Foundations of Databases

Relational Query Languages /2

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(Part of the slides based on material by Leonid Libkin)

Queries with "All"

1

• Find directors whose movies are playing in all theaters.

 $\{ dir \mid \forall (th, tl') \in Schedule \exists tl, act Schedule(th, tl) \land Movie(tl, dir, act) \}$

- What does it actually mean?
- To understand this, we revisit rule-based queries, and write them in logical notation.

Rules revisited

- By now, this query is very familiar:
- answer(th) :- movie(tl, 'Polanski', act), schedule(th,tl)
- What does it actually mean?
- It asks, for each theater (th): "Does there exist a movie (tl) and an actor (act) such that (th,tl) is in Schedule and (tl, 'Polanski', act) is in Movie?
- This can be stated using notation from mathematical logic:

Q(th) = \exists tl \exists act Movie(tl, 'Polanski', act) \land Schedule(th,tl)

Other queries in logical notation

- answer(th) :- movie(tl, dir, 'Nicholson'), schedule(th,tl)
- Query as formula:

Q(th) = \exists tl \exists dir Movie(tl, dir, 'Nicholson') \land Schedule(th,tl)

 In general, every single-rule query can be written in the logical notation using only:

existential quantification \exists , and

```
logical conjunction \wedge (AND)
```

SPJRU queries in logical form

- Find actors who played in movies directed by Kubrick OR Polanski.
- Rule-based query:
 - answer(act) :- movie(tl,dir,act), dir='Kubrick'
 - answer(act) :- movie(tl,dir,act), dir='Polanski'
- Logical notation:

 $Q(act) = \exists tl \exists dir \begin{pmatrix} Movie(tl,dir,act) \land \\ (dir='Kubrick' \lor dir='Polanski') \end{pmatrix}$

- New element here: logical disjunction \lor (OR)
- SPJRU queries can be written in logical notation using: existential quantifiers "∃," conjunction "∧", and disjunction "∨"

4

Queries with "for all"

• { dir $| \forall$ (th, tl') \in Schedule \exists tl, act Schedule(th,tl) \land Movie(tl, dir, act) }

- New element here: universal quantification "for all" \forall
- $\forall x F(x) = \neg \exists x \neg F(x)$
- So really the new element is: *negation*
- One has to be careful with negation: what is the meaning of

$$\{x \mid \neg R(x)\}$$

• It seems to say: give us everything that is *not* in the database. But this is an *infinite* set!

Queries with "all" and negation cont'd

- Safety: a query written in logical notation is *safe*, it is guaranteed to return finite results on all databases.
- Clearly this has to be enforced in practical languages.
- Bad news: No algorithm exists to check whether a query is safe.
- A bit of good news: All SPJR and SPJRU queries are safe.

Reason: Everything that occurs in the output must have occurred in the input; no new elements are created.

• So we have to figure out how to handle negation.

Relational Calculus

• Relational calculus: queries written in the logical notation using:

```
relation names (e.g., Movie)
constants (e.g., 'Nicholson')
conjunction \land, disjunction \lor
negation \neg
existential quantifiers \exists
universal quantifiers \forall
```

• \land , \exists , \neg suffice:

 $\forall x F(x) = \neg \exists x \neg F(x)$ $F \lor G = \neg (\neg F \land \neg G)$

• Another name for it: first-order predicate logic.

Relational Query Languages /2

Relational Calculus cont'd

- Bound occurrence of a variable x in formula φ : within the scope of a quantifier $\exists x \text{ or } \forall x$
- free occurrence of a variable in formula φ = not bound occurrence
- Free variable of formula φ : a variable with free occurrence.
- Free variables are those that go into the output of a query.
- Two ways to write a query:

–
$$Q(\vec{x}) = F$$
, where \vec{x} is the tuple of free (distinct) variables

 $- \{ \vec{x} \mid F \}$

• Examples:

$$\{x, y \mid \exists z \left(R(x, z) \land S(z, y) \right) \}$$
$$\{x \mid \forall y R(x, y) \}$$

- Queries without free variables are called *Boolean queries*.
- Their output is *true* or *false*
- Examples:

$$\forall x R(x, x)$$
$$\forall x \exists y R(x, y)$$

Query Semantics

Different ways to define semantics of $Q(\vec{x})$, depending on the range of quantifiers

- Natural semantics $Q_{nat}(\mathbf{I})$: unrestricted interpretation, that is, range of quantifiers $\exists x, \forall x \text{ is } \mathbf{dom}$.
- Active domain semantics $Q_{adom}(\mathbf{I})$: range of quantifiers $\exists x, \forall x$ is the set of all constants that occur in the expression Q and in \mathbf{I} .
- These definitions might lead to different query results.
- Examples:

 $\{x, y, z \mid \neg \mathsf{Movie}(x, y, z)\}$

 $\{x, y \mid Movie(x, Polanski, Nicholson) \lor Movie(Chinatown, Polanski, y)\}$

The query results are *domain dependent*.

Relational Query Languages /2

Query Semantics /2

- Intuitive Problem: possibly infinite query outputs
- More subtle problem: Range of quantifiers

$$Q(x) = \{x \mid \forall y \ R(x, y)\} \qquad \begin{array}{c|c} R & A & B \\ \hline & a & a \\ & a & b \end{array}$$

•
$$Q_{nat}(\mathbf{I}) = \emptyset$$
, while $Q_{adom}(\mathbf{I}) = \{ \langle a \rangle \}$.

Domain independence

 $Q_{\mathbf{d}}(\mathbf{I})$: Given a query $Q(\vec{x})$, a set $\mathbf{d} \subseteq \mathbf{dom}$, and a database instance \mathbf{I} such that all constants in Q and in \mathbf{I} occur in \mathbf{d} . Then $Q_{\mathbf{d}}(\mathbf{I})$ denotes the *evaluation* of $Q(\vec{x})$ on \mathbf{I} (aka *image of* \mathbf{I} under $Q(\vec{x})$) relative to \mathbf{d} , i.e., free variable and quantifiers range over \mathbf{d} .

Defn. A query $Q(\vec{x})$ is *domain independent*, if for all \mathbf{d}, \mathbf{d}' and $\mathbf{I}, Q_{\mathbf{d}}(\mathbf{I}) = Q_{\mathbf{d}'}(\mathbf{I})$ (whenever both are defined).

• Positive examples:

 \exists tl \exists act Movie(tl, 'Polanski', act) \land Schedule(th,tl)

Every SPJU query (rewritten to logical notation)

• Negative examples:

 $\{x, y, z \mid \neg \mathsf{Movie}(x, y, z)\}$

 $\{x, y \mid Movie(x, Polanski, Nicholson) \lor Movie(Chinatown, Polanski, y)\}$

Domain independence/2

Proposition. If $Q(\vec{x})$ is domain independent, then for each $\mathbf{d} \subseteq \mathbf{dom}$ and database instance \mathbf{I} such that $Q_{\mathbf{d}}(\mathbf{I})$ is defined,

$$Q_{\mathbf{d}}(\mathbf{I}) = Q_{nat}(\mathbf{I}) = Q_{adom}(\mathbf{I})$$

Defn. Domain-independent Relational Calculus (DI-RelCalc) = set of domain-independent queries in RC.

- Drawback: domain independence is not a recursive notion.
- That is, it is undecidable whether a given formula $Q(\vec{x})$ belongs to DI-RelCalc.
- Still, there is syntax for domain-independent queries
- Syntactic fragments of DI-RelCalc which are as expressive as RelCalc, like *safe range queries*, can be efficiently recognized.

Relational Algebra: Difference

• If R and S are two relations with the same set of attributes, then R - S is their difference:

The set of all tuples that occur in R but not in S.

• Example:

Α	В	Α	В				
a1	b1	 a2	b2		А	В	
a2	b2	a3	b3	—	a1	b1	
a3	b3	a4	b4				

Fundamental Theorem of Relational Database Theory

Theorem.

Domain-independent Relational Calculus (DI-RelCalc)

- = Relational Calculus under Active Domain Semantics
- = Relational Algebra with operations $\pi, \sigma, \times, \cup, -, \rho$

We won't give a formal proof of this statement, but try to explain why it is true.
 Side effect: see some examples of relational algebra programming

From Relational Algebra to DI-RelCalc

- Show that relational algebra can be expressed by relational calculus
- Use only \exists quantifier in mapping
- Each free variable x and resp. quantified variable $\exists x$ must be "grounded" in some atom R(..., x, ...)
- Thus, for each RA expression e the semantics of its transform F_e is wolog. the Active Domain Semantics.

From Relational Algebra to DI-RelCalc/2

• Each expression e producing an n-attribute relation is translated into a formula $F_e(x_1, \ldots, x_n)$

•
$$R \rightarrow R(x_1,\ldots,x_n)$$

•
$$\sigma_c(R) \rightarrow R(x_1, \ldots, x_n) \wedge c$$

Example: if R has attributes A, B then $\sigma_{A=B}(R)$ is translated into $(R(x_1, x_2) \land x_1 = x_2).$

From Relational Algebra to DI-RelCalc/3

• If R has attributes $A_1,\ldots,A_n,B_1,\ldots,B_m$, then

 $\pi_{A_1,\ldots,A_n}(R)$

is translated into

$$\exists y_1,\ldots,y_m \ R(x_1,\ldots,x_n,y_1,\ldots,y_m)$$

Important: it is the attributes that are *not* projected that are quantified. Example: for *R* with attributes *A*, *B*, $\pi_A(R)$ is $\exists x_2 R(x_1, x_2)$.

• $R \times S$ is translated into

$$R(x_1,\ldots,x_n)\wedge S(y_1,\ldots,y_m)$$

(note that all the variables are distinct; hence the output will have n + m attributes)

Relational Query Languages /2

From Relational Algebra to DI-RelCalc/4

- If R and S both have the same attributes, then $R \cup S$ is translated into

$$R(x_1,\ldots,x_n) \vee S(x_1,\ldots,x_n)$$

(note that all the variables are the same, hence the output will have n attributes)

• If R and S both have the same attributes, then R - S is translated into

$$R(x_1,\ldots,x_n)\wedge \neg S(x_1,\ldots,x_n)$$

(note that all the variables are the same, hence the output again will have n attributes)

Getting ready for DI-RelCalc to algebra translation

• Active domain of a relation: the set of all constants that occur in it.

• Example:
$$\begin{array}{c|ccc} R_1 & A & B \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{array}$$
 has active domain $\{a_1, a_2, b_1, b_2\}$.

• We can compute the active domain of R in RA: Suppose R has attributes A_1, \ldots, A_n .

$$ADOM(R) = \rho_{B \leftarrow A_1}(\pi_{A_1}(R)) \cup \ldots \cup \rho_{B \leftarrow A_n}(\pi_{A_n}(R))$$

- It is a relation with one attribute B.
- Similarly we can compute

 $ADOM(R_1, \ldots, R_k) = ADOM(R_1) \cup \ldots \cup ADOM(R_k)$

From DI-RelCalc to relational algebra

- A domain-independent query $Q(\vec{x})$ over relations R_1, \ldots, R_n can be wlog. be evaluated over $ADOM(R_1, \ldots, R_n)$
- We thus translate relational calculus queries evaluated within $ADOM(R_1, \ldots, R_n)$ into relational algebra queries.
- Each relational calculus formula $F(x_1, \ldots, x_n)$ is translated into an expression E_F that produces a relation with n attributes.

From DI-RelCalc to relational algebra /2

• Easy cases (for R with attributes A_1, \ldots, A_n):

$$R(x_1, \dots, x_n) \to R$$

$$\exists x_1 R(x_1, \dots, x_n) \to \pi_{A_2, \dots, A_n}(R)$$

- Not so easy cases:
- condition $c(x_1, \ldots, x_n)$ is translated into

 $\sigma_c(\text{ADOM} \times \ldots \times \text{ADOM})$

E.g., $x_1 = x_2$ is translated into $\sigma_{x_1=x_2}$ (ADOM × ADOM)

• Negation $\neg R(\vec{x}) \rightarrow \text{ADOM} \times \ldots \times \text{ADOM} - R$

That is, we only compute the tuples of elements from the database that do not belong to ${\cal R}$

From DI-RelCalc to relational algebra /3

- The hardest case: disjunction
- Let both R and S have two attributes.
- Relational calculus query: $Q(x, y, z) = R(x, y) \lor S(x, z)$
- Its result has three attributes, and consists of tuples (x, y, z) such that either $(x, y) \in R, z \in ADOM$, or $(x, z) \in S, y \in ADOM$
- The first one is simply $R \times ADOM$
- The second one is more complex:

 $\pi_{\#1,\#3,\#5}(\sigma_{\#1=\#4\wedge\#2=\#5}(S \times ADOM \times S))$

 $\bullet\,$ Thus, Q is translated into

 $R \times \text{ADOM} \cup \pi_{\#1,\#3,\#5}(\sigma_{\#1=\#4\wedge\#2=\#5}(S \times \text{ADOM} \times S))$

From DI-RelCalc to relational algebra /4

- Alternative: Mapping conjunction using natural join
- Suppose we have relations $R: A_1, \ldots, A_m, B_1, \ldots, B_n$ and $S: A_1, \ldots, A_m, C_1, \ldots, C_k$ for formulas $\varphi(x_1, \ldots, x_m, y_1, \ldots, y_n)$ and $\psi(x_1, \ldots, x_m, z_1, \ldots, z_k)$, respectively.
- Then $\varphi(x_1,\ldots,x_m,y_1,\ldots,y_n)\wedge\psi(x_1,\ldots,x_m,z_1,\ldots,z_k)$ is mapped to

$R\bowtie S$

• The natural join can be defined in terms of \times , σ , and ρ .

Queries with "all" in relational algebra revisited

• Find directors whose movies are playing in all theaters.

 $\{ dir \mid \forall (th, tl') \in Schedule \exists tl, act Schedule(th,tl) \land Movie(tl, dir, act) \}$

• Define:

$$T_1 = \pi_{\text{theater}}(S)$$
 $T_2 = \pi_{\text{theater,director}}(M \bowtie S)$

(to save space, we use M for Movie and S for Schedule)

- T_1 has all theaters, T_2 has all directors and theaters where their movies are playing.
- Our query is:

$$\{d \mid \forall t \in T_1 \quad (t,d) \in T_2\}$$

Queries with "all" cont'd

Query $\{d \mid \forall t \in T_1 \land T_2(t, d)\}$ is rewritten to

$$\{d \mid \neg(\exists t \in T_1 \ (t, d) \notin T_2)\}$$

Hence, the answer to the query is

 $\pi_{\operatorname{director}}(M) - V$

where $V = \{ d \mid (\exists t \in T_1 \ (t, d) \notin T_2) \} = \{ d \mid \exists t \ T_1(t) \land \neg T_2(t, d) \}.$

Pairs (theater, director) not in T_2 are

$$T_1 \times \pi_{\operatorname{director}}(M) - T_2$$

Thus

$$V = \pi_{\text{director}}(T_1 \times \pi_{\text{director}}(M) - T_2)$$

Queries with "all" cont'd

• Reminder: the query is

Find directors whose movies are playing in all theaters.

• Putting everything together, the answer is:

$$\pi_{\mathsf{director}}(M) - \pi_{\mathsf{director}}\Big(\pi_{\mathsf{theater}}(S) \times \pi_{\mathsf{director}}(M) - \pi_{\mathsf{theater},\mathsf{director}}(M \bowtie S)\Big)$$

- This is much less intuitive than the logical description of the query.
- Indeed, procedural languages are not nearly as comprehensible as declarative.

Safe-Range Queries

- A syntactic fragment of Relational Calculus which contains only domain-independent queries (and thus also a fragment of DI-RelCalc)
- Safe-Range RelCalc = DI-RelCalc
- Involves
 - 1. a syntactic normal form of the queries
 - 2. a mechanism for determining whether a variable is range restricted
 - 3. a global property to be satisfied

Safe-Range Normal Form (SRNF)

Rewrite query formula $Q(\vec{x})$ without substantially changing its structure

- Variable substitution: Replace variables such that each variable *x* is quantified at most once and has only free or only bound occurrences.
- Remove \forall : Rewrite $\forall \varphi$ to $\neg \exists \neg \varphi$
- Remove implications: Rewrite $\varphi \Rightarrow \psi$ to $\neg \varphi \lor \psi$, and similarly for \leftrightarrow
- Push negation inside as much as possible, using

$$\neg\neg\varphi \to \varphi$$
$$\neg(\varphi_1 \land \varphi_2) \to \neg\varphi_1 \lor \neg\varphi_2)$$
$$\neg(\varphi_1 \lor \varphi_2) \to \neg\varphi_1 \land \neg\varphi_2)$$

 Flatten 'and's: No child of an 'and' in the formula parse tree is an 'and'. Similarly for 'or's, and '∃'s (this step is not essential)

Safe-Range Normal Form/2

- Resulting formula: $SRNF(Q(\vec{x}))$
- Query $Q(\vec{x})$ is in safe-range normal form if $SRNF(Q(\vec{x})) = Q(\vec{x})$
- Examples:

 $Q_1(\text{th}) = \exists \text{tl} \exists \text{dir Movie(tl, dir,'Nicholson')} \land \text{Schedule(th,tl)}$

 $SRNF(Q_1) = \exists$ tl, dir Movie(tl, dir, Nicholson') \land Schedule(th, tl)

 $Q_2(\text{dir}) = \forall \text{th} \forall \text{tl'} (\text{Schedule(th,tl')} \rightarrow (\exists \text{tl} \exists \text{act Schedule(th,tl)} \land \text{Movie(tl, dir, act)}))$ $SRNF(Q_2) = \neg \exists \text{th, tl' Schedule(th,tl')} \lor (\exists \text{tl, act Schedule(th,tl)} \land \text{Movie(tl, dir, act)})$

Relational Query Languages /2

Range Restriction

- Syntactic condition on formulas in SRNF.
- Intuition: all possible values of a variable lie in the active domain.
- If a variable doesn't fulfill this, then the query is rejected

Algorithm Range Restriction (rr)

Input: formula φ in SRNF

Output: subset of the free variables or \perp

case
$$\varphi$$
 of
 $R(e_1, \ldots, e_n)$: $rr(\varphi) :=$ the set of variables from e_1, \ldots, e_n .
 $x = a, a = x$: $rr(\varphi) := \{x\}$
 $\varphi_1 \land \varphi_2$: $rr(\varphi) := rr(\varphi_1) \cup rr(\varphi_2)$
 $\varphi_1 \land x = y$: if $\{x, y\} \cap rr(\varphi_1) = \emptyset$
then $rr(\varphi) := rr(\varphi_1)$ else $rr(\varphi) := rr(\varphi_1) \cup \{x, y\}$
 $\varphi_1 \lor \varphi_2$: $rr(\varphi) := rr(\varphi_1) \cap rr(\varphi_2)$
 $\neg \varphi_1$: $rr(\varphi) := \emptyset$
 $\exists x_1, \ldots, x_n \varphi_1$: if $\{x_1, \ldots, x_n\} \subseteq rr(\varphi_1)$ then $rr(\varphi) := rr(\varphi_1) \setminus \{x_1, \ldots, x_n\}$ else return \bot

end case

Here, $S \cup \bot = \bot \cup S = \bot$ and similarly for \cap, \setminus

Relational Query Languages /2

Range Restriction/2

Example (cont'd):

 $SRNF(Q_1) = \exists tl, dir Movie(tl, dir, Nicholson') \land Schedule(th, tl)$ $rr(SRNF(Q_1)) = \{th\}$ $SRNF(Q_2) = \neg \exists th, tl' Schedule(th, tl') \lor (\exists tl, act Schedule(th, tl) \land Movie(tl, dir, act))$ $rr(SRNF(Q_2)) = \{\}$

Defn. A query $Q(\vec{x})$ in Relational Calculus is *safe-range* if rr(SRNF(Q)) coincides with the set of free variables in Q. The set of all safe-range queries is denoted by SR-RelCalc.

Examples: Q_1 is a safe-range query, while Q_2 is not.

Theorem. SR-RelCalc = DI-RelCalc

For all and negation in SQL

- Two main mechanisms: subqueries, and Boolean expressions
- Subqueries are often more natural
- SQL syntax for $R \cap S$:
 - R INTERSECT S
- SQL syntax for R S:
 - R EXCEPT S
- Find all actors who are not directors resp. also directors:

SELECT Actor AS Person	SELECT Actor AS Person
FROM Movie	FROM Movie
EXCEPT	INTERSECT
SELECT Director AS Person	SELECT Director AS Person
FROM Movie	FROM Movie

For all and negation in SQL/2

Subqueries with NOT EXISTS, NOT IN

- Example: Find directors whose movies are playing in all theaters.
- SQL's way of saying this: Find directors such that there does not exist a theater where their movies do not play.

```
SELECT M1.Director

FROM Movie M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movie M2

WHERE M2.Title=S.Title AND

M1.Director=M2.Director))
```

Bibliography

- [1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [2] H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems The Complete Book*.
 Prentice Hall, 2002.
- [3] D. Maier. *The Theory of Relational Databases*. Computer Science Press, Rockville, Md., 1983.
- [4] J. D. Ullman. *Principles of Database and Knowledge Base Systems*. Computer Science Press, 1989.