
Foundations of Databases

Relational Query Languages

Free University of Bozen – Bolzano, 2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

Foundations of Databases 1

Databases

• collection of highly structured data

• along with a set of access and control mechanisms

We deal with them every day:

• airline reservation systems,

• personnel directories,

• store inventories,

• bank account information, etc etc

Relational Query Languages

Foundations of Databases 2

Goals of a Database System

• Provide users with a meaningful view of data:

Hide from them irrelevant detail → abstract view of data

• Support various operations on data

queries: getting answers from databases

updates: changing information in databases

• Control data

concurrency control

Relational Query Languages

Foundations of Databases 3

The Relational Data Model

• Data is organized in relations (tables)

• Relational database schema:

set of table names

list of attributes for each table

• Tables are specified as: <table name>:<list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Attributes within a table have different names

• Tables have different names

Relational Query Languages

Foundations of Databases 4

Example: relational database

Movie title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

Schedule theater title

Le Champo Shining

Le Champo Chinatown

Le Champo Player

Odéon Chinatown

Odéon Repulsion

Relational Query Languages

Foundations of Databases 5

Formal Definitions

• att . . . countably infinite set of attributes

Assumption: total ordering ≤att on att

• dom . . . countably infinite set called domain

Elements of dom are called constants

• relname . . . countably infinite set of relation names

dom, att and relname are disjoint.

• Function sort : relname → Pfin(att) associates with each relation name R a

finite set of attributes sort(R).

Proviso: sort−1(U) is infinite, for each U ∈ Pfin(att).

• arity(R) = |sort(R)| is the number of attributes

• Notation: Often R[U] where U = sort(R), or

R : A1, . . . , An if sort(R) = {A1, . . . , An} and A1 ≤att · · · ≤att An.

Relational Query Languages

Foundations of Databases 6

Example: sort(Account) = { number, branch, customerId }

denoted Account: number, branch, customerId

• A relation schema is a relation name R

• A database schema R is a nonempty finite set of relation schemas.

Example: Database schema C = { Account, Movie, Schedule }

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

Relational Query Languages

Foundations of Databases 7

Tuples

• A tuple is a function

t : U → dom

mapping a finite set U ⊆ att to constants.

Example: Tuple t on sort(Movie) such that

t(title) = Shining

t(director) = Kubrick

t(actor) = Nicholson

• U = ∅: Empty tuple, denoted 〈 〉.

• Notation:

〈title : Shining, director : Kubrick, actor : Nicholson〉

t[V] . . . restriction of t to V ⊆ U

Relational Query Languages

Foundations of Databases 8

Unnamed Perspective

• Other view: Ignore names of attributes, only arity of relations is available

• View a tuple as element of a Cartesian product of dom.

• A tuple t of arity n ≥ 0 is an element of dom
n.

Example: tuple t = 〈Shining, Kubrick, Nicholson〉

• Access components via position i ∈ {1, . . . , n}:

t(2) = Kubrick

• Note: Because of ≤att, unnamed and named perspective naturally correspond

Relational Query Languages

Foundations of Databases 9

Relation and Database Instances

• A relation or relation instance of a relation schema R[U] is a finite set of tuples

on U .

• A database instance of database schema R is a mapping I which assigns each

R ∈ R a relation instance.

• Other perspectives: Logic programming, first-order logic

Relational Query Languages

Foundations of Databases 10

Logic programming perspective

• A fact over relation R with arity n is an expression R(a1, . . . , an), where

a1, . . . , an ∈ dom.

• A relation (instance) is a finite set of facts over R

• A database instance I of R is the union of relation instances for each R ∈ R

Example:

I = { Movie(Shining,Kubrick,Nicholson), Movie(Player,Altman,Robbins),

Movie(Chinatown,Polanski,Nicholson),

Movie(Chinatown,Polanski,Polanski),

Movie(Repulsion,Polanski,Deneuve), Schedule(Le Champo,Shining),

Schedule(Le Champo,Chinatown), Schedule(Le Champo,Player),

Schedule(Odeon,Chinatown), Schedule(Odeon,Repulsion) }

Relational Query Languages

Foundations of Databases 11

First-order logic

• Reconstruct a database instance I as extended relational theory ΣI:

– Atoms Ri(~a) for each ~a ∈ I(Ri)

– Extension Axioms ∀~x(Ri(~x) ↔ ~x = ~a1 ∨ · · · ∨ ~x = ~am), where ~a1, . . .~am, are

all elements of Ri in I, and ’=’ ranges over tuples of same arity.

– Unique Name axioms: ¬(ci = cj) for each pair of distinct constants occurring in I.

– Domain closure axiom: ∀x(x = c1 ∨ · · · ∨ x = cn) where c1, . . . , cn is a listing of

all constants occurring in I.

• if ’=’ is not available, its intended meaning can be emulated with equality axioms.

• The interpretations of dom, R satisfying ΣI are isomorphic to I

• A set of sentences Γ is satisfied by I iff ΣI ∪ Γ is satisfiable

Other view: database instance I as finite relational structure (finite universe of discourse;

considered later)

Relational Query Languages

Foundations of Databases 12

Database Queries: Examples

• Find titles of current movies:

answer title

Shining

Player

Chinatown

Repulsion

• Find theaters showing movies directed by Polanski:

answer theater

Le Champo

Odéon

Relational Query Languages

Foundations of Databases 13

• Find theaters showing movies featuring Nicholson:

answer theater

Le Champo

Odéon

• Find all directors who acted themselves:

answer director

Polanski

• Find directors whose movies are playing in all theaters:

answer director

Polanski

• Find theaters that only show movies featuring Nicholson:

answer theater

but if Le Champo stops showing ’Player’, the answer contains ’Le Champo’.

Relational Query Languages

Foundations of Databases 14

How to ask a query?

• Query languages

Commercial: SQL

Theoretical: Relational Algebra, Relational calculus, datalog etc

• Query results: Tables constructed from tables in the database

Relational Query Languages

Foundations of Databases 15

Declarative vs Procedural

• In our queries, we ask what we want to see in the output.

• But we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed in the

output, but do not say how to get it.

• Database system figures out how to get the result, and gives it to the user.

• Database system operates internally with different, procedural languages,

which specify how to get the result.

Relational Query Languages

Foundations of Databases 16

Declarative vs Procedural: example

Declarative:

{ title | (title, director, actor) ∈ movie }

Procedural:

for each tuple T=(t,d,a) in relation movies do

output t

end

Relational Query Languages

Foundations of Databases 17

Declarative vs Procedural

• Theoretical languages:

Declarative: relational calculus, rule-based queries

Procedural: relational algebra

• Practical languages: mix of both, but mostly one uses declarative features. (E.g.,

SQL / Embedded SQL)

Relational Query Languages

Foundations of Databases 18

Conjunctive Queries

• Simple form of declarative, rule-base queries

• A rule says when certain elements belong to the answer.

• Find titles of current movies:

answer(tl) :– movie(tl, dir, act)

• That is, while (tl, dir, act) ranges over relation movies, output tl (the title attribute)

Relational Query Languages

Foundations of Databases 19

Next example

• Find theaters showing movies directed by Polanski:

answer(th) :– movie(tl, ’Polanski’, act), schedule(th, tl)

• While (tl, dir, act) range over tuples in movie, check if dir is ’Polanski’; if not, go to

the next tuple, if yes, look at all tuples (th, tl) in schedule corresponding to the

title tl in relation movie, and output th.

• Queries like this and the previous one are called conjunctive queries;

Relational Query Languages

Foundations of Databases 20

Next example

• Find theaters showing movies featuring Nicholson.

• Very similar to the previous example:

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th, tl)

• While (tl, dir, act) range over tuples in movie, check if act is ’Nicholson’; if not, go

to the next tuple, if yes, look at all tuples (th, tl) corresponding to the title tl in

relation movie, and output th.

This is the most common type of queries one asks.

Relational Query Languages

Foundations of Databases 21

• Find directors who acted in their own movies:

answer(dir) :– movie(tl, dir, act), dir=act

• While (tl, dir, act) ranges over tuples in movie, check if dir is the same as act, and

output it if that is the case.

Relational Query Languages

Foundations of Databases 22

Formal Definition

A rule-based conjunctive query with (in)equality q is an expression of form

answer(~x) :– R1(~x1), . . . , Rn(~xn), (1)

where n ≥ 0 and

• ’answer’ is a relation name not in R ∪{=, 6= }

• R1, . . . , Rn are relation names from R ∪{=, 6= }

• ~x is a tuple of distinct variables with length = arity(answer)

• ~x1, . . . , ~xn are tuples of variables and constants of suitable length

• Each variable must occur in some atom Ri(~xi) where Ri ∈ R

Note: Equality ’=’ can be often eliminated

Relational Query Languages

Foundations of Databases 23

Semantics

The result (aka image) of a conjunctive query q of form (1) on database instance I is

q(I) = {ν(~x) | ν is a valuation over var(q), ν(~xi) ∈ I(Ri), 1 ≤ i ≤ n}

where a valuation ν over var(q) is a mapping

ν : var(q) ∪ dom → dom

which is the identity on dom.

Example: q: answer(dir) :– movie(tl, dir, act), dir=act

For I from above, we obtain

q(I) = { 〈Polanski〉 }

Relational Query Languages

Foundations of Databases 24

Elementary properties of Conjunctive Queries

Proposition. Let q be a conjunctive query of form (1)

• q(I) is finite, for any database instance I.

• q is monotonic, ie., I ⊆ J implies q(I) ⊆ q(J), for every database instances I

and J

• q is satisfiable, ie., there exists some I such that q(I) 6= ∅, provided that ’=’, ’ 6=’

does not occur in q.

Relational Query Languages

Foundations of Databases 25

A more complicated example

• Find directors whose movies are playing in all theaters.

• “All” is often problematic: one needs universal quantifier ∀.

• We use notation from mathematical logic:

• { dir | ∀ (th, tl) ∈ schedule

∃ (tl’, act): (tl’,dir,act) ∈ movie ∧ (th, tl’) ∈ schedule }

• That is, to see if director dir is in the answer, for each theater name th, check that

there exists a tuple (tl’, dir, act) in movie, and a tuple (th, tl’) in schedule

Reminder:

• ∀ means “for all”, ∃ means “exists”

• ∧ is conjunction (logical AND)

Can we formulate this as a conjunctive query ?

Relational Query Languages

Foundations of Databases 26

SQL

• Structured Query Language (declarative)

• Latest standard: SQL-99, or SQL3, well over 1,000 pages

• ”The nice thing about standards is that you have so many to choose from.”

– Andrew S. Tanenbaum.

• De-facto standard of the relational DB world – replaced all other languages.

Query structure: SELECT attribute list 〈Ri.Aj〉

FROM R1, . . . , Rn

WHERE condition c

Simple c: a conjunction of equalities/inequalities

Relational Query Languages

Foundations of Databases 27

SQL examples

• Find theaters showing movies directed by Polanski:

SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title

AND Movie.Director=’Polanski’

• list directors and theaters in which their movies are playing

SELECT Movie.Director, Schedule.Theater

FROM Movie, Schedule

WHERE Movie.Title = Schedule.Title

Relational Query Languages

Foundations of Databases 28

Relational Algebra

• We start with a subset of relational algebra that suffices to capture queries

defined by simple rules, and by SQL SELECT-FROM-WHERE statements.

• The subset has three operations:

Projection π

Selection σ

Cartesian Product ×

• This fragment of Relational Algebra is called SPC Algebra

• Sometimes we also use renaming ρ of attributes.

Relational Query Languages

Foundations of Databases 29

Projection

• Chooses some attributes in a relation

• πA1,...,An
(R): only leaves attributes A1, . . . , An in relation R.

• Example:

πtitle,director




title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve




=

title director

Shining Kubrick

Player Altman

Chinatown Polanski

Repulsion Polanski

• Provides the user with a view of data by hiding some attributes

Relational Query Languages

Foundations of Databases 30

Selection

• Chooses tuples that satisfy some condition

• σc(R): only leaves tuples t for which c(t) is true

• Conditions: conjunctions of

R.A = R.A′ – two attributes are equal

R.A = constant – the value of an attribute is a given constant

Same as above but with 6= instead of =

• Examples:

Movie.Actor=Movie.Director

Movie.Actor 6= ’Nicholson’

Movie.Actor=Movie.Director ∧ Movie.Actor=’Nicholson’

• Provides the user with a view of data by hiding tuples that do not satisfy the

condition the user wants.

Relational Query Languages

Foundations of Databases 31

Selection: Example

σactor=director∧director=′Polanski′




title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve




=
title director actor

Chinatown Polanski Polanski

Relational Query Languages

Foundations of Databases 32

Cartesian Product

• Puts together two relations

• R1 × R2 puts together each tuple t1 of R1 and each tuple t2 of R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3 =

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3

• We renamed attributes to include the name of the relation: in the resulting table,

all attributes must have different names.

Relational Query Languages

Foundations of Databases 33

Cartesian Product: Example

Find theaters playing movies directed by Polanski

• answer(th) :– movie(tl,dir,act), schedule(th,tl), dir=’Polanski’

• Step 1: Let R1 = Movie × Schedule

• We don’t need all tuples, only those in which titles are the same, so:

• Step 2: Let R2 = σcond(R1) where cond is Movie.title = Schedule.title

• We are only interested in movies directed by Polanski, so

R3 = σdirector=′Polanski′(R2)

• In the output, we only want theaters, so finally

Answer = πtheater(R3)

Relational Query Languages

Foundations of Databases 34

• Summing up, the answer is

πtheater(σdirector=′Polanski′(σMovie.title=Schedule.title(Movie × Schedule)))

• Merging selections, this is equivalent to

πtheater(σdirector=′Polanski′∧Movie.title=Schedule.title(Movie × Schedule)))

Relational Query Languages

Foundations of Databases 35

Renaming

• Let R be a relation that has attribute A but does not have attribute B.

• ρB←A(R) is the same relation as R except that A is renamed to be B.

Example:

ρparent←father




father child

George Elizabeth

Philip Charles

Charles William




=




parent child

George Elizabeth

Philip Charles

Charles William




• Renaming ρA1,...,Am←B1,...,Bm , for distinct A1, . . . , Am resp. B1, . . . , Bm

can be defined from it.

• Prefixing the relation name to rename attributes is a convenient method used in

practice

Relational Query Languages

Foundations of Databases 36

• Not all problems are solved by this (e.g., Cartesian Product R × R)

Relational Query Languages

Foundations of Databases 37

Unnamed Perspective

• Renamings are for SPC immaterial, if we adopt the unnamed perspective.

• Example (again): Find theaters playing movies directed by Polanski:

Recall Movie: title, director, actor

Schedule: theater, title

π1(σ2=′Polanski′∧1=5(Movie × Schedule)))

• SPC Algebra is often identified with the unnamed setting

• For other fragments of Relational Algebra, named perspective is essential (to be

seen later)

• Mixed use of settings can be convenient

Relational Query Languages

Foundations of Databases 38

SQL and Relational Algebra

• We have to translate declarative languages into procedural languages

• Idea:

SELECT is projection π

FROM is Cartesian product ×

WHERE is selection σ

• A simple case: only one relation in FROM

SELECT A, B, · · ·

FROM R

WHERE condition c

is translated into

πA,B,···

(
σc

(
R

))

Relational Query Languages

Foundations of Databases 39

Translating declarative queries into relational algebra

• Find titles of all movies

• answer(tl) :– movie(tl,dir,act)

• SELECT Title

FROM Movie

• This is simply projection:

πtitle(Movie)

Relational Query Languages

Foundations of Databases 40

Translation Examples

• Find theaters showing movies directed by Polanski:

• SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title

AND Movie.Director=’Polanski’

• First, translate into a rule:

answer(th) :– schedule(th,tl), movie(tl,’Polanski’,act)

• Second, change into a rule such that:

constants appear only in conditions

no two variables are the same

• This gives us:

answer(th) :– schedule(th,tl), movie(tl’,dir,act), dir = ’Polanski’, tl=tl’

Relational Query Languages

Foundations of Databases 41

Translation Examples cont’d

answer(th) :– schedule(th,tl), movie(tl’,dir,act), dir = ’Polanski’, tl=tl’

Two relations =⇒ Cartesian product

Conditions =⇒ selection

Subset of attributes in the answer =⇒ projection

• Step 1: R1 = Schedule × Movie

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movie.title(R1)

• Step 3: We are only interested in Polanski’s movies:

R3 = σMovie.director=Polanski(R2)

• Step 4: we need only theaters in the output

answer = πschedule.theater(R3)

Relational Query Languages

Foundations of Databases 42

Translation Examples cont’d

Summing up, the answer is:

πschedule.theater(σMovie.director=Polanski(σSchedule.title=Movie.title(Schedule×Movie)))

or, using the rule σc1(σc2(R)) = σc1∧c2(R):

πschedule.theater(σMovie.director=Polanski ∧ Schedule.title=Movie.title(Schedule×Movie))

Relational Query Languages

Foundations of Databases 43

Formal translation: SQL to rule-based queries

SELECT attribute list 〈Ri.Aj〉

FROM R1, . . . , Rn

WHERE condition c

is translated into:

answer(〈Ri.Aj〉) :- R1(<attributes>),

. . . ,

Rn(<attributes>),

c

Relational Query Languages

Foundations of Databases 44

Rules into Relational Algebra

• How are rules translated into algebra?

answer(~x) :-R1(~x1), . . . , Rn(~xn) (2)

Wlog,

R1, . . . Rk ∈ R, k ≤ n, Rk+1, . . . , Rn ∈ {=, 6=};

Let Rk+1(~xk+1), . . ., Rn(~xn) =: conditions

• First, make sure that no variable occurs in R1(~x1), . . ., Rk(~xk), at most once:

If we have Ri(. . . , x, . . .) and Rj(. . . , x, . . .), turn them into Ri(. . . , x
′, . . .)

and Rj(. . . , x
′′, . . .), add x′ = x′′ to the conditions, and if x occurs

elsewhere, also x = x′

Relational Query Languages

Foundations of Databases 45

• For example,

answer(th,dir) :- movie(tl,dir,act), schedule(th,tl)

is rewritten to

answer(th,dir) :- movie(tl’,dir,act), schedule(th,tl”), tl’=tl”

• Replace each occurrence of a constant a in an atom Ri(..., a, ...), Ri ∈ R, by

some variable X and add X = a to the conditions

• Rewritten such rules of form (2) are translated into

πb~x
(σ ̂conditions

(R1 × . . . × Rn))

where α̂ maps each variable x in α to the corresponding attribute in sort(Ri)

such that we have Ri(..., x, ...), Ri ∈ R, in the rule

Relational Query Languages

Foundations of Databases 46

Putting it together: SQL into relational algebra

• Combining translations:

SQL into rule-based queries and rule-based into relational algebra

• We have the following SQL to relational algebra translation:

SELECT attribute list 〈Ri.Aj〉

FROM R1, . . . , Rn

WHERE condition c

is translated into

π〈Ri.Aj〉(σc(R1 × . . . × Rn))

Relational Query Languages

Foundations of Databases 47

Another example

• Find theaters showing movies featuring Nicholson.

• SELECT Schedule.Theater

FROM Schedule, Movie

WHERE Movie.Title = Schedule.Title

AND Movie.Actor=’Nicholson’

• Translate into a rule:

answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th, tl)

• Modify the rule:

answer(th) :– movie(tl, dir, act), schedule(th, tl’), tl=tl’, act=’Nicholson’

Relational Query Languages

Foundations of Databases 48

Another example cont’d

answer(th) :– movie(tl, dir, act), schedule(th, tl’), tl=tl’, act=’Nicholson’

• Step 1: R1 = Schedule × Movie

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movie.title(R1)

• Step 3: We are only interested in movies with Nicholson:

R3 = σMovie.actor=Nicholson(R2)

• Step 4: we need only theaters in the output

answer = πschedule.theater(R3)

Summing up:

πschedule.theater(σMovie.actor=Nicholson ∧ Schedule.title=Movie.title(Schedule × Movie))

Relational Query Languages

Foundations of Databases 49

SPC Algebra into SQL

• Converse mapping feasible as well

• Different ways to show this

• Direct Proof: useful normal form for SPC algebra

πA1,...,An(σc(R1 × · · · × Rm))

“simple SPC queries”

• Easy mapping to SQL

• Indirect: Equivalence to query language which is equivalent to SQL

Relational Query Languages

Foundations of Databases 50

Extension: Natural Join

• Combine all pairs of tuples t1 and t2 in relations R1 resp. R2 that match on joint

attributes

• The resulting relation R = R1 1 R2 is the natural join of R and S, defined on

the set of attributes in R1 and R2.

• Example: Schedule 1 Movie

title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

1

theater title

Le Champo Shining

Le Champo Chinatown

Le Champo Player

Odéon Chinatown

Odéon Repulsion

=

title director actor theater

Shining Kubrick Nicholson Le Champo

Player Altman Robbins Le Champo

Chinatown Polanski Nicholson Le Champo

Chinatown Polanski Nicholson Odéon

Chinatown Polanski Polanski Le Champo

Chinatown Polanski Polanski Odéon

Repulsion Polanski Deneuve Odéon

Relational Query Languages

Foundations of Databases 51

Join cont’d

• Join is not a new operation of relational algebra

• It is definable with π, σ,×

• Suppose

– R is a relation with attributes A1, . . . , An, B1, . . . , Bk

– S is a relation with attributes A1, . . . , An, C1, . . . , Cm

– R 1 S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

R 1 S =

πA1,...,An, B1,...,Bk,C1,...,Cm
(σR.A1=S.A1∧...∧R.An=S.An

(R × S))

• Note: named perspective is crucial

Relational Query Languages

Foundations of Databases 52

Select-Project-Join (SPJ) Queries

Queries of form

πA1,...,An
(σc(R1 1 · · · 1 Rm))

• These are the most common queries, correspond to simple rules.

• Example: Find theaters showing movies directed by Polanski:

• answer(th) :– schedule(th,tl), movie(tl,’Polanski’,act)

• As SPJ query:

πtheater(σdirector=′Polanski′(Movie 1 Schedule))

• What is simpler compared to earlier version?

πschedule.theater(σMovie.director=′Polanski′ ∧ Schedule.title=Movie.title(Schedule×Movie))

• Selection Schedule.title=Movie.title is eliminated; it is implied by the join.

Relational Query Languages

Foundations of Databases 53

SPJ queries cont’d

• Find theaters showing movies featuring Nicholson.

• answer(th) :– movie(tl, dir, ’Nicholson’), schedule(th, tl)

• As SPJ query:

πtheater(σactor=′Nicholson′(Movie 1 Schedule))

Relational Query Languages

Foundations of Databases 54

Translating SPJ queries back into rules and SQL

• Q = πA1,...,An
(σc(R 1 S))

• Equivalent SQL statement (B1, . . . , Bm = common attributes in R and S):

SELECT A1, . . . , An

FROM R, S

WHERE c ANDR.B1 = S.B1 AND . . . ANDR.Bm = S.Bm

• Equivalent rule query: (R resp. S has attributes A1 . . . , Ak resp. C1, . . . , Cl)

answer(A1, . . . , An) :– R(A1, . . . , Ak), S(C1, . . . , Cl),

R.B1 = S.B1, . . . , R.Bm = S.Bm, c

Relational Query Languages

Foundations of Databases 55

SPJ to SQL: Example

• Find directors of currently playing movies featuring Ford:

• πdirector(σactor=′Ford′(Movie 1 Schedule))

• In SQL:

SELECT Movie.director

FROM Movie, Schedule

WHERE Movie.title=Schedule.title AND

Movie.actor=’Ford’

Relational Query Languages

Foundations of Databases 56

What we’ve seen so far

• Simple queries given by SQL SELECT-FROM-WHERE

• Same queries are defined by rules

• They are also the same queries as those definable by π, σ,× in relational

algebra, i.e., by SPC queries

• Question: What about SPJ?

SPJ queries are not a normal form for the σ, π, 1 - fragment of Relational

Algebra

Need renaming for preventing unwanted joins

• SPJR Algebra = σ, π, 1, ρ - fragment of Relational Algebra

Relational Query Languages

Foundations of Databases 57

Equivalence of SPC and SPJR Algebras

Proposition. The SPC Algebra and the SPJR Algebra are equivalent.

Note:

• Using Renaming, Cartesian Product can be easily emulated.

• Also SQL provides renaming construct

New attribute names can be introduced in SELECT using keyword AS.

SELECT Father AS Parent, Child

FROM R1

Relational Query Languages

Foundations of Databases 58

Nested SQL queries: simple example

• So far in the WHERE clause we used comparisons of attributes.

• In general, a WHERE clause could contain another query, and test some

relationship between an attribute and the result of that query.

• We call queries like this nested, as they use subqueries

• Example: Find theaters showing Polanski’s movies

SELECT Schedule.Theater

FROM Schedule

WHERE Schedule.Title IN

(SELECT Movie.Title

FROM Movie

WHERE Movie.Director=’Polanski’)

Relational Query Languages

Foundations of Databases 59

Nested queries: comparison

SELECT S.Theater SELECT S.Theater

FROM Schedule S FROM Schedule S, Movie M

WHERE S.Title IN WHERE S.Title=M.Title

(SELECT M.Title AND M.Director=’Polanski’

FROM Movie M

WHERE M.Director=’Polanski’)

• These express the same query

• On the left, each subquery refers to one relation

• The real advantage of nesting is that one can use more complex predicates than

IN.

Relational Query Languages

Foundations of Databases 60

Equivalence Theorem

Theorem.

SPJR Queries

= SPC Queries

= simple SPC queries

= conjunctive queries

= SQL SELECT-FROM-WHERE

= SQL SELECT-FROM-WHERE with IN-nesting

Relational Query Languages

Foundations of Databases 61

Disjunction in queries

• Find actors who played in movies directed by Kubrick OR Polanski?

• SELECT Actor

FROM Movie

WHERE Director=’Kubrick’ OR Director=’Polanski’

• Can this be defined by a single rule?

• NO!

Relational Query Languages

Foundations of Databases 62

Disjunction in queries cont’d

• Solution: Disjunction can be represented by more than one rule.

• answer(act) :– movie(tl,dir,act), dir=’Kubrick’

answer(act) :– movie(tl,dir,act), dir=’Polanski’

• Semantics: compute answers to each of the rules, and then take their union

(Union of conjunctive queries)

• SQL has another syntax for that:

SELECT Actor

FROM Movie

WHERE Director=’Kubrick’

UNION

SELECT Actor

FROM Movie

WHERE Director=’Polanski’

Relational Query Languages

Foundations of Databases 63

Disjunction in queries cont’d

• How to translate a query with disjunction into relational algebra?

• answer(act) :– movie(tl,dir,act), dir=’Kubrick’

is translated into

Q1 = πactor(σdirector=Kubrick(Movie))

• answer(act) :– movie(tl,dir,act), dir=’Polanski’

is translated into

Q2 = πactor(σdirector=Polanski(Movie))

• The whole query is translated into Q1 ∪ Q2

πactor(σdirector=Kubrick(Movie)) ∪ πactor(σdirector=Polanski(Movie))

Relational Query Languages

Foundations of Databases 64

Union in relational algebra

• Another operation of relational algebra: union

• R ∪ S is the union of relations R and S

• R and S must have the same set of attributes.

• We now have four relational algebra operations:

π, σ,×,∪

(and of course 1 which is definable from π, σ,×)

• This fragment is called SPCU-Algebra, or positive relational algebra.

Relational Query Languages

Foundations of Databases 65

Interaction of relational algebra operators

• πA1,...,An
(R ∪ S) = πA1,...,An

(R) ∪ πA1,...,An
(S)

• σc(R ∪ S) = σc(R) ∪ σc(S)

• (R ∪ S) × T = R × T ∪ S × T

• T × (R ∪ S) = T × R ∪ T × S

Relational Query Languages

Foundations of Databases 66

SPCU queries

Theorem. Every SPCU query is equivalent to a union of SPC queries.

Proof: propagate the union operation.

Example:

πA(σc((R×(S ∪ T)) ∪ W))

= πA(σc((R × S) ∪ (R × T) ∪ W))

= πA(σc(R × S) ∪ σc(R × T) ∪ σc(W))

= πA(σc(R × S))
⋃

πA(σc(R × T))
⋃

πA(σc(W)

Relational Query Languages

Foundations of Databases 67

Equivalences II

Theorem.

Positive relational algebra (SPCU queries)

= unions of SPC queries

= queries defined by multiple rules

= unions of conjunctive queries

= SQL SELECT-FROM-WHERE-UNION

= SQL SELECT-FROM-WHERE-UNION with IN-nesting

= SPJRU queries (σ, π,1, ρ,∪)

Question: is INTERSECTION an SPJRU query?

That is, given R,S with the same set of attributes, find R ∩ S.

Relational Query Languages

Foundations of Databases 68

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Md.,

1983.

[3] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science

Press, 1989.

Relational Query Languages

