

Institut Mines-Télécom

S (B) THE OVE

Laboratoire SAMOVAR

Integrating Automated Provers in Proof Assistants **Mohamed Yacine EL HADDAD**

Introduction

Method

The veracity of a theorem can be checked by generating complete proofs. However, tools that generate complete proofs are less efficient ATP to solve them. than tools that generate proof traces.

By using the proof trace generated by an ATP, we can extract problems that are not proved and call an other

An ATP (Automated Theorem Prover) is a tool that produce whether a complete proof or a proof trace.

Generate complete proofs that are easy to check from proof traces

Goal

- Complete proofs
- Fast generating (thanks to parallel computation) Independant ATPs

Gain

Problem
$$\rightarrow$$
 ATP \rightarrow Trace \rightarrow ? \rightarrow ATP \rightarrow Proof

Benchmarks

- In this benchmark we've used E-prover and ZenonModulo as ATPs and Dedukti as a proof checker.
- TPTP format for problems (7000 problems). TSTP format for traces.

Informations and Links

- Git https://github.com/elhaddadyacine/
- ProblemExtractor
 - https://github.com/elhaddadyacine/ProblemExtractor
- E-prover https://github.com/eprover/eprover
- Zenon Modulo

https://github.com/elhaddadyacine/zenon_modulo Page web http://www.lsv.fr/~elhaddad/

Email elhaddad@lsv.fr

	E	ZenonModulo	E+ZenonModulo
TSTP / Dedukti	55%	15%	34%
Checkability	No	Yes	Yes
Time/Problem	5mn	5mn	5mn + 10s/problem

direction.samovar@telecom-sudparis.eu

