Foundations of Databases
Relational Query Languages /2

Free University of Bozen — Bolzano, 2004-2005

Thomas Eiter

Institut fur Informationssysteme
Arbeitsbereich Wissensbasierte Systeme (184/3)
Technische Universitat Wien
http://www.kr.tuwien.ac.at/staff/eiter

(Part of the slides based on material by Leonid Libkin)

Foundations of Databases

Queries with “All”

e Find directors whose movies are playing in all theaters.

{ dir] Y (th, tI') € Schedule 3 tl, act Schedule(th,tl) A Movie(tl, dir, act) }

e What does it actually mean?

e To understand this, we revisit rule-based queries, and write them in logical

notation.

Relational Query Languages /2

Foundations of Databases

Rules revisited

e By now, this query is very familiar:
e answer(th) :— movie(tl, 'Polanski’, act), schedule(th,tl)
e What does it actually mean?

e |t asks, for each theater (th): “Does there exist a movie (il) and an actor (act)

such that (th,tl) is in Schedule and (il, ’Polanski’, act) is in Movie?

e This can be stated using notation from mathematical logic:

Q(th) = dtl d act Movie(tl, 'Polanski’, act) /A Schedule(th,tl)

Relational Query Languages /2

Foundations of Databases

Other queries in logical notation

e answer(th) :— movie(tl, dir, ‘Nicholson’), schedule(th,tl)

e Query as formula:
Q(th) = dtl 3 dir Movie(tl, dir, 'Nicholson’) A Schedule(th,tl)
® |n general, every single-rule query can be written in the logical notation using
only:
existential quantification 3, and

logical conjunction /A (AND)

Relational Query Languages /2

Foundations of Databases

SPJRU queries in logical form

e Find actors who played in movies directed by Kubrick OR Polanski.

e Rule-based query:
answer(act) :— movie(il,dir,act), dir="Kubrick’
answer(act) :— movie(il,dir,act), dir="Polanski’
e |ogical notation:
Movie(tl,dir,act)/\

Q(act) = dtl ddir
(dir="Kubrick’ \VV dir="Polanski’)

e New element here: logical disjunction V (OR)

e SPJRU queries can be written in logical notation using: existential quantifiers “4,”

conjunction “A”, and disjunction “\/”

Relational Query Languages /2

Foundations of Databases

Queries with “for all”

e { dir| V (th,) € Schedule T I, act Schedule(th,tl) A Movie(tl, dir, act) }

e New element here: universal quantification “for all” vV
o VeF(xr) = —3Jx—F(x)
e So really the new element is: negation

e One has to be careful with negation: what is the meaning of
{z | ~R(z)}

e It seems to say: give us everything that is not in the database. But this is an

infinite set!

Relational Query Languages /2

Foundations of Databases

Queries with “all” and negation cont’d

e Safety: a query written in logical notation is safe, it is guaranteed to return finite

results on all databases.
e Clearly this has to be enforced in practical languages.
e Bad news: No algorithm exists to check whether a query is safe.

e A bit of good news: All SPJR and SPJRU queries are safe.

Reason: Everything that occurs in the output must have occurred in the input; no

new elements are created.

e So we have to figure out how to handle negation.

Relational Query Languages /2

Foundations of Databases

Relational Calculus

e Relational calculus: queries written in the logical notation using:
relation names (e.g., Movie)
constants (e.g., ‘Nicholson’)
conjunction A, disjunction V
negation —
existential quantifiers

universal quantifiers V

e A, d, — suffice:
VeF(z) = —-3dz—F(x)
FVvG = —(=-FN-QG)

e Another name for it: first-order predicate logic.

Relational Query Languages /2

Foundations of Databases

Relational Calculus cont’d

e Bound occurrence of a variable x in formula : within the scope of a quantifier

Jx or Vx
e free occurrence of a variable in formula ¢ = not bound occurrence
e Free variable of formula : a variable with free occurrence.
e Free variables are those that go into the output of a query.

e Two ways to write a query:
- Q(¥) = F,where ¥ is the tuple of free (distinct) variables

- {7 | F}

Relational Query Languages /2

Foundations of Databases

e Examples:
{z,y |3z (R(az,z) A S(z,y))}
{z | VyR(x,y)}

e Queries without free variables are called Boolean queries.

e Their output is true or false

e Examples:
VeR(x,x)
VedyR(x,y)

Relational Query Languages /2

Foundations of Databases 10

Query Semantics

Different ways to define semantics of ('), depending on the range of quantifiers

e Natural semantics (Qq+(1): unrestricted interpretation, that is, range of

quantifiers dx, Vz is dom.

® Active domain semantics Qadom(l): range of quantifiers dz, Vx is the set of all

constants that occur in the expression () and in 1.

e These definitions might lead to different query resulis.

e Examples:
{xa Y,z | _lMOVie(QC, Y, Z)}
{x,y | Movie(x,Polanski,Nicholson) V' Movie(Chinatown,Polanski,) }

The query results are domain dependent.

Relational Query Languages /2

Foundations of Databases

Query Semantics /2

e Intuitive Problem: possibly infinite query outputs

e More subtle problem: Range of quantifiers

R| A B
Q(z) ={z | Vy R(z,y)} a a
a b

o Qnat(I) =0, while Qugom(I) = {{a)}.

Relational Query Languages /2

11

Foundations of Databases 12

Domain independence

Qa4 (I): Given a query Q(), a setd C dom, and a database instance I such that all
constants in () and in T occur in d. Then Q4 (I) denotes the evaluation of Q) (&) on I (aka

image of I under QQ(Z)) relative to d, i.e., free variable and quantifiers range over d.

Defn. A query Q(X) is domain independent, if for all d, d” and I, Qq(I) = Qa/ (1)

(whenever both are defined).

e Positive examples:
3 tl 9 act Movie(tl, 'Polanski’, act) A Schedule(th,tl)
Every SPJU query (rewritten to logical notation)

e Negative examples:

{z,y,2 | ~Movie(z,y, 2)}
{x,y | Movie(x,Polanski,Nicholson) V Movie(Chinatown,Polanski,y)}

Relational Query Languages /2

Foundations of Databases 13

Domain independence/2

Proposition. If ()(¥) is domain independent, then for each d C dom and

database instance I such that ()4 (I) is defined,
Qa(I) = Qnat(I) = Qadom(1)
Defn. Domain-independent Relational Calculus (DI-RelCalc) = set of
domain-independent queries in RC.
e Drawback: domain independence is not a recursive notion.
e That is, it is undecidable whether a given formula ()(Z) belongs to DI-RelCalc.
e Still, there is syntax for domain-independent queries

e Syntactic fragments of DI-RelCalc which are as expressive as RelCalc, like safe

range queries, can be efficiently recognized.

Relational Query Languages /2

Foundations of Databases

Relational Algebra: Difference

e If R and .S are two relations with the same set of attributes, then B — S is their

difference:

The set of all tuples that occur in 2 but notin S.

e Example:

A B A B

al Dbt a2 b2 B A B
a2 b2 - a3 b3 N al Dbt
a3 b3 ad b4

Relational Query Languages /2

Foundations of Databases

Fundamental Theorem of Relational Database Theory

Theorem.

Domain-independent Relational Calculus (DI-RelCalc)

= Relational Calculus under Active Domain Semantics

Relational Algebra with operations 7,0, X, U, —, p

e \We won't give a formal proof of this statement, but try to explain why it is true.

Side effect: see some examples of relational algebra programming

Relational Query Languages /2

15

Foundations of Databases

From Relational Algebra to DI-RelCalc

e Show that relational algebra can be expressed by relational calculus
e Use only d quantifier in mapping

e Each free variable x and resp. quantified variable dx must be “grounded” in

some atom R(...,x, ...)

e Thus, for each RA expression e the semantics of its transform F is wolog. the

Active Domain Semantics.

Relational Query Languages /2

Foundations of Databases

From Relational Algebra to DI-RelCalc/2

e Each expression e producing an n-attribute relation is translated into a formula
Fe(xy,...,zpn)

e R — R(z1,...,xp)
e 0.(R) — R(x1,...,x25)AcC

Example: if R has attributes A, B then 0 4—g(R) is translated into
(R(x1,22) Ax1 = x2).

Relational Query Languages /2

Foundations of Databases

From Relational Algebra to DI-RelCalc/3

e If R has attributes A1, ..., A,, B1,..., By, then

TA, .. A, (R)

IS translated into

1, Ym R(2T1, - 0, Y1, - Yin)

Important: it is the attributes that are not projected that are quantified.

Example: for R with attributes A, B, m4(R) is dxo R(x1, x2).

e [x Sistranslated into

R(xi,....,2n) NS(y1, .., Ym)

(note that all the variables are distinct; hence the output will have n + m

attributes)

Relational Query Languages /2

18

Foundations of Databases

From Relational Algebra to DI-RelCalc/4

e If R and S both have the same attributes, then R U S is translated into
R(x1,...,xn)V S(x1,...,2p)
(note that all the variables are the same, hence the output will have n attributes)
e If R and S both have the same attributes, then R — .S is translated into
R(x1,...,xn) AN 2S(21,...,Tn)

(note that all the variables are the same, hence the output again will have n

attributes)

Relational Query Languages /2

19

Foundations of Databases 20

Getting ready for DI-RelCalc to algebra translation

e Active domain of a relation: the set of all constants that occur in it.

Ri| A B
e Example: a1 by has active domain {a1, a2, b1, ba}.
a9 bg

e We can compute the active domain of R in RA:

Suppose R has attributes A1, ..., A,.
ADOM(R) = pp—a,(ma,(R))U...Upp—a,(m4,(R))

e |t is a relation with one attribute B.

e Similarly we can compute

ADOM(Rl, e ,Rk) = ADOM(Rl) U...U ADOM(Rk)

Relational Query Languages /2

Foundations of Databases

From DI-RelCalc to relational algebra

e A domain-independent query () (¥) over relations Ry, ..., R, can be wlog. be
evaluated over ADOM(Ry, ..., Ry,)

e \We thus translate relational calculus queries evaluated within
ADOM(Ry, ..., R,) into relational algebra queries.

e Each relational calculus formula F'(x1, ..., x,) is translated into an expression

E'r that produces a relation with n attributes.

Relational Query Languages /2

Foundations of Databases

From DI-RelCalc to relational algebra /2

e Easy cases (for R with attributes A1, ..., A,):
R(x1,...,2,) — R
Jrx1R(x1,...,%n) — Ta,.. A, (R)

e Not so easy cases:

e condition ¢(x1, ..., Ty) is translated into

d.(ADOM x ... x ADOM)

E.g., 1 = x2 is translated into 03, —,, (ADOM x ADOM)
e Negation ~R(Z) — ADOM x ... x ADOM — R

That is, we only compute the tuples of elements from the database that do not

belong to R

Relational Query Languages /2

Foundations of Databases

From DI-RelCalc to relational algebra /3

e The hardest case: disjunction
e Let both R and .S have two attributes.
e Relational calculus query: Q(x,y,z) = R(x,y) Vv S(x, z)

e Its result has three attributes, and consists of tuples (a:, Y, z) such that
either (x,y) € R,z € ADOM, or (x,z) € S,y € ADOM

e The first one is simply R x ADOM

e T[he second one is more complex:

T1, 43,45 (Og1=ganp2=#5(S X ADOM x §))

e Thus, () is translated into

R x ADOM U 77#17#3,#5(0'#1:#4/\#2:#5(5 x ADOM x S))

Relational Query Languages /2

23

Foundations of Databases

From DI-RelCalc to relational algebra /4

e Alternative: Mapping conjunction using natural join

e Suppose we have relations R : Aq,..., A, B1,...,B, and

S:Ay, ..., An,Ch, ..., Cyforformulas (21, ..., Tm,Y1,---,Yn) and

V(X1 .oy T, 21,5 - - - 5 2k), FESPECivEly.

e Then p(x1, ..

Ty YLy e e s Yn) ANUV(X1, ..., T, 21,5 - - -, 2) iS Mapped to

RX S

e The natural join can be defined in terms of X, o, and p.

Relational Query Languages /2

24

Foundations of Databases

Queries with “all” in relational algebra revisited

e Find directors whose movies are playing in all theaters.

{ dir | V (th,) € Schedule 3 ti, act Schedule(th,tl) A Movie(tl, dir, act) }

e Define:
T1 = Wtheater(s) T2 — Wtheater,director(M X S)

(to save space, we use M for Movie and S for Schedule)

e 7 has all theaters, 15 has all directors and theaters where their movies are
playing.
e Our query is:

[dIVteT (td) eT)

Relational Query Languages /2

25

Foundations of Databases

Queries with “all” cont’d

Query {d | Vt € Ty N T»(t,d)} is rewritten to
1| ~(Ft €Ty (t,d) £T);
Hence, the answer to the query is
Tdirector (M) — V

where V = {d | (3t € Ty (t,d) € To)} = {d | It Tu(t) A =Ts(t,d)}.

Pairs (theater, director) not in 5 are
17 X 7Tdirector(]\4) — 15

Thus
V = 7"'director(Tl X 7TdireC’cOI’(]\f) T TQ)

Relational Query Languages /2

Foundations of Databases

Queries with “all” cont’d

e Reminder: the query is

Find directors whose movies are playing in all theaters.

e Puiting everything together, the answer is:

27

Tldirector (M) — Tldirector (Wtheater (S) X 7"-director(]\f) — Tltheater,director (M X S))

e This is much less intuitive than the logical description of the query.

e Indeed, procedural languages are not nearly as comprehensible as declarative.

Relational Query Languages /2

Foundations of Databases

Safe-Range Queries

e A syntactic fragment of Relational Calculus which contains only

domain-independent queries (and thus also a fragment of DI-RelCalc)
e Safe-Range RelCalc = DI-RelCalc

e Involves
1. a syntactic normal form of the queries

2. a mechanism for determining whether a variable is range restricted

3. a global property to be satisfied

Relational Query Languages /2

Foundations of Databases

Safe-Range Normal Form (SRNF)

Rewrite query formula () (¥) without substantially changing its structure

e Variable substitution: Replace variables such that each variable x is quantified at most

once and has only free or only bound occurrences.
e Remove V: Rewrite Vo to 73—
e Remove implications: Rewrite (¢ = 1) to ¢ V 1), and similarly for <

e Push negation inside as much as possible, using
(1 Apa) — 21 V —pa)
(1 V p2) — 7p1 A pa)

e Flatten ‘and’s: No child of an ‘and’ in the formula parse tree is an ‘and’. Similarly for ‘or’s,
and ‘J's (this step is not essential)

Relational Query Languages /2

Foundations of Databases 30

Safe-Range Normal Form/2

e Resulting formula: SRN F(Q(T))

e Query () is in safe-range normal formif SRN F(Q (%)) = Q(I)

e Examples:
1 (th) — 3l 94 dir Movie(tl, dir;Nicholson’) A Schedule(th,tl)
SRNF(Q1) = 3t dir Movie(il, dir,Nicholson’) A Schedule(th,t)
Q2(diry = Vth V1l (Schedule(th,t’) — (3 tl 3 act Schedule(th,tl) A Movie(tl, dir, act)))
SRNF(QQ) = —dth, tI' Schedule(th,il’) \V (3 tl, act Schedule(th,tl) A Movie(tl, dir, act))

Relational Query Languages /2

Foundations of Databases

Range Restriction

e Syntactic condition on formulas in SRNF.

e [ntuition: all possible values of a variable lie in the active domain.

e |f a variable doesn't fulfill this, then the query is rejected

Relational Query Languages /2

Foundations of Databases 32

Algorithm Range Restriction (rr)
Input: formula ¢ in SRNF
Output: subset of the free variables or L

case @ of
R(e1,...,en):17r(p) := the set of variables from e, . . . , €y,.
x=a,a=z17r(p) = {r}
w1 N p2:17r(p) ;= 17r(p1) U
o1 ANx =y:if {x,y}Nrr(pr) =10
then r7(p) := rr(
p1 Vpa:rr(p) == 1r(p1) NTr(p2)
—1:17(p) =)
dz1, ..., xpp1:it{z1,..., 20} Crr(p1) thenrr(p) :=rr(p1) \ {z1,...,x,} else return |
end case

Here, SU L = 1 US = L and similarly for N, \

Relational Query Languages /2

Foundations of Databases

Range Restriction/2

Example (cont'd):

SRNF(Q1) = 3t dir Movie(tl, dir,Nicholson’) A Schedule(th,l)
rr(SRNF(Q1)) = {th}

SRNF(Q2) = —3th, t’ Schedule(th,t’) \V (3 tl, act Schedule(th,tl) A Movie(tl, dir, act))
r(SENF(Q2) = {}

Defn. A query (Q(%) in Relational Calculus is safe-range if rr(SRN F(Q))
coincides with the set of free variables in (). The set of all safe-range queries is
denoted by SR-RelCalc.

Examples: ()1 is a safe-range query, while (02 is not.

Theorem. SR-RelCalc = DI-RelCalc

Relational Query Languages /2

Foundations of Databases 34

For all and negation in SQL

e Two main mechanisms: subqueries, and Boolean expressions
e Subqueries are often more natural

e SQL syntax for RN S:
R INTERSECT S

e SQL syntax for R — S
R EXCEPT S

e Find all actors who are not directors resp. also directors:

SELECT Actor AS Person SELECT Actor AS Person
FROM Movie FROM Movie

EXCEPT INTERSECT
SELECT Director AS Person SELECT Director AS Person

FROM Movie FROM Movie

Relational Query Languages /2

Foundations of Databases 35

For all and negation in SQL/2

Subqueries with NOT EXISTS, NOT IN
e Example: Find directors whose movies are playing in all theaters.

e SQLs way of saying this: Find directors such that there does not exist a theater where

their movies do not play.

SELECT Ml.Director
FROM Movie Ml
WHERE NOT EXISTS (SELECT S.Theater
FROM Schedule S
WHERE NOT EXISTS (SELECT M2.Director
FROM Movie M2
WHERE M2.Title=S.Title AND

Ml .Director=M2.Director))

Relational Query Languages /2

Foundations of Databases 36

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems — The Complete Book.
Prentice Hall, 2002.

[8] D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Md.,
1983.

[4] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science
Press, 19809.

Relational Query Languages /2

