
Database Theory

Database Theory
VU 181.140, SS 2018

2. Introduction to Datalog

Reinhard Pichler

Institute of Logic and Computation
DBAI Group

TU Wien

13 March, 2018

Pichler 13 March, 2018 Page 1

Database Theory

Outline

2. Datalog
2.1 Motivation
2.2 Datalog - Syntax
2.3 Restrictions on the Datalog Syntax
2.4 Logical Semantics of Datalog
2.5 Operational Semantics of Datalog
2.6 Datalog with negation
2.7 Stratification

Pichler 13 March, 2018 Page 2

Database Theory 1. Datalog 1.1. Motivation

Motivation

SQL, relational algebra, relational calculus (both tuple and domain
relational calculus) are “relational complete”, i.e., they have the full
expressive power of relational algebra.

But: many interesting queries cannot be formulated in these
languages

Example: no recursive queries (SQL now offers a recursive construct)

Pichler 13 March, 2018 Page 3

Database Theory 1. Datalog 1.1. Motivation

Example

Relation parent(PARENT,CHILD), gives information on the
parent-child relationship of a certain group of people.

Problem: look for all ancestors of a certain person.

Solution: define relation ANCESTOR(X,Y): X is ancestor of Y by
generating one generation after the other (one join and one
projection each) and finally merge all generations (union):

grandparent(GRANDPARENT, GRANDCHILD) :=

π1,4(parent[CHILD = PARENT]parent)

grandgrandparent(GRANDGRANDPARENT,GRANDGRANDCHILD) :=

π1,4(parent[CHILD = GRANDPARENT]grandparent)

. . .

ancestor(ANCESTOR,NAME) := parent ∪ grandparent ∪
grandgrandparent ∪ ...

Pichler 13 March, 2018 Page 4

Database Theory 1. Datalog 1.1. Motivation

Possible Solution

Use of a programming language with an embedded relational
complete query language:

begin
result := {};
newtuples := parent;
while newtuples 6⊆ result do
begin

result := result ∪ newtuples;
newtuples := π1,4(newtuples[2 = 1]parent);

end;
ancestor := result

end.

procedural, needs knowledge of a programming language,
leaves little room for query optimization.

Pichler 13 March, 2018 Page 5

Database Theory 1. Datalog 1.1. Motivation

Better Solution: Datalog

Prolog-like logical query language,

allows recursive queries in a declarative way

Example:
• compute all ancestors on the basis of the relation parent

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

• use the ancestor predicate to compute the ancestors of a certain
person (Hans):
hans ancestor(X) :- ancestor(X,hans).

• compute the ancestors of a certain person (Hans) directly:
hans ancestor(X) :- parent(X,hans).

hans ancestor(X) :- hans ancestor(Y), parent(X,Y).

Pichler 13 March, 2018 Page 6

Database Theory 1. Datalog 1.2. Datalog - Syntax

Datalog - Syntax

<datalog_program> ::= <datalog_rule> |

<datalog_program><datalog_rule>

<datalog_rule> ::= <head> :- <body>

<head> ::= <literal>

<body> ::= <literal> | <body>, <literal>

<literal> ::= <relation_id>(<list_of_args>)

<list_of_args> ::= <term> | <list_of_args>, <term>

<term> ::= <symb_const> | <symb_var>

<symb_const> ::= <number> | <lcc> | <lcc><string>

<symb_var> ::= <ucc> | <ucc><string>

(lcc = lower_case_character; ucc = upper_case_character)

Pichler 13 March, 2018 Page 7

Database Theory 1. Datalog 1.3. Restrictions on the Datalog Syntax

Restrictions on the Datalog Syntax

<relation id>:

name of an existing relation of the database (parent) - can be used
only in rule bodies

name of a new relation defined by the datalog program (ancestor)

has always the same number of arguments.

comparison predicates:

=, <>, <, > are treated like known database relations.

variables:

each variable that appears in the head of a rule has to be bound in
the body

variables that appear as arguments of comparison predicates must
appear in the same body in literals without comparison predicates

A datalog query is also called datalog program

Pichler 13 March, 2018 Page 8

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

Logical Semantics of Datalog

We consider

R . . . datalog rule of the form L0 :− L1, L2, . . . , Ln,

Li . . . literal of the form pi (t1, . . . , tni)

x1, x2, . . . , x` variables in R

P . . . datalog program with the rules R1,R2, . . . ,Rm

We construct

R∗ = ∀x1∀x2 . . . ∀x`((L1 ∧ L2 ∧ · · · ∧ Ln)⇒ L0).

We assign to each datalog program P the (semantically) well-defined
formula P∗ as follows:

P∗ = R∗1 ∧ R∗2 ∧ · · · ∧ R∗m

Pichler 13 March, 2018 Page 9

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

We consider now

REL . . . a relation of the database.

〈t1, . . . , tn〉 . . . a tuple of the relation REL.
rel(t1, . . . , tn) . . . a fact

DB . . . database with relations REL1, REL2, . . . , RELk

We assign to each database relation REL the formula

REL∗ = conjunction of all facts

a relation is an unordered set of tuples

the assignment REL 7→ REL∗ is therefore not uniquely defined.

take an arbitrary order (e.g. lexicographical order) since conjunction
is associative and commutative.

We assign to each database DB the (semantically) well-defined formula
DB∗ as follows:

DB∗ = REL∗1 ∧ REL∗2 ∧ · · · ∧ REL∗k .

Pichler 13 March, 2018 Page 10

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

We have:

DB∗ is a conjunction of ground atoms (i.e., the facts) and

P∗ is a conjunction of formulas with implication

Let G be a conjunction of facts and formulas with implication. Then the
set cons(G) of facts that follow from G is uniquely defined.

In other words, we have cons(G) = {A | A is a fact with G |= A}.

Definition

The semantics of a datalog program P is defined as the function M[P],
that assigns to each database DB the set of all facts that follow from the
formula “P∗ ∧ DB∗”

M[P] : DB → cons(P∗ ∧ DB∗)

Pichler 13 March, 2018 Page 11

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

Example

Consider the database DB with relations woman(NAME), man(NAME),

parent(PARENT, CHILD) and the datalog program:

grandpa(X,Y) :- man(X), parent(X,Z), parent(Z,Y).

woman (NAME) man (NAME) parent (PARENT CHILD)
Grete Hans Hans Linda
Linda Karl Grete Linda
Gerti Michael Karl Michael

Linda Michael
Karl Gerti
Linda Gerti

Pichler 13 March, 2018 Page 12

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

Let us compute DB∗, P∗ and cons(P∗ ∧ DB∗):

DB∗ = REL∗1 ∧ · · · ∧ REL∗k with RELi
∗ = conjunction of all facts

DB∗ = woman(grete) ∧ woman(linda) ∧ woman(gerti) ∧
man(hans) ∧man(karl) ∧man(michael) ∧
parent(hans, linda) ∧ parent(grete, linda) ∧
parent(karl ,michael) ∧ parent(linda,michael) ∧
parent(karl , gerti) ∧ parent(linda, gerti).

P∗ = R∗1 ∧ · · · ∧ R∗m with R∗i = ∀x1∀x2 . . . ∀x`((L1 ∧ · · · ∧ Ln)⇒ L0).

P∗ = ∀X∀Y ∀Z : ((man(X) ∧ parent(X, Z) ∧ parent(Z, Y)) ⇒
grandpa(X, Y)).

Pichler 13 March, 2018 Page 13

Database Theory 1. Datalog 1.4. Logical Semantics of Datalog

The new facts in cons(P∗ ∧ DB∗):

grandpa(hans,michael), grandpa(hans,gerti).

The datalog program P with

P = grandpa(X,Y) :- man(X), parent(X,Z), parent(Z,Y)

defines a new relation grandpa with the following tuples:

grandpa (X Y)
Hans Michael
Hans Gerti

Pichler 13 March, 2018 Page 14

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Operational Semantics of Datalog

Datalog rules are seen as inference rules,

a fact that appears in the head of a rule can be deduced, if the facts
in the body of the rule can be deduced.

Example:

facts: parent(linda,michael), parent(linda,gerti)
rule: siblings(michael,gerti) :-

parent(linda,michael), parent(linda,gerti).

the following fact can be deduced:

siblings(michael, gerti)

Pichler 13 March, 2018 Page 15

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Rules with variables

A rule R with variables represents all variable-free rules we get from
R by substituting the variables with the constant symbols.

The constant symbols are taken from the database DB and the
program P.

A variable-free rule resulting from such a substitution is called
ground instance of R with respect to P and DB

We write Ground(R,P,DB) to denote the set of all ground
instances over P and DB of R.

Pichler 13 March, 2018 Page 16

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Example:

Compute all relations between siblings with the following rule:

siblings(Y, Z) : − parent(X, Y), parent(X, Z), Y <> Z.

All 63 ground instances of this rule with respect to P and DB from above
are (Note that there are 6 constant symbols: {grete, linda, gerti,

hans, michael, karl}):

siblings(grete, grete) : − parent(grete, grete), parent(grete, grete),

grete <> grete (X = Y = Z = grete)

siblings(grete, linda) : − parent(grete, grete), parent(grete, linda),

grete <> linda (X = Y = grete,Z = linda)

· · · · · ·
siblings(karl, karl) : − parent(karl, karl), parent(karl, karl),

karl <> karl (X = Y = Z = karl)

Pichler 13 March, 2018 Page 17

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Idea: execution of a datalog program P on a database DB:
iterative deduction of facts until saturation is reached
(fixpoint)

Formalization: define a fixpoint operator

define Operator TP(DB): augments DB with all facts, that can be
deduced in one step by applying the rules from P to DB.

TP(DB) = DB ∪
⋃
R∈P

{L0 | L0 :− L1, . . . , Ln ∈ Ground(R;P,DB),

L1, . . . , Ln ∈ DB}

TP is called the immediate consequence operator.

T i
P(DB) = TP(T i−1

P (DB)) iterated application of TP .

Pichler 13 March, 2018 Page 18

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

T 0
P(DB) = DB

T 1
P(DB) = TP(T 0

P(DB)) = TP(DB)

= DB ∪
⋃
R∈P

{L0 | L0 : −L1, . . . , Ln ∈ Ground(R;P,DB),

L1, . . . , Ln ∈ DB}
T 2
P(DB) = TP(T 1

P(DB)) = TP(TP(DB))

· · · · · ·
T i
P(DB) = TP(T i−1

P (DB)) = TP(. . .TP(DB))

· · · · · ·

Pichler 13 March, 2018 Page 19

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Properties of TP(DB)
The set of facts is monotonically increasing i.e.:

T i
P(DB) ⊆ T i+1

P (DB)

the sequence 〈T i
P(DB)〉 converges finitely:

there exists n with Tm
P (DB) = T n

P(DB) for all m ≥ n.

Tω
P (DB) . . . set of facts, to which 〈T i

P(DB)〉 converges is the result
of the application of P to DB.

The operational semantics of a datalog program P assigns to each
database DB the set of facts Tω

P (DB):

O[P] : DB → Tω
P (DB).

Theorem (Equivalence of semantics)

Assume a program P. Then it holds that M[P] = O[P]. In other words,
for any database DB, we have: cons(P∗ ∧ DB∗) = Tω

P (DB)

Pichler 13 March, 2018 Page 20

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Proof of Theorem
Let P be a program and DB a database. We show

cons(P∗ ∧ DB∗) = Tω
P (DB).

(1) We first show Tω
P (DB) ⊆ cons(P∗ ∧ DB∗). By induction on i , we

show that T i
P(DB) ⊆ cons(P∗ ∧ DB∗) for every i ≥ 0. Note that this

includes the case where i = ω.

Base case. Assume i = 0. Take a fact L ∈ T 0
P(DB). Then by definition

of T 0
P(DB), L ∈ DB. By definition, DB∗ is a conjunction of literals and

L occurs in it. Hence, by classical logic, L ∈ cons(P∗ ∧ DB∗).

The inductive step. Suppose T i
P(DB) ⊆ cons(P∗ ∧ DB∗) for i ≥ 0. We

show that T i+1
P (DB) ⊆ cons(P∗ ∧ DB∗). Recall that

T i+1
P (DB) = TP(T i

P(DB)). Thus by the definition of TP ,

T i+1
P (DB) = T i

P(DB) ∪
⋃
R∈P

{L0 | L0 :− L1, . . . , Ln ∈ Ground(R,P,DB),

L1, . . . , Ln ∈ T i
P(DB)}

Pichler 13 March, 2018 Page 21

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

By the induction hypothesis, T i
P(DB) ⊆ cons(P∗ ∧ DB∗). Thus it

remains to show that L0 ∈ cons(P∗ ∧ DB∗) for any rule R ∈ P such that
there is L0 :− L1, . . . , Ln ∈ Ground(R,P,DB) with L1, . . . , Ln ∈ T i

P(DB).

Assume such a rule R = L′0 :− L′1, . . . , L
′
n in P, and suppose π is the

substitution of variables with constants such that applying π to R results
in L0 :− L1, . . . , Ln, i.e. π(L′j) = Lj for j ∈ {0, . . . , n}.

By construction, in P∗ ∧ DB∗ we have the conjunct

R∗ = ∀x1∀x2 . . . ∀x`((L′1 ∧ L′2 ∧ · · · ∧ L′n)⇒ L′0).

Thus, by employing the semantics of classical logic, for any variable
substitution π′ such that {π′(L′1), . . . , π′(L′n)} ⊆ cons(P∗ ∧DB∗) we also
have π′(L′0) ∈ cons(P∗ ∧ DB∗). Since π is a substitution such that
{π(L′1), . . . , π(L′n)} = {L1, . . . , Ln} ⊆ cons(P∗ ∧ DB∗) by the induction
hypothesis, we get π(L′0) = L0 ∈ cons(P∗ ∧ DB∗).

Pichler 13 March, 2018 Page 22

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

(2) We show cons(P∗ ∧ DB∗) ⊆ Tω
P (DB). To this end, we prove that

L 6∈ Tω
P (DB) implies L 6∈ cons(P∗ ∧ DB∗), for any fact L. We thus

simply show that Tω
P (DB) is a model of P∗ ∧ DB∗.

This suffices because of the following simple property: if M is a model of
a formula F , then any fact L 6∈ M is not a logical consequence of F (as
witnessed by M itself).

Pichler 13 March, 2018 Page 23

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Tω
P (DB) is a model of DB∗ because DB = T 0

P(DB) ⊆ Tω
P (DB) by the

definition of Tω
P (DB).

It remains to show that Tω
P (DB) is also a model of P∗. Consider an

arbitrary rule R ∈ P. We have to show that Tω
P (DB) is a model of R∗

with R∗ = ∀x1∀x2 . . . ∀x`((L1 ∧ L2 ∧ · · · ∧ Ln)⇒ L0).

Consider an arbitrary (ground) variable assigment π on the variables
x1, . . . , x`. The only non-trivial case is that all facts π(L1), . . . , π(Ln)
are true in Tω

P (DB), i.e., {π(L1), . . . , π(Ln)} ⊆ Tω
P (DB).

We have to show that then also π(L0) is true in Tω
P (DB), i.e.,

π(L0) ∈ Tω
P (DB).

We know π(L0) :− π(L1), . . . , π(Ln) ∈ Ground(R,P,DB). Thus by the
definition of TP , π(L0) ∈ TP(Tω

P (DB)). Since TP(Tω
P (DB)) = Tω

P (DB)
by the definition of Tω

P (DB), we obtain π(L0) ∈ Tω
P (DB).

Pichler 13 March, 2018 Page 24

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Algorithm: INFER

INPUT: datalog program P, database DB
OUTPUT: Tω

P (DB) (= cons(P∗ ∧ DB∗))

STEP 1. GP :=
⋃

R∈P Ground(R;P,DB),
(* GP . . . set of all ground instances *)

STEP 2. OLD := {}; NEW := DB;

STEP 3. while NEW 6= OLD do begin
OLD := NEW ; NEW := ComputeTP(OLD);

end;

STEP 4. output OLD.

Pichler 13 March, 2018 Page 25

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Subroutine ComputeTP

INPUT: Set of facts OLD
OUTPUT: TP(OLD)

STEP 1. F := OLD;

STEP 2. for each rule L0 :− L1, . . . , Ln in GP do
if L1, . . . , Ln ∈ OLD
then F := F ∪ { L0};

STEP 3. return F ;

Pichler 13 March, 2018 Page 26

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Example

Apply the following program P to calculate all ancestors of the above
given database DB.

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Step 1. (INFER) build GP

GP = { ancestor(grete,grete) :- parent(grete,grete),

ancestor(grete,linda) :- parent(grete,linda),

. . . ,
ancestor(grete,grete) :- parent(grete,grete),

ancestor(grete,grete),

ancestor(grete,grete) :- parent(grete,linda),

ancestor(linda,grete),

. . . }.
(There are 62 + 63 = 252 ground instances.)

Pichler 13 March, 2018 Page 27

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

Step 2. OLD := {}, NEW := DB;

Step 3. OLD 6= NEW

Cycle 1: OLD := DB,NEW := TP(OLD) = TP(DB)
TP(OLD) = OLD ∪ {ancestor(A,B) | parent(A,B) ∈ DB};

Cycle 2: OLD := TP(DB),NEW := TP(OLD) = TP(TP(DB))
TP(OLD) =
OLD ∪ {ancestor(hans, michael), ancestor(hans, gerti),

ancestor(grete, michael), ancestor(grete, gerti)}.

Cycle 3: TP(OLD) = OLD, there are no new facts

Step 4. Output of OLD.

The result corresponds to the extension of DB with the new table
ancestor

Pichler 13 March, 2018 Page 28

Database Theory 1. Datalog 1.5. Operational Semantics of Datalog

parent (PARENT CHILD) ancestor (ANCESTOR NAME)
Hans Linda Hans Linda
Grete Linda Grete Linda
Karl Michael Karl Michael
Linda Michael Linda Michael
Karl Gerti Karl Gerti
Linda Gerti Linda Gerti

Hans Michael
Hans Gerti
Grete Michael
Grete Gerti

Pichler 13 March, 2018 Page 29

Database Theory 1. Datalog 1.6. Datalog with negation

Datalog with negation

Without negation, datalog is not relational complete because
set difference (R − S) cannot be expressed.

We introduce the negation (not) in bodies of rules.

Restriction on the application of the negation:

A relation R must not be defined on the basis of its
negation.

Check for this constraint: with graph-theoretic methods.

Pichler 13 March, 2018 Page 30

Database Theory 1. Datalog 1.6. Datalog with negation

Graph representation

Let P be a datalog program with negated literals in the body of rules

Definition: dependency graph

DEP(P) is defined as the directed graph, with:

nodes . . . predicates (predicate symbols) p in P,

edges . . . p → q, if there exists a rule in P where p is the head atom
and q appears in the body (meaning: “p depends on q”).

Mark an edge p → q of DEP(P) with a star “*”, if q in the body is
negated.

Definition

A datalog program P with negation is called valid if the graph DEP(P)
has no directed cycle that contains an edge marked with “*”.

Such programs are called stratified, since they can be divided into strata
with respect to the negation.

Pichler 13 March, 2018 Page 31

Database Theory 1. Datalog 1.6. Datalog with negation

Example

The following program P with the rules:

husband(X) :- man(X), married(X).

bachelor(X) :- man(X), not husband(X).

bachelor man

husband married

*

is stratified.

Pichler 13 March, 2018 Page 32

Database Theory 1. Datalog 1.6. Datalog with negation

The program P with the rules:

husband(X) :- man(X), not bachelor(X).

bachelor(X) :- man(X), not husband(X).

bachelor man

husband

*

*
is not stratified.

Pichler 13 March, 2018 Page 33

Database Theory 1. Datalog 1.7. Stratification

Stratification

Definition

A stratum is composed by the maximal set of predicates for which the
following holds:

1 if a predicate p appears in the head of a rule, that contains a negated
predicate q in the body, then p is in a higher stratum than q.

2 if a predicate p appears in the head of a rule, that contains an
unnegated (positive) predicate q in the body, then p is in a stratum
at least as high as q.

Pichler 13 March, 2018 Page 34

Database Theory 1. Datalog 1.7. Stratification

Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the
classification of the predicates into strata.

METHOD:

1 initialize the strata for all predicates with 1.

2 do for all rules R with predicate p in the head:
• if (i) the body of R contains a negated predicate q,

(ii) the stratum of p is i , and
(iii) the stratum of q is j with i ≤ j , then set i := j + 1.

• if (i) the body of R contains an unnegated predicate q,
(ii) the stratum of p is i , and
(iii) the stratum of q is j with i < j , then set i := j .

until:
• status is stable ⇒ program is stratified.
• stratum n > # predicates ⇒ not stratified.

Pichler 13 March, 2018 Page 35

Database Theory 1. Datalog 1.7. Stratification

Example

Consider R, S relations of the database DB, P:

v(X,Y) :- r(X,X), r(Y,Y).

u(X,Y) :- s(X,Y), s(Y,Z), not v(X,Y).

w(X,Y) :- not u(X,Y), v(Y,X).

s v r

u

w w level 3

u level 2

r, s, v level 1

*

*

Pichler 13 March, 2018 Page 36

Database Theory 1. Datalog 1.7. Stratification

Semantics of datalog with negation

Note: when calculating the strata of a datalog program with
negation the following holds:

Step 1: computation of all relations of the first stratum.
Step i : computation of all relations that belong to stratum i .
⇒ the relations computed in step i − 1 are known in

step i .

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R

Step 2: compute U from S and V

Step 3: compute W from U and V

Pichler 13 March, 2018 Page 37

Database Theory 1. Datalog 1.7. Stratification

Properties of datalog with negation

Datalog with negation is relational complete:
• The difference D = R − S of two (e.g. binary) relations R and S :

d(X,Y) :- r(X,Y), not s(X,Y).

syntactical restrictions of datalog with negation:

all variables that appear in the body within a negated
literal must also appear in a positive (unnegated) literal

Pichler 13 March, 2018 Page 38

Database Theory 1. Datalog 1.7. Stratification

Example

Let DB be a database that contains information on graphs, with relations
v(X), saying X is a node and e(X,Y) saying there is an edge from X to Y.
Write a datalog program that computes all pairs of nodes (X,Y), where
X is a source, Y is a sink and X is connected to Y.

p(X,Y) :- source(X), sink(Y), connection(X,Y).

connection(X,X) :- v(X).

connection(X,Y) :- e(X,Z), connection(Z,Y).

n_source(X) :- e(Y,X).

source(X) :- v(X), not n_source(X).

n_sink(X) :- e(X,Y).

sink(X) :- v(X), not n_sink(X).

Pichler 13 March, 2018 Page 39

Database Theory 1. Datalog 1.7. Stratification

d

c e

b f

a p

source sink

n source n sink connection

* *
n source:
n sink:
connection:
source:
sink:
p:

b, c, e, f
a, b, c, d
(a,a), . . . , (f,f), (a,b), (a,c), (a,e), (a,f), (b,c), (b,e), (c,e), (d,c), (d,e)
a, d
e, f
(a,e), (a,f), (d,e)

Pichler 13 March, 2018 Page 40

Database Theory 1. Datalog 1.7. Stratification

Learning objectives

Motivation for Datalog (recursive queries)

Syntax of Datalog

Semantics of Datalog:
• logical semantics,
• operational semantics.

Datalog with negation:
• the need for negation,
• the notions of dependency graph and stratification,
• semantics of Datalog with negation.

Pichler 13 March, 2018 Page 41

	Datalog
	Motivation
	Datalog - Syntax
	Restrictions on the Datalog Syntax
	Logical Semantics of Datalog
	Operational Semantics of Datalog
	Datalog with negation
	Stratification

