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Queries with “All”

• Find directors whose movies are playing in all theaters.

{ dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movie(tl, dir, act) }

• What does it actually mean?

• To understand this, we revisit rule-based queries, and write them in logical

notation.
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Rules revisited

• By now, this query is very familiar:

• answer(th) :– movie(tl, ’Polanski’, act), schedule(th,tl)

• What does it actually mean?

• It asks, for each theater (th): “Does there exist a movie (tl) and an actor (act)

such that (th,tl) is in Schedule and (tl, ’Polanski’, act) is in Movie?

• This can be stated using notation from mathematical logic:

Q(th) = ∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)
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Other queries in logical notation

• answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th,tl)

• Query as formula:

Q(th) = ∃ tl ∃ dir Movie(tl, dir, ’Nicholson’) ∧ Schedule(th,tl)

• In general, every single-rule query can be written in the logical notation using

only:

existential quantification ∃, and

logical conjunction ∧ (AND)
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SPJRU queries in logical form

• Find actors who played in movies directed by Kubrick OR Polanski.

• Rule-based query:

answer(act) :– movie(tl,dir,act), dir=’Kubrick’

answer(act) :– movie(tl,dir,act), dir=’Polanski’

• Logical notation:

Q(act) = ∃ tl ∃ dir





Movie(tl,dir,act)∧

(dir=’Kubrick’ ∨ dir=’Polanski’)





• New element here: logical disjunction ∨ (OR)

• SPJRU queries can be written in logical notation using: existential quantifiers “∃,”

conjunction “∧”, and disjunction “∨”
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Queries with “for all”

• { dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movie(tl, dir, act) }

• New element here: universal quantification “for all” ∀

• ∀xF (x) = ¬∃x¬F (x)

• So really the new element is: negation

• One has to be careful with negation: what is the meaning of

{x | ¬R(x)}

• It seems to say: give us everything that is not in the database. But this is an

infinite set!
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Queries with “all” and negation cont’d

• Safety: a query written in logical notation is safe, it is guaranteed to return finite

results on all databases.

• Clearly this has to be enforced in practical languages.

• Bad news: No algorithm exists to check whether a query is safe.

• A bit of good news: All SPJR and SPJRU queries are safe.

Reason: Everything that occurs in the output must have occurred in the input; no

new elements are created.

• So we have to figure out how to handle negation.
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Relational Calculus

• Relational calculus: queries written in the logical notation using:

relation names (e.g., Movie)

constants (e.g., ’Nicholson’)

conjunction ∧, disjunction ∨

negation ¬

existential quantifiers ∃

universal quantifiers ∀

• ∧, ∃,¬ suffice:

∀xF (x) = ¬∃x¬F (x)

F ∨G = ¬(¬F ∧ ¬G)

• Another name for it: first-order predicate logic.
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Relational Calculus cont’d

• Bound occurrence of a variable x in formula ϕ: within the scope of a quantifier

∃x or ∀x

• free occurrence of a variable in formula ϕ = not bound occurrence

• Free variable of formula ϕ: a variable with free occurrence.

• Free variables are those that go into the output of a query.

• Two ways to write a query:

– Q(~x) = F , where ~x is the tuple of free (distinct) variables

– {~x | F}
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• Examples:

{x, y | ∃z
(

R(x, z) ∧ S(z, y)
)

}

{x | ∀yR(x, y)}

• Queries without free variables are called Boolean queries.

• Their output is true or false

• Examples:

∀xR(x, x)

∀x∃yR(x, y)
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Query Semantics

Different ways to define semantics of Q(~x), depending on the range of quantifiers

• Natural semantics Qnat(I): unrestricted interpretation, that is, range of

quantifiers ∃x, ∀x is dom.

• Active domain semantics Qadom(I): range of quantifiers ∃x, ∀x is the set of all

constants that occur in the expression Q and in I.

• These definitions might lead to different query results.

• Examples:

{x, y, z | ¬Movie(x, y, z)}

{x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}

The query results are domain dependent.
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Query Semantics /2

• Intuitive Problem: possibly infinite query outputs

• More subtle problem: Range of quantifiers

Q(x) = {x | ∀y R(x, y)}

R A B

a a

a b

• Qnat(I) = ∅, while Qadom(I) = {〈a〉}.
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Domain independence

Qd(I): Given a query Q(~x), a set d ⊆ dom, and a database instance I such that all

constants in Q and in I occur in d. Then Qd(I) denotes the evaluation of Q(~x) on I (aka

image of I under Q(~x)) relative to d, i.e., free variable and quantifiers range over d.

Defn. A query Q(~x) is domain independent, if for all d,d′ and I, Qd(I) = Qd′(I)

(whenever both are defined).

• Positive examples:

∃ tl ∃ act Movie(tl, ’Polanski’, act) ∧ Schedule(th,tl)

Every SPJU query (rewritten to logical notation)

• Negative examples:

{x, y, z | ¬Movie(x, y, z)}

{x, y | Movie(x,Polanski,Nicholson) ∨ Movie(Chinatown,Polanski,y)}
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Domain independence/2

Proposition. If Q(~x) is domain independent, then for each d ⊆ dom and

database instance I such that Qd(I) is defined,

Qd(I) = Qnat(I) = Qadom(I)

Defn. Domain-independent Relational Calculus (DI-RelCalc) = set of

domain-independent queries in RC.

• Drawback: domain independence is not a recursive notion.

• That is, it is undecidable whether a given formula Q(~x) belongs to DI-RelCalc.

• Still, there is syntax for domain-independent queries

• Syntactic fragments of DI-RelCalc which are as expressive as RelCalc, like safe

range queries, can be efficiently recognized.

Relational Query Languages /2



Foundations of Databases 14

Relational Algebra: Difference

• If R and S are two relations with the same set of attributes, then R− S is their

difference:

The set of all tuples that occur in R but not in S.

• Example:

A B

a1 b1

a2 b2

a3 b3

−

A B

a2 b2

a3 b3

a4 b4

=
A B

a1 b1

Relational Query Languages /2



Foundations of Databases 15

Fundamental Theorem of Relational Database Theory

Theorem.

Domain-independent Relational Calculus (DI-RelCalc)

= Relational Calculus under Active Domain Semantics

= Relational Algebra with operations π, σ,×,∪,−, ρ

• We won’t give a formal proof of this statement, but try to explain why it is true.

Side effect: see some examples of relational algebra programming
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From Relational Algebra to DI-RelCalc

• Show that relational algebra can be expressed by relational calculus

• Use only ∃ quantifier in mapping

• Each free variable x and resp. quantified variable ∃x must be “grounded” in

some atom R(..., x, ...)

• Thus, for each RA expression e the semantics of its transform Fe is wolog. the

Active Domain Semantics.
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From Relational Algebra to DI-RelCalc/2

• Each expression e producing an n-attribute relation is translated into a formula

Fe(x1, . . . , xn)

• R → R(x1, . . . , xn)

• σc(R) → R(x1, . . . , xn) ∧ c

Example: if R has attributes A,B then σA=B(R) is translated into

(R(x1, x2) ∧ x1 = x2).
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From Relational Algebra to DI-RelCalc/3

• If R has attributes A1, . . . , An, B1, . . . , Bm, then

πA1,...,An
(R)

is translated into

∃y1, . . . , ym R(x1, . . . , xn, y1, . . . , ym)

Important: it is the attributes that are not projected that are quantified.

Example: for R with attributes A,B, πA(R) is ∃x2R(x1, x2).

• R× S is translated into

R(x1, . . . , xn) ∧ S(y1, . . . , ym)

(note that all the variables are distinct; hence the output will have n+m

attributes)
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From Relational Algebra to DI-RelCalc/4

• If R and S both have the same attributes, then R ∪ S is translated into

R(x1, . . . , xn) ∨ S(x1, . . . , xn)

(note that all the variables are the same, hence the output will have n attributes)

• If R and S both have the same attributes, then R− S is translated into

R(x1, . . . , xn) ∧ ¬S(x1, . . . , xn)

(note that all the variables are the same, hence the output again will have n

attributes)
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Getting ready for DI-RelCalc to algebra translation

• Active domain of a relation: the set of all constants that occur in it.

• Example:

R1 A B

a1 b1

a2 b2

has active domain {a1, a2, b1, b2}.

• We can compute the active domain of R in RA:

Suppose R has attributes A1, . . . , An.

ADOM(R) = ρB←A1
(πA1

(R)) ∪ . . . ∪ ρB←An
(πAn

(R))

• It is a relation with one attribute B.

• Similarly we can compute

ADOM(R1, . . . , Rk) = ADOM(R1) ∪ . . . ∪ ADOM(Rk)
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From DI-RelCalc to relational algebra

• A domain-independent query Q(~x) over relations R1, . . . , Rn can be wlog. be

evaluated over ADOM(R1, . . . , Rn)

• We thus translate relational calculus queries evaluated within

ADOM(R1, . . . , Rn) into relational algebra queries.

• Each relational calculus formula F (x1, . . . , xn) is translated into an expression

EF that produces a relation with n attributes.
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From DI-RelCalc to relational algebra /2

• Easy cases (for R with attributes A1, . . . , An):

R(x1, . . . , xn) → R

∃x1R(x1, . . . , xn) → πA2,...,An
(R)

• Not so easy cases:

• condition c(x1, . . . , xn) is translated into

σc(ADOM × . . .× ADOM)

E.g., x1 = x2 is translated into σx1=x2
(ADOM × ADOM)

• Negation ¬R(~x) → ADOM × . . .× ADOM −R

That is, we only compute the tuples of elements from the database that do not

belong to R
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From DI-RelCalc to relational algebra /3

• The hardest case: disjunction

• Let both R and S have two attributes.

• Relational calculus query: Q(x, y, z) = R(x, y) ∨ S(x, z)

• Its result has three attributes, and consists of tuples (x, y, z) such that

either (x, y) ∈ R, z ∈ ADOM, or (x, z) ∈ S, y ∈ ADOM

• The first one is simply R× ADOM

• The second one is more complex:

π#1,#3,#5(σ#1=#4∧#2=#5(S × ADOM × S))

• Thus, Q is translated into

R× ADOM ∪ π#1,#3,#5(σ#1=#4∧#2=#5(S × ADOM × S))
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From DI-RelCalc to relational algebra /4

• Alternative: Mapping conjunction using natural join

• Suppose we have relations R : A1, . . . , Am, B1, . . . , Bn and

S : A1, . . . , Am, C1, . . . , Ck for formulas ϕ(x1, . . . , xm, y1, . . . , yn) and

ψ(x1, . . . , xm, z1, . . . , zk), respectively.

• Then ϕ(x1, . . . , xm, y1, . . . , yn) ∧ ψ(x1, . . . , xm, z1, . . . , zk) is mapped to

R 1 S

• The natural join can be defined in terms of ×, σ, and ρ.
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Queries with “all” in relational algebra revisited

• Find directors whose movies are playing in all theaters.

{ dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movie(tl, dir, act) }

• Define:

T1 = πtheater(S) T2 = πtheater,director(M 1 S)

(to save space, we use M for Movie and S for Schedule)

• T1 has all theaters, T2 has all directors and theaters where their movies are

playing.

• Our query is:

{d | ∀t ∈ T1 (t, d) ∈ T2}
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Queries with “all” cont’d

Query {d | ∀t ∈ T1 ∧ T2(t, d)} is rewritten to

{d | ¬(∃t ∈ T1 (t, d) 6∈ T2)}

Hence, the answer to the query is

πdirector(M) − V

where V = {d | (∃t ∈ T1 (t, d) 6∈ T2)} = {d | ∃t T1(t) ∧ ¬T2(t, d)}.

Pairs (theater, director) not in T2 are

T1 × πdirector(M) − T2

Thus

V = πdirector(T1 × πdirector(M) − T2)
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Queries with “all” cont’d

• Reminder: the query is

Find directors whose movies are playing in all theaters.

• Putting everything together, the answer is:

πdirector(M)−πdirector

(

πtheater(S)×πdirector(M)− πtheater,director(M 1 S)
)

• This is much less intuitive than the logical description of the query.

• Indeed, procedural languages are not nearly as comprehensible as declarative.
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Safe-Range Queries

• A syntactic fragment of Relational Calculus which contains only

domain-independent queries (and thus also a fragment of DI-RelCalc)

• Safe-Range RelCalc = DI-RelCalc

• Involves

1. a syntactic normal form of the queries

2. a mechanism for determining whether a variable is range restricted

3. a global property to be satisfied
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Safe-Range Normal Form (SRNF)

Rewrite query formula Q(~x) without substantially changing its structure

• Variable substitution: Replace variables such that each variable x is quantified at most

once and has only free or only bound occurrences.

• Remove ∀: Rewrite ∀ϕ to ¬∃¬ϕ

• Remove implications: Rewrite ϕ⇒ ψ to ¬ϕ ∨ ψ, and similarly for ↔

• Push negation inside as much as possible, using

¬¬ϕ→ ϕ

¬(ϕ1 ∧ ϕ2) →¬ϕ1 ∨ ¬ϕ2)

¬(ϕ1 ∨ ϕ2) →¬ϕ1 ∧ ¬ϕ2)

• Flatten ‘and’s: No child of an ‘and’ in the formula parse tree is an ‘and’. Similarly for ‘or’s,

and ‘∃’s (this step is not essential)
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Safe-Range Normal Form/2

• Resulting formula: SRNF (Q(~x))

• Query Q(~x) is in safe-range normal form if SRNF (Q(~x)) = Q(~x)

• Examples:

Q1(th) = ∃ tl ∃ dir Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl)

SRNF (Q1) = ∃ tl, dir Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl)

Q2(dir) = ∀ th ∀ tl’ (Schedule(th,tl’) → (∃ tl ∃ act Schedule(th,tl) ∧ Movie(tl, dir, act)))

SRNF (Q2) = ¬∃ th, tl’ Schedule(th,tl’) ∨ (∃ tl, act Schedule(th,tl) ∧ Movie(tl, dir, act))
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Range Restriction

• Syntactic condition on formulas in SRNF.

• Intuition: all possible values of a variable lie in the active domain.

• If a variable doesn’t fulfill this, then the query is rejected
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Algorithm Range Restriction (rr)

Input: formula ϕ in SRNF

Output: subset of the free variables or ⊥

case ϕ of

R(e1, . . . , en): rr(ϕ) := the set of variables from e1, . . . , en.

x = a, a = x: rr(ϕ) := {x}

ϕ1 ∧ ϕ2: rr(ϕ) := rr(ϕ1) ∪ rr(ϕ2)

ϕ1 ∧ x = y: if {x, y} ∩ rr(ϕ1) = ∅

then rr(ϕ) := rr(ϕ1) else rr(ϕ) := rr(ϕ1) ∪ {x, y}

ϕ1 ∨ ϕ2: rr(ϕ) := rr(ϕ1) ∩ rr(ϕ2)

¬ϕ1: rr(ϕ) := ∅

∃x1, . . . , xnϕ1: if {x1, . . . , xn} ⊆ rr(ϕ1) then rr(ϕ) := rr(ϕ1) \ {x1, . . . , xn} else return ⊥

end case

Here, S ∪ ⊥ = ⊥ ∪ S = ⊥ and similarly for ∩, \
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Range Restriction/2

Example (cont’d):

SRNF (Q1) = ∃ tl, dir Movie(tl, dir,’Nicholson’) ∧ Schedule(th,tl)

rr(SRNF (Q1)) = {th}

SRNF (Q2) = ¬∃ th, tl’ Schedule(th,tl’) ∨ (∃ tl, act Schedule(th,tl) ∧ Movie(tl, dir, act))

rr(SRNF (Q2)) = {}

Defn. A query Q(~x) in Relational Calculus is safe-range if rr(SRNF (Q))

coincides with the set of free variables in Q. The set of all safe-range queries is

denoted by SR-RelCalc.

Examples: Q1 is a safe-range query, while Q2 is not.

Theorem. SR-RelCalc = DI-RelCalc
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For all and negation in SQL

• Two main mechanisms: subqueries, and Boolean expressions

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R− S:

R EXCEPT S

• Find all actors who are not directors resp. also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movie FROM Movie

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movie FROM Movie
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For all and negation in SQL/2

Subqueries with NOT EXISTS, NOT IN

• Example: Find directors whose movies are playing in all theaters.

• SQL’s way of saying this: Find directors such that there does not exist a theater where

their movies do not play.

SELECT M1.Director

FROM Movie M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movie M2

WHERE M2.Title=S.Title AND

M1.Director=M2.Director))
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