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Foundations of Databases

Query Processing and Optimization

e Query optimization: finding a good way to evaluate a query

e Queries are declarative, and can be translated into procedural languages in

more than one way
e Hence one has to choose the best (or at least good) procedural query
e This happens in the context of query processing

e A query processor turns queries and updates into sequences of operations on

the database
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Query processing and optimization stages

e Which relational algebra expression, equivalent to a given declarative query, will
lead to the most efficient algorithm?

e For each algebraic operator, what algorithm do we use to compute that operator?
e How do operations pass data (main memory buffer, disk buffer)?

Issues:
e Finding equivalent relational algebra expressions (“query plans”)

e Assessing efficiency of their evaluation: We need to know how data is stored,
and how it is accessed, etc.

Use general guidelines and statistics information
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Overview of query processing

e Start with a declarative query:

SELECT R.A, S.B, T.E
FROM R, S, T
WHERE R.C=S.C AND S.D=T.D AND R.A>5 AND S.B<3 AND T.D=T.E

e Translate into an algebra expression:
TR.A,S.B,T.E(OR.A>573.B<3AT.D=T.E(R X S X T))
e Optimization step: rewrite to an equivalent but more efficient expression:

WR.A,S.B,T.E(UA>5(R) X OB<3(S> X UD:E(T)))

e Why is it more efficient?

Because selections are evaluated early, and joined relations are not as large as R, S, 1.
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Overview of query processing cont’d

e Evaluating the optimized expression. Choices to make: order of joins.

e First query plan (out of two):
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first join S and T', and then join the result with .
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e Alternative query plan:
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It first joins .S, 1, and then joins the result with R.
e Both query plans produce the same result.

e How to choose one?
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Optimization by algebraic manipulations

e Given a relational algebra expression ¢, find another expression €’ equivalent to

e that is easier (faster) to evaluate.

e Basic question: Given two relational algebra expressions €1, e, are they

equivalent?

e This is the same as asking if an expression e always produces the empty
answer:

e1 =€y < e1—ey=0andey —e; =10
e Problem: testing € = () is undecidable for relational algebra expressions.

e (Good news:
We can still list some useful equalities, and

It is decidable for very important classes of queries (SPJ queries)
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Optimization by Algebraic Equivalences

Systematic way of query optimization: Apply equivalences
e Xl and X are commutative and associative, hence applicable in any order

e Cascaded projections might simplified: If the attributes A1, ..., A,, are among
B1,..., B, then

TAL,.. A, (BB (B)) = Ta,,.. 4, (F)
e (Cascaded selections might be merged:
Oy (0cy(E)) = 0cyine, (F)
e Commuting selection with join. If ¢ only involves attributes from FE/1, then

O'C(El NEQ) = O'C(El) [X]EQ

® eic

We will not treat this here.
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Optimization of conjunctive queries

e Reminder:

conjunctive queries

SPJR queries
= simple SELECT-FROM-WHERE SQL queries
(only AND and (in)equality in the WHERE clause)

e Extremely common, and thus special optimization techniques have been

developed
e Reminder: for two relational algebra expressions €1, €2, €1 = €9 is undecidable.
e But for conjunctive queries, even e1 C e5 is decidable.

e Main goal of optimizing conjunctive queries: reduce the number of joins.
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Optimization of conjunctive queries: an example

e Given a relation R with two attributes A, B

e Two SQL queries:

Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

e Are they equivalent?
e |f they are, we saved one join operation.

e In relational algebra:

Q1 = m2,1(02=3(R X R))
Q2 = 75,1(02=4n4=5(R X R X R))
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Optimization of conjunctive queries cont’d

e Are ()1 and ()2 equivalent?

e If they are, we cannot show it by using equivalences for relational algebra

expression.

e Because: they don’'t decrease the number of X or X operators, but ()1 has 1

join, and ()9 has 2.
e But ()1 and ()2 are equivalent. How can we show this?

e But representing queries as databases. This representation is very close to

rule-based queries.

Q1($,y) = R(y,x),R(x,z)
Q2(z,y) - R(y,z), R(w,x), R(x,u)

Query Processing and Optimization
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Conjunctive queries into tableaux

e Tableau: representation of a conjunctive query as a database

e We first consider queries over a single relation
Ql(x7y) = R(y,a:),R(az,z)
Q2(x7y) = R(y,x),R(w,x),R(x,u)

e Tableaux:
A B A B
y X y X
X Zz W X
X 'y <«—answerline X U

X 'y <—answerline

e Variables in the answer line are called distinguished

Query Processing and Optimization
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Tableau homomorphisms

e A homomorphism of two tableaux f : I — I5 is a mapping

f : {variables of T } — {variables of 75} | J {constants}
e For every distinguished z, f(x) = x
e Foreveryrow x1,...,xgin 11, f(x1),..., f(xx)is arow of Th
Defn. Query containment: Q C Q' if Q(I) C Q'(I) for every database instance 1.

Homomorphism Theorem: Let (0, Q' be two conjunctive queries, and 1", T” their

tableaux. Then

() C Q' < there exists a homomorphism f : T/ — T
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Applying the Homomorphism Theorem: (), = ()

A B A B
y Ay X f(x)=x, f(y)=y
f(u)=z, f(w)=y

X y Hence Q1 < Q2

X y
T1 T2
A B A B
. . f(x)=x, f(y)=y
X w X
__—

« y X— u Hence Q2¢— QI

X y
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Applying the Homomorphism Theorem: Complexity

e Given two conjunctive queries, how hard is it to test if ()1 = (J2?

® it is easy to transform them into tableaux, from either SPJ relational algebra

queries, or SQL queries, or rule-based queries.

e However, a polynomial algorithm for deciding “equivalence” is unlikely to exist:

Theorem. Given two tableaux, deciding the existence of a homomorphism

between them is NP-complete.

® |n practice, query expressions are small, and thus conjunctive query optimization

is nonetheless feasible in polynomial time
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Minimizing Conjunctive Queries

e Goal: Given a conjunctive query (), find an equivalent conjunctive query )’ with

the minimum number of joins.

e Assume () is

Q(Z) - Ri(ur),..., Rg(ug)

e Assume that there is an equivalent conjunctive query (0’ of the form
Q(Z) = S1(t1),...,Si(7), [ < k.
e Then () is equivalent to a query of the form
Q'(¥) = Ry (Uy),..., R (i)

e |n other words, to minimize a conjunctive query, one has to delete some

subqueries on the right of :—
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Minimizing conjunctive queries cont'd

e Given a conjunctive query (), transform it into a tableau 1.

e Let Q' be a minimal conjunctive query equivalent to (). Then its tableau 71" is a
subset of 1T".

e Minimization algorithm:
T :=1T:;
repeat until no change
choose arow tinT";
if there is a homomorphism f : T/ — T" \ {t}
then T’ :=T"\ {t}
end.

e Note: If a homomorphism 1" — T" \ {t} exists, then T", T" \ {t} define

equivalent queries, as a homomorphism from T \ {t} to T” exists. (Why?)

Query Processing and Optimization

16



Foundations of Databases 17

Minimizing SPJ/conjunctive queries: example

e R with three attributes A, B, C

e SPJ query

Q = map(oB=4(R)) X mpc(rap(R) X mac(op=4(R)))
e T[ranslate into relational calculus:

(321 R(z,y,210) Ay = 4) A o (322 Rlwr,y,22)) A (Gy1 Rl n,2) Ays = 4) )
e Simplify, by substituting the constant, and putting quantifiers forward:
dr1, 21, 20 (R(x,4, 1) AN R(x1,4,29) N R(x1,4,2) Ny = 4)
e Conjunctive query:

Q(ma Y, Z) :—R(CE, 47 Zl)a R(wb 47 Z2)7 R(l’l, 47 Z)a Y = 4
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Minimizing SPJ/conjunctive queries cont’d

e Tableau 1"
A B C
r 4 2z
r1 4 29
r1 4 =z
x 4 =z

e Minimization, step 1: Is there a homomorphism from " to

A B C
r1 4 2z
r1 4 z
x 4 z

e Answer: No. For any homomorphism f, f(x) = x (why?), thus the image of the first

row is not in the small tableau.

Query Processing and Optimization

18



Foundations of Databases

Minimizing SPJ/conjunctive queries cont'd

A B C
. 4 2z
e Step 2: Is I' equivalent to
r1 4 z
r 4 z

e Answer: Yes. Homomorphism f: f(z2) = z, all other variables stay the same.

e The new tableau is not equivalent to

A B C A B C
r 4 z or r1 4 z
r 4 =z r 4 z

e Because f(x) = x, f(2) = z, and the image of one of the rows is not present.

Query Processing and Optimization



Foundations of Databases

Minimizing SPJ/conjunctive queries cont'd

e Minimal tableau:

A B C
r 4 z
r1 4 z
x 4 =z

e Back to conjunctive query:

Q/(x7y7 Z) — R(Qf,y, 21)7R<$1,y, Z),y =4

e An SPJ query:

op=4(map(R) X mpc(R))

e Pushing selections:

Query Processing and Optimization

7TAB(O'B:4(R)) X WBC(UBZZL(R))
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Review of the journey

e We started with
TaB(0B=4(R)) X mpc(maB(R) X mac(0B=4(R)))

e Translated into a conjunctive query
e Built a tableau and minimized it
e Translated back into conjunctive query and SPJ query

e Applied algebraic equivalences and obtained
TaAB(0B=4(R)) W mpc(0op=4(R))

® Savings: one join.
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All minimizations are equivalent

e Let () be a conjunctive query, and ()1, ()2 two conjunctive queries equivalent to

Q

e Assume that ()1 and (J2 are both minimal, and let 7% and 75 be their tableaux.

e Then I} and I5 are isomorphic; that is, 15 can be obtained from 17 by

renaming of variables.
e That is, all minimizations are equivalent.

e |n particular, in the minimization algorithm, the order in which rows are

considered, is irrelevant.
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Equivalence of conjunctive queries: multiple relations

e So far we assumed that there is only one relation R, but what if there are many?

e Construct tableaux as before:

Q(CE, y)Z—B(ZC, y)? R(:% Z), R(yv w)? R(w7 y)

e Tableau:
A B
A B Z
B R: d
X Yy y W
w Yy
X y

e Formally, a tableau is just a database where variables can appear in tuples, plus
a set of distinguished variables.
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Tableaux and multiple relations

e Given two tableaux 77 and T5 over the same set of relations, and the same

distinguished variables, a homomorphism f : Iy — 15 is a mapping
f : {variables of T} — {variables of T5}

such that
- f(x) = x for every distinguished variable, and

-foreach row £in Rin Ty, f(t) isin Rin T.

e Homomorphism theorem: let ()1 and ()2 be conjunctive queries, and 17, 15

their tableaux. Then

Q2 C ()1 < there exists a homomorphism f : T — 15
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Minimization with multiple relations

e The algorithm is the same as before, but one has to try rows in different
relations. Consider homomorphism f(z) = w, and f is the identity for other

variables. Applying this to the tableau for () yields

A B
A B
B Ry w
X Yy
woy
X y

e This can't be further reduced, as for any homomorphism f, f(z) ==,
fly)=y.

e Thus () is equivalent to
Q'(z,y) = B(z,y), R(y,w), R(w,y)

e One join is eliminated.

Query Processing and Optimization
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Conjunctive Queries with Equalities and Inequalities

e Equality / Inequality atoms x = y, x = a, x #* z, efc

e Let 1], I5 be the tableaux of the parts of conjunctive queries (1 and ()9 with

ordinary relations

e ()2 C () if there exists a homomorphism f : T — I5 such that for each
(inyequality atom t10to in Q1, f(t1)0f(t2) is logically implied by the equality

and inequality atoms in (02
e The converse does not hold in general
e |t holds under certain conditions, though
Note: Deciding whether a set of equality / inequality atoms A logically implies an

equality / inequality atom is easy.
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Query optimization and integrity constraints

e Additional equivalences can be inferred if integrity constraints are known
e Example: Let R have attributes A, B, C'. Assume that R satisfies A — B.

e Then it holds that
R = WAB(R) X WAC(R)

e Tableaux can help with these optimizations!

o Top(R) X mac(R) as a conjunctive query:

Q(ZC, Y, Z)Z—R(ZC, Y, Zl)a R(Qf, Yi, Z)
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Query optimization and integrity constraints cont’d

A B C
e Tableau: oy oA
r Y Z
x Yy oz

e Usingthe FD A — Binfer y = 14

A B C A B C
e Next, minimize the resulting tableau: A - Yy Zz

r Yy =z

r Yz r Yy =z

e And this says that the query is equivalent to Q'(x, y, z)—R(z, y, z), that is, R.

Query Processing and Optimization
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Query optimization and integrity constraints cont’d

e General idea: simplify the tableau using functional dependencies and then
minimize.
e Given: a conjunctive query (), and a set of FDs F’
e Algorithm:
Step 1. Compute the tableau 1" for ().
Step 2. Apply algorithm CHASE(T', F').
Step 3. Minimize output of CHASE(T', F).

Step 4. Construct a query from the tableau produced in Step 3.

Query Processing and Optimization
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The CHASE

Assume that all FDs are of the form X — A, where A is an attribute.

foreach X — Ain F do
for each t1, % in T suchthatt1.X = t5.X and t1.A # t5.A do
case t1.A, t5. A of
both nondistinguished =
replace one by the other
one distinguished, one nondistinguished =
replace nondistinguished by distinguished
one constant, one variable =
replace variable by constant
both constants =
output () and STOP
end

end.
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Query optimization and integrity constraints: example

e Risover A, B,C; FcontansB — A
o ()= 7TBC’<0'A:4(R)) X WAB(R)

e () as a conjunctive query:

Q(:Ea Y, Z) - R<47 Y, Z)) R<$7 Y, Zl)

e Tableau:
A B C A B C
A B C
4 Y < CHASE 4 Yy < minimize
x Yy 2 4 vy =
4 vy =z
x Yy =z 4 vy =z
e Final result: Q(x,y, 2) — R(x,y, 2),x = 4, thatis, 0 o—4(R).
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Query optimization and integrity constraints: example |

e Same R and F’; the query is:
Q = 7mpc(oa=4(R)) X map(oa=5(R))
e As a conjunctive query:

Q(xayaz) = R(4,y72),R(ZE,y,Zl),I =9

A B C

e Tableau: 1y oz CHASE )
5 Yy 1
5 Yy =z

e Final result: ()

e This equivalence is not true withoutthe FD B — A

Query Processing and Optimization
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Query optimization and integrity constraints: example

e Sometimes simplifications are quite dramatic

e Same R, FDis A — B, the query is
Q = 7a(R) X ma(op=4(R)) X map(mac(R) X 7pc(R))

e Convert into conjunctive query:

Q(xa y) o R(CU, Y, 21)7 R(CU, Yi, Z)a R(Zlfl, Y, Z)a R(CE‘, 47 22)

Query Processing and Optimization
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e Tableau:

T Y1 Z

rx1 Yy Z
r 4 2o
L Yy

Query Processing and Optimization

CHASE
H

A B C
r 4
r 4 z
r1 4 z
r 4 2z
r 4

minimize
—

A B C
xr 4 z
r 4
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Query optimization and integrity constraints: example cont'd

A B C

r 4 z istranslatedinto  Q(z,y) - R(x,y,2),y =4

r 4

or, equivalently w4 g (0 p=4(R)).

Thus,

TAB(R) X ma(0p=4(R)) X map(mac(R) X wpc(R)) = map(op=4(R))
in the presence of FD A — B.

Savings: 3 joins!

This cannot be derived by algebraic manipulations, nor conjunctive query

minimization without using CHASE.

Query Processing and Optimization
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