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Query Processing and Optimization

• Query optimization: finding a good way to evaluate a query

• Queries are declarative, and can be translated into procedural languages in

more than one way

• Hence one has to choose the best (or at least good) procedural query

• This happens in the context of query processing

• A query processor turns queries and updates into sequences of operations on

the database
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Query processing and optimization stages

• Which relational algebra expression, equivalent to a given declarative query, will

lead to the most efficient algorithm?

• For each algebraic operator, what algorithm do we use to compute that operator?

• How do operations pass data (main memory buffer, disk buffer)?

Issues:

• Finding equivalent relational algebra expressions (“query plans”)

• Assessing efficiency of their evaluation: We need to know how data is stored,

and how it is accessed, etc.

Use general guidelines and statistics information
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Overview of query processing

• Start with a declarative query:

SELECT R.A, S.B, T.E

FROM R,S,T

WHERE R.C=S.C AND S.D=T.D AND R.A>5 AND S.B<3 AND T.D=T.E

• Translate into an algebra expression:

πR.A,S.B,T.E(σR.A>5∧S.B<3∧T.D=T.E(R 1 S 1 T ))

• Optimization step: rewrite to an equivalent but more efficient expression:

πR.A,S.B,T.E(σA>5(R) 1 σB<3(S) 1 σD=E(T )))

• Why is it more efficient?

Because selections are evaluated early, and joined relations are not as large as R, S, T .
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Overview of query processing cont’d

• Evaluating the optimized expression. Choices to make: order of joins.

• First query plan (out of two):

R S T

A>5 B<3 D=E

A,B

first join S and T , and then join the result with R.
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• Alternative query plan:

R S T

A>5 B<3 D=E

A,B

It first joins S, T , and then joins the result with R.

• Both query plans produce the same result.

• How to choose one?
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Optimization by algebraic manipulations

• Given a relational algebra expression e, find another expression e′ equivalent to

e that is easier (faster) to evaluate.

• Basic question: Given two relational algebra expressions e1, e2, are they

equivalent?

• This is the same as asking if an expression e always produces the empty

answer:

e1 = e2 ⇔ e1 − e2 = ∅ and e2 − e1 = ∅

• Problem: testing e = ∅ is undecidable for relational algebra expressions.

• Good news:

We can still list some useful equalities, and

It is decidable for very important classes of queries (SPJ queries)
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Optimization by Algebraic Equivalences

Systematic way of query optimization: Apply equivalences

• 1 and× are commutative and associative, hence applicable in any order

• Cascaded projections might simplified: If the attributes A1, . . . , An are among

B1, . . . , Bm, then

πA1,...,An
(πB1,...,Bm

(E)) = πA1,...,An
(E)

• Cascaded selections might be merged:

σc1
(σc2

(E)) = σc1∧c2
(E)

• Commuting selection with join. If c only involves attributes from E1, then

σc(E1 1 E2) = σc(E1) 1 E2

• etc

We will not treat this here.
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Optimization of conjunctive queries

• Reminder:

conjunctive queries

= SPJR queries

= simple SELECT-FROM-WHERE SQL queries

(only AND and (in)equality in the WHERE clause)

• Extremely common, and thus special optimization techniques have been

developed

• Reminder: for two relational algebra expressions e1, e2, e1 = e2 is undecidable.

• But for conjunctive queries, even e1 ⊆ e2 is decidable.

• Main goal of optimizing conjunctive queries: reduce the number of joins.
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Optimization of conjunctive queries: an example

• Given a relation R with two attributes A, B

• Two SQL queries:

Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

• Are they equivalent?

• If they are, we saved one join operation.

• In relational algebra:

Q1 = π2,1(σ2=3(R×R))

Q2 = π5,1(σ2=4∧4=5(R×R×R))
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Optimization of conjunctive queries cont’d

• Are Q1 and Q2 equivalent?

• If they are, we cannot show it by using equivalences for relational algebra

expression.

• Because: they don’t decrease the number of 1 or× operators, but Q1 has 1

join, and Q2 has 2.

• But Q1 and Q2 are equivalent. How can we show this?

• But representing queries as databases. This representation is very close to

rule-based queries.

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)
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Conjunctive queries into tableaux

• Tableau: representation of a conjunctive query as a database

• We first consider queries over a single relation

Q1(x, y) :– R(y, x), R(x, z)

Q2(x, y) :– R(y, x), R(w, x), R(x, u)

• Tableaux:

A B

y x

x z

x y ← answer line

A B

y x

w x

x u

x y ← answer line

• Variables in the answer line are called distinguished
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Tableau homomorphisms

• A homomorphism of two tableaux f : T1 → T2 is a mapping

f : {variables of T1} → {variables of T2}
⋃
{constants}

• For every distinguished x, f(x) = x

• For every row x1, . . . , xk in T1, f(x1), . . . , f(xk) is a row of T2

Defn. Query containment: Q ⊆ Q′ if Q(I) ⊆ Q′(I) for every database instance I.

Homomorphism Theorem: Let Q, Q′ be two conjunctive queries, and T, T ′ their

tableaux. Then

Q ⊆ Q′ ⇔ there exists a homomorphism f : T ′ → T
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Applying the Homomorphism Theorem: Q1 = Q2

A      B

y        x

x        z

x        y

A      B

y        x

w       x

x       u

T1 T2

x       y

A      B

y        x

x        z

x        y

A      B

y        x

w       x

x       u

T1 T2

x       y

f(x)=x, f(y)=y

f(u)=z, f(w)=y

Hence Q1 Q2

f(x)=x, f(y)=y

f(z)=u

Hence  Q2          Q1
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Applying the Homomorphism Theorem: Complexity

• Given two conjunctive queries, how hard is it to test if Q1 = Q2?

• it is easy to transform them into tableaux, from either SPJ relational algebra

queries, or SQL queries, or rule-based queries.

• However, a polynomial algorithm for deciding “equivalence” is unlikely to exist:

Theorem. Given two tableaux, deciding the existence of a homomorphism

between them is NP-complete.

• In practice, query expressions are small, and thus conjunctive query optimization

is nonetheless feasible in polynomial time
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Minimizing Conjunctive Queries

• Goal: Given a conjunctive query Q, find an equivalent conjunctive query Q′ with

the minimum number of joins.

• Assume Q is

Q(~x) :– R1(~u1), . . . , Rk(~uk)

• Assume that there is an equivalent conjunctive query Q′ of the form

Q′(~x) :– S1(~v1), . . . , Sl(~vl), l < k.

• Then Q is equivalent to a query of the form

Q′(~x) :– Ri1(~ui1), . . . , Rl
(~uil)

• In other words, to minimize a conjunctive query, one has to delete some

subqueries on the right of :–
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Minimizing conjunctive queries cont’d

• Given a conjunctive query Q, transform it into a tableau T .

• Let Q′ be a minimal conjunctive query equivalent to Q. Then its tableau T ′ is a

subset of T .

• Minimization algorithm:

T ′ := T ;

repeat until no change

choose a row t in T ′;

if there is a homomorphism f : T ′ → T ′ \ {t}

then T ′ := T ′ \ {t}

end.

• Note: If a homomorphism T ′ → T ′ \ {t} exists, then T ′, T ′ \ {t} define

equivalent queries, as a homomorphism from T ′ \ {t} to T ′ exists. (Why?)
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Minimizing SPJ/conjunctive queries: example

• R with three attributes A, B, C

• SPJ query

Q = πAB(σB=4(R)) 1 πBC(πAB(R) 1 πAC(σB=4(R)))

• Translate into relational calculus:
`

∃z1 R(x, y, z1)∧y = 4
´

∧ ∃x1

“

`

∃z2 R(x1, y, z2)
´

∧
`

∃y1 R(x1, y1, z)∧y1 = 4
´

”

• Simplify, by substituting the constant, and putting quantifiers forward:

∃x1, z1, z2 (R(x, 4, z1) ∧R(x1, 4, z2) ∧R(x1, 4, z) ∧ y = 4)

• Conjunctive query:

Q(x, y, z) :–R(x, 4, z1), R(x1, 4, z2), R(x1, 4, z), y = 4
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Minimizing SPJ/conjunctive queries cont’d

• Tableau T :

A B C

x 4 z1

x1 4 z2

x1 4 z

x 4 z

• Minimization, step 1: Is there a homomorphism from T to

A B C

x1 4 z2

x1 4 z

x 4 z

• Answer: No. For any homomorphism f , f(x) = x (why?), thus the image of the first

row is not in the small tableau.
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Minimizing SPJ/conjunctive queries cont’d

• Step 2: Is T equivalent to

A B C

x 4 z1

x1 4 z

x 4 z

• Answer: Yes. Homomorphism f : f(z2) = z, all other variables stay the same.

• The new tableau is not equivalent to

A B C

x 4 z1

x 4 z

or

A B C

x1 4 z

x 4 z

• Because f(x) = x, f(z) = z, and the image of one of the rows is not present.
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Minimizing SPJ/conjunctive queries cont’d

• Minimal tableau:

A B C

x 4 z1

x1 4 z

x 4 z

• Back to conjunctive query:

Q′(x, y, z) :– R(x, y, z1), R(x1, y, z), y = 4

• An SPJ query:

σB=4(πAB(R) 1 πBC(R))

• Pushing selections:

πAB(σB=4(R)) 1 πBC(σB=4(R))
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Review of the journey

• We started with

πAB(σB=4(R)) 1 πBC(πAB(R) 1 πAC(σB=4(R)))

• Translated into a conjunctive query

• Built a tableau and minimized it

• Translated back into conjunctive query and SPJ query

• Applied algebraic equivalences and obtained

πAB(σB=4(R)) 1 πBC(σB=4(R))

• Savings: one join.
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All minimizations are equivalent

• Let Q be a conjunctive query, and Q1, Q2 two conjunctive queries equivalent to

Q

• Assume that Q1 and Q2 are both minimal, and let T1 and T2 be their tableaux.

• Then T1 and T2 are isomorphic; that is, T2 can be obtained from T1 by

renaming of variables.

• That is, all minimizations are equivalent.

• In particular, in the minimization algorithm, the order in which rows are

considered, is irrelevant.
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Equivalence of conjunctive queries: multiple relations

• So far we assumed that there is only one relation R, but what if there are many?

• Construct tableaux as before:

Q(x, y):–B(x, y), R(y, z), R(y, w), R(w, y)

• Tableau:

B:
A B

x y
R:

A B

y z

y w

w y

x y

• Formally, a tableau is just a database where variables can appear in tuples, plus

a set of distinguished variables.
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Tableaux and multiple relations

• Given two tableaux T1 and T2 over the same set of relations, and the same

distinguished variables, a homomorphism f : T1 → T2 is a mapping

f : {variables of T1} → {variables of T2}

such that

- f(x) = x for every distinguished variable, and

- for each row ~t in R in T1, f(~t) is in R in T2.

• Homomorphism theorem: let Q1 and Q2 be conjunctive queries, and T1, T2

their tableaux. Then

Q2 ⊆ Q1⇔ there exists a homomorphism f : T1 → T2
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Minimization with multiple relations

• The algorithm is the same as before, but one has to try rows in different

relations. Consider homomorphism f(z) = w, and f is the identity for other

variables. Applying this to the tableau for Q yields

B:
A B

x y
R:

A B

y w

w y

x y

• This can’t be further reduced, as for any homomorphism f , f(x) =x,

f(y) = y.

• Thus Q is equivalent to

Q′(x, y) :– B(x, y), R(y, w), R(w, y)

• One join is eliminated.
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Conjunctive Queries with Equalities and Inequalities

• Equality / Inequality atoms x = y, x = a, x 6= z, etc

• Let T1, T2 be the tableaux of the parts of conjunctive queries Q1 and Q2 with

ordinary relations

• Q2 ⊆ Q1 if there exists a homomorphism f : T1 → T2 such that for each

(in)equality atom t1θt2 in Q1, f(t1)θf(t2) is logically implied by the equality

and inequality atoms in Q2

• The converse does not hold in general

• It holds under certain conditions, though

Note: Deciding whether a set of equality / inequality atoms A logically implies an

equality / inequality atom is easy.
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Query optimization and integrity constraints

• Additional equivalences can be inferred if integrity constraints are known

• Example: Let R have attributes A, B, C . Assume that R satisfies A→ B.

• Then it holds that

R = πAB(R) 1 πAC(R)

• Tableaux can help with these optimizations!

• πAB(R) 1 πAC(R) as a conjunctive query:

Q(x, y, z):–R(x, y, z1), R(x, y1, z)
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Query optimization and integrity constraints cont’d

• Tableau:

A B C

x y z1

x y1 z

x y z

• Using the FD A→ B infer y = y1

• Next, minimize the resulting tableau:

A B C

x y z1

x y z

x y z

→

A B C

x y z

x y z

• And this says that the query is equivalent to Q′(x, y, z):–R(x, y, z), that is, R.
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Query optimization and integrity constraints cont’d

• General idea: simplify the tableau using functional dependencies and then

minimize.

• Given: a conjunctive query Q, and a set of FDs F

• Algorithm:

Step 1. Compute the tableau T for Q.

Step 2. Apply algorithm CHASE(T, F ).

Step 3. Minimize output of CHASE(T, F ).

Step 4. Construct a query from the tableau produced in Step 3.
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The CHASE

Assume that all FDs are of the form X → A, where A is an attribute.

for each X → A in F do

for each t1, t2 in T such that t1.X = t2.X and t1.A 6= t2.A do

case t1.A, t2.A of

both nondistinguished⇒

replace one by the other

one distinguished, one nondistinguished⇒

replace nondistinguished by distinguished

one constant, one variable⇒

replace variable by constant

both constants⇒

output ∅ and STOP

end

end.
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Query optimization and integrity constraints: example

• R is over A, B, C ; F contains B → A

• Q = πBC(σA=4(R)) 1 πAB(R)

• Q as a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1)

• Tableau:

A B C

4 y z

x y z1

x y z

CHASE
→

A B C

4 y z

4 y z1

4 y z

minimize
→

A B C

4 y z

4 y z

• Final result: Q(x, y, z) :– R(x, y, z), x = 4, that is, σA=4(R).
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Query optimization and integrity constraints: example

• Same R and F ; the query is:

Q = πBC(σA=4(R)) 1 πAB(σA=5(R))

• As a conjunctive query:

Q(x, y, z) :– R(4, y, z), R(x, y, z1), x = 5

• Tableau:

A B C

4 y z

5 y z1

5 y z

CHASE
→ ∅

• Final result: ∅

• This equivalence is not true without the FD B → A
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Query optimization and integrity constraints: example

• Sometimes simplifications are quite dramatic

• Same R, FD is A→ B, the query is

Q = πAB(R) 1 πA(σB=4(R)) 1 πAB(πAC(R) 1 πBC(R))

• Convert into conjunctive query:

Q(x, y) :– R(x, y, z1), R(x, y1, z), R(x1, y, z), R(x, 4, z2)
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• Tableau:

A B C

x y z1

x y1 z

x1 y z

x 4 z2

x y

CHASE
→

A B C

x 4 z1

x 4 z

x1 4 z

x 4 z2

x 4

minimize
→

A B C

x 4 z

x 4
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Query optimization and integrity constraints: example cont’d

•

A B C

x 4 z

x 4

is translated into Q(x, y) :– R(x, y, z), y = 4

• or, equivalently πAB(σB=4(R)).

• Thus,

πAB(R) 1 πA(σB=4(R)) 1 πAB(πAC(R) 1 πBC(R)) = πAB(σB=4(R))

in the presence of FD A→ B.

• Savings: 3 joins!

• This cannot be derived by algebraic manipulations, nor conjunctive query

minimization without using CHASE.
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