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Database Theory 6. Conjunctive Queries

Query Optimization

The common approach to (first-order) query optimization is via
equivalence preserving transformations in relational algebra. E.g.:

m X is commutative and associative, hence applicable in any order

m Cascaded projections may be simplified: If the attributes Aq,..., A,
are among B, ..., B,,, then

TA,,..A(TB,,....Bn(E)) = 7ap,.. A,(E)
m Cascaded selections might be merged:
JC1(0C2(E)) — JClAcz(E)

m Commuting selection with join. If ¢ only involves attributes in Eq,

then
O'C(El X E2) = O'C(El) X E2

We do not treat such transformations in this course.
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Beyond Standard Equivalences

m [he known equivalences are not always sufficient:
e e.g.: none of the equivalences reduces the number of joins!

m For further optimization, the following decision problems are crucial:

Definition (Query Equivalence and Containment)

We say a query @ is equivalent to a query @ (in symbols, Q; = @») if
Q1(D) = Q2(D) for every database instance D. Similarly, we say Qs is
contained in @ (written @Q; C @) if Q1(D) C Qa(D) for every D.

QUERY-EQUIVALENCE

INSTANCE: A pair Q1, @ of queries.
QUESTION: Does @1 = Q> hold?

QUERY-CONTAINMENT

INSTANCE: A pair @1, Q> of queries.
QUESTION: Does @1 € @» hold?
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Database Theory 6. Conjunctive Queries

m In the following we concentrate w.l.o.g. on query containment
because

=0 e @ C@and @ C @ and
QLC Qe Q=(QNQ).

m Observe that if @1, @ are formulated in relational algebra, then
deciding @1 C Q> (and thus also Q; = @») is undecidable!

e Indeed, Q is empty over all databases < Q C 0.
e By Traktenbrots Theorem, checking emptiness is undecidable for RA!

m Good news: @1 C @, is decidable for conjunctive queries!

m The decidability comes from the Homomorphism Theorem
(see below).

m The theorem also gives rise to optimization of conjunctive queries
that reduces the number of joins.
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Datalog-like notation for CQs

m Next we use Datalog notation for CQs!

m E.g.: the conjunctive query

106y) [ 3z, w.B(x,y) AR(y, z) AN R(y, w) A R(w,y)}

Is written as the rule

Q(va):_B(va)v R(y,Z), R(Y? W)? R(va)'

Contraintes
(analogues de celles
des requétes):

toutes les variables libres de la téte (avant « :-
») sont libres dans le corps (apres « :- »);
les autres sont les variables quantifiées existentiellement

dans la CQ
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x≠y

Jean Goubault-Larrecq
toutes les variables libres de la tête (avant « :- ») sont libres dans le corps (après « :- »);
les autres sont les variables quantifiées existentiellement dans la CQ

Jean Goubault-Larrecq
Contraintes
(analogues de celles
 des requêtes):


Database Theory 6. Conjunctive Queries

Conjunctive Queries into Tableaux

m Tableau: representation of a conjunctive query as a database

m A tableau for a CQ @ is just a database where variables can appear
in tuples, plus atupleof distinguished variables.

m Assume a query @ such that

Q(Xv)/):_B(Xa)/)v R(y,Z), R(Y? W)? R(W7Y)

m Then the tableau of @ is:

rangées: variables

dans le schéma,

: il faut les y mettre aussi...
X Yy < answer line avec un contenu vide

m Variables in the answer line are called distinguished

A B ici, mais constantes
autorisées aussi
A B y z
B: R: B , -
X y y W S’il y a d’autres relations
Wy
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rangées: variables ici, mais constantes autorisées aussi

Jean Goubault-Larrecq
tuple

Jean Goubault-Larrecq
S’il y a d’autres relations
dans le schéma,
il faut les y mettre aussi…
avec un contenu vide
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Tableau homomorphisms

Definition (Tableau homomorphism)

A homomorphism of two tableaux f: T; — T, is a mapping

f: {variables of Ty} — {variables of T} |J {constants}

such that:
m For every distinguished x, f(x) = x

m For every relation R in T; and row (xg,...,Xx) in R, tuple
(f(x1),...,f(xx)) is a row of R in T5

Theorem (Homomorphism Theorem)

Let Q1, Q> be two conjunctive queries, and Tg,, Tq, their tableaux. Then

with the same tuple of distinguished variables

Q1 C @ & there exists a homomorphism f: Tg, — Tg,.

Attention: Q1 et Q2
dans l’ordre inverse!
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Attention: Q1 et Q2 dans l’ordre inverse!


Applying the Homomorphism Theorem

m We first consider queries over a single relation:
o Ql(X7Y) - R(y,X),R(X,Z)

Tableau for Qq: Tableau for @»:

A B A B
R: y x R: \?/v i
X Z < U

X Yy Xy
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A
< | >
/\
N X
2
X S < | >
c X X |

X
X Yy Xy
Take f such that:
mf(w)=y,
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A
< | >
/\
N X
2
X S < | >
c X X |

Take f such that:
m f(w) =y,
m f(u) =z,
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Database Theory 6. Conjunctive Queries

A
< | >
/\
N X
2
X S < | >
c X X |

Take f such that:
mf(w)=y,
m f(u) =z,
mf(x)=xand f(y)=y.
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Py,
< | >
/\
N X
2
X S < | >
c X X |

Take f such that:
mf(w)=y,
m f(u) =z,
mf(x)=xand f(y)=y.
m Hence Q; C Q!
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Tq Tq,
A B A B
R:y x R: 3/\/ );
X I X U

X Y /X/)’
y
Take f such that:
m f(z)=u,
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Tq Tq,
A B A B
R:y x R: 3/\/ );
X I X U

X Y /X/)’
y
Take f such that:
m f(z) =u,

mf(x)=xand f(y)=y.
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Tq Tq,
A B A B
R:y x R: 3/\/ );
X I X U

X Y =
Take f such that: /X/y
m f(z) =u,
mf(x)=xand f(y)=y.
m Hence @, C (¢!
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Database Theory 6. Conjunctive Queries

Tq Tq,
A B A B
R:y x R: 3/\/ );
X I X U

Y /@
Take f such that:
m f(z) =u,
mf(x)=xand f(y)=y.
m Hence @, C (!
m Since Q1 € @ and Q> C @1, we have Q» = Q4!
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Proof of the Homomorphism Theorem.

ya

over a database D iff
e database D
d variables of Q.

Observation. A tuple Cisin t
there is a homomorphism
such that f(X) = ¢, wher

Assume a pair 1, Q> of CQs
that X is the tuple of answer

Si ce nest pas ultra-clair,
passer tout de suite au transparent
suivant.

lables V4, V5, respectively. Assume
ables of ; and Q.

Suppose there exists a homomorphism f: Tg, — Tg,. Assume a
database D and an arbitrary tuple ¢ € Q1(D). By the above observation
there is a homomorphism g from Tg, to D such that g(X) = ¢. Observe
that the composition h(-) = g(f(-)) is a homomorphism from Tg, to D
such that h(X) = ¢. Hence ¢ € @Q(D).

Suppose @1 C Q.. Then, by assumption, Q1(D) C Q»(D) for all
instances D. Take the tableau Tg, as database instance D. Clearly, X is
in the answer to Q1 over Tg,. Then using the assumption we get

X € @Q(Tgq,). By the observation above, then there is a homomorphism f
from Tg, to T, such that f(X) = X. []
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Tableaux et bases de données

Etant donne une BD D et un uplet c,

on peut définir un tableau généralisé comme étant (D|c)
[D au-dessus de la ligne, ¢ en-dessous; j'écris la ligne verticalement ici...]

Un homomorphisme généralisé f: Tq — (D|c) est une fonction
f . {variables de Q} — {variables+constantes du domaine} telle que:
— si x=(x1,...,Xn) est le uplet de variables distinguées de Tq,
alors c=(f(x1),...,f(xn))  [ce que jabrégerai c=f(x)]
— pour toute relation R et toute rangee R(y) de Tq,
R(f(y)) est une rangée de D.



Homorphismes généralisés et requétes

Lemme. c est une réponse a la requéte conjonctive Q sur D ssi
il existe un homomorphisme généralisé f: Tq — (D|c).

Démonstration. Soit D = [Q(X) :- R1(y1), ..., Rx(y«)]

c est une réponse ssi il existe une valuation p telle que
— c=[x]p [abus de langage, ici: signifie c;=[x/1p pour tout ]
—etpER1(y1) A ... ARk

Renommer p en f et expanser les définitions redonne la définition
d’'un homomorphisme généralisé. (C’est une trivialite.)



Preuve du théoreme, direction <

Supposons gu’il existe un homomorphisme f: Ta2 = Tas,
ou Q1 et Q2 ont le méme uplet de variables distinguées

Pour toute BD D (sur le schéma donné), pour toute réponse c a Q1,
par le lemme précédent on a un homomorphisme généralisé

g:Tat = (Dlc).
Donc g o f est un homomorphisme généralisé : Ta2 — (D|c).

Par le lemme encore, ¢ est une réponse a Q2 sur D.



Preuve du théoreme, direction =

Supposons que pour toute BD D, toute réponse a Q1 sur D soit aussi
une reponse a Q2 sur D.

Soit D la BD au-dessus de la ligne horizontale du tableau Tas,
i.e. Tqa1=(D|x)

[Formellement, on plonge I'’ensemble des variables dans le domaine (infini!) des valeurs]

Alors x est une réponse a Q1 sur D
... donc aussi a Q2.

Par le lemme, il existe un homomorphisme généralisé f: Tqz = (D|x)
... et ceci est juste un homorphisme de Tq2 vers Taa.
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Existence of a Homomorphism: Complexity

Theorem

Given two tableaux, deciding the existence of a homomorphism between
them is NP-complete.

Proof.

NP-membership. Guess a candidate mapping f and check in polynomial
time whether f is a homorphism.

NP-hardness. By a straightforward reduction from the NP-complete
problem BQE for CQs. Let the Boolean CQ @ and database D be an
arbitrary instance of BQE. We define the following tableaux 77 and T5:

T1: tableau of the Boolean CQ .
T>: consider D as tableau of a Boolean CQ

We clearly have: Query Q over DB D is non-empty < there exists a
homomorphism from T; to T5. []
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CQ Containment and Equivalence: Complexity

Corollary

Given two conjunctive queries Q1 and @, both deciding @1 C Q» and
1 = Q> are NP-complete.

Proof.

The NP-completeness of CQ Containment follows immediately from the

Homomorphism Theorem together with the above theorem.

From this, we may conclude the NP-completeness of CQ Equivalence via

the following equivalences:
=0 @ C Qand Q C @ and
QC Q& Q=(QiN &)

Cette équivalence ne fournit a priori
qu'une réduction de Turing, attention
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Minimizing Conjunctive Queries

Goal: Given a conjunctive query @, find an equivalent conjunctive query
@’ with the minimum number of joins.

More formally:
Definition

A conjunctive query  is minimal if there does not exist a conjunctive
query Q' such that

m Q=Q and

m Q' has fewer atoms than Q.
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Minimization by Deletion

m The following is an easy consequence of the Homomorphism
Theorem:

e Assume Q@ is
Q()_() — Rl(ﬁl),...,Rk(Jk)

e Assume that there is an equivalent conjunctive query Q' of the form
Q'(X) = Si(v),...,SI(v), [ < k.
e Then @ is equivalent to a query of the form
Q' (X) = Ry(dy),...,Ri (&), with m<|

m In other words, to minimize a conjunctive query, it suffices to
consider deletions of atoms on the right of “:=". Why?
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Minimization by Deletion (continued)

Proof idea

Consider CQs @ and @’ with Q@ = @/, s.t.
Q()?) T Rl(ﬁl),...,Rk(LTk) and
Q'(xX) = Si1(v1),...,S5/(v)) and | < k.

By the Homomorphism Theorem, there exist homomorphisms
f: TQ% TQ/ and g TQ/ — TQ.

Clearly, for the image of g, we have |Im(g)| < /.

Let Im(g) = {Ry(dy),..., R (&; )} with m <[ and

let Q"(X) — Ry (di,),...,R; ().

We claim that then Q@” = @ holds.

Again, we apply the Homomorphism Theorem: We have to show that
there exist homomorphisms f”: Tg — Tgr and g": Tor — Ty.

Actually, g” trivially exists — just take the identity.
Moreover, f” can be obtained via composition: f"(:) = g(f(-)).
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Minimization Procedure

m Given a conjunctive query @, transform it into the tableau Tg.

m Algorithm to obtain a minimal equivalent query:

T .= To;

repeat until no change
choose a row t in T';
if there is a homomorphism f: T' — T\ {t}
then 7' := T'\ {t}

end;

return (the query defined by) T7;

m Note: If a homomorphism T’ — T\ {t} exists, then T', T'\ {t}
define equivalent queries, as a homomorphism from T\ {t} to T’
exists.
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Minimizing Conjunctive Queries: example
m Conjunctive query with one relation R only:
Q(x,y,2z) =R(x,y,z1), R(x1,y, ), R(x1,y,2),y = 4

m Tableau T (relation R omitted):

A B C
X 4 =
X1 4 y4p)
X1 4 z
X 4 z

m Minimization, step 1: Is there a homomorphism from Tg to

A B C
X1 4 y4p)
X1 4 z
X 4 z

m Answer: No. For any homomorphism f, f(x) = x (why?), thus the image
of the first row is not in the small tableau.
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A B C
m Step 2: Is Tg equivalent to o ﬁ 4
x 4 z

m Answer: Yes. Homomorphism f: f(z) = z, all other variables stay
the same.

m The new tableau is not equivalent to

A B C A B C
x 4 =z or xy 4 =z
x 4 z x 4 z

m Because f(x) = x, f(z) = z, and the image of one of the rows is not
present.
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A B C
m Minimal tableau: x 4 2
xx 4 =z
x 4 Zz

m Back to conjunctive query. CQ Q is equivalent to CQ Q' with

Q'(x,4,z) — R(x,4,z1),R(x1,4,2)
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Complexity of Minimization (1)

Theorem

Given a tableau T and a tuple t in T, checking whether there is a
homomorphism from T to T \ {t} is NP-complete.

Proof.

Membership in NP is immediate. For the hardness part, we provide a
reduction from 3-COLORABILITY. We exploit a well-known trick:

a graph is 3-colorable iff it can be homomorphically embedded into a
“triangle”. Assume a graph G = (V,E), where V = {1,... n}.
W.l.o.g., G is assumed to be connected. Take the Boolean CQ Q¢ with
he following atoms and test if atom Vj(x1) is “redundant”:

Vl(Xl),..., Vn(Xn),
E(x;, x;) for each edge (i,j) € E,
R(Yr)a G(yg)v B(yb)’

E(yr7Yg)7 E()’ga)/r)’ E(ygayb)a E(.yba.yg) and E(.yrv.yb)a E(.yba.yr)-
Vi(yc) forall i € V and c € {r,g,b}. ... etleupletde variables distinguées

est (y_r,y_g, y_b)

Next slide
shows polytime
reduction from 3-
COLORABILITY to
CONNECTED-3-
COLORABILITY
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Next slide shows polytime reduction from 3-COLORABILITY to CONNECTED-3-COLORABILITY

Jean Goubault-Larrecq
… et le uplet de variables distinguées
est (y_r, y_g, y_b)


Réduction en temps polynomial
de 3-COLORABILITY a CONNECTED-3-COLORABILITY

ENTREE: un graphe quelconque G O O
(non orienté)
SORTIE: un graphe G’ connexe tel que
G 3-colorable ssi G’ 3-colorable

Formellement: G=(V,E), on choisit un sommet x; par composante
connexe Cj, 1<ism, de G, et G’=(V,E’) avec E’=E u {{Xi, xi+1} | 1<i<m}
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Proof (continued).

It is not difficult to see that G is 3-colorable iff there is a
homomorphishm from Tg, to Tg. \ {Vi(x1)}-

(=) Assume G is 3-colorable with p: V — {r, g, b} a witnessing
coloring. Then the following function f is a homomorphism from Tg_ to

Tos \ {Valx)}:
mf(x) = Yu(iy, forall i€ V,

mf(y.)=yc forall ce{r, g, b}

(«<=) Assume there is a homomorphishm f from Tg, to T, \ {Vi(x1)}-
Then f(x1) € {¥r, Yg, ¥} due to the atom Vi(x1) of Qg. Since G is
connected, we must also have f(x;) € {y:, ¥g, yp} forall i € V.

Take the function u: V — {r, g, b} such that (a) u(i) = r if f(x;) = y,,
(b) u(i) = g if £(xi) = yg, and (c) pu(i) = b if (xi) = yb.
We claim that p is a valid 3-coloring of G. Let (i,j) be an arbitrary edge

in E. Then E(x;, x;) is an atom in Qg. Since f is a homomorphism, we

have (f(x;), f(x;)) in the relation E of Tg, \ {Vi(x1)}. Then by
construction of Q¢, we have f(x;) # f(x;) and thus u(i) # u(j). ]

Pichler 24 April, 2018


Jean Goubault-Larrecq

Jean Goubault-Larrecq

Jean Goubault-Larrecq


Complexity of Minimization (2)

Theorem

Given a conjunctive query @, checking whether @ is minimal is
co-NP-complete.

Proof.

We prove by showing that checking whether a query is not minimal is
NP-complete. NP-Membership of the latter problem is immediate. For
the hardness part, we observe that the query Q¢ obtained from G in the
previous proof can be reused. We show below that G is 3-colorable iff
Q¢ is not minimal.

(=) Assume G is 3-colorable with p: V — {r, g, b} a witnessing
coloring. Then the following function f (also used in the previous proof)
is a homomorphism from Tg_ to T, \ {Vi(x1)}:

m f(x;) = yuip, forallie V,

mf(y.)=yc forall ce{r, g, b}
Hence, Q¢ is not minimal.
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Proof (continued).

(<) Assume Qg is not minimal. Then there is M C Tg, such that
M = () and there is a homomorphism f from Tq, to Tg. \ M.
Let us analyze f. The domain of f is {y, Y, Yo} U{X1,...,Xn}.

The atoms R(y,), G(vs), B(yb) in Q¢ are the only atoms with leading
symbol R, G, and B, respectively. Hence, none of the atoms

R(yr), G(¥g), B(yp) can be in M. Moreover, we must have f(y,) = y,,
f(vg) = yg and f(yb) = yb.

Since f is a homomorphism from Tg_. to To. \ M, f cannot be the
identity function and thus there exists k € V such that f(xx) # x«.
Recall that for all i € V and all V;(t) of Qg we have t = x;, t = y,,

t = yg or t = yp. Then we must have f(xx) € {V¥r, Yg, Vb}-

Since G is connected, we must also have f(x;) € {yr, ¥g, ¥»} for all
i1 € V. Analogously to the proof of the theorem, we can define a valid
3-coloring of G as follows: p: V — {r, g, b} such that (a) u(i) = r if

f(xi) = yr. (b) (i) = g if f(xi) = yg, and (c) u(i) = b if f(xi) = yp.
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Uniqueness of Minimal Queries

A natural question: does the order in which we remove tuples from the
tableaux matter? The answer is “no” by the following theorem.

Theorem

If Q1, Q> are two minimal queries equivalent to a query @, then the
tableaux Tq, and Tg, are isomorphic.

Proof.

The proof proceeds in several steps.

Homomorphisms. By the equivalences @1 = Q = @», there exists a
homomorphism f: Tg, — T, and a homomorphism g: T, — To,.
Let h=gof. Clearly, h: Tg, = Tg, is also a homomorphism.

| To,| = | Tq,|- Suppose that |Tg,| < |Tg,| (the case |Tg,| < |Tq,| is
symmetric). Then |h(Tg,)| < |Tg,| and, hence, h(Tg,) C Tg,. Thus the
query corresponding to h(Tg,) is strictly smaller than Q. This

contradicts the assumption that Q7 is a minimal CQ equivalent to Q.
Note: h(T_Q1)=T Q1 via l'inclusion h(T_Q1)C T Q1 dansunsenseth: T Q1 — h(T_Q1) dans l'autre.
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Proof (continued).

h preserves the number of variables. Consider h as a mapping from the
variables in T, to terms (i.e., variables and constants) in Tg,. We claim
that |Var(h(Tg,))| = |Var(Tg,)|. Suppose to the contrary that
Var(h(Tg,)) < Var(Tg,). Then h(Tg,) C T, and again we get a
contradiction since this would mean that the query corresponding to
h(Tg,) is strictly smaller than Q.

h is a permutation of the variables in Tg,. |Var(h(Tg,))| = |Var(Tg,)
implies that h maps every variable in Var(Tg,) to a variable in Var(Tg,)
(and not to a constant). Hence, his a function h: Var(Tq,) — Var(Tg,).
Moreover, |Var(h(Tg,))| = |Var(Tg,)| also implies that h is bijective.

Isomorphism. Every multiple application of h (i.e., h, h?, h®, ...) again
yields a permutation on Var(Tg,) and a homomorphism Tg, — Tg,. For
every permutation, there exists an n > 1 with h" = id, i.e., (go f)" = id.
Let f* = f o h"~L. Clearly, f* is a homomorphism and go f* = id.

In other words, f*: Tg, — Tq, Is bijective with inverse function g.
Hence, f* is an isomorphism. [
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Acyclic Conjunctive Queries

m Many CQs in practice enjoy the so-called acyclicity property
m Acyclic CQs can be evaluated efficiently (in polynomial time)
Definition
A conjunctive query  is acyclic if it is has a join tree.

m A join tree can be seen as (an efficiently executable) query plan

Definition (Join Tree)
Let Q(X):—Ri(Z1), ..., Rn(Z,) be a CQ.

A join tree T = (V, E) is a tree where

mV ={Ri(z),...,R.(Z,)}, i.e. V is the set of atoms in Q
m £ satisfies for all variables z of Q:

{Ri(Z;) € V| z occurs in Rj(Z;)} induces a connected subtree in T
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Join Tree — Example

Example

Q(X17X27X37X47X57X6):_
R3(x3) A Ra(x2, xa,x3) A Ri(x1, %2, x3) A Ra(x2, x3) A Ra(xs, X6)
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Join Tree — Example

Example

Q(X17X27X37X47X57X6):_
Rs(x3) A\ Ra(x2,xa,x3) N Ri(x1,%2,x3) A Ra(x2, x3) A Ra (X5, %6)

R>(x2, x3)
R>(xs, X6 ) Ri(x1, x2, x3)
R3(x3) Ra(x2, x4, Xx3)
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Join Tree — Example

Example

Q(X17X27 X37X47X57X6):_

Rs(x3) N Ra(X2;%a,%3) N Ri(x1, %2, x3) N Ra(x2, x3) A Ra(xs, X6)

R>(x2, x3)
R (x5, X6) Ri(x1, x2, x3)

Pichler 24 April, 2018




Database Theory 6. Conjunctive Queries

Join Tree — Example

Example

Q(X17X27X37X47X57X6):_
Rs(x3) N\ Ra(x2, xa,x3) A Ri(x1,%2,x3) A Ra(x2, x3) A Ra (X5, X6)
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Finding Join Trees

Remarks:
m Existence of a join tree can be efficiently decided

m Join tree can be efficiently computed (if one exists)

— GYO-reduction (Graham, Yu, and Ozsoyoglu)

m Tests for acyclicity of hypergraphs
m Reduction sequence allows to build a join tree efficiently
m Easy to identify a query with a hypergraph
m Two equivalent definitions exist
Define
m Atom R(Z) is empty if |Z] = 0, and

m Atom Ry(Z1) is contained in atom Ry (%) if 21 C 2
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GYO-Reduction

Definition (GYO/GYQ’-reduction)

Let Q(X):=Ri(z1), ..., R,(Z,) be a CQ. Apply the following rules until no
longer possible.

m GYO-reduction:

e Eliminate variables that are contained in at most one atom.
e Eliminate atoms that are empty or contained in another atom.

m GYQO'-reduction:

e Eliminate atoms that share no variables with other atoms.
e Eliminate atoms R if there exists a witness R’ s.t. each variable in R
either appears in R only, or also appears in R’.

Theorem

x GYO'(Q) = 0 iff GYO(Q) = 0
m GYO'(Q) =0 iff Q has a join tree (iff Q is acyclic)
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GYO-Reduction: Proof

Proof.

We only prove the second equivalence:
GYO'(Q) = ) = @ has a join tree: Consider the sequence (Ry, ..., R,)
of atoms removed during the reduction. Create a join tree as follows:
m Whenever R; was the witness for R;, then make R; a child node of R;
m Merge the resulting forest to a tree “arbitrarily”
It is easy to check that this indeed gives a valid join tree.
Q has a join tree = GYO'(Q) = (): Consider a join tree T for Q.

Removing leaf nodes from T in arbitrary order gives a sequence of valid
GYQ'-reduction steps that eliminates all atoms:

m Either a leaf node shares no variable with its parent = First rule

m All variables occuring not only in the leaf node must be contained in
the parent node (connectedness condition) = parent node is witness

[]
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GYO-reduction: Example

Example

Consider again Q(xi, X2, X3, X4, X5, Xg ):—
Ra(x3) A Ra(x2,xa,x3) N Ri(x1,%2,x3) A Ra(x2, x3) A Ra(Xs, X6)

n 5 r3 ra I's
Ro(x2, x3)
Ra(xs, x6) Ri(x1, x2, x3)
R3(x3) Ra(x2, xa, x3)
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GYO-reduction: Example

Example

Consider again Q(xi, X2, X3, X4, X5, Xg ):—
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Deciding ACQs Efficiently (Yannakakis)

Dynamic Programming Algorithm over the join tree T = (V/, E)

Algorithm by Yannakakis

Let T = (V, E) be a join tree of a query Q.

Given database instance D, decide Q(D) = () as follows:
Assign to each R;(Z) € V the corresponding relation R of D.
In a bottom up traversal of T: compute semijoins of RJ-D

If the resulting relation at root node is
empty, then Q(D) = 0,
nonempty, then Q(D) # (.

Theorem
For ACQs Q:
m Deciding Q(D) = () is feasible in polynomial time.
m Computing Q(D) can be done in output polynomial time.
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Yannakakis Algorithm — Example

t1: Ra(x2, x3)

X2 | X3
1 b>
1 by
Cap b6
tr: Ro(xs, xg) t3: Ry(x1, x2,x3)
X5 | X6 X1 X2 X3
c1 by s1 c by
c1 by s1 c1 by
(o7} b6 S3 c3 b]_
53 cl by
2\
R3 X3) R4 X27X47X3)
X3 X2 | X4 | X3
by 1 a1 by
b 1 a1 b

c1 a b,
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Database Theory 6. Conjunctive Queries
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Database Theory 6. Conjunctive Queries

Yannakakis Algorithm — Example
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SN
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x5 | x
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c1 by
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X1 X2 X3

s1 c1 b1

s1 1 by

s3 c3 b1

S3 1 b/!
o

/\

: R3(x3)

R4 X2,X4,X3)

1
Ca |
c
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t1: Ra(x2, x3)

X2 | X3
1 b>
1 by
(o7} b6
tr: Ro(xs, xg) t3: Ry(x1, x2,x3)
x5 | xe X1 X2 X3
c1 b> s1 c1 b1
c1 by s1 c1 by
c4 | be s ¢ | by
§’2 (‘1 b/!
(‘fa
R3 X3) R4 X27X47X3)
X3 X2 | X4 | X3
by 1 a1 by
b 1 a1 b

c1 a b,
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Yannakakis Algorithm — Example

t1: Ra(x2, x3)

X2 | X3
c1 b,
c1 by
6
tr: Ro(xs5, x5) t3: Ri(x1, x2, X3)
X5 | X6 X1 X2 X3
c1 bo
C1 b1 51 C1 b2
c4 | be s ¢ | by
§’2 (‘1 b/!
(‘fa
: R3(x3) : Ra(x2, x4, x3)
X3 X2 | X4 | X3
by c ai by
b, c1 ay b,

c1 a b,
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t1: Ra(x2, x3)

X2 | X3
1 b>
1 by
tr: Ro(xs, xg) t3: Ry(x1, x2,x3)
x5 | xe X1 X2 X3
c1 b> s1 1 by
a | b st | a | b
c4 | be s ¢ | by
§’2 (‘1 b/!
(‘fa
R3 X3) R4 X27X47X3)
X3 X2 | X4 | X3
by 1 a1 by
b 1 a1 b

c1 a b,
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Yannakakis Algorithm — Example

t1: Ra(x2, x3)

X2 X3
c1 b,
c1 by
tr: Ro(xs, xp) t3: Ri(x1, x2, x3)
X5 | X6 X1 X2 X3
c1 by s1 c by
C1 b1 51 C1 b2
c4 | be s ¢ | by
§’2 (‘1 b/!
(‘fa
R3 X3) R4 X27X47X3)
X3 X2 | X4 | X3
b1 Cc1 al b1
b, 1 ay b,

c1 a b,
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Database Theory 6. Conjunctive Queries

Yannakakis Algorithm — Enumeration

Two additional traversals allow us to enumerate all answers.

Theorem

Let Q be an acyclic conjunctive query. Given some database instance D,
Q(D) can be computed in output polynomial time, i.e., in time

O((||D|| + ||Q(D)||)k) for some constant k > 1.

Enumeration Algorithm

Given a join tree of query Q; a database instance D. Compute Q(D):
1°* bottom-up traversal: semijoins as before (upwards propagation)
top-down traversal: “reverse” semijoins (downwards propagation)

29 bottom-up traversal: compute solutions using joins.
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Yannakakis Algorithm — Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions:
Given join tree T, for t € V(T) let T; be the subtree of T rooted at t,

R;: the relation computed by semijois and R| the one by joins:
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Proof sketch.

Correctness of the algorithm follows from the following propositions:
Given join tree T, for t € V(T) let T; be the subtree of T rooted at t,
R: the relation computed by semijois and R; the one by joins:

After the 15* bottom-up traversal:
Rt = Tyars(t)(Mvev(r,) v) foreach t € T

After the top-down traversal:
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Yannakakis Algorithm — Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions:
Given join tree T, for t € V(T) let T; be the subtree of T rooted at t,
R: the relation computed by semijois and R; the one by joins:

After the 15* bottom-up traversal:
Rt = Tyars(t)(Mvev(r,) v) foreach t € T

After the top-down traversal:
R: = anrs(t)(Nv€V(T) V) foreacht € T

After the 2"¢ bottom-up traversal:
R{L = anrs(Tt)(Nv€V(T) V) foreacht € T

= R/ at root r contains all results
[]
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Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

X2 X3
c1 by
1 b1
C4— bg
Example / \
tr: Ra(xs, Xp) t3: Ri(x1, x2, x3)
We have already performed the x5 | X x| x| xs
b b
15t bottom-up traversal R I
c1 by s1 c1 by
C4 be S3 Ca by
§3 (‘1 b/!
§2 (‘2 h3
ty: R3(x3) ts: Ra(x2, x4, x3)
x3 X2 | Xg | X3
b1 1 al b1
b> c1 ay b>
bs c ar by
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Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

x2 | x3
c1 by
C1 b1
4| hg
Example / \
tr: Ro(xs, x6) t3: Ri(x1, x2, x3)
We have already performed the x5 | X x| x| xs
b b
15t bottom-up traversal R I
1 b1 s1 1 by
_ e 4 b6 S3 C2 bl
Top-down semijoins Y
§2 (‘2 h3
ty: R3(x3) ts: Ra(x2, x4, x3)
x3 X2 | Xg | X3
b1 1 al b1
b> c1 ay b>
b3 c1 a | b
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Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

c1 bo
c1 by

Example / \

tr: Ra(xs, Xp) t3: Ri(x1, x2, x3)
We have already performed the x1 | x| x
b b
15t bottom-up traversal R S D
1 b1 s1 1 by
_ e s C4 be 22 L2 by
Top-down semijoins Y
§2 (‘2 h3
ty: R3(x3) ts: Ra(x2, x4, x3)
x3 X2 | Xg | X3
b1 1 al b1
by 1 ay by
b3 c1 as by

Pichler 24 April, 2018



Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

x2 | x3
c1 by
C1 b1
4| hg
Example / \
tr: Ro(xs, x6) t3: Ri(x1, x2, x3)
We have already performed the x5 | X x| x| xs
b b
15t bottom-up traversal R I
1 b1 s1 1 by
_ e 4 b6 S3 C2 bl
Top-down semijoins Y
§2 (‘2 h3
ty: R3(x3) ts: Ra(x2, x4, x3)
x3 X2 | Xg | X3
b1 1 al b1
b> c1 ay b>
b3 c1 a | b

Pichler 24 April, 2018



Database Theory 6. Conjunctive Queries

Enumeration — Example
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X2 X3
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4| hg
Example / \
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Enumeration — Example
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X2 X3
c1 bo
c1 by
4| hg
Example / \
tr: Ro(xs, x6) t3: Ri(x1, x2, x3)
We have already performed the x5 | X x| x| xs
st c1 by s1 c1 b1
1°* bottom-up traversal a | b g | a | b
_ e s C4 be 22 L2 by
Top-down semijoins o o T
§2 (‘2 h3
ts: R3(x3) ts: Ra(x2, X4, x3)
X3 X | X4 | X3
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Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

X2 X3
1 by
1 b1
C4— bg
Example / \
tr: Ra(xs, Xp) t3: Ri(x1, x2, x3)
We have already performed the x5 | X x| x| xs
b b
15t bottom-up traversal R I
1 b1 s1 1 by
_ e 4 b6 S3 C2 bl
Top-down semijoins Y
§2 (‘2 h3
ty: R3(x3) ts: Ra(x2, x4, x3)
x3 X2 | Xg | X3
b1 1 a1 b1
by 1 ay by
bs. 1 as b>
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Database Theory 6. Conjunctive Queries

Enumeration — Example

t1: Ra(x2, x3)

X2 X3
c1 by
C1 b1
Example / \
tr: Ra(xs, x6) t3: Ry(x1, X2, x3)
We have already performed the x5 | X x| x| xs
b b
15t bottom-up traversal ‘1 ‘ 2 R I
c1 by s1 c1 by
Top-down semijoins % | b q (’_ :1
Compute result in 2™ c
bottom-up traversal / \
R3 X3) R4 X27X47X3)
x3 2 | xa | x
b c1 ay b
bo c1 ay bo
b 1 a by
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Database Theory 6. Conjunctive Queries

Enumeration — Example

tr: Ra(xs, xp)

N

t3: Ri(x1, x2, x3)

t1: Ra(x2, x3)

X2 X3
c1 b,
c1 by

X5 | X6 X1 X2 X3
(o] b2 S1 1 bl X1 X2 X3
c1 by s1 c1 b, b
c4 | be s ¢ | by B '
3| o | by s1 | a | b
§2 (‘2 b3
ty: R3(x3) ts: Ra(x2, x4, x3)
X3 X2 | X4 | X3
by c ai by
b, c1 ay b,
bs. c1 a b,
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Database Theory 6. Conjunctive Queries

Enumeration — Example

tr: Ra(xs, xp)

N

t3: Ri(x1, x2, x3)

t1: Ra(x2, x3)

X2 X3
c1 b,
c1 by

Xn | X6 X1 X2 X3 X1 X5 X3 X4
c1 by s1 c1 b
c1 by s1 c1 by 51 a b1 al
C4 bs 3 L2 by s1 c1 by a
§3 (‘1 b/!
o | oo | by st | a | b2 | a
ty: R3(x3) ts: Ra(x2, x4, x3)
X3 X2 | X4 | X3
b1 1 ai b1
by cl ai by
bs c1 a by
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Database Theory 6. Conjunctive Queries

Enumeration — Example

X2 X3 X5 X6
1 b2 1 b2
c1 by c1 b
cl by c4 be
c1 by c1 bo
c1 by c1 b
C1 b1 C4 b6

tr: Ra(xs, xp)

t1: Ra(x2, x3)

X2 X3
c1 b,
c1 by

N

t3: Ri(x1, x2, x3)

Xn | X6 X1 X2 X3 X1 X5 X3 X4
c1 by s1 c1 b
c1 by s1 c1 by 51 a b1 al
C4 bs 3 L2 by s1 c1 by a
§3 (‘1 b/!
o | oo | by st | a | b2 | a
ty: R3(x3) ts: Ra(x2, x4, x3)
X3 X2 | X4 | X3
b1 1 ai b1
by cl ai by
bs c1 a by
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Database Theory 6. Conjunctive Queries

Enumeration — Example

X1 X2 X3 X4 X5 X6
st | aa | bo | a1 | a | b t1: Ra(x2, x3)
s1 c by ai cl by X2 );3
cl 2
s1 c1 by | a1 ca | be 1 by
S1 Cc1 by an a b>
st a | b a2 pa ) be g ) t3: Ri(x1, x2, x3)
51 c by ai o] by X5 | X6 X1 X2 X3 X1 X2 X3 X4
C b S C b
s1 c1 by | a1 c1 by ! 2 ' : ' s c b a
ca | b s1 | a | b 1 1 1 1
s1 c by ai Cy bg 4 bg S3 2 by s1 c1 by ai
§’2 (‘1 b/!
o s1 c1 by a
R3 X3) R4 X27X47X3)
X3 X2 | X4 | X3
by C1 al b1
by 1 al b>
bs c1 a by
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Database Theory 6. Conjunctive Queries

Learning Objectives

The notions of query equivalence and containment,
The Homomorphism Theorem,

The complexity of query equivalence and containment,
Minimization of conjunctive queries,

Acyclic conjunctive queries,

The Yannakakis algorithm.
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