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Database Theory 4. Trakhtenbrot’s Theorem 4.1. Motivation

Perfect Query Optimization

A legitimate question:

Question

Given a query Q in RA, does there exist at least one database A such
that Q(A) 6= ∅?

If there is no such database, then the query Q makes no sense and
we can directly replace it by the empty result.

Could save much run-time!

We shall show that this problem is undecidable!

We first recall some basic notions and results from the lecture
“Formale Methoden der Informatik”.
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Turing Machines

Turing machines are a formal model of algorithms to solve problems:

Definition

A Turing machine is a quadruple M = (K ,Σ, δ, s) with a finite set of
states K , a finite set of symbols Σ (alphabet of M) so that t, . ∈ Σ, a
transition function δ:

K × Σ→ (K ∪ {qhalt , qyes , qno})× Σ× {+1,−1, 0},

a halting state qhalt , an accepting state qyes , a rejecting state qno ,
and R/W head directions: +1 (right), −1 (left), and 0 (stay).
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Function δ is the “program” of the machine.

For the current state q ∈ K and the current symbol σ ∈ Σ,
– δ(q, σ) = (p, ρ,D) where p is the new state,

– ρ is the symbol to be overwritten on σ, and

– D ∈ {+1,−1, 0} is the direction in which the R/W head will move.

For any states p and q, δ(q, .) = (p, ρ,D) with ρ = . and D = +1.

In other words: The delimiter . is never overwritten by another
symbol, and the R/W head never moves off the left end of the tape.

The machine starts as follows:

(i) the initial state of M = (K ,Σ, δ, s) is s,

(ii) the tape is initialized to the infinite string .I tt . . ., where I is a
finitely long string in (Σ− {t})∗ (I is the input of the machine) and

(iii) the R/W head points to ..

The machine halts iff qhalt , qyes , or qno has been reached.
If qyes has been reached, then the machine accepts the input.
If qno has been reached, then the machine rejects the input.
If qhalt has been reached, then the machine produces output.
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Church-Turing Thesis

Church-Turing Thesis

Any “reasonable” attempt to model mathematically computer algorithms
ends up with a model of computation that is equivalent to Turing
machines.

Evidence for this thesis

All of the following models can be shown to have precisely the same
expressive power as Turing machines:

Random access machines

µ-recursive functions

any conventional programming language (Java, C, . . . )

Strengthening of the Church-Turing Thesis

Turing machines are not less efficient than other models of computation!
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Database Theory 4. Trakhtenbrot’s Theorem 4.2. Turing Machines and Undecidability

Halting Problem

HALTING

INSTANCE: A Turing machine M, an input string I .
QUESTION: Does M halt on I?

Theorem

HALTING is undecidable, i.e. there does not exist a Turing machine
that decides HALTING.

Undecidability applies already to the following variant of HALTING:

HALTING-ε

INSTANCE: A Turing machine M.
QUESTION: Does M halt on the empty string ε, i.e. does M reach qhalt ,
qyes , or qno when run on the initial tape contents . t t . . . ?
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Trakhtenbrot’s Theorem

Theorem (Trakhtenbrot’s Theorem, 1950)

For every relational vocabulary σ with at least one binary relation symbol,
it is undecidable to check whether an FO sentence ϕ over σ is finitely
satisfiable (i.e. has a finite model).

This theorem rules out perfect query optimization. Translated into
database terminology, it reads:

Theorem

For a database schema σ with at least one binary relation, it is
undecidable whether a Boolean FO or RA query Q over σ is satisfied by
at least one database.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Idea to prove Trakhtenbrot’s Theorem

Define a relational signature σ suitable for encoding finite
computations of a TM.

Given an arbitrary TM M, we construct an FO formula ϕM

“encoding” the computation of M and a halting condition, such
that:

ϕM has a finite model iff M halts on ε.

The undecidability of HALTING-ε together with the reduction
proves Trakhtenbrot’s Theorem!
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Proof of Trakhtenbrot’s Theorem

Assume a machine M = (K ,Σ, δ, qstart).

Simplifying assumptions:

σ may have several unary and binary relations
Exercise. We could easily encode them into a single binary relation.

Tape alphabet of M is Σ = {0, 1, .,t}
• Can always be obtained by simple binary encoding, e.g., let

Σ = {a1, . . . , ak} with k ≤ 8, then we use the following encoding:
a0 → 000, a1 → 001, a2 → 010, a3 → 011, etc.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

We use the following relations:

Binary < will encode a linear order (as usual, we’ll write x < y
instead of < (x , y)). The elements of this linear order will be used
to simulate both time instants and tape positions (= cell numbers).

Unary Min will denote the smallest element of <.
Note: instead of a relation Min we can use a constant min.

Binary Succ will encode the successor relation w.r.t. the linear order.

Binary T0,T1,T.,Tt are tape predicates: Tα(p, t) indicates that
cell number p at time t contains α.

Binary H will store the head position: H(p, t) indicates that the
R/W head at time t is at position p (i.e., at cell number p).

Binary S will store the state: S(q, t) indicates that at time instant t
the machine is in state q.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

We let ϕM be the conjunction ϕM = ϕ< ∧ ϕMin ∧ ϕcomp

that is explained next:

< must be a strict linear order (a total, transitive, antisymmetric,
irreflexive relation). Thus ϕ< is the conjunction of:

∀x , y .(x 6= y ↔ (x < y ∨ y < x))

∀x , y , z .((x < y ∧ y < z)→ x < z)

∀x , y .¬(x < y ∧ y < x)

We axiomatize the successor relation based on < as follows:

∀x , y .(Succ(x , y)↔ (x < y) ∧ ¬∃z .(x < z ∧ z < y))
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Min must contain the minimal element of <. Thus ϕMin is:

∀x , y .(Min(x)↔ (x = y ∨ x < y))

The formula ϕcomp is defined as

ϕcomp ≡ ∃y0, y1, ..., yk(ϕstates ∧ ϕrest),

where each variable yi corresponds to the state qi of M (we assume
the TM has k + 1 states), and

ϕstates ≡
∧

0≤i<j≤k

yi 6= yj .

Intuitively, using the ∃y0, y1, ..., yk prefix and ϕstates we associate to
each state of M a distinct domain element.

The formula ϕrest is the conjunction of several formulas defined next
(R1-R6) to describe the behaviour of M.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R1) Formula defining the initial configuration of M with . t t . . . on its
input tape.

• At time instant 0 the tape has . in the first cell of the tape:

∀p.(Min(p)→ T.(p, p))

• All other cells contain t at time 0:

∀p, t.((Min(t) ∧ ¬Min(p))→ Tt(p, t))

• The head is initially at the start position 0:

∀t(Min(t)→ H(t, t))

• The machine is initially in state qstart :

∀t(Min(t)→ S(ystart , t))
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R2) Formulas stating that in every configuration, each cell of the tape
contains exactly one symbol:

∀p, t.(T0(p, t) ∨ T1(p, t) ∨ T.(p, t) ∨ Tt(p, t)),

∀p, t.(¬Tσ1 (p, t) ∨ ¬Tσ2 (p, t)), for all σ1 6= σ2 ∈ Σ

(R3) A formula stating that at any time the machine is in exactly one state:

∀t.((
∨

0≤i≤k

S(yi , t)) ∧
∧

0≤i<j≤k

¬(S(yi , t) ∧ S(yj , t)))

(R4) A formula stating that at any time the head is at exactly one position:

∀t.
(
[∃p.(H(p, t)] ∧ ∀p, p′.[H(p, t) ∧ H(p′, t)→ p = p′]

)
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R5) Formulas describing the transitions. In particular, for each tuple
(q1, σ1, q2, σ2,D) such that δ(q1, σ1) = (q2, σ2,D), we have the
formula:

∀p, t
(

(H(p, t) ∧ Tσ1 (p, t) ∧ S(y1, t))→ ∃p′, t ′.
(
FollowTo(p, p′) ∧ Succ(t, t ′)∧

H(p′, t ′) ∧ S(y2, t
′) ∧ Tσ2 (p, t ′)∧

∀r .(r 6= p ∧ T0(r , t)→ T0(r , t ′))∧
∀r .(r 6= p ∧ T1(r , t)→ T1(r , t ′))∧
∀r .(r 6= p ∧ T.(r , t)→ T.(r , t ′))∧

∀r .(r 6= p ∧ Tt(r , t)→ Tt(r , t ′))
))

where:

FollowTo(p, p′) ≡

 Succ(p, p′) if D = +1,
Succ(p′, p) if D = −1,

p = p′ if D = 0.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

(R6) A formula ϕhalt saying that M halts on input I :

∃t.(S(yhalt , t) ∨ S(yyes , t) ∨ S(yno , t)).

This completes the description of the formula ϕM , which faithfully
describes the computation of M on the empty word ε.

By construction of ϕM , we have:

ϕM has a finite model iff M halts on ε

This completes the reduction from HALTING-ε and proves
Trakhtenbrot’s Theorem.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Further Consequences of Trakhtenbrot’s Theorem

The following problems can now be easily shown undecidable:

checking whether an FO query is domain independent,

checking query containment of two FO (or RA) queries;
recall that this means: ∀A : Q1(A) ⊆ Q2(A);

checking equivalence of two FO (or RA) queries.
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Database Theory 4. Trakhtenbrot’s Theorem 4.3. Trakhtenbrot’s Theorem

Proof Sketches

Undecidability of Domain Independence

By reduction from finite unsatisfiability:
Let ϕ be an arbitrary instance of finite unsatisfiability.
Construct the following instance ψ of Domain Independence:
w.l.o.g. let x be a variable not occurring in ϕ;
then we set ψ = ¬R(x) ∧ ϕ.

Undecidability of Query Containment and Query Equivalence

By reduction from finite unsatisfiability:
Let ϕ be an arbitrary instance of finite unsatisfiability; w.l.o.g., suppose
that ϕ has no free variables (i.e., simply add existential quantifiers).
Let χ be a trivially unsatisfiable query, e.g., χ = (∃x)(R(x) ∧ ¬R(x)).
Define the instance (ϕ, χ) of Query Containment or Query Equivalence.
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Database Theory 4. Trakhtenbrot’s Theorem 4.4. Finite vs. Infinite Domain

Finite vs. Infinite Domain

Motivation

Recall the following property of the formula ϕM in the proof of
Trakhtenbrot’s Theorem: ϕM has a finite model iff M halts on ε.

Question. What about arbitrary models (with possibly infinite domain)?

It turns out that the (”⇒” direction of the) equivalence
“ϕM has an arbitrary model iff M halts on ε”
does not hold. Indeed, suppose that M does not terminate on input ε.
Then ϕM has the following (infinite) model:

Choose as domain D the natural numbers {0, 1, . . . , } plus some
additional element a.

Choose the ordering such that a is greater than all natural numbers.

By assumption, M runs “forever” and we set S( , n), Tσi (n,m), and
H(n,m) according to the intended meaning of these predicates.

Moreover, we set S(qhalt , a) to true. This is consistent with the rest
since, intuitively, time instant a is “never reached”.
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Database Theory 4. Trakhtenbrot’s Theorem 4.4. Finite vs. Infinite Domain

Finite vs. Infinite Domain (2)

Question. How should we modify the problem reduction to prove
undecidability of the Entscheidungsproblem (i.e. validity or, equivalently,
unsatisfiability of FO without the restriction to finite models)?

Undecidability of the Entscheidungsproblem

We modify the problem reduction as follows: Transform the formula ϕM

into ϕ′M as follows: we replace the subformula ϕhalt in ϕM by ¬ϕhalt .
Then we have: ϕ′M has no model at all iff M halts on ε.

In other words, we have reduced HALTING-ε to Unsatisfiability.

Question. Does this reduction also work for finite unsatisfiability?

The answer is “no”, because of the the “⇒” direction.
Indeed, suppose that M does not terminate on input ε. Then, by the
above equivalence, ϕ′M has a model – but no finite model! Intuitively,
since M does not halt, any model refers to infinitely many time instants.
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Database Theory 4. Trakhtenbrot’s Theorem 4.4. Finite vs. Infinite Domain

Semi-Decidability

By the Completeness Theorem, we know that Validity or, equivalently,
Unsatisfiability of FO is semi-decidable.

Question. What about finite validity or finite unsatisfiability? (i.e., is an
FO formula true in every resp. no interpretation with finite domain.)

Observation

We have proved Trakhtenbrot’s Theorem by reduction of the
HALTING-ε problem to the finite satisfiability problem.

This reduction can of course also be seen as a reduction from
co-HALTING-ε to finite unsatisfiability.

We know that the co-problem of HALTING is not semi-decidable.
Hence, co-HALTING-ε is not semi-decidability either.

Therefore, finite unsatisfiability is not semi-decidable.
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Semi-Decidability (2)

Recall that satisfiability of FO is not semi-decidable. In contrast, we now
show that finite satisfiability is semi-decidable.

Proof idea

The evaluation of an FO formula in an interpretation is defined by a
recursive algorithm. This algorithm terminates over finite domains.

Hence, it is decidable if a given formula ϕ is satisfied by a finite
interpretation I.

Hence, for finite signatures, the problem whether an FO formula has
a model with a given finite cardinality is decidable.

Therefore, for finite signatures, finite satisfiability of FO is
semi-decidable.
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Database Theory 4. Trakhtenbrot’s Theorem 4.4. Finite vs. Infinite Domain

Learning Objectives

Short recapitulation of
• Turing machines,
• undecidability (the HALTING problem).

Formulation of Trakhtenbrot’s Theorem in terms of FO logic and
databases.

Proof of Trakhtenbrot’s Theorem.

Further undecidability results.

Differences between finite and infinite domain.
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