Outline

Introduction

Models

Temporal Specifications

Satisfiability and Model Checking

5 More on Temporal Specifications

- Expressivity
- Ehrenfeucht-Fraïssé games
- Separation

▲□▶▲圖▶▲圖▶▲圖▶ 圖 夕久? 125/149

Expressivity

Definition: complete linear time flows

A time flow $(\mathbb{T},<)$ is linear if < is a total strict order.

A linear time flow $(\mathbb{T},<)$ is complete if every nonempty and bounded subset of \mathbb{T} has a least upper bound and a greatest lower bound.

$$\begin{split} (\mathbb{N},<),\ (\mathbb{Z},<) \text{ and } (\mathbb{R},<) \text{ are complete.} \\ (\mathbb{Q},<) \text{ and } (\mathbb{R}\setminus\{0\},<) \text{ are not complete.} \end{split}$$

Theorem: Expressive completeness [11, Kamp 68]

For complete linear time flows,

 $\mathrm{TL}(\mathrm{AP},\mathsf{SU},\mathsf{SS})=\mathrm{FO}_{\mathrm{AP}}(<)$

Elegant algebraic proof of $\mathrm{TL}(\mathrm{AP},\mathsf{SU})=\mathrm{FO}_{\mathrm{AP}}(<)$ over $(\mathbb{N},<)$ due to Wilke 98.

See also Diekert-Gastin [17]: TL = FO = SF = AP = CFBA = VWAA.

Example:

$$\begin{split} \psi(x) &= \neg P_a(x) \land \neg P_b(x) \land \forall y \forall z \left(P_a(y) \land P_b(z) \land y < z \right) \rightarrow \\ \exists v \ y < v < z \land \begin{pmatrix} P_c(v) \land x < y \\ \lor \ P_d(v) \land z < x \\ \lor \ P_e(v) \land y < x < z \end{pmatrix} \end{split}$$

Expressivity

Definition: Equivalence

Let $\ensuremath{\mathcal{C}}$ be a class of time flows.

Two formulae $\varphi, \psi \in \mathrm{TL}(\mathrm{AP}, \mathsf{SU}, \mathsf{SS})$ are equivalent over \mathcal{C} if for all temporal structures $w = (\mathbb{T}, <, h)$ over \mathcal{C} and all time points $t \in \mathbb{T}$ we have

 $w,t\models\varphi\quad\text{iff}\quad w,t\models\psi$

Two formulae $\varphi \in \mathrm{TL}(\mathrm{AP}, \mathsf{SU}, \mathsf{SS})$ and $\psi(x) \in \mathrm{FO}_{\mathrm{AP}}(<)$ are equivalent over $\mathcal C$ if for all temporal structures $w = (\mathbb{T}, <, h)$ over $\mathcal C$ and all time points $t \in \mathbb{T}$ we have

 $w,t\models\varphi\quad\text{iff}\quad w,x\mapsto t\models\psi$

We also write $w \models \psi(t)$.

Remark: $TL(AP, SU, SS) \subseteq FO_{AP}^{3}(<) \subseteq FO_{AP}(<)$ $\forall \varphi \in TL(AP, SU, SS), \exists \psi(x) \in FO_{AP}^{3}(<)$ such that φ and $\psi(x)$ are equivalent.

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ � ◎ 127/149

Stavi connectives: Time flows with gaps

Definition: Stavi Until: \overline{U} Let $w = (\mathbb{T}, <, h)$ be a temporal structure and $i \in \mathbb{T}$. Then, $w, i \models \varphi \, \overline{U} \, \psi$ if

$$\begin{split} \exists k \ i < k \\ & \land \exists j \ (i < j < k \land w, j \models \neg \varphi) \\ & \land \exists j \ (i < j < k \land \forall \ell \ (i < \ell < j \rightarrow w, \ell \models \varphi)) \\ & \land \forall j \ \left[i < j < k \land \forall \ell \ (i < \ell < j \rightarrow w, \ell \models \varphi)) \\ & \land \forall j \ \left[i < j < k \rightarrow \left[\bigvee_{i} [j < k' \land \forall j' \ (i < j' < k' \rightarrow w, j' \models \varphi)] \\ & \lor [\forall \ell \ (j < \ell < k \rightarrow w, \ell \models \psi) \land \exists \ell \ (i < \ell < j \land w, \ell \models \neg \varphi)] \right] \right] \end{split}$$

Similar definition for the Stavi Since \overline{S} .

Example:

Let $w = (\mathbb{R} \setminus \{0\}, <, h)$ with $h(p) = \mathbb{R}_{-}$ and $h(q) = \mathbb{R}_{+}$. Then, $w, -1 \not\models p \operatorname{SU} q$ but $w, -1 \models p \overline{\operatorname{U}} q$.

Theorem: [13, Gabbay, Hodkinson, Reynolds]

 ${\rm TL}({\rm AP},{\sf SU},{\sf SS},\overline{{\sf S}},\overline{{\sf U}})$ is expressively complete for ${\rm FO}_{\rm AP}(<)$ over the class of all linear time flows.

Stavi connectives: Time flows with gaps

Exercise: Isolated gaps

Let $\varphi_p = p \operatorname{SU} p \wedge \operatorname{SF} \neg p \wedge \neg (p \operatorname{SU} \neg p) \wedge \neg (p \operatorname{SU} \neg (p \operatorname{SU} \top)).$ Let $w = (\mathbb{T}, <, h)$ with $\mathbb{T} \subseteq \mathbb{R}$ and $t \in \mathbb{T}$. Show that if $w, t \models \varphi_p$ then \mathbb{T} has a gap. Let $\psi_{p,q} = \varphi_p \wedge (q \lor \varphi_p) \operatorname{SU} (q \wedge \neg p).$ Show that $\psi_{p,q}$ is equivalent to $p \overline{U} q$ over the time flow $(\mathbb{R} \setminus \{0\}, <).$ Show that $\operatorname{TL}(\operatorname{AP}, \operatorname{SU}, \operatorname{SS})$ is $\operatorname{FO}_{\operatorname{AP}}(<)$ -complete over the time flow $(\mathbb{R} \setminus \mathbb{Z}, <).$

k-equivalence

Definition:

Let $w_0 = (\mathbb{T}_0, <, h_0)$ and $w_1 = (\mathbb{T}_1, <, h_1)$ be two temporal structures. Let $i_0 \in \mathbb{T}_0$ and $i_1 \in \mathbb{T}_1$. Let $k \in \mathbb{N}$.

We say that (w_0, i_0) and (w_1, i_1) are k-equivalent, denoted $(w_0, i_0) \equiv_k (w_1, i_1)$, if they satisfy the same formulae in TL(AP, SU, SS) of temporal depth at most k.

Lemma: \equiv_k is an equivalence relation of finite index.

Example:

Let $a = \{p\}$ and $b = \{q\}$. Let $w_0 = babaababaa$ and $w_1 = baababaabaa$.

$$(w_0,3) \equiv_0 (w_1,4)$$
$$(w_0,3) \equiv_1 (w_1,4) ?$$
$$(w_0,3) \equiv_1 (w_1,6) ?$$

Here, $\mathbb{T}_0 = \mathbb{T}_1 = \{0, 1, 2, \dots, 9\}.$

Temporal depth

Definition: Temporal depth of $\varphi \in TL(AP, SU, SS)$

$$\begin{split} \mathrm{td}(p) &= 0 & \text{if } p \in \mathrm{AP} \\ \mathrm{td}(\neg \varphi) &= \mathrm{td}(\varphi) \\ \mathrm{td}(\varphi \lor \psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi)) \\ \mathrm{td}(\varphi \: \mathsf{SS} \: \psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi)) + 1 \\ \mathrm{td}(\varphi \: \mathsf{SU} \: \psi) &= \max(\mathrm{td}(\varphi), \mathrm{td}(\psi)) + 1 \end{split}$$

Lemma:

Let $B \subseteq AP$ be finite and $k \in \mathbb{N}$. There are (up to equivalence) finitely many formulae in TL(B, SU, SS) of temporal depth at most k.

▲□▶▲舂▶▲壹▶▲壹▶ 壹 のへで 132/149

EF-games for TL(AP, SU, SS)

The EF-game has two players: Spoiler (Player I) and Duplicator (Player II). The game board consists of 2 temporal structures: $w_0 = (\mathbb{T}_0, <, h_0)$ and $w_1 = (\mathbb{T}_1, <, h_1)$. There are two tokens, one on each structure: $i_0 \in \mathbb{T}_0$ and $i_1 \in \mathbb{T}_1$. A configuration is a tuple (w_0, i_0, w_1, i_1) or simply (i_0, i_1) if the game board is understood. Let $k \in \mathbb{N}$. The *k*-round EF-game from a configuration proceeds with (at most) k moves. There are 2 available moves for TL(AP, SU, SS): SU-move or SS-move (see below). Spoiler chooses which move is played in each round.

Spoiler wins if

- Either duplicator cannot answer during a move (see below).
- Or a configuration such that $(w_0, i_0) \neq_0 (w_1, i_1)$ is reached.

Otherwise, duplicator wins.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E ⑦ Q ○ 134/149</p>

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 133/149

Strict Until and Since moves

Definition: SU-move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $k_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} < k_{\varepsilon}$.
- Duplicator chooses $k_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} < k_{1-\varepsilon}$. Spoiler wins if there is no such $k_{1-\varepsilon}$. Either spoiler chooses (k_0, k_1) as next configuration of the EF-game, or the move continues as follows
- Spoiler chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ with $i_{1-\varepsilon} < j_{1-\varepsilon} < k_{1-\varepsilon}$.
- Duplicator chooses $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ with $i_{\varepsilon} < j_{\varepsilon} < k_{\varepsilon}$. Spoiler wins if there is no such j_{ε} . The next configuration is (j_0, j_1) .

Similar definition for the SS-move.

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ⑦ 135/149

EF-games for $\mathrm{TL}(\mathrm{AP},\mathsf{SU},\mathsf{SS})$

Lemma: Determinacy

The k-round EF-game for TL(AP, SU, SS) is determined: For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all $k \in \mathbb{N}$ and all configurations (w_0, i_0, w_1, i_1) , we have

 $(w_0, i_0) \sim_k (w_1, i_1) \text{ iff } (w_0, i_0) \equiv_k (w_1, i_1)$

Example:

Let $a = \{p\}$, $b = \{q\}$, $c = \{r\}$. Then, $aaabbc, 0 \models p \text{SU} (q \text{SU} r)$ but $aababc, 0 \not\models p \text{SU} (q \text{SU} r)$. p SU (q SU r) cannot be expressed with a formula of temporal depth at most 1. $p \text{SU} (q \land Xq)$ cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, "even length" cannot be expressed in TL(AP, SU, SS).

<□▶<②▶<差▶<差▶<差▶ 37/149

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from (w_0, i_0, w_1, i_1) if he can win all plays starting from this configuration. This is denoted by $(w_0, i_0) \sim_k (w_1, i_1)$.

Spoiler has a winning strategy in the k-round EF-game starting from (w_0, i_0, w_1, i_1) if she can win all plays starting from this configuration.

Example:

Let $a = \{p\}$, $b = \{q\}$, $c = \{r\}$. Let $w_0 = aaabbc$ and $w_1 = aababc$.

 $(w_0, 0) \sim_1 (w_1, 0)$ $(w_0, 0) \not\sim_2 (w_1, 0)$

Here, $\mathbb{T}_0 = \mathbb{T}_1 = \{0, 1, 2, \dots, 5\}.$

▲□▶▲母▶▲臣▶▲臣▶ 臣 のへで 136/149

Moves for Strict Future and Past modalities

Definition: SF-move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} < j_{\varepsilon}$.
- Duplicator chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} < j_{1-\varepsilon}$.
- Spoiler wins if there is no such $j_{1-\varepsilon}$.
- The new configuration is (j_0, j_1) .

Similar definition for the SP-move.

Example:

p SU q is not expressible in TL(AP, SP, SF) over linear flows of time.

Let $a = \emptyset$, $b = \{p\}$ and $c = \{q\}$.

Let $w_0 = (abc)^n a(abc)^n$ and $w_1 = (abc)^n (abc)^n$.

If n > k then, starting from $(w_0, 3n, w_1, 3n)$, duplicator has a winning strategy in the k-round EF-game using SF-moves and SP-moves.

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ - • ○ Q @ 138/149

Moves for Next and Yesterday modalities

Notation: $i \lessdot j \stackrel{\text{\tiny def}}{=} i < j \land \neg \exists k \ (i < k < j).$

Definition: X-move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} \lessdot j_{\varepsilon}$.
- Duplicator chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} < j_{1-\varepsilon}$. Spoiler wins if there is no such $j_{1-\varepsilon}$. The new configuration is (j_0, j_1) .

Similar definition for the Y-move.

Exercise:

Show that p SU q is not expressible in TL(AP, Y, SP, X, SF) over linear time flows.

▲□▶ ▲ ● ▶ ▲ ■ ▶ ▲ ■ ▶ ■ 夕 Q ○ 139/149

Semantic Separation

Definition:

Let $w=(\mathbb{T},<,h)$ and $w'=(\mathbb{T},<,h')$ be temporal structures over the same time flow, and let $t\in\mathbb{T}$ be a time point.

- w, w' agree on t if $\ell(t) = \ell'(t)$
- ▶ w, w' agree on the past of t if $\ell(s) = \ell'(s)$ for all s < t
- w, w' agree on the future of t if $\ell(s) = \ell'(s)$ for all s > t
- Recall: $h: AP \to 2^{\mathbb{T}}$ and we let $\ell(t) = \{p \in AP \mid t \in h(p)\}.$

Definition: Pure formulae and separation

Let C be a class of time flows. A formula φ over some logic \mathcal{L} is pure past (resp. pure present, pure future) over C if

 $w,t \models \varphi$ iff $w',t \models \varphi$

for all temporal structures $w=(\mathbb{T},<,h)$ and $w'=(\mathbb{T},<,h')$ over $\mathcal C$ and all time points $t\in\mathbb{T}$ such that

w, w' agree on the past of t (resp. on t, on the future of t).

A logic \mathcal{L} is separable over a class \mathcal{C} of time flows if each formula $\varphi \in \mathcal{L}$ is equivalent to some (finite) boolean combination of pure formulae.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 142/149

Non-strict Until and Since moves

Definition: U-move

- Spoiler chooses $\varepsilon \in \{0,1\}$ and $k_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ such that $i_{\varepsilon} \leq k_{\varepsilon}$.
- Duplicator chooses $k_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ such that $i_{1-\varepsilon} \leq k_{1-\varepsilon}$. Either spoiler chooses (k_0, k_1) as new configuration of the EF-game, or the move continues as follows
- Spoiler chooses $j_{1-\varepsilon} \in \mathbb{T}_{1-\varepsilon}$ with $i_{1-\varepsilon} \leq j_{1-\varepsilon} < k_{1-\varepsilon}$.
- Duplicator chooses $j_{\varepsilon} \in \mathbb{T}_{\varepsilon}$ with $i_{\varepsilon} \leq j_{\varepsilon} < k_{\varepsilon}$. Spoiler wins if there is no such j_{ε} . The new configuration is (j_0, j_1) .
- If duplicator chooses $k_{1-\varepsilon} = i_{1-\varepsilon}$ then the new configuration must be (k_0, k_1) .
- ▶ If spoiler chooses $k_{\varepsilon} = i_{\varepsilon}$ then duplicator must choose $k_{1-\varepsilon} = i_{1-\varepsilon}$, otherwise he loses.

Similar definition for the S-move.

Exercise:

- 1. Show that SU is not expressible in TL(AP, S, U) over $(\mathbb{R}, <)$.
- 2. Show that SU is not expressible in $\mathrm{TL}(\mathrm{AP},\mathsf{S},\mathsf{U})$ over $(\mathbb{N},<)$.

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ ⑦ Q ℃ 140/149</p>

Syntactic Separation

Definition: Syntactically pure formulae and separation

A formula $\varphi \in TL(AP, SU, SS)$ is

- syntactically pure present if it is a boolean combinations of formulae in AP,
- syntactically pure future if it is a boolean combinations of formulae of the form α SU β where $\alpha, \beta \in TL(AP, SU)$,
- syntactically pure past if it is a boolean combinations of formulae of the form $\alpha SS \beta$ where $\alpha, \beta \in TL(AP, SS)$.
- syntactically separated if it is a boolean combinations of syntactically pure formulae.

Example:

The formulae $\varphi_1 = SF(q \land SP p)$ and $\varphi_2 = SF(q \land \neg SP \neg p)$ are not separated but there are equivalent syntactically separated formulae.

Remark: Syntax versus semantic

Every formula $\varphi \in TL(AP, SU, SS)$ which is syntactically pure present (resp. future, past) is also semantically pure present (resp. future, past).

Separation

Theorem: [8, Gabbay, Pnueli, Shelah & Stavi 80]

 $\mathrm{TL}(\mathrm{AP},\mathsf{SU},\mathsf{SS})$ is syntactically separable over discrete and complete linear orders.

Definition: Discrete linear order

A linear time flow $(\mathbb{T},<)$ is discrete if every non-maximal element has an immediate successor and every non-minimal element has an immediate predecessor.

- \blacktriangleright $(\mathbb{N},<)$ is the unique (up to isomorphism) discrete and complete linear order with a first point and no last point.
- ► (Z, <) is the unique (up to isomorphism) discrete and complete linear order with no first point and no last point.
- Any discrete and complete linear order is isomorphic to a sub-flow of $(\mathbb{Z}, <)$.

Theorem: Gabbay, Reynolds, see [7]

 $\mathrm{TL}(\mathrm{AP},\mathsf{SU},\mathsf{SS})$ is syntactically separable over $(\mathbb{R},<).$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○ 144/149

Initial equivalence

Example: TL(AP, SU, SS) versus TL(AP, SU)

 $G(\text{grant} \rightarrow (\neg \text{grant} SS \text{ request}))$

is initially equivalent to

 $(\operatorname{request} \mathsf{R} \neg \operatorname{grant}) \land \mathsf{G}(\operatorname{grant} \rightarrow (\operatorname{request} \lor (\operatorname{request} \mathsf{SR} \neg \operatorname{grant})))$

Theorem: (Laroussinie & Markey & Schnoebelen 2002) TL(AP, SU, SS) may be exponentially more succinct than TL(AP, SU) over $(\mathbb{N}, <)$.

Initial equivalence

Definition: Initial Equivalence

Let \mathcal{C} be a class of time flows having a least element (denoted 0). Two formulae $\varphi, \psi \in \mathrm{TL}(\mathrm{AP}, \mathrm{SU}, \mathrm{SS})$ are initially equivalent over \mathcal{C} if for all temporal structures $w = (\mathbb{T}, <, h)$ over \mathcal{C} we have

 $w,0\models\varphi\quad\text{iff}\quad w,0\models\psi$

Two formulae $\varphi \in TL(AP, SU, SS)$ and $\psi(x) \in FO_{AP}(<)$ are initially equivalent over C if for all temporal structures $w = (\mathbb{T}, <, h)$ over C we have

 $w, 0 \models \varphi$ iff $w \models \psi(0)$

Corollary: of the separation theorem

For each $\varphi \in TL(AP, SU, SS)$ there exists $\psi \in TL(AP, SU)$ such that φ and ψ are initially equivalent over $(\mathbb{N}, <)$.

▲□▶▲∰▶▲불▶▲불▶ 불 ∽의९은 145/149

Separation and Expressivity

Theorem: [12, Gabbay 89] (already stated by Gabbay in 81)
Let ${\mathcal C}$ be a class of linear time flows.
Let $\mathcal L$ be a temporal logic able to express SF and SP.
Then, \mathcal{L} is separable over \mathcal{C} iff it is expressively complete for $\mathrm{FO}_{\mathrm{AP}}(<)$ over \mathcal{C} .
Exercise: Checking semantically pure
Is the following problem decidable? If yes, what is his complexity?
Input: A formula $\varphi \in TL(AP, SU, SS)$

Question: Is the formula φ semantically pure future?

Some References

[11] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, USA, (1968). [8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Annual ACM Symposium PoPL'80, 163-173. ACM Press. [12] D. Gabbay. The declarative past and imperative future: Executable temporal logics for interactive systems. In Temporal Logics in Specifications, April 87. LNCS 398, 409-448, 1989. [13] D. Gabbay, I. Hodkinson and M. Reynolds. Temporal expressive completeness in the presence of gaps. In Logic Colloquium '90, Springer Lecture Notes in Logic 2, pp. 89-121, 1993. [14] I. Hodkinson and M. Reynolds. Separation — Past, Present and Future. In "We Will Show Them: Essays in Honour of Dov Gabbay". Vol 2, pages 117–142, College Publications, 2005. Great survey on separation properties.

< □ ▶ < 畳 ▶ < 三 ▶ < 三 ▶ ○ Q (~ 148/149

Some References

[7] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.
[17] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and
Games, pp. 261–306. Amsterdam University Press, (2008).
Overview of formalisms expressively equivalent to First-Order for words.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
[18] H. Straubing.
Finite automata, formal logic, and circuit complexity.
In Progress in Theoretical Computer Science, Birkhäuser, (1994).
[19] K. Etessami and Th. Wilke.
An until hierarchy and other applications of an Ehrenfeucht-Fraissé game for
temporal logic.
In Information and Computation, vol. 106, pp. 88–108, (2000).
《□▶《檀》《玉》《夏》 (夏) (2) (49/149