with copies at N may have

run, even though there is no record of such transactions at N. In the discussion

of Sections 10.4 and 10.5, we assumed that all sites with copies of an item A

were live at the beginning, and the only problem was that some of these sites

might fail during the running of the transaction.

In reality, it is quite possible that a site N fails and does not recover for a

long time. The fact that N is failed will be discovered by each other site M as

soon as a transaction initiating at M tries to access a copy of some data item

A with a copy at N. If AT has the only copy of A, the transaction must abort,

576 DISTRIBUTED DATABASE MANAGEMENT

and there is nothing else we can do. However, if there are other copies of A,

then we can proceed as if the copy at N did not exist. When N recovers, it not

only has the responsibility to find out about the transactions being committed

or aborted when it failed, but now it must find out which of its items are out

of date, in the sense that transactions have run at the other sites and modified

copies of items that, like A, are found at N and also at other nodes.

Obtaining Up-to-Date Values

When the failed site resumes activity, it must obtain the most recent values for

all its items. We shall suggest two general strategies for doing so.

1. If site M discovers that site N has failed, M records this fact in its log.

When TV recovers, it sends a message to each site. If M receives such

a message, M examines its log back to the point where it discovered N

had failed, and sends the most recent value it has for all items it holds in

common with TV.15 The values of these items must be locked while the

recovery of N is in progress, and we must be careful to obtain the most

recent value among all of the sites with copies. We can tell the most recent

values, because all transactions that have committed a value for item A

must have done so in the same order at all the sites of A, provided we have

a correct locking method. If we are using timestamp-based concurrency

control, the write-times of the values determine their order.

2. All copies of all items may be assigned a write-time, whether or not tune-

stamp concurrency control is in use. When a site TV recovers, it sends for

the write-times of all its items, as recorded in the other sites. These items

are temporarily locked at the other sites, and the current values of items

with a more recent write-time than the write-time at TV are sent to TV.

This description merely scratches the surface of the subject of crash man

agement. For example, we must consider what happens when a site needed to

restore values to a second site has itself failed, or if a site fails while another

is recovering. The interested reader is encouraged to consult the bibliographic

notes for analyses of the subject.

10.8 DISTRIBUTED DEADLOCKS

Recall from Section 9.1 that we have simple and elegant methods to prevent

deadlock in single-processor systems. For example, we can require each transac

tion to request locks on items in lexicographic order of the items' names. Then

it will not be possible that we have transaction T\ waiting for item A\ held by

15 Note that under the methods of locking and commitment described in this chapter, M

must discover N has failed if there is a transaction that involves any item held by both

N and M, so N will hear of all its out-of-date items.

10.8 DISTRIBUTED DEADLOCKS 577

T2, which is waiting for A2 held by TS, and so on, while Tfc is waiting for Ak

held by T\. That follows because the fact that TI holds a lock on A\ while it

is waiting for AI tells us A\ < A2 in lexicographic order. Similarly, we may

conclude AI < A3 • • • Ak < AI, which implies a cycle in the lexicographic order,

an impossibility.

With care, we can generalize this technique to work for distributed data

bases. If the locking method used is a centralized one, where individual items,

rather than copies, are locked, then no modification is needed. If we use a

locking method like the fc-of-n schemes, which lock individual copies, we can

still avoid deadlocks if we require all transactions to lock copies in a particular

order:

1. If A < B in lexicographic order, then a transaction T must lock all the

copies of A that it needs before locking any copies of B.

2. The copies of each item A are ordered, and a transaction locks all copies

of A that it needs in that order.

Even if it is possible under some circumstances to avoid deadlock by ju

dicious ordering of copies, there is a reason to look elsewhere for a method of

dealing with deadlocks. We discussed in Example 9.21 why it is sometimes

difficult to predict in advance the set of items that a given transaction needs

to lock. If so, then locking needed items in lexicographic order is either not

possible or requires the unnecessary locking of items.

In the remainder of this section we shall take a brief look at some general

methods for deadlock detection and deadlock avoidance that do not place con

straints on the order in which a transaction can access items. First, we consider

the use of timeouts to detect and resolve deadlocks. Next, the construction of

a waits-for graph is considered as a detection mechanism. Finally, we consider

a timestamp-based approach to avoiding deadlocks altogether.

Deadlock Resolution by Timeout

A simple approach to detecting deadlocks is to have a transaction time out and

abort if it has waited sufficiently long for a lock that it is likely to be involved

in a deadlock. The timeout period must be sufficiently short that deadlocked

transactions do not hold locks too long, yet it must be sufficiently long that we

do not often abort transactions that are not really deadlocked.

This method has a number of advantages. Unlike the waits- for-graph ap

proach to be described next, it requires no extra message traffic. Unlike the

timestamp-based methods to be described, it does not (usually) abort transac

tions that are not involved in a deadlock. It is prone, however, to aborting all

or many of the transactions in a deadlock, rather than one transaction, which

is generally sufficient to break the deadlock.

578 DISTRIBUTED DATABASE MANAGEMENT

Waits-for-Graphs

We mentioned in Section 9.1 that a necessary and sufficient test for a deadlock

in a single-processor system is to construct a waits-for graph, whose nodes are

the transactions. The graph has an arc from T\ to TZ if T\ is waiting for a lock

on an item held by T^. Then there is a deadlock if and only if there is a cycle in

this graph. In principle, the same technique works in a distributed environment.

The trouble is that at each site we can maintain easily only a local waits-for

graph, while cycles may appear only in the global waits-for graph, composed of

the union of the local waits-for graphs.

Example 10.7: Suppose we have transactions 7\ and T2 that wish to lock

items A and B, located at nodes NA and NB, respectively. A and B may be

copies of the same item or may be different items. Also suppose that at NA,

(a subtransaction of) T^ has obtained a write-lock on A, and (a subtransaction

of) TI is waiting for that lock. Symmetrically, at NB TI has a lock on B, which

TI is waiting for.

__ / rr' \

v)

(a) Local waits-for graph at N&.

(b) Local waits-for graph at NB-

(c) Global waits-for graph.

Figure 10.7 Global deadlock detection.

The local waits-for graphs at NA and NB are shown in Figure 10.7(a) and

(b); clearly each is acyclic. However, the union of these graphs is the cycle

shown in Figure 10.7(c). As far as we can tell at either of the sites NA or NB,

there might not be a deadlock. For example, from NA alone, we cannot be sure

that anything prevents T2 from eventually committing and releasing its lock on

A, then allowing T\ to get the lock. D

Example 10.7 illustrates why in order to detect cycles it is necessary to

send messages that allow a global waits-for graph to be constructed. There are

several ways this task could be accomplished:

10.8 DISTRIBUTED DEADLOCKS 579

1. Use a central node to receive updates to the local waits-for graphs from all

of the sites periodically. This technique has the advantages and disadvan

tages of centralized methods of locking: it is vulnerable to failure of the

central node and to concentration of message traffic at that site,16 but the

total amount of traffic generated is relatively low.

2. Pass the current local waits-for graphs among all of the sites, preferring

to append the local graph to another message headed for another site if

possible, but sending the local graph to each other site periodically any

way. The amount of traffic this method generates can be much larger than

for the central-node method. However, if the cost of messages is relatively

invariant to their length, and frequently waits-for information can be "pig

gybacked" on other messages, then the real cost of passing information is

small.

Timeliness of Waits-for Graphs

In either method described above, the union of the local waits-for graphs that

any particular site knows about currently does not have to reflect the situation

that existed globally at any particular time. That doesn't prevent the detection

of deadlocks, since if a cycle in the global waits-for graph exists, it won't go

away until the deadlock is resolved by aborting at least one of the transactions

involved in the cycle. Thus, the arcs of a cycle in the global graph will eventually

all reach the central node (in method 1) or reach some node (in method 2), and

the deadlock will be detected.

However, errors in the opposite direction can occur. There can be phantom

deadlocks which appear as cycles in the union of the local waits-for graphs that

have accumulated at some site, yet at no time did the global waits-for graph

have this cycle.

Example 10.8: The transaction T2 in Example 10.7 might decide to abort

for one of several reasons, shortly after the local graph of Figure 10.7(a) was

sent to the central site. Then the graph of Figure 10.7(b) might be sent to the

central site. Before an update to Figure 10.7(a) can reach the central site, that

node constructs the graph of Figure 10.7(c). Thus, it appears that there is a

deadlock, and the central node will select a victim to abort. If it selects T2,

there is no harm, since TI aborted anyway. However, it could just as well select

TI, which would waste resources. D

Timestamp-Based Deadlock Prevention

We mentioned schemes that avoid deadlocks by controlling the order in which

16 Note that in comparison, centralized, or coordinator-based distributed commit protocols

use different nodes for different transactions, and so do not suffer these disadvantages.

580 DISTRIBUTED DATABASE MANAGEMENT

items are locked by any given transaction, e.g., locking in lexicographic order or

taking all locks at once. There also are schemes that do not place constraints on

the order in which items are locked or accessed, but still can assure no deadlocks

occur. These schemes use timestamps on transactions, and each guarantees that

no cycles can occur in the global waits-for graph. It is important to note that

the timestamps are used for deadlock avoidance only; access control of items is

still by locking.

In one scheme, should (a subtransaction of) TI be waiting for (a subtransac-

tion of) TI, then it must be that the timestamp of TI is less than the timestamp

of T2; in the second scheme, the opposite is true. In either scheme, a cycle in

the waits-for graph would consist of transactions with monotonically increasing

or monotonically decreasing timestamps, as we went around the cycle. Nei

ther is possible, since when we go around the cycle we come back to the same

timestamp that we started with.

We now define the two deadlock avoidance schemes. Suppose we have

transactions T\ and T2 with timestamps t\ and t2, respectively, and a sub-

transaction of TI attempts to access an item A locked by a subtransaction of

T2.

1. In the wait-die scheme, TI waits for a lock on A if ti < *2, i-e., if TI is the

older transaction. If ti > <2, then TI is aborted.

2. In the wound-wait scheme, TI waits for a lock on A if t\ > t2. If <i < *2'

then TI is forced to abort and release its lock on A to 7\.17

In either scheme, the aborted transaction must initiate again with the same

timestamp, not with a new timestamp. Reusing the original timestamp guar

antees that the oldest transaction, in either scheme, cannot die or be wounded.

Thus, each transaction will eventually be allowed to complete, as the following

theorem shows.

Theorem 10.3: There can be neither deadlocks nor livelocks in the wait-die

or the wound-wait schemes.

Proof: Consider the wait-die scheme. Suppose there is a cycle in the global

waits-for graph, i.e., a sequence of transactions TI, . . . , Tfc such that each T, is

waiting for release of a lock by Tj+i, for 1 < t < k, and Tfc is waiting for TI. Let

ti be the timestamp of Tj. Then <i < t^ < • • • < tk < <i, which implies ti < <i,

an impossibility. Similarly, in the wound-wait scheme, such a cycle would imply

ti>t2>-••>tk>ti, which is also impossible.

To see why no livelocks occur, let us again consider the wait-die scheme. If

17 Incidentally, the term "wound-wait" rather than "kill-wait" is used because of the image

that the "wounded" subtransaction must, before it dies, run around informing all the

other subtransactions of its transaction that they too must abort. That is not really

necessary if a distributed commit algorithm is used, but the subject is gruesome, and

the less said the better.

10.8 DISTRIBUTED DEADLOCKS 581

Method Messages Phantom Otheraborts

Timeout None Medium Can abort more

number than one trans

action to resolve

one deadlock

Waits-for Graph Medium Few Vulnerable to

Centralized traffic node failure,

bottlenecks

Waits-for Graph High Few

Distributed traffic

Timestamp None Many

Figure 10.8 Comparison of deadlock-handling methods.

T is the transaction with the lowest timestamp, that is, T is the oldest trans

action that has not completed, then T never dies. It may wait for younger

transactions to release their locks, but since there are no deadlocks, those locks

will eventually be released, and T will eventually complete. When T first initi

ates, there are some finite number of live, older transactions. By the argument

above, each will eventually complete, making T the oldest. At that point, T is

sure to complete the next time it is restarted. Of course, in ordinary operation,

transactions will not necessarily complete in the order of their age, and in fact

most will proceed without having to abort.

The no-livelock argument for the wound-wait scheme is similar. Here, the

oldest transaction does not even have to wait for others to release locks; it takes

the locks it needs and wounds the transactions holding them. D

Comparison of Methods

Figure 10.8 summarizes the advantages and disadvantages of the methods we

have covered in this section. The column labeled "Messages" refers to the

message traffic needed to detect deadlocks. The column "Phantom aborts"

refers to the possibility that transactions not involved in a deadlock will be

required to abort.

582 DISTRIBUTED DATABASE MANAGEMENT

EXERCISES

10.1: Suppose we have three nodes, 1, 2, and 3, in our network. Item A has

copies at all three nodes, while item B has copies only at 1 and 3. Two

transactions, T\ and T^ run, starting at the same time, at nodes 1 and 2,

respectively. Each transaction consists of the following steps:

RLOCK B; WLOCK A; UNLOCK A; UNLOCK B;

Suppose that at each time unit, each transaction can send one message to

one site, and each site can read one message. When there is a choice of

sites to send or receive a message to or from, the system always chooses

the lowest numbered site. Additional messages are placed in a queue to be

sent or received at the next time units. Simulate the action of the network

under the following concurrency rules.

a) Write-locks-all.

b) Majority locking.

c) Primary site, assumed to be node 1 for A and 3 for B.

d) Primary copy token, with initially sites 2 and 3 holding read tokens

for A, and 1 holding the write token for B.

e) Timestamp-based concurrency control, assuming the timestamp of T\

exceeds that of T2, and both are greater than the initial read- and

write-times for all the copies.

* 10.2: Show that in order for no two link failures to disconnect a network of n

nodes, that network must have at least 3n/2 edges. Also show that there

are networks with [3n/2] edges that cannot be disconnected by the failure

of two links.

* 10.3: How many edges must an n-node network have to be resilient against the

failure of any k links?

* 10.4: Suppose that we have an incrementation lock mode, as in Example 9.10,

in addition to the usual read and write. Generalize the k-of-n methods to

deal with all three kinds of locks.

* 10.5: Some distributed environments allow a broadcast operation, in which the

same message is sent by one site to any desired subset of the other sites.

Redo the table of Figure 10.2 on the assumption that broadcasts are per

mitted and cost one message each.

10.6: Suppose that a logical read-lock requires that j physical copies be read-

locked, and a logical write-lock requires write-locks on k copies. Show that

if either j + k < n or k < n/2, then logical locks do not work as they should

(thus, the fc-of-n strategies are the best possible).

EXERCISES 583

* 10.7: Determine the average number of messages used by the primary-copy token

method of denning locks, on the assumption that, when it is desired to lock

some item A,

i) 50% of the time a write token for A is available at the local site (and

therefore there is no read-token).

it) 40% of the time a read-token for A is available at the local site,

tit) 10% of the time neither a read- nor write-token for A is available at

the local site.

iv) Whenever a desired token is not available locally, all sites are willing

to give up whatever tokens they have to the requesting site, after the

necessary exchange of messages.

10.8: What happens when the transactions of Figure 10.3 are run under the lock

methods other than write-locks-all?18

* 10.9: We can perform a distributed two-phase commit without a coordinator if

we have each of the n participants send their votes to all other participants.

a) Draw the state-transition diagram for each participant, including ac

tions to be taken if recovery is necessary.

b) How many messages are necessary?

c) If broadcast operations are permitted, how many operations are nec

essary?

d) Is blocking of transactions possible? If so, give an example.

10.10: Repeat Exercise 10.9 for three-phase commit without a coordinator.

10.11: Another approach to distributed two-phase commit is to arrange the par

ticipants in a ring, and expect them to pass and accumulate votes around

the ring, starting and returning to the coordinator. Then the coordinator

passes the outcome of the vote around the ring. In the case that one or

more nodes fail, participants can skip positions around the ring to find the

next live participant. Repeat the questions of Exercise 10.9 for this model.

10.12: Repeat Exercise 10.11 for three-phase commit.

10.13: In Example 10.4 we asserted that if participant Ti gave up its locks without

either committing or aborting, then an inconsistency among copies of a

logical item could occur. Give a scenario to show that is the case.

10.14: We also claimed that, during recovery in two-phase commit, should a par

ticipant that has not yet voted decide to commit, then an inconsistency

was possible. Offer a scenario to justify this claim.

18 Note: Example 10.3 talks about similar pairs of transactions and their behavior under

the other lock methods. We are interested in the exact transactions of Figure 10.3.

584 DISTRIBUTED DATABASE MANAGEMENT

10.15: Suppose there are four participants, T\ (the coordinator), TI, TS, and T4, in

a two-phase commit. Describe what happens if the following failures occur.

In each case, indicate what happens during recovery (if the recovery phase

is entered), and tell whether any transaction blocks.

a) TI fails after sending vote-commit to T^ and TS, but not IV

b) TI fails after sending vote-abort; the other participants vote to com

mit.

c) TI fails before voting; the other participants vote to commit.

d) All vote to commit, but T\ fails before sending out any commit mes-

e) All vote to commit, and T\ fails after sending commit to TZ (only).

f) All vote to commit, and TI sends commit to all, but T2 fails before

receiving the commit message.

10.16: Repeat Exercise 10.15 for three-phase commit. However, in (d)-(f), the

commit message should be replaced by prepare- commit.

10.17: Show that in three-phase commit, if the coordinator sends commit to even

one participant before sending prepare-commit to all, then erroneous be

havior (or blocking) is possible under the failure model of Section 10.5.

10.18: Is erroneous behavior or blocking possible in three-phase commit if the

failure model of Section 10.5 is modified to allow messages to get lost even

if there is no (permanent) node or link failure? Assume that there is no

acknowledgement of prepare-commit messages, but a participant waiting

for commit may time out and go to the Recover state. What if prepare-

commit messages have to be acknowledged?

10.19: Complete the proof of Lemma 10.1(b).

10.20: Consider the leader election algorithm described in Section 10.5 applied to

a set of k participants.

* a) Show that the algorithm can use as many as fi(fc2) messages,

b) Suppose that all messages take the same time. Show that only O(k)

messages are used, assuming no failures.

** c) What if all messages take the same time, but there are failures during

the leader election? Give the maximum number of messages that can

be sent, as a function of k.

10.21: Complete the proof of Lemma 10.2.

10.22: Give a scenario for the recovery algorithm of three-phase commit in which

several rounds of recovery are necessary, and the ultimate decision is to

abort, even though some participant gets into the Ready-to-commit state.

10.23: Describe a timestamp-based analog of majority locking.

BIBLIOGRAPHIC NOTES 585

10.24: Suppose that there are three items AI, A2, and AS at sites Si, S2, and

S3, respectively. Also, there are three transactions, 7\, T2, and T3, with

Ti initiated at site Si, for i = 1,2,3. The following six events happen,

sequentially:

TI locks AI; TI locks AI; T3 locks A3;

TI asks for a lock on A2; T2 asks for a lock on A3;

TS asks for a lock on AI.

a) Suppose we pass local waits-for graphs around, piggybacking them on

messages such as lock requests. Show the picture of the global waits-

for graph obtained by each of the three sites after the above sequence

of actions. Is a deadlock detected?

b) What additional messages (containing local waits-for graphs), if any,

need to be sent so that one site detects deadlock.

c) Suppose we use the wait-die strategy to prevent deadlocks. Show what

happens if the timestamps ti for Ti are in the order ti < t2 < <3.

d) Repeat (c) on the assumption that ti > <j > ^3-

e) Repeat (c) for the wound-wait scheme.

f) Repeat (e) on the assumption that t\ > t^ > t3.

BIBLIOGRAPHIC NOTES

As was mentioned in Chapter 9, many of the key ideas in concurrency and

distributed systems were enunciated by Gray [1978], and an extensive, modern

treatment of the subject can be found in Bernstein, Hadzilacos, and Goodman

[1987].

Additional surveys of distributed database systems are Rothnie and Good

man [1977], Bernstein and Goodman [1981], and the text by Ceri and Pelagatti

[1984].

Distributed Concurrency Control

The fc-of-n family of locking strategies is from Thomas [1975, 1979]. The pri

mary site method is evaluated by Stonebraker [1980], the central node technique

in Garcia-Molina [1979], and primary-copy token methods in Minoura [1980].

Timestamp-based, distributed concurrency control is discussed in Bern

stein and Goodman [1980b]. The method of maintaining global timestamps in

a distributed system is by Lamport [1978].

Additional methods are covered in Bayer, Elhardt, Heller, and Reiser

[1980], while Traiger, Gray, Galtieri, and Lindsay [1982] develop the concepts

underlying distributed concurrency control.

Some of the complexity theory of distributed concurrency control is found

in Kanellakis and Papadimitriou [1981, 1984].

586 DISTRIBUTED DATABASE MANAGEMENT

Performance analysis for distributed concurrency control can be found in

Badal [1980], Agrawal, Carey, and Linvy [1985], and Wolfson [1987].

Distributed Commitment Algorithms

Two-phase commit is from Lampson and Sturgis [1976] and Gray [1978]. Three-

phase commit is from Skeen [1981].

The complexity of commit protocols is examined in Dwork and Skeen [1983]

and Ramarao [1985]. Segall and Wolfson [1987] discuss minimal-message algo

rithms for commit, assuming no failures.

The knowledge-theoretic definition of two- and three-phase commitment is

taken from Hadzilacos [1987].

Leader election in distributed database systems is covered by Garcia-

Molina [1982]. Peleg [1987] gives references and optimal algorithms for leader

election in many cases, although the model does not take into account failure

during the election.

Recovery

The works by Menasce, Popek, and Muntz [1980], Minoura [1980] Skeen and

Stonebraker [1981], and Bernstein and Goodman [1984] contain analyses of the

methods for restoring crashed, distributed systems.

Many other algorithms have been proposed for maintaining replicated data,

allowing partition of the network, and then restoring or updating copies cor

rectly when the network becomes whole. See Eager and Sevcik [1983], Davidson

[1984], Skeen and Wright [1984], Skeen, Cristian, and El Abbadi [1985], and El

Abbadi and Toueg [1986].

Distributed Deadlocks

Menasce and Muntz [1979] and Obermarck [1982] give distributed deadlock de

tection algorithms. Timestamp-based deadlock detection (wait-die and wound-

wait) are from Stearns, Lewis, and Rosenkrantz [1976] and Rosenkrantz,

Stearns, and Lewis [1978].

The complexity of distributed deadlock detection is treated by Wolfson and

Yannakakis [1985].

Systems

One of the earliest distributed database system experiments was the SDD-1

system. Its distributed aspects are described in Bernstein, Goodman, Rothnie,

and Papadimitriou [1978], Rothnie et al. [1980], Bernstein and Shipman [1980],

Bernstein, Shipman, and Rothnie [1980], Hammer and Shipman [1980], and

Bernstein, Goodman, Wong, Reeve, and Rothnie [1981]. See also the comment

on the system by McLean [1981].

BIBLIOGRAPHIC NOTES 587

Distributed INGRES is discussed in Epstein, Stonebraker, and Wong [1978]

and Stonebraker [1979].

The Alpine distributed file system of Xerox PARC, which deals with many

database-system issues, can be found in Brown, Rolling, and Taft [1984].

System R*, IBM's experimental distributed version of System R, is de

scribed by Mohan, Lindsay, and Obermarck [1986].

BIBLIOGRAPHY

Abiteboul, S. and S. Grumbach [1987]. "COL: a language for complex ob

jects based on recursive rules," unpublished memorandum, INRJA, Le Chesnay,

France.

Abiteboul, S. and R. Hull [1987]. "IFO: a formal semantic data model," Proc.

Third ACM Symp. on Principles of Database Systems, pp. 119-132.

Aghili, H. and D. G. Severance [1982]. "A practical guide to the design of

differential files for recovery of on-line databases," ACM Trans, on Database

Systems 7:4, pp. 540-565.

Agrawal, R., M. J. Carey, and M. Linvy [1985]. "Models for studying con

currency control performance: alternatives and implications," ACM SIGMOD

Intl. Conf. on Management of Data, pp. 108-121.

Agrawal, R. and D. J. DeWitt [1985]. "Integrated concurrency control and

recovery mechanisms: design and performance evaluation," ACM Trans, on

Database Systems 10:4, pp. 529-564.

Aho, A. V., C. Beeri, and J. D. Ullman [1979]. "The theory of joins in relational

databases," ACM Trans, on Database Systems 4:3, pp. 297-314. Corrigendum:

ACM Trans, on Database Systems 8:2, pp. 287.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1974]. The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading Mass.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1983]. Data Structures and

Algorithms Addison-Wesley, Reading Mass.

Aho, A. V., B. W. Kernighan, and P. J. Weinberger [1979]. "Awk—a pattern

scanning and processing language," 5oftware Practice and Experience 9, pp.

267-279.

Aho, A. V., B. W. Kernighan, and P. J. Weinberger [1988]. The AWK pro

gramming Language, Addison-Wesley, Reading Mass.

Aho, A. V. and J. D. Ullman [1979]. "Optimal partial match retrieval when

fields are independently specified," ACM Trans, on Database Systems 4:2, pp.

168-179.

588

BIBLIOGRAPHY 589

ANSI [1975]. "Study group on data base management systems: interim report,"

FDT 7:2, ACM, New York.

Apt, K. R. [1987]. "Introduction to logic programming," TR 87-35, Dept. of

CS, Univ. of Texas, Austin. To appear in Handbook of Theoretical Computer

Science (J. Van Leeuwen, ed.), North Holland, Amsterdam.

Apt, K. R., H. Blair, and A. Walker [1985]. "Towards a theory of declarative

knowledge," unpublished memorandum, IBM, Yorktown Hts., N. Y.

Apt, K. R. and J.-M. Pugin [1987]. "Maintenance of stratified databases viewed

as a belief revision system," Proc. Sixth ACM Symp. on Principles of Database

Systems, pp. 136-145.

Apt, K. R. and M. H. Van Emden [1982]. "Contributions to the theory of logic

programming," J. ACM 29:3, pp. 841-862.

Armstrong, W. W. [1974]. "Dependency structures of data base relationships,"

Proc. 1974 IFIP Congress, pp. 580-583, North Holland, Amsterdam.

Arora, A. K. and C. R. Carlson [1978]. "The information preserving properties

of certain relational database transformations," Proc. Intl. Con/. on Very Large

Data Bases, pp. 352-359.

Astrahan, M. M. and D. D. Chamberlin [1975]. "Implementation of a structured

English query language," Comm. ACM 18:10, pp. 580-587.

Astrahan, M. M., et al. [1976]. "System R: a relational approach to data man

agement," ACM Trans, on Database Systems 1:2, pp. 97-137.

Astrahan, M. M., et al. [1979]. "System R: a relational database management

system," Computer 12:5, pp. 43-48.

Bachman, C. W. [1969]. "Data structure diagrams," Data Base 1:2, pp. 4-10.

Badal, D. S. [1980]. "The analysis of the effects of concurrency control on

distributed database system performance," Proc. Intl. Conf. on Very Large

Data Bases, pp. 376-383.

Balbin, I. and K. Ramamohanarao [1986]. "A differential approach to query

optimization in recursive deductive databases," TR-86/7, Dept. of CS, Univ.

of Melbourne.

Bancilhon, F. [1986]. "A logic-programming/object-oriented cocktail," SIG-

MOD Record, 15:3, pp. 11-21.

Bancilhon, F. and S. Khoshafian [1986]. "A calculus for complex objects," Proc.

Fifth ACM Symp. on Principles of Database Systems, pp. 53-59.

590 BIBLIOGRAPHY

Bancilhon, F. and R. Ramakrishnan [1986]. "An amateur's introduction to

recursive query-processing strategies," ACM SIGMOD Intl. Conf. on Manage

ment of Data, pp. 16-52.

Baroody, J. A. Jr. and D. J. DeWitt [1981]. "An object-oriented approach to

database system implementation," ACM Trans, on Database Systems 6:4, pp.

576-601.

Bayer, R. [1985]. "Query evaluation and recursion in deductive database sys

tems," unpublished memorandum, Technical Univ. of Munich.

Bayer, R., K. Elhardt, H. Heller, and A Reiser [1980]. "Distributed concurrency

control in database systems," Proc. Intl. Conf. on Very Large Data Bases, pp.

275-284.

Bayer, R. and E. M. McCreight [1972]. "Organization and maintenance of large

ordered indices," Acta Informatica 1:3, pp. 173-189.

Bayer, R. and M. Schkolnick [1977]. "Concurrency of operating on B-trees,"

Acta Informatica 9:1, pp. 1-21.

Beck, L. L. [1978]. "On minimal sets of operations for relational data sublan

guages," TR-CS-7802, Southern Methodist Univ., Dallas, Tex.

Beech, D. [1987]. "Groundwork for an object database model," unpublished

memorandum, Hewlett-Packard, Palo Alto, CA.

Beeri, C. [1980]. "On the membership problem for functional and multivalued

dependencies," ACM Trans, on Database Systems 5:3, pp. 241-259.

Beeri, C. and P. A. Bernstein [1979]. "Computational problems related to the

design of normal form relation schemes," ACM Trans, on Database Systems

4:1, pp. 30-59.

Beeri, C., P. A. Bernstein, and N. Goodman [1978]. "A sophisticate's introduc

tion to database normalization theory," Proc. Intl. Conf. on Very Large Data

Bases, pp. 113-124.

Beeri, C., P. A. Bernstein, N. Goodman, M. Y. Lai, and D. E. Shasha [1983].

"A concurrency control theory for nested transactions," Proc. Second ACM

Symp. on Principles of Database Systems, pp. 45-62.

Beeri, C., R. Fagin, and J. H. Howard [1977]. "A complete axiomatization

for functional and multivalued dependencies," ACM SIGMOD Intl. Conf. on

Management of Data, pp. 47-61.

Beeri, C. and P. Honeyman [1981]. "Preserving functional dependencies," SIAM

J. Computing 10:3, pp. 647-656.

BIBLIOGRAPHY 591

Beeri, C., A. 0. Mendelzon, Y. Sagiv, and J. D. Ullman [1981]. "Equivalence

of relational database schemes," SIAM J. Computing 10:2, pp. 352-370.

Beeri, C., S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur [1987]. "Sets

and negation in a logic database language (LDL1)," Proc. Sixth ACM Symp.

on Principles of Database Systems, pp. 21-37.

Beeri, C. and M. Y. Vardi [1981]. "The implication problem for data dependen

cies," Automata, Languages and Programming (S. Even and O. Kariv, eds.),

pp. 73-85, Springer-Verlag, New York.

Beeri, C. and M. Y. Vardi [1984a]. "Formal systems for tuple- and equality-

generating dependencies," SIAM J. Computing 13:1, pp. 76-98.

Beeri, C. and M. Y. Vardi [1984b]. "A proof procedure for data dependencies,"

J. ACM 31:4, pp. 718-741.

Bentley, J. L. [1975]. "Multidimensional binary search trees used for associative

searching," Comm. ACM 18:9, pp. 507-517.

Bentley, J. L. and J. H. Friedman [1979]. "Data structures for range searching,"

Computing Surveys 11:4, pp. 397-410.

Bentley, J. L. and D. Stanat [1975]. "Analysis of range searches in quad trees,"

Information Processing Letters 3:6, pp. 170-173.

Bernstein, P. A. [1976]. "Synthesizing third normal form relations from func

tional dependencies," ACM Trans, on Database Systems 1:4, pp. 277-298.

Bernstein, P. A. and N. Goodman [1980a]. "What does Boyce-Codd normal

form do?" Proc. Intl. Conf. on Very Large Data Bases, pp. 245-259.

Bernstein, P. A. and N. Goodman [1980b]. "Timestamp-based algorithms for

concurrency control in distributed database systems," Proc. Intl. Conf. on Very

Large Data Bases, pp. 285-300.

Bernstein, P. A. and N. Goodman [1981]. "Concurrency control in distributed

database systems," Computing Surveys 13:2, pp. 185-221.

Bernstein, P. A. and N. Goodman [1983]. "Multiversion concurrency control—

theory and algorithms," ACM Trans, on Database Systems 8:4, pp. 463-483.

Bernstein, P. A. and N. Goodman [1984]. "An algorithm for concurrency control

and recovery in replicated, distributed databases," ACM Trans, on Database

5ystems 9:4, pp. 596-615.

Bernstein, P. A., N. Goodman, and V. Hadzilacos [1983]. "Recovery algorithms

for database systems," Proc. 1983 IFIP Congress, pp. 799-807, North Holland,

Amsterdam.

592 BIBLIOGRAPHY

Bernstein, P. A., N. Goodman, J. B. Rothnie Jr., and C. H. Papadimitriou

[1978]. "Analysis of serializability of SDD-1: a system of distributed databases

(the fully redundant case)," IEEE Trans, on Software Engineering SE4:3, pp.

154-168.

Bernstein, P. A, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

[1981]. "Query processing in a system for distributed databases (SDD-1),"

ACM Trans, on Database Systems 6:4, pp. 602-625.

Bernstein, P. A., V. Hadzilacos, and N. Goodman [1987]. Concurrency Control

and Recovery in Database Systems Addison-Wesley, Reading Mass.

Bernstein, P. A. and D. W. Shipman [1980]. "The correctness of concurrency

control mechanisms in a system for distributed databases (SDD-1)," ACM

Trans, on Database Systems 5:1, pp. 52-68.

Bernstein, P. A., D. W. Shipman, and J. B. Rothnie, Jr. [1980]. "Concur

rency control in a system for distributed databases (SDD-1)," ACM Trans, on

Database Systems 5:1, pp. 18-51.

Bidiot, N. and R. Hull [1986]. "Positivism vs. minimalism in deductive

databases," Proc. Fifth ACM Symp. on Principles of Database 5ystems, pp.

123-132.

Biliris, A. [1987]. "Operation specific locking in B-trees," Proc. Sixth ACM

Symp. on Principles of Database Systems, pp. 159-169.

Biskup, J. [1980]. "Inferences of multivalued dependencies in fixed and unde

termined universes." Theoretical Computer Science 10:1, pp. 93-106.

Biskup, J., U. Dayal, and P. A. Bernstein [1979]. "Synthesizing independent

database schemas," ACM SIGMOD Intl. Con/, on Management of Data, pp.

143-152.

Blasgen, M. W., et al. [1981]. "System R: an architectural overview," IBM

Systems J. 20:1, pp. 41-62.

Bocca, J. [1986]. "EDUCE: a marriage of convenience: Prolog and a Relational

Database," Symp. on Logic Programming, pp. 36-45, IEEE, New York.

Bolour, A. [1979]. "Optimality properties of multiple key hashing functions,"

J. ACM 26:2, pp. 196-210.

Bosak, R., R. F. Clippinger, C. Dobbs, R. Goldfinger, R. B. Jasper, W. Keating,

G. Kendrick, and J. E. Sammet [1962]. "An information algebra," Comm. ACM

5:4, pp. 190-204.

Boyce, R. F., D. D. Chamberlin, W. F. King, and M. M. Hammer [1975].

BIBLIOGRAPHY 593

"Specifying queries as relational expressions: the SQUARE data sublanguage,"

Comm. ACM 18:11, pp. 621-628.

Brodie, M. L. [1984]. "On the development of data models," in Brodie, My-

lopoulos, and Schmidt [1984], pp. 19-48.

Brodie, M. L. and J. Mylopoulos [1986]. On Knowledge Base Management

5ystems, Springer-Verlag, New York.

Brodie, M. L., J. Mylopoulos, and J. W. Schmidt [1984]. On Conceptual Mod

eling, Springer-Verlag, New York.

Brown, M. R., K. Rolling, and E. A. Taft [1984]. "The Alpine file system,"

CSL-84-4, Xerox, Palo Alto.

Buckley, G. N. and A. Silberschatz [1985]. "Beyond two-phase locking," J.

ACM 32:2, pp. 314-326.

Burkhard, W. A. [1976]. "Hashing and trie algorithms for partial match re

trieval," ACM Trans, on Database Systems 1:2, pp. 175-187.

Burkhard, W. A., M. L. Fredman, and D. J. Kleitman [1981]. "Inherent com

plexity trade-offs for range query problems," Theoretical Computer Science

16:3, pp. 279-290.

Cardenas, A. F. [1979]. Data Base Management Systems, Allyn and Bacon,

Boston, Mass.

Carey, M. J. [1983]. "Granularity hierarchies in concurrency control," Proc.

Second ACM Symp. on Principles of Database Systems, pp. 156-165.

Casanova, M. A., R. Fagin, and C. H. Papadimitriou [1984]. "Inclusion depen

dencies and their interaction with functional dependencies," J. Computer and

5ystem Sciences 28:1, pp. 29-59.

Ceri, S. and G. Pelagatti [1984]. Distributed Databases: Principles and Sys

tems, McGraw-Hill, New York.

Chamberlin, D. D., et al. [1976]. "SEQUEL 2: a unified approach to data

definition, manipulation, and control," IBM J. Research and Devetopment 20:6,

pp. 560-575.

Chamberlin, D. D., et al. [1981]. "A history and evaluation of System R,"

Comm. ACM 24:10, pp. 632-646.

Chandra, A. K. and D. Harel [1980]. "Computable queries for relational

database systems," J. Computer and System Sciences 21:2, pp. 156-178.

Chandra, A. K. and D. Harel [1982]. "Structure and complexity of relational

594 BIBLIOGRAPHY

queries," J. Computer and System Sciences 25:1, pp. 99-128.

Chandra, A. K. and D. Harel [1985]. "Horn clause queries and generalizations,"

J. Logic Programming 4:1, pp. 1-15.

Chandra, A. K., H. R. Lewis, and J. A. Makoswky [1981]. "Embedded impli-

cational dependencies and their inference problem," Proc. Thirteenth Annual

ACM Symp. on the Theory of Computing, pp. 342-354.

Chandy, K. M., J. C. Browne, C. W. Dissly, and W. R. Uhrig [1975]. "Analytic

models for rollback and recovery strategies in database systems," IEEE Trans,

on Software Engineering SE-1:1, pp. 100-110.

Chen, P. P. [1976]. "The entity-relationship model: toward a unified view of

data," ACM Trans, on Database Systems 1:1, pp. 9-36.

Childs, D. L. [1968]. "Feasibility of a set-theoretical data structure—a gen

eral structure based on a reconstituted definition of relation," Proc. 1968 IFIP

Congress, pp. 162-172, North Holland, Amsterdam.

Cincom [1978]. O5 TOTAL Reference Manual, Cincom Systems, Cincinnati,

Ohio.

Clark, K. L. [1978]. "Negation as failure," in Gallaire and Minker [1978], pp.

293-322.

Clocksin, W. F. and C. S. Mellish [1981]. Programming in Prolog, Springer-

Verlag, New York.

CODASYL [1971]. CODASYL Data Base Task Group April 71 Report, ACM,

New York.

CODASYL [1978]. COBOL J. Development, Materiel Data Management Cen

ter, Quebec, Que. Earlier editions appeared in 1973 and 1968.

Codd, E. F. [1970]. "A relational model for large shared data banks," Comm.

ACM 13:6, pp. 377-387.

Codd, E. F. [1972a]. "Further normalization of the data base relational model,"

in Data Base Systems (R. Rustin, ed.) Prentice- Hall, Englewood Cliffs, New

Jersey.pp. 33-64.

Codd, E. F. [1972b]. "Relational completeness of data base sublanguages," ibid.

pp. 65-98.

Codd, E. F. [1975]. "Understanding relations," FDT 7:3-4, pp. 23-28, ACM,

New York.

Codd, E. F. [1979]. "Extending the data base relational model to capture more

BIBLIOGRAPHY 595

meaning," ACM Trans, on Database Systems 4:4, pp. 397-434.

Comer, D. [1978]. "The difficulty of optimum index selection," ACM Trans, on

Database Systems 3:4, pp. 440-445.

Comer, D. [1979]. "The ubiquitous B-tree," Computing Surveys 11:2, pp. 121-

138.

Cooper, E. C. [1980]. "On the expressive power of query languages for relational

databases," TR-14-80, Aiken Computation Lab., Harvard Univ.

Culik, K. II, Th. Ottmann, and D. Wood [1981]. "Dense multiway trees," ACM

Trans, on Database 5ystems 6:3, pp. 486-512.

Cullinane [1978]. IDMS DML Programmer's Reference Guide, Cullinane Corp.,

Wellesley, Mass.

Date, C. J. [1986]. An Introduction to Database Systems, two volumes,

Addison-Wesley, Reading Mass.

Davidson, S. B. [1984]. "Optimism and consistency in partitioned distributed

database systems," ACM Trans, on Database Systems 9:3, pp. 456-482.

Dayal, U. and P. A. Bernstein [1982]. "On the correct translation of update

operations on relational views," ACM Trans, on Database Systems 7:3, pp.

381-416.

Dayal, U. and J. M. Smith [1986]. "PROBE: a knowledge-oriented database

management system," in Brodie and Mylopoulos [1986], pp. 227-258.

Delobel, C. [1978]. "Normalization and hierarchical dependencies in the rela

tional data model," ACM Trans, on Database Systems 3:3, pp. 201-222. See

also, "Contributions theoretiques a la conception d'un systeme d'informations,"

doctoral dissertation, Univ. of Grenoble, Oct., 1973.

Delobel, C. and R. C. Casey [1972]. "Decomposition of a database and the

theory of boolean switching functions," IBM J. Res. Devel. 17:5, pp. 370-386.

DiPaola, R. A. [1969]. "The recursive unsolvability of the decision problem for

a class of definite formulas," J. ACM 16:2, pp. 324-327.

Dwork, C. and D. Skeen [1983]. "The inherent cost of nonblocking commit

ment," Proc. Second ACM Symp. on Principles of Distributed Computing, pp.

1-11.

Eager, D. and K. Sevcik [1983]. "Achieving robustness in distributed database

systems," ACM Trans, on Database 5ystems 8:3, pp. 354-381.

El Abbadi, A., and S. Toueg [1986]. "Availability in partitioned, replicated

596 BIBLIOGRAPHY

databases," Proc. Fifth ACM Symp. on Principles of Database Systems, pp.

240 251.

Ellis, C. S. [1980]. "Concurrent search and insertion in 2-3 trees," Acta Infor-

matica 14:1, pp. 63-86.

Ellis, C. S. [1987]. "Concurrency in linear hashing," ACM Trans, on Database

Systems 12:2, pp. 195-217.

El Masri, R. and G. Wiederhold [1979]. "Data model integration using the

structural model," ACM SIGMOD Intl. Conf. on Management of Data, pp.

191-202.

Epstein, R., M. Stonebraker, and E. Wong [1979]. "Distributed query process

ing in a relational database system," ACMSIGMOD Intl. Conf. on Management

of Data, pp. 169-180.

Eswaran, K. P., J. N. Gray, R. A. Lorie, and I. L. Traiger [1976]. "The notions

of consistency and predicate locks in a database system," Comm. ACM 19:11,

pp. 624-633.

Fagin, R. [1977]. "Multivalued dependencies and a new normal form for rela

tional databases," ACM Trans, on Database Systems 2:3, pp. 262-278.

Fagin, R. [1978]. "On an authorization mechanism," ACM Trans, on Database

Systems 3:3, pp. 310-319.

Fagin, R. [1981]. "A normal form for relational databases that is based on

domains and keys," ACM Trans, on Database Systems 6:3, pp. 387-415.

Fagin, R. [1982]. "Horn clauses and database dependencies," J. ACM 29:4, pp.

952-983.

Fagin, R., J. Nievergelt, N. Pippenger, and H. R. Strong [1979]. "Extendible

hashing—a fast access method for dynamic files," ACM Trans, on Database

Systems 4:3, pp. 315-344.

Fagin, R. and M. Y. Vardi [1986]. "The theory of data dependencies—a survey,"

in Mathematics of Information Processing (M. Anshel and W. Gewirtz, eds.),

5ymposia in Applied Mathematics 34, pp. 19-72.

Fekete, A., N. Lynch, M. Merritt, and W. Weihl [1987]. "Nested transactions

and read/write locking," Proc. 5ixth ACM Symp. on Principles of Database

Systems, pp. 97-111.

Fernandez, E. B., R. C. Summers, and C. Wood [1980]. Database Security and

Integrity, Addison-Wesley, Reading Mass.

BIBLIOGRAPHY 597

Filiat<, A. I. and L. A. Kraning [1970]. "Generalized organization of large data

bases: a set theoretic approach to relations," MIT MAC TR-70, June, 1970.

Finkel, R. A. and J. L. Bentley [1974]. "Quad trees, a data structure for retrieval

on composite keys," Acta Informatica 4:1, pp. 1-9.

Fischer, P. C. and D.-M. Tsou [1983]. "Whether a set of multivalued depen

dencies implies a join dependency is A/"P-hard," SIAM J. Computing 12:2, pp.

259-266.

Fischer, P. C. and D. Van Gucht [1984]. "Weak multivalued dependencies,"

Proc. Third ACM Symp. on Principles of Database Systems, pp. 266-274.

Fishman, D. H., et al. [1986]. "Iris: an object-oriented DBMS," STL-86-15,

Hewlett-Packard, Palo Alto.

Fong, A. C. and J. D. Ullman [1976]. "Induction variables in very high-level

languages," Proc. Third ACM Symp. on Principles ofProgramming Languages,

pp. 104-112.

Franaszek, P. and J. T. Robinson [1985]. "Limitations on concurrency in trans

action processing," ACM Trans, on Database Systems 10:1, pp. 1-28.

Fredman, M. F. [1981]. "A lower bound on the complexity of orthogonal range

queries," J. ACM 28:4, pp. 696-705.

Frost, R. [1986]. Introduction to Knowledge Base Systems, MacMillan, New

York.

Furtado, A. L. [1978]. "Formal aspects of the relational model," Information

systems 3:2, pp. 131-140.

Galil, Z. [1982]. "An almost linear time algorithm for computing a dependency

basis in a relational database," J. ACM 29:1, pp. 96-102.

Gallaire, H. and J. Minker [1978]. Logic and Databases, Plenum Press, New

York.

Gallaire, H., J. Minker, and J.-M. Nicolas [1981]. Advances in Database Theory,

Vol. I, Plenum Press, New York.

Gallaire, H., J. Minker, and J.-M. Nicolas [1983]. Advances in Database Theory,

Vol. II, Plenum Press, New York.

Gallaire, H., J. Minker, and J.-M. Nicolas [1984]. "Logic and databases: a

deductive approach," Computing 5urveys 16:1, pp. 154-185.

Garcia-Molina, H. [1979]. "Performance comparison of update algorithms for

distributed databases," Part I: Tech. Note 143, Part II: Tech. Note 146, Digital

BIBLIOGRAPHY

Systems Lab., Stanford Univ.

Garcia-Molina, H. [1982]. "Elections in a distributed computing system," IEEE

Trans, on Computers C-31:l, pp. 48-59.

Garcia-Molina, H. and J. Kent [1985]. "An experimental evaluation of crash

recovery algorithms," Proc. Fourth ACM Symp. on Principles of Database Sys

tems, pp. 113-121.

Garey, M. R. and D. S. Johnson [1979]. Computers and Intractability: A Guide

to the Theory of NP-Completeness, Freeman, San Francisco.

Gelenbe, E. and D. Derochette [1978]. "Performance of rollback recovery sys

tems under intermittent failures," Comm. ACM 21:6, pp. 493-499.

Gelfond, M. and V. Lifschitz [1988]. "The stable model semantics for logic

programming," unpublished memorandum, Dept. of CS, Stanford Univ.

Gelfond, M., H. Przymusinska, and T. C. Przymusinski [1986]. "The extended

closed world assumption and its relationship to parallel circumscription," Proc.

Fifth ACM Symp. on Principles of Database 5ystems, pp. 133-139.

Genesereth, M. R. and N. J. Nilsson [1988]. Logical Foundatations of Artificial

Intelligence, Morgan-Kaufmann, Los Altos.

Ginsberg, M. [1988]. Nonmonotonic Reasoning, Morgan-Kaufmann, Los Altos.

Ginsburg, S. and S. M. Zaiddan [1982]. "Properties of functional dependency

families," J. ACM 29:3, pp. 678-698.

Goldberg, A. and D. Robson [1980]. Smalltalk-80: The Language and Its Im

plementation, Addison-Wesley, Reading Mass.

Gonzalez-Rubio, R., J. Rohmer, and A. Bradier [1987]. "An overview of DDC:

a delta driven computer," DSG/CRG/87007, Bull, Louveciennes, France.

Gotlieb, C. C. and F. W. Tompa [1973]. "Choosing a storage schema," Acta

Informatica 3:3, pp. 297-319.

Gottlob, G. [1987]. "Computing covers for embedded functional dependencies,"

Proc. Sixth ACM Symp. on Principles of Database Systems, pp. 58-69.

Graham, M. H., A. O. Mendelzon, and M. Y. Vardi [1986]. "Notions of depen

dency satisfaction," J. ACM 33:1, pp. 105-129.

Gray, J. N. [1978]. "Notes on database operating systems," in Operating Sys

tems: an Advanced Course (R. Bayer, R. M. Graham, and G. Seegmuller, eds.),

Springer-Verlag, New York.

BIBLIOGRAPHY 599

Gray, J. N., et al. [1981]. "The recovery manager of the system R database

manager," Computing Surveys 13:2, pp. 223-242.

Gray, J. N., R. A. Lorie, and G. R. Putzolo [1975]. "Granularity of locks in a

shared database," Proc. Intl. Conf. on Very Large Data Bases, pp. 428-451.

Gray, J. N., G. R. Putzolo, and I. L. Traiger [1976]. "Granularity of locks

and degrees of consistency in a shared data base," in Modeling in Data Base

Management Systems (G. M. Nijssen, ed.), North Holland, Amsterdam.

Greenblatt, D. and J. Waxman [1978]. "A study of three database query lan

guages," in Shneiderman [1978], pp. 77-98.

Griffiths, P. P. and B. W. Wade [1976]. "An authorization mechanism for a

relational database system," ACM Trans, on Database Systems 1:3, pp. 242-

255.

Gudes, E. and S. Tsur [1980]. "Experiments with B-tree reorganization," ACM

SIGMOD Intl. Conf. on Management of Data, pp. 200-206.

Gurevich, Y. and H. R. Lewis [1982]. "The inference problem for template

dependencies," Proc. First ACM Symp. on Principles ofDatabase Systems, pp.

221-229.

Hadzilacos, T. and C. H. Papadimitriou [1985]. "Some algorithmic aspects of

multiversion concurrency control," Proc. Fourth ACM Symp. on Principles of

Database Systems, pp. 96-104.

Hadzilacos, T. and M. Yannakakis [1986]. "Deleting completed transactions,"

Proc. Fifth ACM Symp. on Principles of Database Systems, pp. 43-46.

Hadzilacos, V. [1982]. "An algorithm for minimizing roll back cost," Proc. First

ACM Symp. on Principles of Database Systems, pp. 93-97.

Hadzilacos, V. [1987]. "A knowledge-theoretic analysis of atomic commitment

protocols," Proc. 5ixth ACM Symp. on Principles of Database Systems, pp.

129-134.

Haerder, T. and A. Reuter [1983]. "Principles of transaction oriented database

recovery—a taxonomy," Computing Surveys 15:4, pp. 287-317.

Hagihara, K., M. Ito, K. Taniguchi, and T. Kasami [1979]. "Decision problems

for multivalued dependencies in relational databases," SIAM J. Computing 8:2,

pp. 247-264.

Hammer, M. and D. McLeod [1981]. "Database description with SDM: a se

mantic database model," ACM Trans, on Database 5ystems 6:3, pp. 351-386.

Hammer, M. and D. Shipman [1980]. "Reliability mechanisms for SDD-1: a

600 BIBLIOGRAPHY

system for distributed databases," ACM Trans, on Database Systems 5:4, pp.

431-466.

Harel, D. [1986]. "Logic and databases: a critique," SIGACT News 18:1, pp.

68-74.

Heath, I. J. [1971]. "Unacceptable file operations in a relational data base,"

ACM SIGFIDET Workshop on Data Description, Access, and Control, pp. 19-

33.

Heiler, S. and A. Rosenthal [1985]. "G-WHIZ: a visual interface for the func

tional model with recursion," Proc. Intl. Conf. on Very Large Data Bases, pp.

209-218.

Held, G. and M. Stonebraker [1978]. "B-trees reexamined," Comm. ACM 21:2,

pp. 139-143.

Holt, R. C. [1972]. "Some deadlock properties in computer systems," Comput

ing Surveys 4:3, pp. 179-196.

Honeyman, P. [1982]. "Testing satisfaction of functional dependencies," J. ACM

29:3, pp. 668-677.

Hull, R. and R. King [1987]. "Semantic database modeling: survey, applica

tions, and research issues," CRI-87-20, Computer Research Inst., USC.

Hull, R. and C. K. Yap [1984]. "The format model, a theory of database

organization," J. ACM 31:3, pp. 518-537.

Hunt, H. B. III and D. J. Rosenkrantz [1979]. "The complexity of testing

predicate locks," ACM SIGMOD Intl. Conf. on Management of Data, pp. 127-

133.

IBM [1978a]. Query-by Example Terminal Users Guide, SH20-2078-0, IBM,

White Plains, N. Y.

IBM [1978b]. IMS/VS publications, especially GH20-1260 (General Informa

tion), SH20-9025 (System/Application Design Guide), SH20-9026 (Application

Programming Reference Manual), and SH20-9027 (Systems Programming Ref

erence Manual), IBM, White Plains, N. Y.

IBM [1984]. "SQL/data system application programming for VM/system prod

uct," SH24-5068-0, IBM, White Plains, N. Y.

IBM [1985a]. "SQL/RT database programmer's guide," IBM, White Plains,

NY.

IBM [1985b]. "Easy SQL/RT user's guide," IBM, White Plains, NY.

BIBLIOGRAPHY 601

Imielinski, T. [1986]. "Query processing in deductive database systems with

incomplete information," ACM SIGMOD Intl. Conf. on Management of Data,

pp. 268-280.

Imielinski, T. and W. Lipski [1984]. "Incomplete information in relational

databases," J. ACM 31:4, pp. 761-791.

Immerman, N. [1982]. "Relational queries computable in polynomial time,"

Proc. Fourteenth Annual ACM Symp. on the Theory of Computing, pp. 147-

152.

Jaeschke, G. and H.-J. Scheck [1982]. "Remarks on the algebra of non first

normal form relations," Proc. First ACM Symp. on Principles of Database

Systems, pp. 124-138.

Jarke, M., J. Clifford, and Y. Vassiliou [1984]. "An optimizing Prolog front end

to a relational query system," ACM SIGMOD Intl. Conf. on Management of

Data, pp. 296-306.

Jou, J. H. and P. C. Fischer [1983]. "The complexity of recognizing 3NF relation

schemes," Information Processing Letters 14:4, pp. 187-190.

Kambayashi, Y. [1981]. Database a Bibliography, Computer Science Press,

Rockville, Md.

Kanellakis, P. C., S. S. Cosmadakis, and M. Y. Vardi [1983]. "Unary inclusion

dependencies have polynomial time inference problems," Proc. Fifteenth Annual

ACM Symp. on the Theory of Computing, pp. 264-277.

Kanellakis, P. C. and C. H. Papadimitriou [1981]. "The complexity of dis

tributed concurrency control," Proc. Twenty-Second Annual IEEE Symp. on

Foundations of Computer Science, pp. 185-197.

Kanellakis, P. C. and C. H. Papadimitriou [1984]. "Is distributed locking

harder?," J. Computer and System Sciences 28:1, pp. 103-120.

Kedem, Z. and A. Silberschatz [1979]. "Controlling concurrency using locking

protocols." Proc. Twentieth Annual IEEE Symp. on Foundations of Computer

Science, pp. 274-285.

Kedem, Z. and A. Silberschatz [1980]. "Non-two phase locking protocols with

shared and exclusive locks," Proc. Intl. Conf. on Very Large Data Bases, pp.

309-320.

Keller, A. [1985]. "Algorithms for translating view updates into database up

dates for views involving selections, projections, and joins," Proc. Fourth ACM

Symp. on Principles of Database Systems, pp. 154-163.

602 BIBLIOGRAPHY

Kellogg, C., A. O'Hare, and L. Travis [1986]. "Optimizing the rule-data inter

face in a KMS," Proc. Intl. Conf. on Very Large Data Bases, pp. 42-51.

Kent, W. [1979]. "Limitations of record-based information models," ACM

Trans, on Database Systems 4:1, pp. 107-131.

Kerschberg, L., A. Klug, and D. C. Tsichritzis [1977]. "A taxonomy of data

models," in 5ystems for Large Data Bases (Lockemann and Neuhold, eds.),

North Holland, Amsterdam, pp. 43-64.

Khoshafian, S. N. and G. P. Copeland [1986]. "Object identity," OOPSLA '86

Proceedings, ACM, New York, pp. 406-416.

Kim, W. [1979]. "Relational database systems," Computing Surveys 11:3, pp.

185-210.

Klug, A. [1981]. "Equivalence of relational algebra and relational calculus query

languages having aggregate functions," J. ACM 29:3, pp. 699-717.

Knuth, D. E. [1968]. The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading Mass.

Knuth, D. E. [1973]. The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading Mass.

Korth, H. F. [1983]. "Locking primitives in a database system," J. ACM 30:1,

pp. 55-79.

Korth, H. F. and A. Silberschatz [1986]. Database System Concepts, McGraw-

Hill, New York.

Kowalski, R. A. [1974]. "Predicate logic as a programming language," Proc.

1974 IFIP Congress, pp. 569-574, North Holland, Amsterdam.

Kuhns, J. L. [1967]. "Answering questions by computer; a logical study," RM-

5428-PR, Rand Corp., Santa Monica, Calif.

Kung, H.-T. and C. H. Papadimitriou [1979]. "An optimality theory of con

currency control for databases," ACM SIGMOD Intl. Conf. on Management of

Data, pp. 116-126.

Kung, H.-T. and J. T. Robinson [1981]. "On optimistic concurrency control,"

ACM Trans, on Database Systems 6:2, pp. 213-226.

Kunifuji, S. and H. Yokuta [1982]. "PROLOG and relational databases for

fifth-generation computer systems," TR002, ICOT, Tokyo.

Kuper, G. M. [1987]. "Logic programming with sets," Proc. 5ixth ACM Symp.

on Principles of Database Systems, pp. 11-20.

BIBLIOGRAPHY 603

Kuper, G. M. and M. Y. Vardi [1984]. "A new approach to database logic,"

Proc. Third ACM Symp. on Principles of Database Systems, pp. 86-96.

Kuper, G. M. and M. Y. Vardi [1985]. "On the expressive power of the logical

data model," ACM S1GMOD Intl. Conf. on Management ofData, pp. 180-189.

Lacroix, M. and A. Pirotte [1976]. "Generalized joins," SIGMOD Record 8:3,

pp. 14-15.

Lamport, L. [1978]. "Time, clocks, and the ordering of events in a distributed

system," Comm. ACM 21:7, pp. 558-565.

Lampson, B. and H. Sturgis [1976]. "Crash recovery in a distributed data

storage system," unpublished memorandum, Xerox PARC, Palo Alto, CA.

Larson, P. [1978]. "Dynamic hashing," BIT 18:2, pp. 184-201.

Larson, P. [1982]. "Performance analysis of linear hashing with partial expan

sions," ACM Trans, on Database Systems 7:4, pp. 565-587.

Lehman, P. L. and S. B. Yao [1981]. "Efficient locking for concurrent operations

on B-trees," ACM Trans, on Database Systems 6:4, pp. 650-670.

Lein, Y. E. [1979]. "Multivalued dependencies with null values in relational

databases," Proc. Intl. Conf. on Very Large Data Bases, pp. 61-66.

Levien, R. E. [1969]. "Relational data file: experience with a system for preposi

tional data storage and inference execution," RM-5947-PR, Rand Corp., Santa

Monica, Calif.

Levien, R. E. and M. E. Maron [1967]. "A computer system for inference

execution and data retrieval," Comm. ACM 10:9, pp. 715-721.

Le, V. T. [1985]. "General failure of logic programs," J. Logic Programming

2:2, pp. 157-165.

Lien, Y. E. [1979]. "Multivalued dependencies with null values in relational

databases," Proc. Intl. Conf. on Very Large Data Bases, pp. 61-66.

Lifschitz, V. [1985]. "Closed world databases and circumscription," Artificial

Intelligence 28:1, pp. 229-235.

Lifschitz, V. [1988]. "On the declarative semantics of logic programs," in Minker

[1988].

Ling, T. W., F. W. Tompa, and T. Kameda [1981]. "An improved third normal

form for relational databases," ACM Trans, on Database Systems 6:2, pp. 329-

346.

604 BIBLIOGRAPHY

Lipski, W. Jr. [1981]. "On databases with incomplete information," J. ACM

28:1, pp. 41-70.

Lipski, W. and C. H. Papadimitriou [1981]. "A fast algorithm for testing for

safety and deadlocks in locked transaction systems," J. Algorithms 2:2, pp.

211-226.

Litwin, W. [1980]. "Linear hashing: a new tool for file and table addressing,"

Proc. Intl. Conf. on Very Large Data Bases, pp. 212-223.

Litwin, W. [1984]. "MALPHA, A Multidatabase manipulation language," Proc.

IEEEDEC, April, 1984.

Liu, L. and A. Demers [1980]. "An algorithm for testing lossless joins in rela

tional databases," Information Processing Letters 11:1, pp. 73-76.

Lloyd, J. W. [1984]. Foundations of Logic Programming, Springer-Verlag, New

York.

Lorie, R. A. [1977]. "Physical integrity in a large segmented database," ACM

Trans, on Database Systems 2:1, pp. 91-104.

Lucchesi, C. L. and S. L. Osborn [1978]. "Candidate keys for relations." J.

Computer and System Sciences 17:2, pp. 270-279.

Lueker, G. S. [1978]. "A data structure for orthogonal range queries," Proc.

Nineteenth Annual IEEE Symp. on Foundations of Computer Science, pp. 28-

33.

Lum, V. and H. Ling [1970]. "Multi-attribute retrieval with combined indices,"

Comm. ACM 13:11, pp. 660-665.

Maier, D. [1980]. "Minimum covers in the relational database model," J. ACM

27:4, pp. 664-674.

Maier, D. [1983]. The Theory ofRelational Databases, Computer Science Press,

Rockville, Md.

Maier, D. [1986]. "A logic for objects," TR CS/E-86-012, Oregon Graduate

Center, Beaverton, Ore.

Maier, D., A. O. Mendelzon, F. Sadri, and J. D. Ullman [1980]. "Adequacy

of decompositions in relational databases," J. Computer and 5ystem Sciences

21:3, pp. 368-379.

Maier, D., A. O. Mendelzon, and Y. Sagiv [1979]. "Testing implications of data

dependencies," ACM Trans, on Database 5ystems 4:4, pp. 455-469.

Maier, D., Y. Sagiv, and M. Yannakakis [1981]. "On the complexity of testing

BIBLIOGRAPHY 605

implications of functional and join dependencies," J. ACM 28:4, pp. 680-695.

Maier, D., J. Stein, A. Otis, and A. Purdy [1986]. "Development of an object-

oriented DBMS," OOPSLA '86 Proceedings, ACM, New York, pp. 472-482.

Maier, D. and D. S. Warren [1988]. Computing with Logic: Logic Programming

with Prolog, Benjamin Cummings, Menlo Park, CA.

Manber, U. and R. E. Ladner [1984]. "Concurrency control in a dynamic search

structure," ACM Trans, on Database Systems 9:3, pp. 439-455.

Manna, Z. and R. Waldinger [1985]. The Logical Basis for Computer Program

ming, Addison-Wesley, Reading Mass.

Maurer, W. D. and T. G. Lewis [1975]. "Hash table methods," Computing

Surveys 7:1, pp. 5-20.

McCarthy, J. [1980]. "Circumscription—a form of nonmonotonic reasoning,"

Artificial Intelligence 13:1, pp. 27-39.

McLean, G. [1981]. "Comments on SDD-1 concurrency control mechanisms,"

ACM Trans, on Database Systems 6:2, pp. 347-350.

Menasce, D. A. and R. R. Muntz [1979]. "Locking and deadlock detection

in distributed data bases," IEEE Trans, on Software Engineering SE-5:3, pp.

195-202.

Menasce, D. A., G. J. Popek, and R. R. Muntz [1980]. "A locking protocol

for resource coordination in distributed databases," ACM Trans, on Database

Systems 5:2, pp. 103-138.

Mendelzon, A. O. [1979]. "On axiomatizing multivalued dependencies in rela

tional databases," J. ACM 26:1, pp. 37-44.

Mendelzon, A. O. and D. Maier [1979]. "Generalized mutual dependencies and

the decomposition of database relations," Proc. Intl. Con/, on Very Large Data

Bases, pp. 75-82.

Minker, J. [1982]. "On indefinite databases and the closed world assumption,"

Proc. Sixth Conf. on Automated Deduction (D. Loveland, ed.), Springer-Verlag,

New York.

Minker, J. [1987]. "Perspectives in deductive databases," CS-TR-1799, Dept.

of CS, Univ. of Maryland.

Minker, J. [1988]. Foundations of Deductive Databases and Logic Program

ming, Morgan-Kaufmann, Los Altos.

Minoura, T. [1980]. "Resilient extended true-copy token algorithm for dis

606 BIBLIOGRAPHY

tributed database systems," Ph. D. Thesis, Dept. of EE, Stanford Univ., Stan

ford, Calif.

Minsky, N. H. and D. Rozenshtein [1987]. "Law-based approach to object-

oriented programming," Proc. 1987 OOPSLA Conf.

Mitchell, J. C. [1983]. "Inference rules for functional and inclusion dependen

cies," Proc. Second ACM Symp. on Principles of Database Systems, pp. 58-69.

Moffat, D. S. and P. M. D. Gray [1986]. "Interfacing Prolog to a persistent

data store," Proc. Third Intl. Conf. on Logic Programming, pp. 577-584.

Mohan, C., B. G. Lindsay, and R. Obermarck [1986]. "Transaction management

in the R* Distributed database management system," ACM Trans, on Database

Systems 11:4, pp. 378-396.

Morris, K., J. F. Naughton, Y. Saraiya, J. D. Ullman, and A. Van Gelder [1987].

"YAWN! (yet another window on NAIL!)," to appear in Database Engineering.

Morris, K., J. D. Ullman, and A. Van Gelder [1986]. "Design overview of the

NAIL! system," Proc. Third Intl. Conf. on Logic Programming, pp. 554-568.

Morris, R. [1968]. "Scatter storage techniques," Comm. ACM 11:1, pp. 38-43.

MRJ [1978]. 5ystem 2000 Reference manual, MRI Systems Corp., Austin, Tex.

Naish, L. [1986]. "Negation and control in Prolog," Lecture Notes in Computer

Science 238, Springer-Verlag, New York.

Naqvi, S. [1986]. "Negation in knowledge base management systems," in Brodie

and Mylopoulos [1986], pp. 125-146.

Nicolas, J. M. [1978]. "Mutual dependencies and some results on undecompos-

able relations," Proc. Intl. Conf. on Very Large Data Bases, pp. 360-367.

Obermarck, R. [1982]. "Distributed deadlock detection algorithm," ACM

Trans, on Database 5ystems 7:2, pp. 187-208.

Olle, T. W. [1978]. The Codasyl Approach to Data Base Management, John

Wiley and Sons, New York.

Orenstein, J. A. and T. H. Merrett [1984]. "A class of data structures for

associative searching," Proc. Fourth ACM 5ymp. on Principles of Database

Systems, pp. 181-190.

Osborn, S. L. [1977]. "Normal forms for relational databases," Ph. D. Thesis,

Univ. of Waterloo.

Osborn, S. L. [1979]. "Testing for existence of a covering Boyce-Codd normal

form," In/ormation Processing Letters 8:1, pp. 11-14.

BIBLIOGRAPHY 607

Ozsoyoglu, G. and H. Wang [1987]. "On set comparison operators, safety, and

QBE," unpublished memorandum, Dept. of CSE, Case Western Reserve Univ.,

Cleveland, Ohio.

Ozsoyoglu, M. Z. and L.-Y. Yuan [1985]. "A normal form for nested relations,"

Proc. Fourth ACM Symp. on Principles of Database Systems, pp. 251-260.

Paige, R. and J. T. Schwartz [1977]. "Reduction in strength of high level op

erations," Proc. Fourth ACM Symp. on Principles of Programming Languages,

pp. 58-71.

Papadimitriou, C. H. [1979]. "The serializability of concurrent database up

dates," J. ACM 26:4, pp. 631-653.

Papadimitriou, C. H. [1983]. "Concurrency control by locking," J. ACM 12:2,

pp. 215-226.

Papadimitriou, C. H. [1986]. The Theory of Database Concurrency Control,

Computer Science Press, Rockville, Md.

Papadimitriou, C. H., P. A. Bernstein, and J. B. Rothnie Jr. [1977]. "Com

putational problems related to database concurrency control," Proc. Con/. on

Theoretical Computer Science, Univ. of Waterloo, Waterloo, Ont.

Papadimitriou, C. H. and P. C. Kanellakis [1984]. "On concurrency control by

multiple versions," ACM Trans, on Database Systems 9:1, pp. 89-99.

Paredaens, J. and D. Jannsens [1981]. "Decompositions of relations: a compre

hensive approach," in Gallaire, Minker, and Nicolas [1980].

Peleg, D. [1987]. "Time-optimal leader election in general networks," unpub

lished memorandum, Dept. of CS, Stanford Univ.

Perl, Y., A. Itai, and H. Avni [1978]. "Interpolation search—a log log n search,"

Comm. ACM 21:7, pp. 550-553.

Pirotte, A. [1978]. "High level data base query languages," in Gallaire and

Minker [1978], pp. 409-436.

Przymusinski, T. C. [1986]. "An algorithm to compute circumscription," un

published memorandum, Dept. of Math. Sci., Univ. of Texas, El Paso.

Przymusinski, T. C. [1988]. "On the declarative semantics of stratified deduc

tive databases and logic programs," in Minker [1988].

Ramakrishnan, R., F. Bancilhon, and A. Silberschatz [1987]. "Safety of recur

sive Horn clauses with infinite relations," Proc. 5ixth ACM Symp. on Principles

of Database Systems, pp. 328-339.

608 BIBLIOGRAPHY

Ramarao, K. V. S. [1985]. "On the complexity of commit protocols," Proc.

Fourth ACM Symp. on Principles of Database Systems, pp. 235-244.

Reed, D. P. [1978]. "Naming and synchronization in a decentralized computer

system," Ph. D. thesis, Dept. of EECS, MIT, Cambridge, Mass.

Reis, D. R. and M. Stonebraker [1977]. "Effects of locking granularity in a

database management system," ACM Trans, on Database Systems 2:3, pp.

233-246.

Reis, D. R. and M. Stonebraker [1979]. "Locking granularity revisited," ACM

7rans, on Database Systems 4:2, pp. 210-227.

Reiter, R. [1978]. "On closed world databases," in Gallaire and Minker [1978],

pp. 55-76.

Reiter, R. [1980]. "Equality and domain closure in first-order databases," J.

ACM 27:2, pp. 235-249.

Reiter, R. [1984]. "Towards a logical reconstruction of relational database the

ory," in Brodie, Mylopoulos, and Schmidt [1984], pp. 191-233.

Reiter, R. [1986]. "A sound and sometimes complete query evaluation algorithm

for relational databases with null values," J. ACM 33:2, pp. 349-370.

Reuter, A. [1984]. "Performance analysis of recovery techniques," ACM 7rans,

on Database 5ystems 9:4, pp. 526-559.

Rissanen, J. [1977]. "Independent components of relations," ACM 7rans, on

Database Systems 2:4, pp. 317-325.

Rissanen, J. [1979]. "Theory of joins for relational databases—a tutorial sur

vey," Proc. 5eventh Symp. on Mathematical Foundations of C. S., Lecture notes

in CS, 64, Springer Verlag, pp. 537-551.

Rivest, R. L. [1976]. "Partial match retrieval algorithms," SJAM J. Computing

5:1, pp. 19-50.

Robinson, J. T. [1981]. "The K-D-B tree; a search structure for large, multi

dimensional dynamic indices," ACM SIGMOD Intl. Conf. on Management of

Data, pp. 10-18.

Robinson, J. T. [1986]. "Order preserving linear hashing using dynamic key

statistics," Proc. Fifth ACM Symp. on Principles of Database Systems, pp.

91-99.

Rosenberg, A. L. and L. Snyder [1981]. "Time- and space-optimality in B-

trees," ACM Trans, on Database Systems 6:1, pp. 174-193.

BIBLIOGRAPHY 609

Rosenkrantz, D. J., R. E. Stearns, and P. M. Lewis II [1978]. "System level con

currency control for distributed data base systems," ACM Trans, on Database

Systems 3:2, pp. 178-198.

Ross, K. A. and R. W. Topor [1987]. "Inferring negative information in deduc

tive database systems," TR 87/1, Dept. of CS, Univ. of Melbourne.

Ross, K. A. and A. Van Gelder [1988]. "Unfounded sets and well-founded

semantics for general logic programs," to appear in Proc. Seventh ACM Symp.

on Principles of Database Systems.

Roth, M., H. F. Korth, and A Silberschatz [1984]. "Theory of non-first-normal-

form relational databases," TR-84-36, Dept. of CS, Univ. of Texas, Austin.

Rothnie, J. B. Jr., et al. [1980]. "Introduction to a system for distributed

databases (SDD-1)," ACM Trans, on Database Systems 5:1, pp. 1-17.

Rothnie, J. B. Jr. and N. Goodman [1977]. "A survey of research and devel

opment in distributed database management," Proc. Intl. Con/, on Very Large

Data Bases, pp. 48-62.

Rothnie, J. B. Jr. and T. Lozano [1974]. "Attribute based file organization in

a paged memory environment," Comm. ACM 17:2, pp. 63-69.

Rustin, R. (ed.) [1974]. Proc. ACM/SIGMOD Con/, on Data Models: Data-

Structure-Set vs. Relational, ACM, New York.

Sadri, F. and J. D. Ullman [1981]. "Template dependencies: a large class of

dependencies in relational databases and their complete axiomatization," J.

ACM 29:2, pp. 363-372.

Sagiv, Y. [1985]. "Concurrent operations on B-trees with overtaking," Proc.

Fourth ACM Symp. on Principles of Database Systems, pp. 28-37.

Sagiv, Y. [1987]. "Optimizing datalog programs," Proc. 5ixth ACM 5ymp. on

Principles of Database Systems, pp. 349-362.

Sagiv, Y., C. Delobel, D. S. Parker, and R. Fagin [1981]. "An equivalence be

tween relational database dependencies and a fragment of propositional logic,"

J. ACM 28:3, pp. 435-453.

Sagiv, Y. and S. Walecka [1982]. "Subset dependencies and a completeness

result for a subclass of embedded multivalued dependencies," J. ACM 29:1, pp.

103-117.

Samet, H. [1984]. "The quad tree and related hierarchical data structures,"

Computing Surveys 16:2, pp. 187-260.

610 BIBLIOGRAPHY

Scheuermann, P. and M. Ouksel [1982]. "Multidimensional B-trees for associa

tive searching in database systems," Information Systems 7:2, pp. 123-137.

Schkolnick, M. and P. Sorenson [1981]. "The effects of denormalization on

database performance," RJ3082, IBM, San Jose, Calif.

Schmid, H. A. and J. R. Swenson [1976]. "On the semantics of the relational

model," ACM SIGMOD Intl. Conf. on Management of Data, pp. 9-36.

Sciore, E. [1979]. "Improving semantic specification in the database relational

model," ACM SIGMOD Intl. Conf. on Management of Data, pp. 170-178.

Sciore, E. [1982]. "A complete axiomatization of full join dependencies," J.

ACM 29:2, pp. 373-393.

Sciore, E. and D. S. Warren [1986]. "Towards an integrated database- Prolog

system," Proc. First Intl. Conf. on Expert Database Systems, pp. 801-815,

Benjamin-Cummings, Menlo Park CA.

Segall, A. and O. Wolfson [1987]. "Transaction commitment at minimal com

munication cost," Proc. 5ixth ACM Symp. on Principles of Database Systems,

pp. 112-118.

Servio Logic [1986]. "Programming in OPAL," Servio Logic Development

Corp., Beaverton, Oregon.

Shepherdson, J. C. [1984]. "Negation as failure: a comparison of Clark's com

pleted data base and Reiter's closed world assumption," J. Logic Programming

1:1, pp. 51-79.

Shipman, D. W. [1981]. "The functional data model and the data language

DAPLEX," ACM Trans, on Database Systems 6:1, pp. 140-173.

Shmueli, O. [1987]. "Decidability and expressiveness aspects of logic queries,"

Proc. 5ixth ACM Symp. on Principles of Database Systems, pp. 237-249.

Shneiderman, B. (ed.) [1978]. Database: Improving Usability and responsive

ness, Academic Press, New York.

Sibley, E. (ed.) [1976]. Computer 5urveys 8:1, March, 1976.

Silberschatz, A. and Z. Kedem [1980]. "Consistency in hierarchical database

systems," J. ACM 27:1, pp. 72-80.

Skeen, D. [1981]. "Nonlocking commit protocols," ACM SIGMOD Intl. Conf.

on Management of Data, pp. 133-142.

Skeen, D., F. Cristian, and A. El Abbadi [1985]. "An efficient fault-tolerant

algorithm for replicated data management," Proc. Fourth ACM Symp. on Prin

BIBLIOGRAPHY 611

ciples of Database Systems, pp. 215-229.

Skeen, D. and M. Stonebraker [1981]. "A formal model of crash recovery in

a distributed system," Proc. Fifth Berkeley Workshop on Distributed Data

Management and Computer Networks, pp. 129-142.

Skeen, D. and D. D. Wright [1984]. "Increasing availability in partitioned

database systems," Proc. Fourth ACM Symp. on Principles of Database Sys

tems, pp. 290-299.

Smith, J. M. and D. C. P. Smith [1977]. "Database abstractions: aggregation

and generalization," ACM Trans, on Database Systems 2:2, pp. 105-133.

Snyder, L. [1978]. "On B-trees reexamined," Comm. ACM 21:7, pp. 594.

Software AG [1978]. ADABAS Introduction, Software AG of North America,

Reston, Va.

Soisalon-Soininen, E. and D. Wood [1982]. "An optimal algorithm for test

ing safety and detecting deadlocks," Proc. First ACM Symp. on Principles of

Database Systems, pp. 108-116.

Stearns, R. E., P. M. Lewis II, and D. J. Rosenkrantz [1976]. "Concurrency con

trol for database systems," Proc. 5eventeenth Animal IEEE Symp. on Found

ations of Computer Science, pp. 19-32.

Stonebraker, M. [1975]. "Implementation of integrity constraints and views by

query modification," ACM SIGMOD Intl. Con/, on Management of Data, pp.

65-78.

Stonebraker, M. [1979]. "Concurrency control and consistency of multiple

copies in distributed INGRES," IEEE Trans, on Software Engineering SE-5:3,

pp. 188-194.

Stonebraker, M. [1980]. "Retrospection on a database system," ACM 7rans.

on Database Systems 5:2, pp. 225-240.

Stonebraker, M. [1986]. "Triggers and inference in database systems," in Brodie

and Mylopoulos [1986], pp. 297-314.

Stonebraker, M. and L. A. Rowe [1977]. "Observations on data manipulation

languages and their embedding in general purpose programming languages,"

TR UCB/ERL M77-53, Univ. of California, Berkeley, July, 1977.

Stonebraker, M. and L. A. Rowe [1986a]. "The design of Postgres," ACM

SIGMOD Intl. Con/, on Management of Data, pp. 340-355.

Stonebraker, M. and L. A. Rowe [1986b]. "The Postgres papers," UCB/ERL

M86/85, Dept. of EECS, Univ. of Calif., Berkeley

612 BIBLIOGRAPHY

Stonebraker, M. and P. Rubinstein [1976]. "The INGRES protection system,"

Proc. ACM National Conf., pp. 80-84.

Stonebraker, M. and E. Wong [1974]. "Access control in a relational database

management system by query modification," Proc. ACM National Conf., pp.

180-187.

Stonebraker, M., E. Wong, P. Kreps, and G. Held [1976]. "The design and

implementation of INGRES," ACM Trans, on Database Systems 1:3, pp. 189-

222.

Tanaka, K., Y. Kambayashi, and S. Yajima [1979]. "Properties of embedded

multivalued dependencies in relational databases," J. IECE of Japan 62:8, pp.

536-543.

Tanimoto, S. L. [1987]. The Elements of Artificial Intelligence, Computer Sci

ence Press, Rockville, Md.

Tarski, A. [1955]. "A lattice theoretical fixpoint theorem and its applications,"

Pacific J. Math. 5:2, pp. 285-309.

Tay, Y. C., N. Goodman, and R. Suri [1985]. "Locking performance in central

ized databases," ACM Trans, on Database Systems 10:4, pp. 415-462.

Tay, Y. C., R. Suri, and N. Goodman [1985]. "A mean value performance model

for locking in databases: the no-waiting case," J. ACM 32:3, pp. 618-651.

Thomas, R. H. [1975]. "A solution to the update problem for multiple copy

databases which use distributed control," Rept. 3340, Bolt Beranek, and New

man, Cambridge, Mass.

Thomas, R. H. [1979]. "A majority consensus approach to concurrency control,"

ACM Trans, on Database Systems 4:2, pp. 180-219.

Todd, S. J. P. [1976]. "The Peterlee relational test vehicle—a system overview,"

IBM Systems J. 15:4, pp. 285-308.

Traiger, I. L., J. N. Gray, C. A. Galtieri, and B. G. Lindsay [1982]. "Trans

actions and consistency in distributed database systems," ACM Trans, on

Database Systems 7:3, pp. 323-342.

Tsichritzis, D. C. and A. Klug (eds.) [1978]. The ANSI/X3/SPARC Frame

work, AFIPS Press, Montvale, N. J.

Tsichritzis, D. C. and F. H. Lochovsky [1982]. Data Models, Prentice-Hall,

Englewood Cliffs, New Jersey.

Tsou, D.-M. and P. C. Fischer [1982]. "Decomposition of a relation scheme

into Boyce-Codd normal form," SIGACT News 14:3, pp. 23-29. Also appears

BIBLIOGRAPHY 613

in Proc. 1980 ACM Conf.

Tsur, S. and C. Zaniolo [1986]. "LDL: a logic-based data-language," Proc. Intl.

Conf. on Very Large Data Bases, pp. 33-41.

Ullman, J. D. [1982]. Principles ofDatabase 5ystems, Computer Science Press,

Rockville, Md.

Ullman, J. D. [1987]. "Database theory—past and future," Proc. Sixth ACM

Symp. on Principles of Database Systems, pp. 1-10.

Van Emden, M. H. and R. A. Kowalski [1976]. "The semantics of predicate

logic as a programming language," J. ACM 23:4, pp. 733-742.

Van Gelder, A. [1986]. "Negation as failure using tight derivations for general

logic programs," Proc. Symp. on Logic Programming, IEEE, pp. 127-139.

Van Gelder, A. and R. W. Topor [1987]. "Safety and correct translation of

relational calculus formulas," Proc. 5ixth ACM 5ymp. on Principles ofDatabase

Systems, pp. 313-327.

Van Gucht, D. and P. C. Fischer [1986]. "Some classes of multilevel relational

structures," Proc. Fifth ACM Symp. on Principles of Database 5ystems, pp.

60-69.

Vardi, M. Y. [1982]. "Complexity of relational queries," Proc. Fourteenth An-

nual ACM Symp. on the Theory of Computing, pp. 137-145.

Vardi, M. Y. [1983]. "Inferring multivalued dependencies from functional and

join dependencies," Acts Informatica 19:2, pp. 305-324.

Vardi, M. Y. [1984]. "The implication and finite implication problems for typed

template dependencies," J. Computer and System Sciences 28:1, pp. 3-28.

Vardi, M. Y. [1985]. "Querying logical databases," Proc. Fourth ACM 5ymp.

on Principles of Database Systems, pp. 57-65.

Vardi, M. Y. [1986]. "On the integrity of databases with incomplete informa

tion," Proc. Fifth ACM 5ymp. on Principles of Database Systems, pp. 252-266.

Vardi, M. Y. [1988]. "Fundamentals of dependency theory," in Trends in The

oretical Computer 5cience (E. Borger, ed.), pp. 171-224, Computer Science

Press, Rockville, Md.

Vassiliou, Y. [1979]. "Null values in database management—a denotational

semantics approach," ACM SIGMOD Intl. Conf. on Management of Data, pp.

162-169.

Vassiliou, Y. [1980]. "Functional dependencies and incomplete information,"

614 BIBLIOGRAPHY

Proc. Intl. Conf. on Very Large Data Bases, pp. 260-269.

Walker, A. [1986]. "Syllog: an approach to Prolog for nonprogrammers," in

Logic Programming and its Applications (M. van Canaghem and D. H. D.

Warren, eds.), Ablex.

Warren, D. H. D. [1981]. "Efficient processing of interactive relational database

queries expressed in Prolog," Proc. Intl. Conf. on Very Large Data Bases, pp.

272-282.

Weikum, G. [1986]. "A theoretical foundation of multi-level concurrency con

trol," Proc. Fifth ACM Symp. on Principles of Database Systems, pp. 31-42.

Wiederhold, G. [1983]. Database Design, McGraw-Hill, New York.

Wiederhold, G. [1986]. "Views, objects, and databases," Computer, Dec., 1986.

Wiederhold, G. [1987]. File Organization for Database Design, McGraw-Hill,

New York.

Wiederhold, G. and R. El Masri [1980]. "The structural model for database de

sign," Proc. Intl. Conf. on the Entity-Relationship Approach to System Analysis

and Design (P. P. Chen, ed.), North Holland, Amsterdam.

Willard, D. E. [1978a]. "New data structures for orthogonal range queries,"

TR-22-78, Aiken Computation Lab., Harvard Univ.

Willard, D. E. [1978b]. "Predicate-oriented database search algorithms," TR-

20-78, Aiken Computation Lab., Harvard Univ.

Willard, D. E. and G. S. Lueker [1985]. "Adding range restriction capability to

dynamic data structures," J. ACM 32:3, pp. 597-617.

Wolfson, O. [1987]. "The overhead of locking (and commit) protocols in dis

tributed databases," ACM Trans, on Database Systems 12:3, pp. 453-471.

Wolfson, O. and M. Yannakakis [1985]. "Deadlock-freedom (and safety) of

transactions in a distributed database," Proc. Fourth ACM Symp. on Principles

of Database Systems, pp. 105-112.

Yannakakis, M. [1982a]. "A theory of safe locking policies in database systems,"

J. ACM 29:3, pp. 718-740.

Yannakakis, M. [1982b]. "Freedom from deadlock of safe locking policies,"

SIAM J. Computing 11:2, pp. 391-408.

Yannakakis, M. [1984]. "Serializability by locking," J. ACM 31:2, pp. 227-245.

Yannakakis, M. and C. H. Papadimitriou [1980]. "Algebraic dependencies," J.

Computer and System Sciences 25:1, pp. 2-41.

BIBLIOGRAPHY 615

Yannakakis, M. and C. H. Papadimitriou [1985]. "The complexity of reliable

concurrency control," Proc. Fourth ACM Symp. on Principles ofDatabase Sys

tems, pp. 230-234.

Yannakakis, M., C. H. Papadimitriou, and H.-T. Kung [1979]. "Locking poli

cies: safety and freedom from deadlock," Proc. Twentieth Annual IEEE Symp.

on Foundations of Computer Science, pp. 283-287.

Yao, A. C., and F. F. Yao [1976]. "The complexity of searching a random or

dered table," Proc. 5eventeenth Annual IEEE Symp. on Foundations of Comp

uter Science, pp. 173-177.

Zaniolo, C. [1976]. "Analysis and design of relational schemata for database

systems," doctoral dissertation, UCLA, July, 1976.

Zaniolo, C. [1984]. "Database relations with null values," J. Computer and

System Sciences 28:1, pp. 142-166.

Zaniolo, C. [1985]. "The representation and deductive retrieval of complex

objects," Proc. Intl. Conf. on Very Large Data Bases, pp. 458-469.

Zaniolo, C. [1986]. "Safety and compilation of nonrecursive Horn clauses,"

Proc. First /ntl. Con/. on Expert Database Systems, pp. 167-178, Benjamin-

Cummings, Menlo Park, CA.

Zaniolo, C. and M. A. Melkanoff [1981]. "On the design of relational database

schemata," ACM Trans, on Database Systems 6:1, pp. 1-47.

Zloof, M. M. [1975]. "Query-by-Example: operations on the transitive closure,"

IBM RC 5526, Yorktown Hts., N. Y.

Zloof, M. M. [1977]. "Query-by-Example: a data base language," IBM Systems

J. 16:4, pp. 324-343.

Zloof, M. M. [1978]. "Security and integrity within the Query-by-Example data

base management language," IBM RC 6982, Yorktown Hts., N. Y.

Zook, W., K. Youssefi, N. Whyte, P. Rubinstein, P. Kreps, G. Held, J. Ford, R.

Berman, and E. Allman [1977]. INGRES Reference Manual, Dept. of EECS,

Univ. of California, Berkeley.

INDEX

Abiteboul, S. 95

Abort, of transaction 469, 476, 508, 512,

517, 520, 530, 557, 579-581

Abstract data type 22, 43, 95

See also Class, Data abstraction,

Encapsulation

Access control 2

See also Security

Active transaction 509

Acyclic polygraph 495

ADABAS 292

Address 301

Address calculation search

See Interpolation search

Aggregation 95, 145, 171, 175, 194-195,

203-204, 216-219

Aggregation by groups

See Group-by

Aggressive protocol 511-512, 515-516,

540

Aghili, H. 542

Agrawal, R. 542, 586

Aho, A. V. 65, 95, 239, 362, 374-375,

421, 441, 445

Algebraic dependency 444

Allman, E. 238

Alpine 587

Anomaly

See Deletion anomaly, Insertion

anomaly, Update anomaly

ANSI/SPARC 29

Append statement 191

Application program 14-15

Apt, K. R. 171, 173

Archiving 523-524

Argument 101

Arity 44, 101

Armstrong, W. W. 384, 441

Armstrong's axioms 384-387, 414, 441

Arora, A. K. 442

Assignment 175, 177, 191-192, 272

Associative law 62-63

Astrahan, M. M. 238

Atom 24

Atomic formula 24, 101, 146

Atomicity 468-469, 542, 545-546

Attribute 3, 25, 35, 37, 44, 226, 273

See also Prime attribute

Attribute renaming 179, 192, 217

Augmentation 384, 414-415

Authorization table 17, 460

Automatic insertion 258

Average

See Aggregation

Avni, H. 375

AWK239

Axioms 384, 414-415, 443-445

See also Armstrong's axioms, In

ference, of dependencies

B

Bachman, C. W. 94

Bachman diagram 94

Backup

See Archiving

Badal, D. S. 586

Balbin, I. 172

Bancilhon, F. 95, 171-172

Baroody, J. A. Jr. 30

Bayer, R. 172, 375, 541, 585

616

INDEX 617

BCNF

See Boyce-Codd normal form

Beck, L. L. 95

Beech, D. 95

Been, C. 172, 416, 418, 421, 441-445,

542

Bentley, J. L. 375

Berman, R. 238

Bernstein, P. A. 31, 239, 441-442, 445,

540-542, 585-586

Bidiot, N. 172

Biliris, A. 541

Binary search 313-314

Binary search tree 362

Biskup, J. 442-443

Blair, H. 173

Blasgen, M. W. 238

Block 296, 518

Block access 296

Block directory

See Directory

Blocking, of transactions 559-560, 564-

573

Bocca, J. 30

Body, of a rule 102, 107-111

Bolour, A. 375

Bosak, R. 94

Bound variable 145-147

Boyce, R. F. 238

Boyce-Codd normal form 401-409, 420,

438, 440, 442-443, 445

Bradier, A. 172

Broadcast 582

Brodie, M. L. 30, 94

Brown, M. R. 587

Browne, J. C. 542

B-tree 321-328, 331, 351-352, 357, 375,

502, 541

Bucket 306-307

Buckley, G. N. 541

Buffer 296

Built-in predicate 101-102, 107

Burkhard, W. A. 375

C 227-234

CAD database 19, 354

CALC location mode 344-347

CALC-key 250-252, 259

Candidate key 48, 383

Cardenas, A. F. 292-293

Carey, M. J. 541, 586

Carlson, C. R. 442

Cartesian product

See Product

Casanova, M. A. 444

Cascading rollback 510-511, 529-531

CASE database

See Software engineering database

Casey, R. C. 441

Central node locking 553-554, 579

Ceri, S. 585

Chain mode 346

Chamberlin, D. D. 238

Chandra, A. K. 95, 171-172, 444

Chandy, K. M. 542

Chase 430-434, 444

Checkpoint 522-524

Chen, P. P. 94

Childs, D. L. 94

Cincom 292

Circumscription 173

Clark, K. L. 172-173

Class 85, 271-272, 275

See also Abstract data type

Clause 102

See also Horn clause, Rule

Clifford, J. 30

Clippinger, R. F. 94

Clock 573-574

Clocksin, W. F. 30

Closed world assumption 161-164, 172-

173

Closure, of a set of attributes 386, 388-

389, 400, 445

Closure, of a set of dependencies 383,

388-390, 399, 418

Clustering of records 335-337, 367-368

COBOL 240, 246

618 INDEX

CODASYL 29, 94, 292

CODASYL DBTG 240

CODASYL DDL 240-246, 344-346,

352, 457

CODASYL DML 4-5, 246-262

Codd, E. F. 43, 94-95, 171-172, 174,

238, 441-442

Combined record 79

Comer, D. 375

Commit point 509, 556

Commitment, of transactions 509, 511,

520, 530, 557-573, 586

Communication area 229

Commutative law 62-63

Complementation 128, 137, 143, 202,

415

Complete language 145, 174-175, 179,

192-193, 206-207, 221-223

Complete tree 366

Completed transaction 509

Completeness 385, 415-416, 445

Complex object 22, 82, 95

Complex selection 140

Component 44

Computational meaning of rules 99-100

Conceptual database 8-9, 11, 29

See also Logical data indepen

dence, Physical data independence

Conclusion row 424

Concurrency 467-542

Concurrency control 6, 17, 446, 546-

557, 573 575, 585

See also Transaction management

Concurrent access table 17

Condition box 205-206

Conflict-serializability 493-500

Conservative protocol 511-515, 533, 540

Consistent state 519

Constraint table 453, 455-456

Convergence 119

Cooper, E. C. 95

Coordinator 557, 570-571

Copeland, G. P. 30

Cosmadakis, S. S. 444-445

Count

See Aggregation

Crash recovery

See Resiliency

Cristian, F. 586

Culik, K. II 375

Cullinane 292

Currency pointer 246-249

Current of record type 247-249, 251

Current of run-unit 247-250, 256-257,

260-261, 264

Current of set type 247-249, 259

Current parent 264, 268-269

Cursor 231

CWA

See Closed world assumption

Cylinder 17

D

DAG

See DAG protocol, Directed acyc

lic graph

DAG protocol 537, 541

Dangling reference 298, 320

Dangling tuple 50-53, 394

Data abstraction

See Encapsulation

Data curator 464

Data definition language 8, 12-13, 207-

210, 223-227, 240-246, 262-265,

271-278

Data dependency

See Dependency

Data independence 11-12

Data item 241

Data manipulation language

See Query language, Subschema

data manipulation language

Data model 2-3, 8, 32-34, 96

See also Datalog, Entity-relation

ship model, Hierarchical model,

Network model, Object model, Re

lational model

Database 2

Database administrator 16

Database catalog 225-227

Database integration 9, 29

INDEX 619

Database key 250-251, 345

Database management system 1-7

Database manager 16-17

Database record 74-76, 266, 333, 347

Database scheme 45, 376

Datalog 26, 32, 100-106, 139, 427

Datalog equation 115-121

Date, C. J. 31, 94, 293

Davidson, S. B. 586

Dayal, U. 30, 239, 442

DBMS

See Database management system

DBTG DDL

See CODASYL DDL

DBTG DML

See CODASYL DML

DBTG set 240-244

See also Link, Singular set

DDL

See Data definition language

Deadlock 473-474, 476, 508, 513-515,

542, 557, 576-581, 586

Declarative language 21, 24, 175, 177

Decomposition 412, 442

See also Dependency preservation,

Lossless join

Decomposition, of a relation scheme 392

Decomposition rule 386, 416-417

Deductive database 171

Default segment 462

Degree

See Arity

Delayed evaluation 177-178

Delete statement 190, 262, 270

Deleted bit 298, 304

Deletion 190, 204, 220, 260-262, 270-

271, 284-285, 305-306, 309, 317,

320, 322, 325-329, 338, 449-451,

453, 458

Deletion anomaly 378

Delobel, C. 441, 443

Demers, A. 441

DeMorgan's laws 140

Dense index 328-331, 336, 339, 341-

342, 347

Dependency 376-377

See also Algebraic dependency,

Equality-generating dependen

cy, Functional dependency, Gen

eralized dependency, Implicational

dependency, Inclusion dependen

cy, Join dependency, Multivalued

dependency, Subset dependency,

Tuple-generating dependency

Dependency basis 417-419, 443

Dependency graph 103-104, 106

Dependency preservation 398-401, 403-

404, 408-412, 442

Depth, of a transaction 483

Derivative 172, 447, 449-452, 465

Derochette, D. 542

DeWitt, D. J. 30, 542

Dictionary order

See Lexicographic order

Difference 55-57, 178, 189-190

DiPaola, R. A. 172

Direct location mode 345

Directed acyclic graph 537

Directory 303

Dirty data 509-510

Disk 17-18, 296-297, 468

Dissly, C. W. 542

Distributed system 543-587

DL/I 262, 264, 266-271

DML

See Data manipulation language

Dobbs, C. 94

Domain 43, 208

Domain closure assumption 162

Domain relational calculus 148-156,

195-196

Domain size 443-444

Domain variable 196

Domain-independent formula 151-152,

172

DRC

See Domain relational calculus

Duplicates 201, 203-204, 216

Dwork, C. 586

620 INDEX

E

Eager, D. 586

EDB

See Extensional database

El Abbadi, A. 586

El Masri, R. 29, 95

Election, of a coordinator 570-571, 586

Elhardt, K. 585

Ellis, C. S. 541-542

Embedded dependency 426-428, 439

Embedded multivalued dependency

422-423, 443

Empty relation 93

Empty tuple 93

Encapsulation 22

See also Data abstraction

Encryption 456

Entity 34

Entity set 33-34, 37, 45-46, 48, 67, 380

Entity-relationship diagram 37-38, 40,

45-49, 67, 73, 87

Entity-relationship model 33-42, 65

Epstein, R. 587

Equality index 286-287

Equality-generating dependency 424,

430, 432-433, 440

Kq,iijnin 59, 72

Equivalence, of decompositions 442

Equivalence, of schedules 478, 487, 493,

498

Equivalence, of sets of dependencies

389-390

Eswaran, K. P. 540-541

EVAL 115, 122

EVAL-RULE 109

Exclusive lock

See Write-lock

Execute-immediate statement 229

Existence constraint 51, 258, 451-452

See also Inclusion dependency

Existential quantifier 25, 102-103, 146-

147, 215

Expert system shell 24

Extension

See Instance, of a database, ISBL

extension

Extensional database 10-11, 100-101,

171

Fagin, R. 375, 416, 441, 443-445, 466

Failure

See Media failure, Network failure,

Node failure, System failure

Fatal error 476, 479

Fekete, A. 542

Fernandez, E. B. 466

Field 66, 82, 242-243, 295

See also Data item, Virtual field

Field name 2-3

Fifth-generation project 1

File 295

File manager 17-18

File system 2

Filliat, A. I. 94

Final transaction 494

Find statement 249-257

Finkel, R. A. 375

First normal form 95, 402

Fischer, P. C. 95, 442-443, 445

Fishman, D. H. 30

Fixed point 116, 171

See also Least fixed point, Minimal

fixed point

Fong, A. C. 172

Ford, J. 238

Forest 72

Format, for a block 301-303, 337-338

Format, for a record 295, 298-301

Formula 145-148

Forwarding address 320

Fourth normal form 420-422, 443

Fragment 545

Franaszek, P. 540

Fredman, M. L. 375

Free variable 145-147

Friedman, J. H. 375

Frost, R. 30

INDEX 621

Full dependency 426-427, 432

Function symbol 24-25, 96, 100

Functional dependency 376-412, 414-

416, 422, 424, 436, 440-443, 445,

453, 465

Furtado, A. L. 95

G

Galil, Z. 443

Gallaire, H. 171

Galtieri, A. 585

Garcia-Molina, H. 542, 554, 585-586

Garey, M. R. 440

Gelembe, E. 542

Gelfond, M. 172-173

Gemstone 30, 271, 293, 462

See also OPAL

Generalization 95

Generalized closed world assumption

164, 173

Generalized dependency 423-434, 440,

443-444

Generalized projection 167

Genesereth, M. R. 30

Get statement 249, 264, 266-269

Ginsberg, M. 172

Ginsburg, S. 442

Global clock 573-574, 585

Global item 545-546

Global transaction 546

Goldberg, A. 293

Goldfinger, R. 94

Gonzalez-Rubio, R. 172

Goodman, N. 31, 441, 540-542, 585-586

Gotlieb, C. C. 374

Gottlob, G. 442

Graham, M. H. 443

Granularity 469-470, 540-541

Graph

See Dependency graph, Directed

acyclic graph, Polygraph, Serial

ization graph, Waits-for graph

Graphics database 19-20, 354

Gray, J. N. 540-542, 585-586

Gray, P. M. D. 30

Greenblatt, D. 238

Griffiths, P. P. 466

Ground atom 162

Group 461

Group-by 195, 217-219

Grumbach, S. 95

Gudes, E. 375

Gurevich, Y. 444

H

Hadzilacos, T. 541-542

Hadzilacos, V. 31, 540, 542, 565, 585-

586

Haerder, T. 542

Hagihara, K. 443

Hammer, M. M. 95, 238, 586

Harel, D. 95, 171-172

Hash function 306-307

Hash table 3, 347

Hashing 306-310, 328, 331, 351, 357,

375

See also Partitioned hashing, Par

titioned hashing

Head, of a rule 102

See also Rectified rule

Heap 304-306, 351

Heath, I. J. 441

Heiler, S. 95

Held, G. 238, 375

Heller, H. 585

Hierarchical model 28, 72-82, 94, 346-

350, 457, 502

See also IMS

HISAM 347-349

Holt, R. C. 542

Honeyman, P. J. 442-443

Hopcroft, J. E. 65, 362, 374

Horn clause 25, 47-128, 163, 448

Host language 14-16, 18-21, 28-30,

227-234, 246

Howard, J. H. 416, 441, 443, 445

Hull, R. 95, 172

Hunt, H. B. III 541

Hypothesis row 424

622
INDEX

IBM 238, 293, 466

IDE

See Intensional database

Idempotence 521

Identification

See User identification

Identity index 287

IDMS 292

Imielinski, T. 94

Immerman, N. 173

Implicational dependency 444

IMS 262-271, 293, 347-350, 457

Inclusion dependency 423, 444

See also Existence constraint, Un

ary inclusion dependency

Incremental evaluation

See Semi-naive evaluation

Incremental relation 125

Increment-lock 491-492

Independence 442

Independence, of relational algebra op

erators 93

Independent components 442

Index 3, 13, 65, 208, 223-224, 227, 250,

285-288, 312, 321, 352

See also Dense index, Isam, Pri

mary index, Secondary index, Spa

rse index

Indexed sequential access method

See Isam

Inference, of dependencies 382-392,

416-420, 430-434, 440-441, 445

Infinite relation 104-105, 149

Ingres 185, 351, 466, 587

See also QUEL

Initial transaction 494

Insert statement 260, 269-270

Insertion 14, 191, 204-205, 219-220,

258, 260, 269-270, 280-281, 305,

308-309, 316-317, 320, 322-325,

329, 338-339, 363-364, 449-451,

453, 458

Insertion anomaly 377

Instance, of a class 272

Instance, of a database 10

Instance, of a pattern 332

Instance variable 275, 295

Integrity 7, 446-456, 466

Integrity constraint 102, 379, 398, 447-

448

Intension

See Scheme

Intensional database 11, 100-101, 171

Interpolation search 314-315, 375

Interpretation 97-98

Intersection 57-58, 62, 168, 178

IRIS 30

Isa hierarchy 35-37, 40, 67

See also Type hierarchy

Isam 310-321, 331, 347, 351, 357

ISBL 177-185, 238, 457

ISBL extension 184-185

Itai, A. 375

Item 469, 502, 545-546

Ito, M. 443

Jaeschke, G. 95

Jannsens, D. 444

Jarke, M. 30

Jasper, R. B. 94

Johnson, D. S. 440

Join 64-65, 176-178, 239, 450, 464-465,

470

See also Natural join, Semijoin, 6-

join

Join dependency 425-426, 440, 444-445

Jou, J. H. 443

Journal

See Log

K

Kambayashi, Y. 31, 443

Kameda, T. 442

Kanellakis, P. C. 444-445, 541, 585

Kasami, T. 443

INDEX 623

KBMS

See Knowledge-base management

system

fc-d-tree 361-368, 375

Keating, W. 94

Kedem, Z. 503, 541

Keller, A. 239

Kellogg, C. 30

Kendrick, G. 94

Kent, J. 542

Kent, W. 238

Kernighan, B. W. 239

Kerschberg, L. 94

Key 35-36, 47-50, 205, 208, 294, 297-

298, 304, 308, 311, 323, 381, 383,

402, 440, 443-445, 452-453, 470

See also Database key

Khoshafian, S. N. 30, 95

Kim, W. 238

King, R. 95

King, W. F. 238

Kleitman, D. J. 375

Klug, A. 29, 94, 171

Knowledge system 23 24, 30, 32

Knowledge-base management system 1,

24, 28-29

See also Knowledge system

Knuth, D. E. 307, 374-375

Jfc-of-n locking 550, 554, 577, 582, 585

Kolling, K. 587

Korth, H. F. 31, 95, 540

Kowalski, R. A. 30, 171

Kranning, L. A. 94

Kreps, P. 238

Kuhns, J. L. 94, 171

Kung, H.-T. 540-541

Kunifuji, S. 30

Kuper, G. M. 95, 171-172

Lacroix, M. 94

Ladner, R. E. 542

Lai, M. Y. 542

Lamport, L. 585

Lampson, B. 586

Larson, P. 375

LDL30

Le, V. T. 172

Least fixed point 117, 119, 122-123,

126-129, 131

Leftmost child 349-350

Leftmost record 266-267

Lehman, P. L. 541

Level number 242

Levels of abstraction 7, 10, 29

Levien, R. E. 94, 171

Lewis, H. R. 444

Lewis, P. M. II 540, 586

Lewis, T. G. 375

Lexicographic order 311

Lien ,Y. E. 443

Lifschitz, V. 172-173

Limited variable 105, 153, 158

Lindsay, B. G. 585, 587

Ling, H. 375

Ling, T. W. 442

Link 66-€7, 71, 73, 78, 240, 342-343,

543

See also Many-one relationship

Linvy, M. 586

Lipski, W. Jr. 94, 542

Literal 102, 146

Litwin, W. 29, 375

Liu, L. 441

Livelock 472-473, 513-514

Lloyd, J. W. 171

Local item 545-546

Local transaction 546

Local-area network 543

Location mode 344-346

Lochovsky, F. H. 94, 292-293

Lock 17-18, 270, 467-472, 477-479, 502,

505, 512, 540, 546 554, 575

See also Read-lock, Warning lock,

Write-lock

Lock compatability matrix 490, 507-

508

Lock manager 469-471

Lock mode 490-492, 537, 540

Lock point 485, 524, 556

Lock table 470, 529

624 INDEX

Log 510, 516-524, 529-531, 542, 563-

564

Logic 20-21, 23-27, 96-173

See also Relational calculus

Logic programming 24, 95, 102

See also Prolog

Logical data independence 12

Logical item

See Global item

Logical record 66, 241, 295

Logical record format 66

Logical record type 66, 73, 241

Logical rule

See Rule

Lookup 305, 308, 313-314, 316, 319,

323, 328-329, 335-337, 359-360,

362-366

Lone, R. A. 540-542

Lossless join 393-398, 403-408, 411-

412, 419-420, 440-442, 444

Lozano, T. 375

Lucchesi, C. L. 445

Lueker, G. S. 375

Lum, V. 375

Lynch, N. 542

M

Maier, D. 30, 293, 432, 441-445

Main file 312

Main memory

See Volatile storage

Majority locking 548-550, 554

Makowsky, J. A. 444

Manber, U. 542

Mandatory retention 258

Manna, Z. 171

Manual deletion 260-261

Manual insertion 258, 260

Many-many relationship 33, 39-40, 48,

72, 78-79

Many-one relationship 39, 49, 65, 380

See also Link

Mapping

See Set-of-mappings (representa

tion of relations)

Maron, M. E. 94, 171

Maurer, W. D. 375

Max

See Aggregation

McCarthy, J. 173

McCreight, E. M. 375

McLean, G. 586

McLeod, D. 95

Media failure 508, 516, 523-524

Melkanoff, M. A. 443

Mellish, C. S. 30

Member 241, 251

Menasce, D. A. 586

Mendelzon, A. O. 432, 442-444

Merritt, M. 542

Method 85, 272-274

Min

See Aggregation

Minimal cover 390-392, 409-411, 436-

437, 445

Minimal fixed point 116-117, 131-132,

138-139

Minimal model 98-99, 114-116

Minker, J. 171, 173

Minoura, T. 585-586

Minsky, N. H. 30, 95

Mitchell, J. C. 444

Model 97-100, 171

See also Fixed point, Minimal

model, Perfect model

Modification

See Update

Modify statement 261

Moffat, D. S. 30

Mohan, C. 587

Monotonicity 119, 121-124, 144-145,

171, 449

Morris, K. 30

Morris, R. 375

MRI293

Multilist 343-344, 354

Multiple copies 544-554, 586

Multivalued dependency 377, 413-424,

440, 442-443, 465

Multiversion concurrency control 531-

534

INDEX 625

Muntz, R. R. 586

Mylopoulos, J. 30, 94

N

NAIL! 30

Naish, L. 172

Naive evaluation 119, 126

Naqvi, S. 172

Natural join 59-60, 62, 72, 122

See also Join

Naughton, J. F. 30

Navigation 3-4, 21, 64, 71-72, 86-87,

249, 281-282, 346

Negation by failure 172-173

Negation, in rules 97, 99, 128-139, 145,

172

See also Stratified negation

Negation, logical 139-141

Negative literal 102

Nested record structure 330, 332-339,

342, 346, 352

Nested transaction 542

Network 66, 73-74, 77, 543-545

Network failure 559, 582

Network model 28, 65-72, 94, 292, 342-

346, 457

See also CODASYL, CODASYL

DDL, CODASYL DML

Nicolas, J.-M. 171, 444

Nievergelt, J. 375

Nilsson, N. J. 30

Node 543

Node failure 544, 565

Nonfatal error 475-476, 478-479

Non-first-normal-form relation 95

Nonprime attribute 402

Nonrecursive predicate 103-104, 106-

115, 139, 141, 144

Normal form 401

See also Boyce-Codd normal form,

First normal form, Fourth normal

form, Second normal form, Third

normal form

Normalization 76, 246, 442-444

.VP-completeness 440, 443, 445, 501

Null value 51-53, 94

o

Obermarck, R. 586-587

Object 272, 295

Object identity 22-23, 28-29, 33, 43, 66,

82,95

Object model 82-87, 94-95, 171, 245-

246

Object-base 1

Object-oriented database system

See OO-DBMS

Occurrence, of a variable 146

Offset 298, 320

O'Hare, A. 30

Olle, T. W. 292

One-one relationship 38-39, 48

OO-DBMS 20-23, 28-30, 85-86, 240-

293

See also Complex object, Data ab

straction, Object identity, Object-

base

OPAL 87, 271-288, 293, 462-464, 466

Operational meaning of rules

See Computational meaning of

rules

Optimistic concurrency control 531,

533-534

Optional retention 258

Ordinary predicate 101, 107

Osborn, S. L. 442-443, 445

Otis, A. 30, 293

Ottmann, Th. 375

Ouskel, M. 375

Owner 68, 76, 241, 251, 259, 461

Ozsoyoglu, G. 172

Ozsoyoglu, M. Z. 95

Page

See Block

Page manager 518-519

Page table 518

Paging strategy 518

626 INDEX

Paige, R. 172

Papadimitriou, C. H. 444, 540-542,

585-586

Parameter 273-274

Paredaens, J. 444

Parent 263

Parker, D. S. 443

Partial-match query 356-357, 359-361,

364-366, 373, 375

Participant 557

Partition, of networks 544-545

Partitioned hashing 358 361, 373

Password 456

Pattern 332

Pattern matching 201, 213

Pelagatti, G. 585

Peleg, D. 586

Perfect model 138 139, 170, 173

Perl, Y. 375

Persistent data 2

Phantom deadlock 579-581

Physical data independence 11-12, 54

Physical database 7, 11, 29, 294-375

Physical item

See Local item

Physical scheme 13

Pinned record 298, 318-319, 322, 329,

331, 338-339, 351

Pippenger, N. 375

Pirotte, A. 94

Pixel 19, 27

PL/I 184

Pointer 76, 246, 263, 281, 295, 297, 320,

348-350

See also Virtual record type

Pointer array mode 346

Polygraph 495-499, 540

Popek, G. J. 586

Positive literal 102

POSTGRES 30

Precedence, of operators 147

Precompiler 228

Predicate lock 541

Predicate symbol 24, 100

Preorder threads 349-350

Preorder traversal 263, 333-334, 347,

352

Prepare statement 230

Preservation of dependencies

See Dependency preservation

Primary copy locking 550-554, 585

Primary index 294, 304, 339, 347

Primary key 48, 51, 383

Primary site locking 550-551, 554, 585

Prime attribute 402

Privacy lock 458

Privilege 461, 463-464

PROBE 30

Product 43, 56-57, 122, 179, 449

Production system 24

Projection 56-57, 122, 177-178, 449

See also Generalized projection

Projection, of dependencies 398-399,

405, 421, 439, 442, 445

Project-join mapping 393-394

Prolog 24-25, 30, 54, 99-100, 172

Proof 97, 118, 129, 161-162, 171

Prepositional calculus 443

Protocol 476-477

See also Aggressive protocol, Con

servative protocol, Multiversion

concurrency control, Redo proto

col, Strict protocol, Three-phase

commit, Tree protocol, Two-phase

commit, Two-phase locking, Undo

protocol, Wait-die, Warning proto

col, Wound-wait

PRTV 177

See also ISBL

Przymusinska, H. 173

Przymusinski, T. C. 173

Pseudotransitivity rule 385-386, 417

Pugin, J.-M. 173

Purdy, A. 30, 293

Putzolo, G. R. 540-541

QBE

See Query-by-Example

QUEL 185-195, 201, 238, 458

INDEX 627

Query 148, 157

See also Lookup, Partial-match

query, Range query

Query language 4-5, 13-16, 18-21, 28-

30, 54, 447-448, 458

See also CODASYL DML, Data-

log, DL/I, ISBL, OPAL, QUEL,

Query-by-Example, Relational al

gebra, Relational calculus, SQL

Query optimization 16, 21, 33, 54, 65,

171, 176-177

Query-by-Example 195-210, 238, 425,

452-460, 465-466

Quotient 58, 62

R

Ramakrishnan, R. 171-172

Ramamohanarao, K. 172

Ramarao, K. V. S. 586

Range query 356-357, 359, 361, 365-

367, 375

Range statement 185

Read-lock 470, 486-487, 490-493

Read-set 493

Read-time 526, 574-575

Read-token 551

Receiver 272

Record 241, 263, 295

See also Logical record, Variable-

length record

Record format

See Format, for a record, Logical

record format

Record structure 2-3

Record type 241-243, 252, 274-276

See also Logical record type

RECORDOF 83

Record-oriented system

See Value-oriented system

Recovery 516-524, 529, 563-564, 569-

573, 575-576, 586

See also Cascading rollback

Rectified rule 111-112

Recursion 18-19, 26-27

Recursive predicate 103-104, 115-128

Redo protocol 519-521, 542

Reduction in strength 172

Redundancy 33, 76, 244-246, 377-379,

403

Reed, D. P. 541

Reeve, C. L. 586

Reflexivity 384, 414-415

Reis, D. R. 540

Reiser, A. 585

Reiter, R. 171, 173

Relation 3, 22, 25, 43-45, 351-354

Relation for a predicate 112-115

Relation for a rule 107

Relation scheme 44, 146, 376

Relational algebra 53-65, 72, 93-94,

106, 109-110, 128, 139-145, 149-

150, 154-155, 158-159, 161, 175-

177, 212, 448-449

Relational calculus 23, 53, 145-148,

171-172, 175-177

See also Domain relational calcu

lus, Tuple relational calculus

Relational model 28-29, 32, 43-65, 71,

94, 100-101, 376-445

Relational read/write file 185

Relationship 36-37, 46, 67

See also Many-many relationship,

Many-one relationship, One-one

relationship

Relationship set 36

Remove statement 260

Renaming of attributes

See Attribute renaming

Repeating group 332

Replace statement 270-271

Resiliency 2, 508, 510, 516-524, 529-

531, 542, 544-545

Restart, of transactions 533-535

Retention class 258

Retrieve statement 185-186

Reuter, A. 542

Rieter, R. 94

Right sibling 349-350

Rights 456

Rissanen, J. 441-442, 444

Rivest, R. L. 375

628 INDEX

Robinson, J. T. 375, 540-541

Robson, D. 293

Rohmer, J. 172

Root 263

Rosenberg, A. L. 375

Rosenkrantz, D. J. 540-541, 586

Rosenthal, A. 95

Ross, K. A. 172

Roth, M. 95

Rothnie, J. B. Jr. 375, 540-541, 585-

586

Rowe, L. A. 30

Rozenshtein, D. 30, 95

Rubinstein, P. 238, 466

Rule 25, 96-100, 102

See also Horn clause, Rectified

rule, Safe rule

Run-unit 247

Rustin, R. 94

S

Sadri, F. 443-444

Safe formula 149, 151-161, 172, 188-189

Safe rule 104-106, 136-139, 143, 161

Sagiv, Y. 429, 432, 442-444, 541

Samet, H. 375

Sammet, J. E. 94

Saraiya, Y. 30

SAT 436

Satisfaction, of a dependency 382, 428-

429, 443

Scheck, H.-J. 95

Schedule 474

Scheduler 476, 512

Scheme 10-11

See also Conceptual database, Da

tabase scheme, Logical record for

mat, Relation scheme

Scheuermann, P. 375

Schkolnick, M. 375, 442, 541

Schmid, H. A. 95

Schmidt, J. W. 94

Schwartz, J. T. 172

Sciore, E. 30, 95, 444

SDD-1 541, 586

Search key 346

See also Secondary index

Second normal form 402, 437

Secondary index 294, 339-342, 351-352,

375

Secondary storage 296

See also Stable storage

Security 6-7, 17, 446, 456-464, 466

Seek time 17-18

Segall, A. 586

Segment 462

Select statement 210-212

Selection 56-57, 122, 177-178, 282-283,

294, 449

See also Simple selection

Select-project-join expression 177

Self 274

Selinger, P. G.

See Griffiths, P. P.

Semantic data model 95

See also Object model

Semijoin 60-62, 93

Semi-naive evaluation 124-128, 172

Semi-pinned record 304

SEQUEL

See SQL

Serial schedule 468, 474-475

Serializable schedule 474-476, 480-485,

487-490, 493-501, 503-504, 506-

507, 524-529, 540, 546, 555

Serialization graph 480-481, 487-489,

491

Servio Logic 293, 466

Set 200-201, 213-216, 241, 274, 276

See also DBTG set

Set mode 346

Set occurrence 241, 251-256, 260-261

Set selection 258-260

SETOF 82

Set-of-lists (representation of relations)

43-44, 55, 62, 100

Set-of-mappings (representation of rela

tions) 44-45, 55

Sevcik, K. 586

Severance, D. G. 542

Shadow paging 542

INDEX 629

Shared lock

See Read-lock

Shasha, D. E. 542

Shepherdson, J. C. 173

Shipman, D. W. 95, 586

Shmueli, O. 172

Sibley, E. 94

Silberschatz, A. 31, 95, 172, 503, 541

Simple selection 140, 207

Singleton set 215

Singular set 254-255

Site

See Node

Skeen, D. 586

Skeleton 196

Smalltalk 271, 293

Smith, D. C. P. 95

Smith, J. M. 30, 95

Snyder, L. 375

Software AG 292

Software engineering database 19

Soisalon-Soininen, E. 542

Sorenson, P. 442

Sorted file

See B-tree, Isam

Sorting 311

Soundness 385, 415-416, 445

Source, for a virtual field 245

Sparse index 312, 328

SQL 6-7, 13-14, 210-234, 238, 457,

460-462, 466

SQUARE 238

Stable storage 516, 523

Stanat, D. 375

Statistical database 467

Stearns, R. E. 540, 586

Stein, J. 30, 293

Stonebraker, M. 30, 238, 375, 466, 540,

585-587

Store statement 258

Stratification 133-135

Stratified negation 132-139, 172-173

Strict protocol 511-512, 530-531, 540,

556-557

Strong, H. R. 375

Sturgis, H. 586

Subclass 275

Subgoal 102

Subquery 214

Subscheme 11

See also View

Subscheme data definition language 8-

9, 13

Subscheme data manipulation language

9

Subset dependency 429

Subtransaction 546

See also Coordinator, Participant

Subtype

See Type hierarchy

Sum

See Aggregation

Summers, R. C. 466

Superkey 383

Suri, R. 540

Swenson, J. R. 95

Symbol mapping 428

System failure 508, 516-523

System R 210, 238, 351-354, 542

System R* 587

System 2000 293

Table directory 207

Taft, E. A. 587

Tanaka, K. 443

Taniguchi, K. 443

Tarski, A. 171

Tay, Y. C. 540

Template 246-247, 249, 264

0-join 59, 62, 122

Third normal form 402-403, 409-412,

437, 439, 442-443

Thomas, R. H. 585

Three-phase commit 564-573, 586

Timeout 560, 563, 566, 577

Timestamp 468, 524-535, 541, 573-576,

579-581, 586

Timestamp table 529

Todd, S. J. P. 238

Tompa, F. W. 374, 442

630 INDEX

Topological sort 484

Topor, R. W. 172

TOTAL 292

Toueg, S. 586

Traiger, I. L. 540-541, 585

Transaction 468, 546

See also Nested transaction

Transaction management 2, 5-6

See also Concurrency control

Transitive closure 26, 92-93, 117, 145,

175

Transitivity 384, 414-416

Travis, L. 30

TRC

See Tuple relational calculus

Tree 73, 77, 263, 502-507

See also B-tree, Database record,

Hierarchical model, fc-d-tree

Tree protocol 502-504, 540

Trigger 452-453

Trivial dependency 384

Tsichritzis, D. C. 29, 94, 292-293

Tsou, D.-M. 442, 445

Tsur, S. 30, 172, 375

Tuple 3, 22, 43, 295

Tuple indentifier 352

Tuple relational calculus 156-161, 174,

185, 212

Tuple variable 156, 185-186, 200, 212-

213

Tuple-generating dependency 424, 427,

430-431, 433, 440, 444

Two-phase commit 560-564, 586

Two-phase locking 468, 478, 484-486,

489-490, 500, 511-512, 524-526,

540, 555-557

Type hierarchy 30, 82, 85-86, 95, 272,

276, 278

See also Isa hierarchy

Type union 85

Typed dependency 425

Typeless dependency 425, 427

U

Uhrig, W. R. 542

Ullman, J. D. 30, 65, 95, 172, 362, 374-

375, 421, 441-445

Unary inclusion dependency 440-441,

445

Undecidability 444

Undo protocol 542

Union 55, 57, 122, 178, 189, 191, 449

Union rule 385-386, 416-417

Unique symbol 426, 428, 430

Universal quantifier 102-103, 147, 215

UNIX 239, 460

Unlock 477, 486, 502, 505

Unpinned record 298, 304, 315, 322,

329-330

Update 14, 205, 221, 261, 270-271, 279,

305-306, 309, 316, 320, 323, 328-

329, 453, 458

Update anomaly 377

Used/unused bit 299

Useless transaction 495

User identification 456

User profile 462

User working area 246-247

Value-oriented system 23, 28-29, 33, 43,

285

See also Logic, Relational model

Van Emden, M. H. 171

Van Gelder, A. 30, 172-173

Van Gucht, D. 95

Vardi, M. Y. 94-95, 171, 441-445

Variable-length record 299-304, 306,

337

Vassiliou, Y. 30, 94

Via set (location mode) 345-347, 352

View 6-7, 9-10, 29, 178-179, 208-210,

224-226, 239-240, 246, 457, 461

See also Logical data indepen

dence, Subscheme

View-serializability 493, 500-501

Violation, of a dependency 382

INDEX 631

Virtual field 76, 244-245, 378

Virtual record type 76-82, 245, 263, 378

VLSI database

See CAD database

Volatile storage 516

Voting 557

W

Wade, B. W. 466

Wait-die 580-581, 586

Waits-for graph 474, 542, 577-581

Waldinger, R. 171

Walecka, S. 429

Walker, A. 30, 173

Wang, H. 172

Warning lock 505, 507-508

Warning protocol 504 507, 536-537,

541

Warren, D. H. D. 30

Warren, D. S. 30

Waxman, J. 238

Weihl, W. 542

Weikum, G. 542

Weinberger, P. J. 239

Whyte, N. 238

Wiederhold, G. 29-31, 95, 293, 374

Willard, D. E. 375

Wolfson, O. 586

Wong, E. 238, 466, 586-587

Wood, C. 466

Wood, D. 375, 542

Workspace 246, 264, 468

Wound-wait 580-581, 586

Wright, D. D. 586

Write-lock 470, 486-487, 490-493

Write-locks-all 547-552, 554, 556

Write-set 493

Write-time 526, 574-575

Write-token 551

Yajima, S. 443

Yannakakis, M. 442, 444, 501, 540-542,

586

Yao, A. C. 375

Yao, F. F. 375

Yao, S. B. 541

Yap, C. K. 95

Yokuta, H. 30

Youssefi, K. 238

Yuan, L.-Y. 95

Yuppie Valley Culinary Boutique 40-42

YVCB

See Yuppie Valley Culinary Bou

tique

Zaiddan, S. M. 442

Zaniolo, C. 30, 94-95, 172, 443

Zloof, M. M. 238, 466

Zook, W. 238

ABOUT THE BOOK

This is the first in a two-volume series intended to integrate the major

trends in database systems knowledge systems and object-oriented

sv stems along with classical database concepts. This volume covers

data models, including the logical models upon which knowledge

systems depend and object models used For object-oriented sv stems, as

well as the classical models. Examples of commercial languages based

on each of these models are included. The book also discusses physical

storage techniques, design theory for relational databases, security,

integrity, concurrency control, recovery in database systems, and dis

tributed database systems.

TO APPEAR IN VOLUME II

The second volume co\ers query optimization in database systems,

and explains extensions of these ideas to handle the more expressive

query languages that are used in knowledge-base sv stems. Recently

discovered techniques for efficient implementation of logic languages

will be discussed, along with the design of some experimental

knowledge-base systems. The "universal relation" model, for under

standing queries posed in natural language or in very high-level lan

guages, will also be treated.

ABOUT THE AUTHOR

Jeffrey D. Ullman received his B.S. degree from Columbia University

in 1963 and his Ph.D. from Princeton in 1966. He was with AT&T Bell

Laboratories for three years, prior to joining the faculty at Princeton

University, where he taught from 1969-1979. Since 1979, he has been a

professor of Computer Science at Stanford University. He currently

serves on the editorial boards of SIAM ,/. Computing. J. Computer

anil System Sciences, Theoretical Computer Si ie"iu t <.""and ./. 'Parallel

and Distributed Computing, and is on the NSF advisory panel for

Information, Robotics, and Intelligent Sytems. In the past, Professor

I llman has served as an editor of J. ACM, on the examination

committee for the Computer Science Graduate Record Examination,

and on the Computer Science advisory panel tor NSK

Professor Ullman iscueditor. with.Allred V. Aho. of the Principles

of Computer SCK-IKX for Computer Science I'rc.ss.

ISBN Q-fifll"fS-lflfl-X

