
1/113

Initiation à la vérification

Basics of Verification

http://mpri.master.univ-paris7.fr/C-1-22.html

Paul Gastin

Paul.Gastin@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~gastin/

MPRI – M1
2010 – 2011

http://mpri.master.univ-paris7.fr/C-1-22.html
http://www.lsv.ens-cachan.fr/~gastin/

2/113

Outline

1 Introduction

Bibliography

Models

Specifications

Linear Time Specifications

Branching Time Specifications

3/113

Need for formal verifications methods

Critical systems
◮ Transport

◮ Energy

◮ Medicine

◮ Communication

◮ Finance

◮ Embedded systems

◮ . . .

4/113

Disastrous software bugs

Mariner 1 probe, 1962

See http://en.wikipedia.org/wiki/Mariner_1

◮ Destroyed 293 seconds after launch

◮ Missing hyphen in the data or program? No!

◮ Overbar missing in the mathematical
specification:

Ṙn: nth smoothed value of the time
derivative of a radius.
Without the smoothing function indicated by
the bar, the program treated normal minor
variations of velocity as if they were serious,
causing spurious corrections that sent the
rocket off course.

http://en.wikipedia.org/wiki/Mariner_1

5/113

Disastrous software bugs
Ariane 5 flight 501, 1996

See http://en.wikipedia.org/wiki/Ariane_5_Flight_501

◮ Destroyed 37 seconds after launch (cost: 370 millions
dollars).

◮ data conversion from a 64-bit floating point to 16-bit
signed integer value caused a hardware exception
(arithmetic overflow).

◮ Efficiency considerations had led to the disabling of the
software handler (in Ada code) for this error trap.

◮ The fault occured in the inertial reference system of Ariane
5. The software from Ariane 4 was re-used for Ariane 5
without re-testing.

◮ On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation that had not occurred.

◮ The error occurred in a realignment function which was not
useful for Ariane 5.

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

6/113

Disastrous software bugs
Spirit Rover (Mars Exploration), 2004

See http://en.wikipedia.org/wiki/Spirit_rover

◮ Landed on January 4, 2004.

◮ Ceased communicating on January 21.

◮ Flash memory management anomay:
too many files on the file system

◮ Resumed to working condition on February 6.

http://en.wikipedia.org/wiki/Spirit_rover

7/113

Disastrous software bugs

Other well-known bugs
◮ Therac-25, at least 3 death by massive overdoses of radiation.

Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Therac-25

◮ Electricity blackout, USA and Canada, 2003, 55 millions people.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003

◮ Pentium FDIV bug, 1994.
Flaw in the division algorithm, discovered by Thomas Nicely.
See http://en.wikipedia.org/wiki/Pentium_FDIV_bug

◮ Needham-Schroeder, authentication protocol based on symmetric encryption.
Published in 1978 by Needham and Schroeder
Proved correct by Burrows, Abadi and Needham in 1989
Flaw found by Lowe in 1995 (man in the middle)
Automatically proved incorrect in 1996.
See http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003
http://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

8/113

Formal verifications methods

Complementary approaches
◮ Theorem prover

◮ Model checking

◮ Static analysis

◮ Test

9/113

Model Checking

◮ Purpose 1: automatically finding software or hardware bugs.

◮ Purpose 2: prove correctness of abstract models.

◮ Should be applied during design.

◮ Real systems can be analysed with abstractions.

E.M. Clarke E.A. Emerson J. Sifakis

Prix Turing 2007.

10/113

Model Checking
3 steps

◮ Constructing the model M (transition systems)

◮ Formalizing the specification ϕ (temporal logics)

◮ Checking whether M |= ϕ (algorithmics)

Main difficulties
◮ Size of models (combinatorial explosion)

◮ Expressivity of models or logics

◮ Decidability and complexity of the model-checking problem

◮ Efficiency of tools

Challenges
◮ Extend models and algorithms to cope with more systems.

Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, . . .

◮ Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, . . .

11/113

References
Bibliography

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

12/113

Outline

Introduction

2 Models

Transition systems

. . . with variables

Concurrent systems

Synchronization and communication

Specifications

Linear Time Specifications

Branching Time Specifications

13/113

Constructing the model

Example: Men, Wolf, Goat, Cabbage

Model = Transition system
◮ State = who is on which side of the river

◮ Transition = crossing the river

◮ Specification
Safety: Never leave WG or GC alone
Liveness: Take everyone to the other side of the river.

14/113

Transition system

MWGC WC MG

MWC GC MWG W MGC

MGC W MWG CG MWC

MG WC MWGC

15/113

Transition system or Kripke structure
Definition: TS M = (S,Σ, T, I,AP, ℓ)

◮ S: set of states (finite or infinite)

◮ Σ: set of actions

◮ T ⊆ S × Σ× S: set of transitions

◮ I ⊆ S: set of initial states

◮ AP: set of atomic propositions

◮ ℓ : S → 2AP: labelling function.

Example: Digicode ABA

1 2 3 4

OPEN

A B A

B,C A

C

B,C

Every discrete system may be described with a TS.

16/113

Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)

◮ Programming languages

◮ Boolean circuits

◮ Modular description, e.g., parallel compositions
problems: concurrency, synchronization, communication, atomicity, fairness, ...

◮ Petri nets (intermediate level)

◮ Transition systems (intermediate level)
with variables, stacks, channels, ...
synchronized products

◮ Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.

17/113

Transition systems with variables

Definition: TSV M = (S,Σ,V, (Dv)v∈V , T, I,AP, ℓ)

◮ V : set of (typed) variables, e.g., boolean, [0..4], . . .

◮ Each variable v ∈ V has a domain Dv (finite or infinite)

◮ Guard or Condition: unary predicate over D =
∏

v∈V Dv

Symbolic descriptions: x < 5, x+ y = 10, ...

◮ Instruction or Update: map f : D → D
Symbolic descriptions: x := 0, x := (y + 1)2, ...

◮ T ⊆ S × (2D × Σ×DD)× S

Symbolic descriptions: s
x<50,?coin,x:=x+coin
−−−−−−−−−−−−−−→ s′

◮ I ⊆ S × 2D

Symbolic descriptions: (s0, x = 0)

Example: Vending machine
◮ coffee: 50 cents, orange juice: 1 euro, ...

◮ possible coins: 10, 20, 50 cents

◮ we may shuffle coin insertions and drink selection

18/113

Transition systems with variables
Semantics: low level TS

◮ S′ = S ×D

◮ I ′ = {(s, ν) | ∃(s, g) ∈ I with ν |= g}

◮ Transitions: T ′ ⊆ (S ×D)× Σ× (S ×D)

s
g,a,f
−−−→ s′ ∧ ν |= g

(s, ν)
a
−→ (s′, f(ν))

SOS: Structural Operational Semantics

◮ AP′: we may use atomic propositions in AP or guards in 2D such as x > 0.

Programs = Kripke structures with variables
◮ Program counter = states

◮ Instructions = transitions

◮ Variables = variables

Example: GCD

19/113

TS with variables . . .

Example: Digicode

1 2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++

20/113

. . . and its semantics (n = 2)

Example: Digicode

1,0 2,0 3,0 4,0

OPEN

A B A

1,1 2,1 3,1 4,1

OPEN

A B A

B,C
C B,CA

1,2 2,2 3,2 4,2

OPEN

A B A

B,C
C B,CA

5,3 ERROR

B,C
A,C

B,C

21/113

Only variables
The state is nothing but a special variable: s ∈ V with domain Ds = S.

Definition: TSV M = (V, (Dv)v∈V , T, I,AP, ℓ)

◮ D =
∏

v∈V Dv,

◮ I ⊆ D, T ⊆ D ×D

Symbolic representations with logic formulae
◮ I given by a formula ψ(ν)

◮ T given by a formula ϕ(ν, ν′)
ν: values before the transition
ν′: values after the transition

◮ Often we use boolean variables only: Dv = {0, 1}

◮ Concise descriptions of boolean formulae with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter

b′0 = ¬b0
b′1 = b0 ⊕ b1
b′2 = (b0 ∧ b1)⊕ b2

22/113

Symbolic representation

Example: Logical representation

1 2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++

δB = s = 1 ∧ cpt < n ∧ s′ = 1 ∧ cpt′ = cpt+ 1
∨ s = 1 ∧ cpt = n ∧ s′ = 5 ∧ cpt′ = cpt+ 1
∨ s = 2 ∧ s′ = 3 ∧ cpt′ = cpt

∨ s = 3 ∧ cpt < n ∧ s′ = 1 ∧ cpt′ = cpt+ 1
∨ s = 3 ∧ cpt = n ∧ s′ = 5 ∧ cpt′ = cpt+ 1

23/113

Modular description of concurrent systems

M =M1 ‖M2 ‖ · · · ‖Mn

Semantics
◮ Various semantics for the parallel composition ‖

◮ Various communication mechanisms between components:
Shared variables, FIFO channels, Rendez-vous, ...

◮ Various synchronization mechanisms

Example: Elevator with 1 cabin, 3 doors, 3 calling devices

24/113

Modular description of concurrent systems

Example: Elevator

◮ Cabin: 0 1 2

◮ Door for level i: Closed Opened

◮ Call for level i: False True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3× 23 × 23 = 192 states.

25/113

Synchronized products
Definition: General product

◮ Components: Mi = (Si,Σi, Ti, Ii,APi, ℓi)

◮ Product: M = (S,Σ, T, I,AP, ℓ) with

S =
∏

i Si, Σ =
∏

i(Σi ∪ {ε}), and I =
∏

i Ii

T = {(p1, . . . , pn)
(a1,...,an)
−−−−−−→ (q1, . . . , qn) | for all i, (pi, ai, qi) ∈ Ti or

pi = qi and ai = ε}
AP =

⊎

iAPi and ℓ(p1, . . . , pn) =
⋃

i ℓ(pi)

Synchronized products: restrictions of the general product.

Parallel compositions

◮ Synchronous: Σsync =
∏

i
Σi

◮ Asynchronous: Σsync =
⊎

i
Σ′
i with Σ′

i = {ε}
i−1 × Σi × {ε}n−i

Synchronizations

◮ By states: Ssync ⊆ S

◮ By labels: Σsync ⊆ Σ

◮ By transitions: Tsync ⊆ T

26/113

Example: Printer manager
Example: Asynchronous product
Synchronization by states: (P, P) is forbidden

Idle Wait Print

Idle

Wait

Print

I, I I, W I, P

W, I W, W W, P

P, I P, W

27/113

Example: digicode
Example: Synchronous product
Synchronization by transitions

1 2 3 4

OPEN

A B A

B,C A

C

B,C

1,0 2,0 3,0 4,0

OPEN

A B A

1,1 2,1 3,1 4,1

OPEN

A B A

B,C
C B,CA

1,2 2,2 3,2 4,2

OPEN

A B A

B,C
C B,CA

1,3

ERROR

2,3

ERROR

B,C
C B,CA

0

1

2

3

ERROR

28/113

Synchronization by Rendez-vous
Synchronization by transitions is universal but too low-level.

Definition: Rendez-vous
◮ !m sending message m

◮ ?m receiving message m

◮ SOS: Structural Operational Semantics

Local actions
s1

a1−→1 s
′
1

(s1, s2)
a1−→ (s′1, s2)

s2
a2−→1 s

′
2

(s1, s2)
a2−→ (s1, s

′
2)

Rendez-vous
s1

!m
−−→1 s

′
1 ∧ s2

?m
−−→2 s

′
2

(s1, s2)
m
−→ (s′1, s

′
2)

s1
?m
−−→1 s

′
1 ∧ s2

!m
−−→2 s

′
2

(s1, s2)
m
−→ (s′1, s

′
2)

◮ It is a kind of synchronization by actions.

◮ Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
◮ ?up is uncontrollable for the cabin

◮ ?leavei is uncontrollable for door i

◮ ?call0 is uncontrollable for the system

29/113

Example: Elevator

Example: Synchronization by Rendez-vous

Cabin: 0 1 2

?up
!leave0 !reach1

?up
!leave1 !reach2

?up

?down
!leave2 !reach1

?down
!leave1 !reach0

?down

Door for level i: Closed Opened

?reachi

?reachi

?leavei

?leavei

We should design the controller

30/113

Shared variables

Definition: Asynchronous product + shared variables

s̄ = (s1, . . . , sn) denotes a tuple of states
ν ∈ D =

∏

v∈V Dv is a valuation of variables.

Semantics (SOS)
ν |= g ∧ si

g,a,f
−−−→ s′i ∧ s

′
j = sj for j 6= i

(s̄, ν)
a
−→ (s̄′, f(ν))

Example: Mutual exclusion for 2 processes satisfying
◮ Safety: never simultaneously in critical section (CS).

◮ Liveness: if a process wants to enter its CS, it eventually does.

◮ Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at
most once before process 1 does.

using shared variables but no synchronization mechanisms: the atomicity is

◮ testing or reading or writing a single variable at a time

◮ no test-and-set: {x = 0;x := 1}

31/113

Peterson’s algorithm (1981)

Process i:

loop forever

req[i] := true; turn := 1-i

wait until (turn = i or req[1-i] = false)

Critical section

req[i] := false

1 2

Waiti

3

Waiti

4

CSi

req[i]:=true

turn:=1-i

if turn=i

if req[1-i]=false

req[i]:=false

elseuse

idle

Exercise:
◮ Draw the concrete TS assuming the first two assignments are atomic.

◮ Is the algorithm still correct if we swape the first two assignments?

32/113

Atomicity

Example:

Intially x = 1 ∧ y = 2
Program P1: x := x+ y ‖ y := x+ y

Program P2:

LoadR1, x
AddR1, y

StoreR1, x

 ‖

LoadR2, x
AddR2, y

StoreR2, y

Assuming each instruction is atomic, what are the possible results of P1 and P2?

33/113

Atomicity

Definition: Atomic statements: atomic(ES)

Elementary statements (no loops, no communications, no synchronizations)

ES ::= skip | await c | x := e | ES ;ES | ES 2 ES

| when c do ES | if c then ES else ES

Atomic statements: if the ES can be fully executed then it is executed in one step.

(s̄, ν)
ES−−−→∗ (s̄′, ν′)

(s̄, ν)
atomic(ES)
−−−−−−−→ (s̄′, ν′)

Example: Atomic statements
◮ atomic(x = 0;x := 1) (Test and set)

◮ atomic(y := y − 1; await(y = 0); y := 1) is equivalent to await(y = 1)

34/113

Channels

Example: Leader election

We have n processes on a directed ring, each having a unique id ∈ {1, . . . , n}.

send(id)

loop forever

receive(x)

if (x = id) then STOP fi

if (x > id) then send(x)

35/113

Channels

Definition: Channels
◮ Declaration:

c : channel [k] of bool size k
c : channel [∞] of int unbounded
c : channel [0] of colors Rendez-vous

◮ Primitives:
empty(c)
c!e add the value of expression e to channel c
c?x read a value from c and assign it to variable x

◮ Domain: Let Dm be the domain for a single message.

Dc = Dk
m size k

Dc = D∗
m unbounded

Dc = {ε} Rendez-vous

◮ Politics: FIFO, LIFO, BAG, . . .

36/113

Channels

Semantics: (lossy) FIFO

Send
si

c!e
−−→ s′i ∧ ν

′(c) = ν(e) · ν(c)

(s̄, ν)
c!e
−−→ (s̄′, ν′)

Receive
si

c?x
−−→ s′i ∧ ν(c) = ν′(c) · ν′(x)

(s̄, ν)
c?e
−−→ (s̄′, ν′)

Lossy send
si

c!e
−−→ s′i

(s̄, ν)
c!e
−−→ (s̄′, ν)

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.

37/113

High-level descriptions

Summary
◮ Sequential program = transition system with variables

◮ Concurrent program with shared variables

◮ Concurrent program with Rendez-vous

◮ Concurrent program with FIFO communication

◮ Petri net

◮ . . .

38/113

Models: expressivity versus decidability

Definition: (Un)decidability

◮ Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

◮ Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Definition: Some infinite state models are decidable
◮ Petri nets. Several unbounded integer variables but no zero-test.

◮ Pushdown automata. Model for recursive procedure calls.

◮ Timed automata.

◮ . . .

39/113

Outline

Introduction

Models

3 Specifications

Linear Time Specifications

Branching Time Specifications

40/113

Static and dynamic properties

Definition: Static properties

Example: Mutual exclusion

Safety properties are often static.

They can be reduced to reachability.

Definition: Dynamic properties

Example: Every request should be eventually granted.

∧

i

∀t, (Calli(t) −→ ∃t
′ ≥ t, (atLeveli(t

′) ∧ openDoori(t
′)))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

∀t∀t′, (Calli(t) ∧ t ≤ t
′ ∧ atLeveli(t

′)) −→

∃t ≤ t′′ ≤ t′, (atLeveli(t′′) ∧ openDoori(t
′′)))

41/113

First Order specifications

First order logic
◮ These specifications can be written in FO(<).

◮ FO(<) has a good expressive power.
. . . but FO(<)-formulae are not easy to write and to understand.

◮ FO(<) is decidable.
. . . but satisfiability and model checking are non elementary.

Definition: Temporal logics
◮ no variables: time is implicit.

◮ quantifications and variables are replaced by modalities.

◮ Usual specifications are easy to write and read.

◮ Good complexity for satisfiability and model checking problems.

42/113

Linear versus Branching
Let M = (S, T, I,AP, ℓ) be a Kripke structure.

Definition: Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): σ = s0 → s1 → s2 → · · · with si → si+1 ∈ T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence

ℓ(σ) = ℓ(s0)→ ℓ(s1)→ ℓ(s2)→ · · ·

Models are words in Σω with Σ = 2AP.

Definition: Branching specifications

Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

43/113

References

Bibliography

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, To appear.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large list of references is given in this paper.

Bibliography

[7] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and

Games, pp. 261–306. Amsterdam University Press, (2008).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large overview of formalisms expressively equivalent to First-Order.

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

44/113

Some original References

[8] J. Kamp.
Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, USA, (1968).

[10] P. Gastin and D. Oddoux.
Fast LTL to Büchi automata translation.
In CAV’01, vol. 2102, Lecture Notes in Computer Science, pp. 53–65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[9] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110–111, 119–136, (1985).

[11] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

45/113

Some original References

[12] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[13] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[14] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

46/113

Outline

Introduction

Models

Specifications

4 Linear Time Specifications

Definitions

Main results

Büchi automata

From LTL to BA

Hardness results

Branching Time Specifications

47/113

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i 6|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k)→ w, j |= ϕ

Example:

p ∅ p, q p q ∅ p, r q, r q
· · ·

47/113

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i 6|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k)→ w, j |= ϕ

Example:

Xϕ

ϕ
· · ·

47/113

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP,X,U)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= p if p ∈ ai
w, i |= ¬ϕ if w, i 6|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= Xϕ if w, i + 1 |= ϕ

w, i |= ϕ U ψ if ∃k. i ≤ k and w, k |= ψ and ∀j. (i ≤ j < k)→ w, j |= ϕ

Example:

ϕ U ψ

ϕ ϕ
· · ·

ϕ ψ
· · ·

48/113

Linear Temporal Logic (Pnueli 1977)
Definition: Macros

◮ Eventually: Fϕ = ⊤ U ϕ

Fϕ
· · ·

ϕ
· · ·

◮ Always: Gϕ = ¬F¬ϕ

Gϕ

ϕ ϕ
· · ·

ϕ ϕ ϕ
· · ·

◮ Weak until: ϕW ψ = Gϕ ∨ ϕ U ψ

◮ ¬(ϕ U ψ) = (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ)) = ¬ψW (¬ϕ ∧ ¬ψ)

◮ Release: ϕ R ψ = ψW (ϕ ∧ ψ) = ¬(¬ϕ U ¬ψ)

◮ Next until: ϕ XU ψ = X(ϕ U ψ)

ϕ XU ψ

ϕ
· · ·

ϕ ψ
· · ·

◮ Xψ = ⊥ XU ψ and ϕ U ψ = ψ ∨ (ϕ ∧ ϕ XU ψ).

49/113

Linear Temporal Logic (Pnueli 1977)

Definition: Specifications:
◮ Safety: G good

◮ MutEx: ¬F(crit1 ∧ crit2)

◮ Liveness: G F active

◮ Response: G(request→ F grant)

◮ Response’: G(request→ X(¬request U grant))

◮ Release: reset R alarm

◮ Strong fairness: G F request→ GF grant

◮ Weak fairness: FG request→ GF grant

50/113

Linear Temporal Logic (Pnueli 1977)

Examples:

Every elevator request should be eventually satisfied.

∧

i

G(Calli → F(atLeveli ∧ openDoori))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

G(Calli → ¬atLeveli W (atLeveli ∧ openDoori)

51/113

Past LTL

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= Yϕ if i > 0 and w, i − 1 |= ϕ

w, i |= ϕ S ψ if ∃k. k ≤ i and w, k |= ψ and ∀j. (k < j ≤ i)→ w, y |= ϕ

Example:

ψ ϕ
· · ·

ϕ

ϕ S ψ

ϕ
· · ·

Example: LTL versus PLTL

G(grant→ Y(¬grant S request))

Theorem (Laroussinie & Markey & Schnoebelen 2002)

PLTL may be exponentially more succinct than LTL.

51/113

Past LTL

Definition: Semantics: w = a0a1a2 · · · ∈ Σω with Σ = 2AP and i ∈ N

w, i |= Yϕ if i > 0 and w, i − 1 |= ϕ

w, i |= ϕ S ψ if ∃k. k ≤ i and w, k |= ψ and ∀j. (k < j ≤ i)→ w, y |= ϕ

Example:

r r r

g g

r

g¬g ¬g ¬g¬g
r

¬g
r

¬g

Example: LTL versus PLTL

G(grant→ Y(¬grant S request))

= (request R ¬grant) ∧ G(grant→ (request ∨ X(request R ¬grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)

PLTL may be exponentially more succinct than LTL.

52/113

Expressivity

Theorem [8, Kamp 68]

LTL(Y, S,X,U) = FOΣ(≤)

Separation Theorem [13, Gabbay, Pnueli, Shelah & Stavi 80]

For all ϕ ∈ LTL(Y, S,X,U) there exist ←−ϕi ∈ LTL(Y, S) and −→ϕi ∈ LTL(X,U) such
that for all w ∈ Σω and k ≥ 0,

w, k |= ϕ ⇐⇒ w, k |=
∨

i

←−ϕi ∧
−→ϕi

Corollary: LTL(Y, S,X,U) = LTL(X,U)

For all ϕ ∈ LTL(Y, S,X,U) there exist −→ϕ ∈ LTL(X,U) such that for all w ∈ Σω,

w, 0 |= ϕ ⇐⇒ w, 0 |= −→ϕ

Elegant algebraic proof of LTL(X,U) = FOΣ(≤) due to Wilke 98.

53/113

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, ℓ)
A formula ϕ ∈ LTL(AP,Y, S,X,U)

Question: Does M |= ϕ ?

◮ Universal MC: M |=∀ ϕ if ℓ(σ), 0 |= ϕ for all initial infinite run of M .

◮ Existential MC: M |=∃ ϕ if ℓ(σ), 0 |= ϕ for some initial infinite run of M .

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Theorem [11, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

54/113

Satisfiability for LTL
Let AP be the set of atomic propositions and Σ = 2AP.

Definition: Satisfiability problem

Input: A formula ϕ ∈ LTL(AP,Y, S,X,U)

Question: Existence of w ∈ Σω and i ∈ N such that w, i |= ϕ.

Definition: Initial Satisfiability problem

Input: A formula ϕ ∈ LTL(AP,Y, S,X,U)

Question: Existence of w ∈ Σω such that w, 0 |= ϕ.

Remark: ϕ is satisfiable iff Fϕ is initially satisfiable.

Theorem (Sistla, Clarke 85, Lichtenstein et. al 85)

The satisfiability problem for LTL is PSPACE-complete

Definition: (Initial) validity

ϕ is valid iff ¬ϕ is not satisfiable.

55/113

Decision procedure for LTL

Definition: The core

From a formula ϕ ∈ LTL(AP, . . .), construct a Büchi automaton Aϕ such that

L(A) = L(ϕ) = {w ∈ Σω | w, 0 |= ϕ}.

Satisfiability (initial)

Check the Büchi automaton Aϕ for emptiness.

Model checking

Construct a synchronized product B =M ⊗A¬ϕ so that
the successful runs of B correspond to the initial runs of M satisfying ¬ϕ.

Then, check B for emptiness.

Theorem:
Checking Büchi automata for emptiness is NLOGSPACE-complete.

56/113

Büchi automata

Definition:

A = (Q,Σ, I, T, F) where

◮ Q: finite set of states

◮ Σ: finite set of labels

◮ I ⊆ Q: set of initial states

◮ T ⊆ Q× Σ×Q: transitions

◮ F ⊆ Q: set of accepting states (repeated, final)

Example:

A = 1 2

a b

b

a

L(A) = {w ∈ {a, b}ω | |w|a = ω}

57/113

Büchi automata for some LTL formulae
Definition:

Recall that Σ = 2AP. For ψ ∈ B(AP) we let Σψ = {a ∈ Σ | a |= ψ}.
For instance, for p, q ∈ AP,

◮ Σp = {a ∈ Σ | p ∈ a} and Σ¬p = Σ \ Σp
◮ Σp∧q = Σp ∩ Σq and Σp∨q = Σp ∪Σq
◮ Σp∧¬q = Σp \ Σq . . .

Examples:

F p: 1 2

Σ Σ
Σp or 1 2

Σ¬p Σ
Σp

XX p: 1 2 3 4
Σ Σ Σp

Σ

G p: 1 Σp

58/113

Büchi automata for some LTL formulae

Examples:

FG p: 1 2

Σ Σp
Σp no deterministic Büchi automaton.

GF p: 1 2

Σ¬p Σp
Σp

Σ¬p

deterministic Büchi automata
are not closed under complement.

G(p→ F q): 1 2

Σ¬p∨q Σ¬q
Σp∧¬q

Σq

59/113

Büchi automata for some LTL formulae

Examples:

p U q: 1 2

Σp
Σq

Σ

or 1 2

Σp∧¬q

Σq

Σ

pW q: 1 2

Σp
Σq

Σ

or 1 2

Σp∧¬q

Σq

Σ

p R q: 1 2

Σq
Σp∧q

Σ

or 1 2

Σq∧¬p

Σp∧q

Σ

60/113

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

◮ Union: trivial

◮ Intersection: easy (exercice)

◮ complement: hard

Let ϕ = F((p ∧ Xn ¬p) ∨ (¬p ∧ Xn p))

0

Σ
1Σp

2
Σ · · · n

Σ

n+ 1

Σ¬p Σ

1’
Σ¬p 2’

Σ
· · · n

Σ

Σp

Any non deterministic Büchi automaton for ¬ϕ has at least 2n states.

61/113

Büchi automata

Exercise:
Given Büchi automata for ϕ and ψ,

◮ Construct a Büchi automaton for Xϕ (trivial)

◮ Construct a Büchi automaton for ϕ U ψ

This gives an inductive construction of Aϕ from ϕ ∈ LTL(AP,X,U) . . .

. . . but the size of Aϕ might be non-elementary in the size of ϕ.

62/113

Generalized Büchi automata
Definition: acceptance on states

A = (Q,Σ, I, T, F1, . . . , Fn) with Fi ⊆ Q.

An infinite run σ is successful if it visits infinitely often each Fi.

G F p ∧ GF q: 0

Σ
Σp

ΣΣq

Σ

Definition: acceptance on transitions

A = (Q,Σ, I, T, T1, . . . , Tn) with Ti ⊆ T .

An infinite run σ is successful if it uses infinitely many transitions from each Ti.

G F p ∧ GF q: 0

Σ

ΣpΣq

63/113

GBA to BA

Proof: Synchronized product with B

0

T

1
T1

T

2
T2

T

· · ·

T

n
Tn

T

Transitions:
t = s1

a
−→ s′1 ∈ A ∧ s2

t
−→ s′2 ∈ B

(s1, s2)
a
−→ (s′1, s

′
2)

Accepting states: Q× {n}

64/113

Negative normal form

Definition: Syntax (p ∈ AP)

ϕ ::= ⊤ | ⊥ | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ

Proposition: Any formula can be transformed in NNF

¬(ϕ ∨ ψ) ≡ (¬ϕ) ∧ (¬ψ) ¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ)

¬(ϕ U ψ) ≡ (¬ϕ) R (¬ψ) ¬(ϕ R ψ) ≡ (¬ϕ) U (¬ψ)

¬Xϕ ≡ X¬ϕ ¬¬ϕ ≡ ϕ

This does not increase the number of Temporal subformulae.

65/113

Temporal formulae

Definition: Temporal formulae
◮ literals

◮ formulae with outermost connective X, U or R.

Reducing the number of temporal subformulae

(Xϕ) ∧ (Xψ) ≡ X(ϕ ∧ ψ) (Xϕ) U (Xψ) ≡ X(ϕ U ψ)

(ϕ R ψ1) ∧ (ϕ R ψ2) ≡ ϕ R (ψ1 ∧ ψ2) (ϕ1 R ψ) ∨ (ϕ2 R ψ) ≡ (ϕ1 ∨ ϕ2) R ψ

(Gϕ) ∧ (Gψ) ≡ G(ϕ ∧ ψ) GFϕ ∨ GFψ ≡ GF(ϕ ∨ ψ)

66/113

From LTL to BA [6, Demri & Gastin 10]

Definition:
◮ Z ⊆ NNF is consistent if ⊥ /∈ Z and {p,¬p} 6⊆ Z for all p ∈ AP.

◮ For Z ⊆ NNF, we define
∧

Z =
∧

ψ∈Z ψ.

Note that
∧

∅ = ⊤ and if Z is inconsistent then
∧

Z ≡ ⊥.

Intuition for the BA Aϕ = (Q,Σ, I, T, (Tα)α∈U(ϕ))

Let ϕ ∈ NNF be a formula.

◮ sub(ϕ) is the set of sub-formulae of ϕ.

◮ U(ϕ) the set of until sub-formulae of ϕ.

◮ We construct a BA Aϕ with Q = 2sub(ϕ) and I = {ϕ}.

◮ A state Z ⊆ sub(ϕ) is a set of obligations.

◮ If Z ⊆ sub(ϕ), we want L(AZϕ) = {u ∈ Σω | u, 0 |=
∧

Z}

where AZϕ is Aϕ using Z as unique initial state.

67/113

Reduced formulae
Definition: Reduced formulae

◮ A formula is reduced if it is a literal (p or ¬p) or a next-formula (X β).

◮ Z ⊆ NNF is reduced if all formulae in Z are reduced,

For Z ⊆ NNF consistent and reduced, we define

◮ next(Z) = {α | Xα ∈ Z}

◮ ΣZ =
⋂

p∈Z

Σp ∩
⋂

¬p∈Z

Σ¬p

Lemma: Next step

Let Z ⊆ NNF be consistent and reduced.
Let u = a0a1a2 · · · ∈ Σω and n ≥ 0. Then

u, n |=
∧

Z iff u, n+ 1 |=
∧

next(Z) and an ∈ ΣZ

◮ Aϕ will have transitions Z
ΣZ−−→ next(Z).

Note that ∅
Σ
−→ ∅.

◮ Problem: next(Z) is not reduced in general (it may even be inconsistent).

68/113

Reduction rules

Definition: Reduction of obligations to literals and next-formulae

Let Y ⊆ NNF and let ψ ∈ Y maximal not reduced.

If ψ = ψ1 ∧ ψ2: Y
ε−→ (Y \ {ψ}) ∪ {ψ1, ψ2}

If ψ = ψ1 ∨ ψ2:
Y ε−→ (Y \ {ψ}) ∪ {ψ1}
Y ε−→ (Y \ {ψ}) ∪ {ψ2}

If ψ = ψ1 R ψ2:
Y ε−→ (Y \ {ψ}) ∪ {ψ1, ψ2}
Y

ε−→ (Y \ {ψ}) ∪ {ψ2,Xψ}

If ψ = Gψ2: Y
ε−→ (Y \ {ψ}) ∪ {ψ2,Xψ}

If ψ = ψ1 U ψ2:
Y

ε−→ (Y \ {ψ}) ∪ {ψ2}
Y ε−→

!ψ
(Y \ {ψ}) ∪ {ψ1,Xψ}

If ψ = Fψ2:
Y ε−→ (Y \ {ψ}) ∪ {ψ2}
Y

ε−→!ψ (Y \ {ψ}) ∪ {Xψ}

Note the mark !ψ on the second transitions for U and F.

69/113

Reduction rules

Example: ϕ = G(p→ F q)

ϕ = G(¬p ∨ F q)

¬p ∨ F q, Xϕ

ε

¬p,Xϕ

ε

F q,Xϕ
ε

q,Xϕ

ε

XF q,Xϕ

ε !F q

State = set of obligations.

Reduce obligations to literals and next-formulae.

Note again the mark !F q on the last edge

70/113

Reduction

Lemma:

◮ if there is only one rule Y
ε
−→ Y1 then

∧

Y ≡
∧

Y1

◮ if there are two rules Y
ε
−→ Y1 and Y

ε
−→ Y2 then

∧

Y ≡
∧

Y1 ∨
∧

Y2

Definition:

For Y ⊆ NNF and α ∈ U(ϕ), let

Red(Y) = {Z consistent and reduced | there is a path Y ε−→∗ Z}

Redα(Y) = {Z consistent and reduced | there is a path Y
ε−→∗ Z

without using an edge marked with !α}

Lemma: Soundness
◮ Let Y ⊆ NNF, then

∧

Y ≡
∨

Z∈Red(Y)

∧

Z

◮ Let u = a0a1a2 · · · ∈ Σω and n ≥ 0 with u, n |=
∧

Y .
Then, ∃Z ∈ Red(Y) such that u, n |=

∧

Z
and Z ∈ Redα(Y) for all α = α1 U α2 ∈ U(ϕ) such that u, n |= α2.

71/113

Automaton Aϕ

Definition: Automaton Aϕ

◮ States: Q = 2sub(ϕ), I = {ϕ}

◮ Transitions: T = {Y
a
−→ next(Z) | Y ∈ Q, a ∈ ΣZ and Z ∈ Red(Y)}

◮ Acceptance: Tα = {Y
a
−→ next(Z) | Y ∈ Q, a ∈ ΣZ and Z ∈ Redα(Y)}

for each α ∈ U(ϕ).

72/113

Automaton Aϕ
Example: ϕ = G(p→ F q)

ϕ = G(¬p ∨ F q)

¬p ∨ F q,Xϕ

ε

¬p,Xϕ

ε

F q,Xϕ
ε

q,Xϕ

ε

XF q,Xϕ

ε !F q

Σ¬p

Σq

F q, ϕ
Σ

F q,¬p ∨ F q, Xϕ

ε

F q,¬p,Xϕ

ε

ε

XF q,¬p,Xϕ

q,¬p,Xϕ

!F q

ε

ε

Σ¬p

Σ¬p∧q 1 2
Σ

Σq

Σ¬p∨q Σ

Transition = check literals and move forward.

Simplification

73/113

Correctness of Aϕ

Proposition: L(ϕ) ⊆ L(Aϕ)

Lemma:

Let ρ = Y0
a0−→ Y1

a1−→ Y2 · · · be an accepting run of Aϕ on u = a0a1a2 · · · ∈ Σω.

Then, for all ψ ∈ sub(ϕ) and n ≥ 0,
for all reduction path Yn

ε−→∗ Y
ε−→∗ Z with an ∈ ΣZ and Yn+1 = next(Z),

ψ ∈ Y =⇒ u, n |= ψ

Corollary: L(Aϕ) ⊆ L(ϕ)

74/113

L(ϕ) ⊆ L(Aϕ)

Proof:

Let u = a0a1a2 · · · ∈ Σω be such that u, 0 |= ϕ. By induction, we build a run

ρ = Y0
a0−→ Y1

a1−→ Y2 · · ·

We start with Y0 = {ϕ}. Assume that u, n |=
∧

Yn for some n ≥ 0. By Lemma
[Soundness], there is Zn ∈ Red(Yn) such that u, n |=

∧

Zn and for all until subfor-
mulae α = α1 U α2 ∈ U(ϕ), if u, n |= α2 then Zn ∈ Redα(Yn). Then we define
Yn+1 = next(Zn). Since u, n |=

∧

Zn, Lemma [Next Step] implies an ∈ ΣZn
and

u, n+ 1 |=
∧

Yn+1. Therefore, ρ is a run for u in Aϕ.
It remains to show that ρ is successful. By definition, it starts from the initial
state {ϕ}. Now let α = α1 U α2 ∈ U(ϕ). Assume there exists N ≥ 0 such that

Yn
an−−→ Yn+1 /∈ Tα for all n ≥ N . Then Zn /∈ Redα(Yn) for all n ≥ N and we

deduce that u, n 6|= α2 for all n ≥ N . But, since ZN /∈ Redα(YN), the formula
α has been reduced using an ε-transition marked !α along the path from YN to
ZN . Therefore, Xα ∈ ZN and α ∈ YN+1. By construction of the run we have
u,N + 1 |=

∧

YN+1. Hence, u,N + 1 |= α, a contradiction with u, n 6|= α2 for all
n ≥ N . Consequently, the run ρ is successful and u is accepted by Aϕ.

75/113

L(Aϕ) ⊆ L(ϕ)

Lemma:

Let ρ = Y0
a0−→ Y1

a1−→ Y2 · · · be an accepting run of Aϕ on u = a0a1a2 · · · ∈ Σω.

Then, for all ψ ∈ sub(ϕ) and n ≥ 0,
for all reduction path Yn

ε−→∗ Y
ε−→∗ Z with an ∈ ΣZ and Yn+1 = next(Z),

ψ ∈ Y =⇒ u, n |= ψ

Proof: by induction on ψ

• ψ = ⊤. The result is trivial.

• ψ = p ∈ AP(ϕ). Since p is reduced, we have p ∈ Z and it follows ΣZ ⊆ Σp.
Therefore, p ∈ an and u, n |= p. The proof is similar if ψ = ¬p for some p ∈ AP(ϕ).

• ψ = Xψ1. Then ψ ∈ Z and ψ1 ∈ Yn+1. By induction we obtain u, n+ 1 |= ψ1

and we deduce u, n |= Xψ1 = ψ.

• ψ = ψ1 ∧ ψ2. Along the path Y
ε−→∗ Z the formula ψ must be reduced so

Y ε−→∗ Y ′ ε−→∗ Z with ψ1, ψ2 ∈ Y ′. By induction, we obtain u, n |= ψ1 and
u, n |= ψ2. Hence, u, n |= ψ. The proof is similar for ψ = ψ1 ∨ ψ2.

76/113

L(Aϕ) ⊆ L(ϕ)

Proof:
• ψ = ψ1 U ψ2. Along the path Y

ε−→∗ Z the formula ψ must be reduced so Y
ε−→∗

Y ′ ε−→ Y ′′ ε−→∗ Z with either Y ′′ = Y ′ \ {ψ} ∪ {ψ2} or Y
′′ = Y ′ \ {ψ} ∪ {ψ1,Xψ}.

In the first case, we obtain by induction u, n |= ψ2 and therefore u, n |= ψ. In
the second case, we obtain by induction u, n |= ψ1. Since Xψ is reduced we get
Xψ ∈ Z and ψ ∈ next(Z) = Yn+1.

Let k > n be minimal such that Yk
ak−→ Yk+1 ∈ Tψ (such a value k exists since

ρ is accepting). We first show by induction that u, i |= ψ1 and ψ ∈ Yi+1 for all
n ≤ i < k. Recall that u, n |= ψ1 and ψ ∈ Yn+1. So let n < i < k be such that
ψ ∈ Yi. Let Z ′ ∈ Red(Yi) be such that ai ∈ ΣZ′ and Yi+1 = next(Z ′). Since k
is minimal we know that Z ′ /∈ Redψ(Yi). Hence, along any reduction path from
Yi to Z

′ we must use a step Y ′ ε−→
!ψ

Y ′ \ {ψ} ∪ {ψ1,Xψ}. By induction on the
formula we obtain u, i |= ψ1. Also, since Xψ is reduced, we have Xψ ∈ Z ′ and
ψ ∈ next(Z ′) = Yi+1.

Second, we show that u, k |= ψ2. Since Yk
ak−→ Yk+1 ∈ Tψ, we find some Z ′ ∈

Redψ(Yk) such that ak ∈ ΣZ′ and Yk+1 = next(Z ′). Since ψ ∈ Yk, along some
reduction path from Yk to Z ′ we use a step Y ′ ε−→ Y ′ \ {ψ} ∪ {ψ2}. By induction
we obtain u, k |= ψ2. Finally, we have shown u, n |= ψ1 U ψ2 = ψ.

77/113

L(Aϕ) ⊆ L(ϕ)

Proof:
• ψ = ψ1 R ψ2. Along the path Y ε−→∗ Z the formula ψ must be reduced so Y ε−→∗
Y ′ ε−→ Y ′′ ε−→∗ Z with either Y ′′ = Y ′\{ψ}∪{ψ1, ψ2} or Y ′′ = Y ′\{ψ}∪{ψ2,Xψ}.
In the first case, we obtain by induction u, n |= ψ1 and u, n |= ψ2. Hence, u, n |= ψ
and we are done. In the second case, we obtain by induction u, n |= ψ2 and we get
also ψ ∈ Yn+1. Continuing with the same reasoning, we deduce easily that either
u, n |= Gψ2 or u, n |= ψ2 U (ψ1 ∧ ψ2).

78/113

Example with two until sub-formulae

Example: Nested until: ϕ = p U ψ with ψ = q U r

Red({ϕ}) = {{p,Xϕ}, {q,Xψ}, {r}}

Redϕ({ϕ}) = {{q,Xψ}, {r}}

Redψ({ϕ}) = {{p,Xϕ}, {r}}

Red({ψ}) = {{q,Xψ}, {r}}

Redϕ({ψ}) = {{q,Xψ}, {r}}

Redψ({ψ}) = {{r}}

ϕ = p U (q U r) ψ = q U r

∅

Σp

ψ Σq

ϕ

Σ

ϕ, ψ

Σq
ϕ

Σr

ϕ, ψ

Σr

ϕ, ψ

79/113

Satisfiability and Model Checking

Corollary: PSPACE upper bound for satisfiability and model checking
◮ Let ϕ ∈ LTL, we can check whether ϕ is satisfiable (or valid)

in space polynomial in |ϕ|.

◮ Let ϕ ∈ LTL and M = (S, T, I,AP, ℓ) be a Kripke structure.
We can check whether M |=∀ ϕ (or M |=∃ ϕ)
in space polynomial in |ϕ|+ log |M |.

Proof:

For M |=∀ ϕ we construct a synchronized product M ⊗A¬ϕ:

Transitions:
s −→ s′ ∈M ∧ Y

ℓ(s)
−−→ Y ′ ∈ A¬ϕ

(s, Y)
ℓ(s)
−−→ (s′, Y ′)

Initial states: I × {{¬ϕ}}.

Acceptance conditions: inherited from A¬ϕ.

Check M ⊗A¬ϕ for emptiness.

80/113

On the fly simplifications Aϕ

Built-in: reduction of a maximal formula.

Definition: Additional reduction rules

If
∧

Y ≡
∧

Y ′ then we may use Y
ε
−→ Y ′.

Remark: checking equivalence is as hard as building the automaton.
Hence we only use syntactic equivalences.

If ψ = ψ1 ∨ ψ2 and ψ1 ∈ Y or ψ2 ∈ Y : Y ε−→ Y \ {ψ}

If ψ = ψ1 U ψ2 and ψ2 ∈ Y : Y ε−→ Y \ {ψ}

If ψ = ψ1 R ψ2 and ψ1 ∈ Y : Y
ε−→ Y \ {ψ} ∪ {ψ2}

81/113

On the fly simplifications Aϕ
Definition: Merging equivalent states

Let A = (Q,Σ, I, T, T1, . . . , Tn) and s1, s2 ∈ Q.
We can merge s1 and s2 if they have the same outgoing transitions:
∀a ∈ Σ, ∀s ∈ Q,

(s1, a, s) ∈ T ⇐⇒ (s2, a, s) ∈ T

and (s1, a, s) ∈ Ti ⇐⇒ (s2, a, s) ∈ Ti for all 1 ≤ i ≤ n.

Remark: Sufficient condition

Two states Y, Y ′ of Aϕ have the same outgoing transition if

Red(Y) = Red(Y ′)

and Redα(Y) = Redα(Y
′) for all α ∈ U(ϕ).

Example: Let ϕ = GF p ∧ GF q.

Without merging states Aϕ has 4 states.
These 4 states have the same outgoing transitions.
The simplified automaton has only one state.

82/113

Other constructions

◮ Tableau construction. See for instance [9, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
– : Inefficient without optimizations

◮ Using Very Weak Alternating Automata [10, Gastin & Oddoux 01].
+ : Very efficient
– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

◮ The domain is still very active.

◮ See other references in [6, Demri & Gastin 10].

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

83/113

MC∃(X,U) ≤P SAT(X,U)

[11, Sistla & Clarke 85]
Let M = (S, T, I,AP, ℓ) be a Kripke structure and ϕ ∈ LTL(AP,X,U)

Introduce new atomic propositions: APS = {ats | s ∈ S}

Define AP′ = AP ⊎APS Σ′ = 2AP′

π : Σ′ω → Σω by π(a) = a ∩ AP.

Let w ∈ Σ′ω. We have w |= ϕ iff π(w) |= ϕ

Define ψM ∈ LTL(AP′,X,F) of size O(|M |2) by

ψM =

(

∨

s∈I

ats

)

∧ G

∨

s∈S

ats ∧
∧

t6=s

¬att ∧
∧

p∈ℓ(s)

p ∧
∧

p/∈ℓ(s)

¬p ∧
∨

t∈T (s)

X att

Let w = a0a1a2 · · · ∈ Σ′ω. Then, w |= ψM iff there exists an initial infinite run σ
of M such that π(w) = ℓ(σ) and ai ∩ APS = {atsi} for all i ≥ 0.

Therefore, M |=∃ ϕ iff ψM ∧ ϕ is satisfiable
M |=∀ ϕ iff ψM ∧ ¬ϕ is not satisfiable

Remark: we also have MC∃(X,F) ≤P SAT(X,F).

84/113

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula γ = Q1x1 · · ·Qnxnγ′ with γ′ =
∧

1≤i≤m

∨

1≤j≤ki

aij

Qi ∈ {∀, ∃} and aij ∈ {x1,¬x1, . . . , xn,¬xn}.

Question: Is γ valid?

Definition:

An assignment of the variables {x1, . . . , xn} is a word v = v1 · · · vn ∈ {0, 1}n.
We write v[i] for the prefix of length i.
Let V ⊆ {0, 1}n be a set of assignments.

◮ V is valid (for γ′) if v |= γ′ for all v ∈ V ,

◮ V is closed (for γ) if ∀v ∈ V , ∀1 ≤ i ≤ n s.t. Qi = ∀,

∃v′ ∈ V s.t. v[i− 1] = v′[i− 1] and {vi, v′i} = {0, 1}.

Proposition:

γ is valid iff ∃V ⊆ {0, 1}n s.t. V is nonempty valid and closed

85/113

QBF ≤P MC∃(U) [11, Sistla & Clarke 85]
Let γ = Q1x1 · · ·Qnxn

∧

1≤i≤m

∨

1≤j≤ki

aij with Qi ∈ {∀, ∃} and aij literals.

Consider the KS M :

e0 s1

xt1

xf1

e1 s2

xt2

xf2

e2 · · · sn

xtn

xfn

en

f0

a11

a12
...

a1k1

f1

a21

a22
...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let ψij =

{

G(xfk → sk R ¬aij) if aij = xk

G(xtk → sk R ¬aij) if aij = ¬xk
and ψ =

∧

i,j

ψij .

Let ϕj = G(ej−1 → (¬sj−1 U x
t
j) ∧ (¬sj−1 U x

f
j) and ϕ =

∧

j|Qj=∀

ϕj .

Then, γ is valid iff M |=∃ ψ ∧ ϕ.

86/113

QBF ≤P MC∃(U) [11, Sistla & Clarke 85]

Proof: If M |=∃ ψ ∧ ϕ then γ is valid

Each finite path τ = e0
∗
−→ fm in M defines a valuation vτ by:

vτk =

{

1 if τ, |τ | |= ¬sk S xtk
0 if τ, |τ | |= ¬sk S x

f
k

Let σ be an initial infinite path of M s.t. σ, 0 |= ψ ∧ ϕ.

Let V = {vτ | τ = e0
∗
−→ fm is a prefix of σ}.

Claim: V is nonempty, valid and closed.

87/113

QBF ≤P MC∃(U) [11, Sistla & Clarke 85]

Proof: If γ is valid then M |=∃ ψ ∧ ϕ

Let V ⊆ {0, 1}n be nonempty, valid and closed.

First ingredient: extension of a run.
Assume τ = e0

∗
−→ fm satisfies vτ ∈ V and τ, 0 |= ψ.

Let 1 ≤ i ≤ n with Qi = ∀.
Let v′ ∈ V s.t. v′[i− 1] = v[i − 1] and {vi, v′i} = {0, 1}.

We can extend τ in τ ′ = τ −→ si
∗
−→ en −→ f0

∗
−→ fm with vτ

′

= v′ and τ ′, 0 |= ψ.
We say that τ ′ is an extension of τ wrt. i

Second step: the sequence of indices for the extensions.
Let 1 ≤ iℓ < · · · < i1 ≤ n be the indices of universal quantifications (Qij = ∀).
Define by induction w1 = i1 and if k < ℓ, wk+1 = wkik+1wk. Let w = (wℓ1)

ω.

Final step: the infinite run.
Let v ∈ V 6= ∅ and let τ = e0

∗
−→ fm with vτ ∈ V and τ, 0 |= ψ.

We build an infinite run σ by extending τ inductively wrt. the sequence of indices
defined by w.

Claim: σ, 0 |= ψ ∧ ϕ.

88/113

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

◮ SAT(LTL(X,U,Y, S)), MC∀(LTL(X,U,Y, S)), MC∃(LTL(X,U,Y, S))

◮ SAT(LTL(X,F)), MC∀(LTL(X,F)), MC∃(LTL(X,F))

◮ SAT(LTL(U)), MC∀(LTL(U)), MC∃(LTL(U))

◮ The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

◮ SAT(LTL(F)), MC∃(LTL(F))

89/113

Outline

Introduction

Models

Specifications

Linear Time Specifications

5 Branching Time Specifications

CTL∗

CTL

Fair CTL

90/113

Possibility is not expressible in LTL

Example:

ϕ: Whenever p holds, it is possible to reach a state where q holds.
ϕ cannot be expressed in LTL.

Consider the two models:

M1: 1

p, q

2

p
3

q

4

and M2: 1

p, q
2

p

2’

p

3

q

4

M1 |= ϕ but M2 6|= ϕ
M1 and M2 satisfy the same LTL formulae.

We need quantifications on runs: ϕ = AG(p→ EF q)

◮ E: for some infinite run

◮ A: for all infinite runs

91/113

CTL∗ (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Definition: Semantics:

Let M = (S, T, I,AP, ℓ) be a Kripke structure and σ an infinte run of M .

M,σ, i |= Eϕ if M,σ′, 0 |= ϕ for some infinite run σ′ such that σ′(0) = σ(i)

M,σ, i |= Aϕ if M,σ′, 0 |= ϕ for all infinite runs σ′ such that σ′(0) = σ(i)

Example: Some specifications
◮ EFϕ: ϕ is possible

◮ AGϕ: ϕ is an invariant

◮ AFϕ: ϕ is unavoidable

◮ EGϕ: ϕ holds globally along some path

Remark: Aϕ ≡ ¬E¬ϕ

92/113

State formulae and path formulae

Definition: State formulae

ϕ ∈ CTL∗ is a state formula if ∀M,σ, σ′, i, j such that σ(i) = σ′(j) we have

M,σ, i |= ϕ ⇐⇒ M,σ′, j |= ϕ

If ϕ is a state formula and M = (S, T, I,AP, ℓ), define

[[ϕ]]M = {s ∈ S |M, s |= ϕ}

Example: State formulae

Formulae of the form p or Eϕ or Aϕ are state formulae.
State formulae are closed under boolean connectives.

[[p]] = {s ∈ S | p ∈ ℓ(s)} [[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

Definition: Alternative syntax

State formulae ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ
Path formulae ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

93/113

Model checking of CTL∗

Definition: Existential and universal model checking

Let M = (S, T, I,AP, ℓ) be a Kripke structure and ϕ ∈ CTL∗ a formula.

M |=∃ ϕ if M,σ, 0 |= ϕ for some initial infinite run σ of M .
M |=∀ ϕ if M,σ, 0 |= ϕ for all initial infinite run σ of M .

Remark:

M |=∃ ϕ iff I ∩ [[Eϕ]] 6= ∅

M |=∀ ϕ iff I ⊆ [[Aϕ]]

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Definition: Model checking problems MC∀

CTL∗ and MC∃

CTL∗

Input: A Kripke structure M = (S, T, I,AP, ℓ) and a formula ϕ ∈ CTL∗

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

94/113

Complexity of CTL∗

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Theorem

The model checking problem for CTL∗ is PSPACE-complete

Proof:

PSPACE-hardness: follows from LTL ⊆ CTL∗.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

95/113

MC∀CTL∗ in PSPACE

Proof:

For Q ∈ {∃, ∀} and ψ ∈ LTL, let MCQ
LTL(M, t, ψ) be the function which computes

in polynomial space whether M, t |=Q ψ, i.e., if M, t |= Qψ.

Let M = (S, T, I,AP, ℓ) be a Kripke structure, s ∈ S and ϕ ∈ CTL∗.

MC∀
CTL∗(M, s, ϕ)

If E,A do not occur in ϕ then return MC∀
LTL(M, s, ϕ) fi

Let Qψ be a subformula of ϕ with ψ ∈ LTL and Q ∈ {E,A}

Let pQψ be a new propositional variable

Define ℓ′ : S → 2AP′

with AP′ = AP ⊎ {pQψ} by

ℓ′(t) ∩ AP = ℓ(t) and pQψ ∈ ℓ′(t) iff MCQ
LTL(M, t, ψ)

Let M ′ = (S, T, I,AP′, ℓ′)

Let ϕ′ = ϕ[pQψ/Qψ] be obtained from ϕ by replacing each Qψ by pQψ

Return MC∀
CTL∗(M ′, s, ϕ′)

96/113

Satisfiability for CTL∗

Definition: SAT(CTL∗)

Input: A formula ϕ ∈ CTL∗

Question: Existence of a model M and a run σ such that M,σ, 0 |= ϕ ?

Theorem

The satisfiability problem for CTL∗ is 2-EXPTIME-complete

97/113

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

The semantics is inherited from CTL∗.

Remark: All CTL formulae are state formulae

[[ϕ]]M = {s ∈ S |M, s |= ϕ}

Examples: Macros
◮ EFϕ = E⊤ U ϕ and AFϕ = A⊤ U ϕ

◮ EGϕ = ¬AF¬ϕ and AGϕ = ¬EF¬ϕ

◮ AG(req→ EF grant)

◮ AG(req→ AF grant)

98/113

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, ℓ) be a Kripke structure without deadlocks and let s ∈ S.

s |= p if p ∈ ℓ(s)

s |= EXϕ if ∃s→ s′ with s′ |= ϕ

s |= AXϕ if ∀s→ s′ we have s′ |= ϕ

s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sj finite path, with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · infinite path, ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

99/113

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] = {1, 2, 3, 5, 6}

[[AX p]] = {3, 6}

[[EF p]] = {1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] = {2, 3, 5, 6, 7}

[[E q U r]] = {1, 2, 3, 4, 5, 6}

[[A q U r]] = {2, 3, 4, 5, 6}

100/113

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
◮ AXϕ = ¬EX¬ϕ,

◮ ¬(ϕ U ψ) = G¬ψ ∨ (¬ψ U (¬ϕ ∧ ¬ψ))

◮ Aϕ U ψ = ¬EG¬ψ ∧ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

◮ AG(req→ F grant) = AG(req→ AF grant)

◮ AGFϕ = AGAFϕ infinitely often

◮ EFGϕ = EFEGϕ ultimately

◮ EGEFϕ 6= EGFϕ

◮ AFAGϕ 6= AFGϕ 1 2 3
¬ϕ ϕ ¬ϕ

◮ EGEXϕ 6= EGXϕ

101/113

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S, T, I,AP, ℓ) be a Kripke structure and ϕ ∈ CTL a formula.

M |=∃ ϕ if M, s |= ϕ for some s ∈ I.
M |=∀ ϕ if M, s |= ϕ for all s ∈ I.

Remark:

M |=∃ ϕ iff I ∩ [[ϕ]] 6= ∅

M |=∀ ϕ iff I ⊆ [[ϕ]]

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Definition: Model checking problems MC∀

CTL and MC∃

CTL

Input: A Kripke structure M = (S, T, I,AP, ℓ) and a formula ϕ ∈ CTL

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

102/113

Model checking of CTL

Theorem

Let M = (S, T, I,AP, ℓ) be a Kripke structure and ϕ ∈ CTL a formula.
The model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|)

Proof:

Compute [[ϕ]] = {s ∈ S |M, s |= ϕ} by induction on the formula.

The set [[ϕ]] is represented by a boolean array: L[s][ϕ] = ⊤ if s ∈ [[ϕ]].

The labelling ℓ is encoded in L: for p ∈ AP we have L[s][p] = ⊤ if p ∈ ℓ(s).

103/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = ¬ϕ1

semantics(ϕ1)
[[ϕ]] := S \ [[ϕ1]] O(|S|)

case ϕ = ϕ1 ∨ ϕ2

semantics(ϕ1); semantics(ϕ2)
[[ϕ]] := [[ϕ1]] ∪ [[ϕ2]] O(|S|)

case ϕ = EXϕ1

semantics(ϕ1)
[[ϕ]] := ∅ O(|S|)
for all (s, t) ∈ T do if t ∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] ∪ {s} O(|T |)

case ϕ = AXϕ1

semantics(ϕ1)
[[ϕ]] := S O(|S|)
for all (s, t) ∈ T do if t /∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] \ {s} O(|T |)

104/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is the “todo” list O(|S|)
Z := ∅ // the set Z is the “done” list O(|S|)
while L 6= ∅ do |S| times
Invariant: [[ϕ2]] ∪ ([[ϕ1]] ∩ T−1(Z)) ⊆ Z ∪ L ⊆ [[Eϕ1 U ϕ2]]
take t ∈ L; L := L \ {t}; Z := Z ∪ {t} O(1)
for all s ∈ T−1(t) do |T | times
if s ∈ [[ϕ1]] \ (Z ∪ L) then L := L ∪ {s}

[[ϕ]] := Z

Z is only used to make the invariant clear.
Z ∪ L can be replaced by [[ϕ]].

105/113

Model checking of CTL

Definition: procedure semantics(ϕ)

Replacing Z ∪ L by [[ϕ]]

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is imlemented with a list O(|S|)
[[ϕ]] := [[ϕ2]] O(|S|)
while L 6= ∅ do |S| times
take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times
if s ∈ [[ϕ1]] \ [[ϕ]] then L := L ∪ {s}; [[ϕ]] := [[ϕ]] ∪ {s} O(1)

106/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is the “todo” list O(|S|)
Z := ∅ // the set Z is the “done” list O(|S|)
for all s ∈ S do c[s] := |T (s)| O(|S|)
while L 6= ∅ do |S| times
Invariant: ∀s ∈ S, c[s] = |T (s) \ Z| and

[[ϕ2]] ∪ ([[ϕ1]] ∩ {s ∈ S | T (s) ⊆ Z}) ⊆ Z ∪ L ⊆ [[Aϕ1 U ϕ2]]
take t ∈ L; L := L \ {t}; Z := Z ∪ {t} O(1)
for all s ∈ T−1(t) do |T | times
c[s] := c[s]− 1 O(1)
if c[s] = 0 ∧ s ∈ [[ϕ1]] \ (Z ∪ L) then L := L ∪ {s}

[[ϕ]] := Z

Z is only used to make the invariant clear.
Z ∪ L can be replaced by [[ϕ]].

107/113

Model checking of CTL

Definition: procedure semantics(ϕ)

Replacing Z ∪ L by [[ϕ]]

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is imlemented with a list O(|S|)
[[ϕ]] := [[ϕ2]] O(|S|)
for all s ∈ S do c[s] := |T (s)| O(|S|)
while L 6= ∅ do |S| times
take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times
c[s] := c[s]− 1 O(1)
if c[s] = 0 ∧ s ∈ [[ϕ1]] \ [[ϕ]] then O(1)

L := L ∪ {s}; [[ϕ]] := [[ϕ]] ∪ {s} O(1)

108/113

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ϕ ∈ CTL

Question: Existence of a model M and a state s such that M, s |= ϕ ?

Theorem: Complexity
◮ The model checking problem for CTL is PTIME-complete.

◮ The satisfiability problem for CTL is EXPTIME-complete.

109/113

fairness

Example: Fairness

Only fair runs are of interest

◮ Each process is enabled infinitely often:
∧

i

GF runi

◮ No process stays ultimately in the critical section:
∧

i

¬FGCSi =
∧

i

GF¬CSi

Definition: Fair Kripke structure

M = (S, T, I,AP, ℓ, F1, . . . , Fn) with Fi ⊆ S.

An infinite run σ is fair if it visits infinitely often each Fi

110/113

fair CTL

Definition: Syntax of fair-CTL

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Ef Xϕ | Af Xϕ | Ef ϕ U ϕ | Af ϕ U ϕ

Definition: Semantics as a fragment of CTL∗

Let M = (S, T, I,AP, ℓ, F1, . . . , Fn) be a fair Kripke structure.

Then, Ef ϕ = E(fair ∧ ϕ) and Af ϕ = A(fair→ ϕ)

where fair =
∧

i GFFi

Lemma: CTLf cannot be expressed in CTL

111/113

fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure Mk defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1
p p p p¬p ¬p ¬p ¬p

◮ Mk, 2k |= EGF p but Mk, 2k − 2 6|= EGF p

◮ If ϕ ∈ CTL and |ϕ| ≤ m ≤ k then

Mk, 2k |= ϕ iff Mk, 2m |= ϕ

Mk, 2k − 1 |= ϕ iff Mk, 2m− 1 |= ϕ

If the fairness condition is ℓ−1(p) then Ef ⊤ cannot be expressed in CTL.

112/113

Model checking of CTLf

Theorem

The model checking problem for CTLf is decidable in time O(|M | · |ϕ|)

Proof: Computation of Fair = {s ∈ S |M, s |= Ef ⊤}

Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).

Let S′ be the union of the (non trivial) SCCs which intersect each Fi.

Then, Fair is the set of states that can reach S′.

Note that reachability can be computed in linear time.

113/113

Model checking of CTLf

Proof: Reductions

Ef Xϕ = EX(Fair ∧ ϕ) and Ef ϕ U ψ = Eϕ U (Fair ∧ ψ)

It remains to deal with Af ϕ U ψ.

Recall that Aϕ U ψ = ¬EG¬ψ ∧ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

This formula also holds for fair quantifications Af and Ef .
Hence, we only need to compute the semantics of Ef Gϕ.

Proof: Computation of Ef Gϕ

Let Mϕ be the restriction of M to [[ϕ]]f .

Compute the SCC of Mϕ with Tarjan’s algorithm (in linear time).

Let S′ be the union of the (non trivial) SCCs of Mϕ which intersect each Fi.

Then, M, s |= Ef Gϕ iff M, s |= Eϕ U S′ iff Mϕ, s |= EFS′.

This is again a reachability problem which can be solved in linear time.

	Introduction
	Bibliography

	Models
	Transition systems
	… with variables
	Concurrent systems
	Synchronization and communication

	Specifications
	Linear Time Specifications
	Definitions
	Main results
	Büchi automata
	From LTL to BA
	Hardness results

	Branching Time Specifications
	CTL*
	CTL
	Fair CTL

