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Material

Course material
Website: lecturer's homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

Main reference: H. Comon et al. Tree Automata Techniques and
Applications, 2008.

Other relevant resources
C. Loding, W. Thomas. Automata on finite trees. Handbook of
Automata Theory (l.), pp. 235-264, 2021.

L. Doyen. Top-Down Complementation of Automata on Finite Trees.
IPL 187:106499, 2025.



Motivation

1. Natural extension of formal languages and automata on words
2. Connection with Logic & Games
3. Treatment of tree-like data structures: parse trees, XML documents

4. Applications e.g. in compiler construction, formal verification
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Trees
We consider finite ordered ranked trees. Let Ng = N\ {0}

» finite set nodes (positions), denoted by Pos C N§ (with ¢ € Pos)
» ordered : internal nodes have children 1,...,n

» ranked : number of children fixed by node's label
€
1 2 3
/\
1 2

2 2

Definition: Tree

A (finite, ordered) tree is a nonempty, finite, prefix-closed set Pos C N; such
that w - (i + 1) € Pos implies w - i € Pos for all w € N*, i € Np.

» In the sequel, we write wi instead of w - |

» prefix-closed: wi € Pos implies w € Pos



Ranked Trees

Ranked symbols
Ranked alphabet F: finite set of symbols, each with an arity 0,1, ...
Denote by F; the symbols of arity i (hence F := |J; F).

arity 0: constants

arity > 1: functions (unary, binary, etc.)

Notation (example): F = {f(2),g(1), a, b}
Let X’ denote a set of variables (of arity 0), disjoint from the other symbols.



Ranked Trees

Ranked symbols
Ranked alphabet F: finite set of symbols, each with an arity 0,1, ...
Denote by F; the symbols of arity i (hence F := |J; F).

arity 0: constants

arity > 1: functions (unary, binary, etc.)

Notation (example): F = {f(2),g(1), a, b}
Let X’ denote a set of variables (of arity 0), disjoint from the other symbols.

Definition: Ranked tree

A ranked tree is a mapping t : Pos — (F U X) satisfying:

» Pos is a tree;
» for all p € Pos, if t(p) € Fn, n > 1 then Pos N pN = {pl,...,pn};
» for all p € Pos, if t(p) € X U Fy then Pos N pN = &.



Trees and Terms

The set of terms T(F, X) is the smallest set satisfying:
» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, o), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.




Trees and Terms

Definition: Terms
The set of terms T(F, X) is the smallest set satisfying:

» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, @), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.
Example: F = {f(2),g(1),a, b}, X = {x,y}

> f(g(a), b) € T(F);

» f(x,f(b,y)) € T(F,X) is linear;

» f(x,x) € T(F,X) is non-linear.



Trees and Terms

Definition: Terms

The set of terms T(F, X) is the smallest set satisfying:

» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, @), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.
Example: F = {f(2),g(1),a, b}, X = {x,y}

> f(g(a), b) € T(F);

» f(x,f(b,y)) € T(F,X) is linear;

» f(x,x) € T(F,X) is non-linear.

We use ‘terms’ and ‘trees’ interchangeably (obvious bijection).



Height and Size

Let t € T(F,X). We denote by #(t) the height, and by |t| the size, of t.
» if t € X, then H(t) :=0 and |t]| := 0;

» if t € Fo, then H(t) :=1 and |t| == 1;
»if t = f(tl,

(for notational convenience)
tl:=1+ [t + -+ |ta]-

., tn), then H(t) := 1 4+ max{H(t1),...,H(ts)} and




Subterms / subtrees

Definition: Subtree
Let t,u € T(F,X) and p a position. Then t, : Pos, — T(F,X) is the
ranked tree defined by

» Pos, :={q| pq € Pos };
> tp(q) == t(pq).

Moreover, t[u], is the tree obtained by replacing ¢, by v in t.

t > t’ (resp. t > t’) denotes that t’ is a (proper) subtree of t.



Substitutions and Context

Definition: Substitution

» (Ground) substitution o: mapping from X' to T(F,X), resp., T(F)
» Notation: o := {xy < t1,...,Xxp < tp}, with o(x) := x for all
x€ X\ {x1,...,xn}
» Extension to terms: for all f € Fp, and t,...,t,, € T(F,X)
o(f(ty,...,th) = f(o(tl), ..., o(tm))
» Notation: to for o(t)




Substitutions and Context

Definition: Substitution

» (Ground) substitution o: mapping from X' to T(F,X), resp., T(F)
» Notation: o := {xy < t1,...,Xxp < tp}, with o(x) := x for all
x€ X\ {x1,...,xn}
» Extension to terms: for all f € Fp, and t,...,t,, € T(F,X)
o(f(ty,...,th) = f(o(tl), ..., o(tm))

» Notation: to for o(t)

Definition: Context
A context is a linear term C € T(F,X) with variables xi, ..., x,.
We note Clt1,...,ts] := C{x1 < t1,...,Xn < tn}.

C"(F) denotes the contexts with n variables and C(F) := C1(F).
Let C € C(F). We note C% := x; and C"*1 = C"[C] for n > 0.



Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling



Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)
Non-deterministic bottom-up and top-down are equally powerful
Deterministic bottom-up equally powerful

Deterministic top-down less powerful



Bottom-up automata

Definition: (Bottom-up tree automata)
A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G,A),
where:

» @ is a finite set of states;

» F a finite ranked alphabet;

» G C Q are the final states;

» A is a finite set of rules of the form

f(q1,...,qn) = q

for f € F,and q,q1,...,q9, € Q.



Bottom-up automata

Definition: (Bottom-up tree automata)
A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G,A),
where:

» @ is a finite set of states;

» F a finite ranked alphabet;

» G C Q are the final states;

» A is a finite set of rules of the form

f(q1,...,qn) = q

for f € F,and q,q1,...,q, € Q.

Example: Q :={qo,q1,9r}, 7 ={f(2),8(1),a}, G :={qgr}, and rules
a—qo &le)— a1 gla) = a1 f(g1,q1) = ar



Move relation and Recognized language

A=(Q,F,G,A)

Move relation

Let t,t' € T(F, Q). We write t — 4 t" if the following are satisfied:
t = C[f(q1,-.-.,qn)] for some context C;
t' = Clq] for some rule f(qi,...,qn) — g of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —% for the transitive and reflexive closure of — 4.



Move relation and Recognized language

A=(Q,F,G,A)

Move relation

Let t,t' € T(F, Q). We write t — 4 t" if the following are satisfied:
t = C[f(q1,-.-.,qn)] for some context C;
t' = Clq] for some rule f(qi,...,qn) — g of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —% for the transitive and reflexive closure of — 4.

Recognized Language
A tree t is accepted by A if t =% q for some g € G.
L(.A) denotes the set of trees accepted by A.
L is recognizable if L = L(.A) for some NFTA A.



NFTA with s-moves

An e-NFTA is an NFTA A = (Q, F, G, A), where A can additionally contain
rules of the form g — ¢/, with q,q' € Q.

Semantics: allow to re-label a position from g to ¢': C[q] —4 C[q].

For every e-NFTA A there exists an equivalent NFTA A’.

Proof (sketch): construct the rules of A’ by a saturation procedure.
Initialize A’ = A and apply:
f(q1,.---,qn) > g€ g—qd €A
f(qr,--.,qn) = q €A
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Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f € Fj, and qi1,...,qn € Q, there exists
at least one rule f(q1,...,qn) = q € A.

A state g of A is accessible if there exists a tree t s.t. t =7 q.
A is said to be reduced if all its states are accessible.



Top-down tree automata

A top-down tree automaton (T-NFTA) is a tuple A = (Q,F,[,A), where

Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,---,4n)
for f € Fpoand q,q1,...,qn € Q.
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Top-down tree automata

Definition
A top-down tree automaton (T-NFTA) is a tuple A = (Q,F,[,A), where
Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,---,9n)

for f € F,and q,q91,...,9, € Q.
Move relation
Let t,t' € T(F, Q). We write t — 4 t’ if
t = Clq(f(t1,...,tn))] for some context C;
t' = C[f(qi(t1),- .., qn(tn))] for some rule g(f) — (q1,...,qn) of A.

t is accepted by A if g(t) =% t for some g € /.



From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.
Claim: L is accepted by NFTA A = (Q,F, G,A) iff it is accepted by
T-NFTA A" = (Q, F,I,A"), with | = G and
A" :={q(f) = (q1,---,qn) | f(q1,-..,qn) > g € A}
(and vice versa) A :={f(q1,.-.,q9n) = q | q(f) = (q1,-..,qn) € A"}



From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = (Q,F, G,A) iff it is accepted by
T-NFTA A’ = (Q, F,1,A), with | = G and

A :={q(f) = (91,---,9n) | f(q1,---,qn) > g€ A}
Proof: Let t € T(F). We show t =% q iff g(t) =%, t.
» Base: t = a (for some a € Fp)

t=a—%q a—aq q(a) —»ar e qla) =% a

» Induction: t = f(t1,...,t,), hypothesis holds for t1,...,t,
f(tr, ... th) 2% g 3q1, .- qn: F(q1, ..., qn) —a GAYI : ti =7 qi
g1, .., qn 1 q(f) =ar (g1, ..., qn) AVi:qi(ti) = p t
q(f(te, ... tn)) =a F(qu(t), ..., qn(tn)) =2 F(t1,..., tn)



Run (Computation tree)
A=(Q,F,I,A)
Definition: (Run)
Let t: Pos — F a ground tree. A run of A on tis a labelling t' : Pos — Q
compatible with A, i.e.

for all p € Pos, if t(p) = f € F,, t'(p) = q, and t'(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A



Run (Computation tree)
A=(Q,F,I,A)
Definition: (Run)
Let t: Pos — F a ground tree. A run of A on tis a labelling t' : Pos — Q
compatible with A, i.e.

for all p € Pos, if t(p) = f € F,, t'(p) = q, and t'(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A

Recognized Language
A run t’ is initialized (or accepting) if t'(¢) € I.
A tree t is accepted by A if there exists an initialized run of A on t.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

» Notation: Ag = (Q, F,{q},A) and Lg(A) = L(Ag), so
L(A) = Uges La(A).



From NFTA to DFTA
If L is recognizable by an NFTA, then it is recognizable by a DFTA.
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From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A= (Q,F,G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G’, ") also recognizes L:

> G/={5§Q|SQG#®}

» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.



From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A= (Q,F,G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G’, ") also recognizes L:
» G'={SCQ|SNG#0}
» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.



From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = (Q,F, G,A) an NFTA recognizing L.
The following DCFTA A’ = (29 F, G', A') also recognizes L:

> G'={SCQ|SNG+#w)}

» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.

Deterministic top-down are less powerful

E.g., L ={f(a,b),f(b,a)} can be recognized by DFTA but not by T-DFTA.




A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all t € L with
H(t) > k, there exist contexts C, D € T(F,{x}) and u € T(F) satisfying:

D is non-trivial (i.e., not just a variable);
t = C[D[u]];
for all n > 0, we have C[D"[u]] € L.



A pumping lemma for tree languages

Lemma
Let L be recognizable. Then there exists k such that for all t € L with
H(t) > k, there exist contexts C, D € T(F,{x}) and u € T(F) satisfying:
D is non-trivial (i.e., not just a variable);
t = C[D[u]];
for all n > 0, we have C[D"[u]] € L.

Proof: Let k be the number of states of an NFTA A recognizing L.
In an accepting run on a tree t € L, there exist two positions p, pp’ (p’ # ¢)
labelled by the same state q.

Let C = t[x]p, D = t)p[x]p, and u = t,y, thus t = C[D[u]].
The accepting run on t entails:
u—7% q,D[q] =% q, and C[q] =7 gr, for some final state gy.

Therefore, D"[q] —% q for all n > 0 (by induction, where D°[q] := q) and
CID[u]] =7 CID"[q]] =74 Cla] =4 ar



A pumping lemma for tree languages

Mostly used in the form:

Lemma

If for all k,
there exists t € L with #H(t) > k,
for all contexts C,D € T(F,{x}) and u € T(F) such that
t = C[D[u]] and D is non-trivial,
there exists n > 0 : C[D"[u]] € L,
then L is not recognizable.



lllustration of pumping lemma

Let L= {f(g'(a).g'(a)) | i > 0} for F = {f(2), (1), 2}.
Given k, let t = f(g¥(a), g"(a)).

qff
g g
ig g
b— : : k+1
9g g
u
— A
a a

Pumping D creates trees outside L = L not recognizable.



Closure properties

Recognizable tree languages are closed under Boolean operations.
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Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let (Q,F, G,A) be a DCFTA recognizing L.
Then (Q,F,Q\ G, A) recognizes T(F) \ L.

Proof hint: uniqueness of the run on the input tree.



Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)
Let (Q,F, G,A) be a DCFTA recognizing L.
Then (Q,F,Q\ G, A) recognizes T(F) \ L.

Proof hint: uniqueness of the run on the input tree.

Union (juxtapose)

Let (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then (Q1 W o, F, G1 U G, A1 U Ay) recognizes Ly U L.



Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 x @, F, Gy X Gp, A) recognizes L1 N Ly, where

f(qr,---,qn) > g€ D1 f(qy,....q,) = q € Ay
f(<q17q5_>77<qn7q;1>) - <q7 q/> €A




Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 x @, F, Gy X Gp, A) recognizes L1 N Ly, where

f(qr,---,qn) > g€ D1 f(qy,....q,) = q € Ay
f(<q17q5_>77<qn7q;1>) - <q7 q/> €A

Remarks:

» If Ay, Ay are D(C)FTA, then so is A.

» If Ay, Ay are complete, replace G; x Gy with (G x @) U (Q1 X G2)
to recognize L1 U Lo.



Single tree

Singleton Language
Given a tree t : Pos — F, the language L = {t} is recognized by
A =(Q, F, I, A) where:

Q = Pos

I'={e}

A={f(pl,...,pn) = p| f =t(p) € Fn}



Single tree

Singleton Language

Given a tree t : Pos — F, the language L = {t} is recognized by
A =(Q, F, I, A) where:

Q = Pos

I ={e}

A ={f(pl,...,pn) = p|f=1t(p) € Fn}
Remark: A; is deterministic.
Proof: Show t' =% piff t' = t,



Tree homomorphism

Definition
Let X, := {x1,...,x,} and F, F’ ranked alphabets.
A tree homomorphism is a mapping h : F — T(F', X),
with h(f) € T(F,X,) if f € F,.
Extension of h to trees (T(F) — T(F")):

> h(f(t1,...,tn)) = h(F){x1 < h(t1),...,xn < h(tn)}
Intuition:

» h(f) “explodes” f-positions into trees

» reorders/copies/deletes subtrees.



Examples
Example
F={f(2),8(1),a}, 7' ={f'(1),8'(2), c, d}
h(f) = f'(g'(x2, d)), h(g) = &'(x1, c), h(a) = &'(c, d)

f f

RN |

g g = g

| | RN
a a g d
RN
g c
/N



Examples
Example
F={f(2),8(1),a}, 7' ={f'(1),8'(2), c, d}
h(f) = f'(g'(x2, d)), h(g) = &'(x1, c), h(a) = &'(c, d)

f f
RN |
g g = g
| | AN
a a g d
RN
g c
VAN
c d

Example (ternary to binary tree)
F ={f(3),a,b}, 7' ={g(2), a, b}
h3a(f) = g(x1,8(x2, x3)), h32(a) = a, h3a(b) = b



A homomorphism h is

| 2

| 2

| 2

| 2

| 2

>

Properties of homomorphisms

linear if h(f) linear for all f;

non-erasing if H(h(f)) > 0 for all f;

flat if H(h(f)) =1 for all f;

complete if f € F,, implies that h(f) contains all of X};
permuting if h is complete, linear, and flat;

alphabetic if h(f) has the form g(xi,...,x,) for all f.

Example: hsp is linear, non-erasing, and complete.



Properties of homomorphisms

A homomorphism h is

» linear if h(f) linear for all f;

» non-erasing if H(h(f)) > 0 for all f;

flat if H(h(f)) =1 for all f;

complete if f € F,, implies that h(f) contains all of X};

v

v

v

permuting if h is complete, linear, and flat;
alphabetic if h(f) has the form g(xi,...,x,) for all f.

v

Example: hsp is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability
Example: h(f) = f'(x1,x1), h(g) = g(x1), h(a) = a
L={f(g'(a))|i >0} (recognizable)

h(L) = {f'(g'(a),g'(a)) | i >0} (not recognizable)



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F= {f(2)7g(1)7 a}r F = {f’(1)7g/(2)7 c, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a),g"(a)) | i,k >1}

> A= ({qo,q1,qr}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, v:8(q)—q, 0:f(q,q)— aqr}



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F= {f(2)7g(1)7 a}r F = {f’(1)7g/(2)7 c, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a),g"(a)) | i,k >1}

> A= ({qo,q1,qr}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, v:8(q)—q, 0:f(q,q)— aqr}

q f
VRN |
g g = g
| | 7N
a a g d
RN
g c
VRN



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F={f(2),8(1),a}, 7' ={f'(1),8'(2), ¢, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a).g"(a)) | i,k > 1}

» A= {{qo,q1,9r}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, 7:8(q)—q, :f(q,q)— aqr}

qr f 4§ f!
Run on A / \ ‘
q1 q1 — /
Rules used 5 & € 3 g
to produce states ‘ ‘ o - /N
« a & « / g \ d
/
g c



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

» F={f(2),g(1),a}, 7' = {f'(1),8'(2), c, d}
> h(f) = f'(g'(xe, d)), h(g) = g'(x1,¢), h(a) = g'(c,d)
> L=1{f(g'(a),g"(a)) | i,k > 1}
» A= {{qo,q1,9r}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, 7:8(q)—q, :f(q,q)— aqr}

ar £ 1) qr f!
Run on A / \ G — ‘, k) Construct automaton
Rules used g €3 g for h(L) preserving
to produce states p ‘ ‘ qo o /N state labels from A
o a Z « g d +
/ \ Guess the rules.
q0 g/ c
7N B

© « d



Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(rye) = q
}f{i £
|
Ye g% = g
\ \ /N
%a a ® g d
AN
g c
VAN



Automaton construction for h(L)

Given a reduced NFTA A = (Q, F, G, A) for L,

construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,

the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = x
(r,e) = q



Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QU{(rp)|reAIfFecF:r=Ff(..)—...,p€ Posys };

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set Al contains, for all positions p € Pospfy:

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(rie) > q

fo(i £
\
%?g/ g% = g
ﬁ /
<31\/ \

QU/
/(u)\ H2\



Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(re) > q
a f ar g1 (6,¢)
/ |
%/g g qal — g (5,1)
| | 6/
o a 3 Q1 1 (B, €)
" “ ; & 15(12‘\
8,1y, \ (9,12)

qo0 g/ c
/(u, s)\ (B,2)
C

d
(e, 1) (a,2)



Correctness

To prove: A’ accepts h(L).



Correctness

To prove: A’ accepts h(L).

» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
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» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
by structural induction over t.

» h(L) D L(A):

For all t' € T(F'), prove that if ' =%, g € Q,
then there exists t € T(F) N h~(t') with t =% q,



Correctness

To prove: A’ accepts h(L).
» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
by structural induction over t.

» h(L) D L(A):
For all t' € T(F'), prove that if ' =%, g € Q,
then there exists t € T(F) N h~(t') with t =% q,
by induction on number of states (of @) in the computation t' =%, g.
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To prove: A" accepts h(L).
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» h(L) C L(A):
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by structural induction over t.



Correctness

To prove: A" accepts h(L).
» h(L) C L(A):
For all t € T(F), show that t —% q implies h(t) =%, q,
by structural induction over t.

» Base case: t = a (leaf) where a € Fy (constant)
a—=%q & a—>qcA
——

r
Then h(a) =%, q using rules in A} (single tree)
Note: ¢, is a ground term, rules g; — (r, p) not used



Correctness

To prove: A" accepts h(L).

» h(L) C L(A):
For all t € T(F), show that t —% q implies h(t) =%, q,
by structural induction over t.

» Base case: t = a (leaf) where a € Fy (constant)
a—=%q & a—>qcA
——

r
Then h(a) =%, q using rules in A} (single tree)
Note: ¢, is a ground term, rules g; — (r, p) not used

> Inductive case: t = f(u1,..., un)
t =% f(q1,...,qn) 2> gand u; =% qi (i=1,...,n)
reA

Then h(t) = h(F){x1 < h(u1),...,xn < h(up)}
and by induction hypothesis h(u;) =%, qi, so h(t) =%, h(f)(q1,-..,qn)

To show: h(f)(q1,.-.,qn) =% q using rules in A} (single tree)



Correctness

To prove: A" accepts h(L).

» L(A") C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A’ (with
e-transitions removed) on t’ corresponding to t' =%, g.



Correctness

To prove: A" accepts h(L).

» L(A") C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A’ (with
e-transitions removed) on t’ corresponding to t' =%, g.

» Base case: t’ —* g, with no intermediate state from Q
Since A’ are disjoint, only rules from A/ for a single r are used.
(no variable in t' — rules g; — (r, p) not used)
Let r = f(q1,---,qn) = q.
Then t' = h(f) (single tree) and we construct t = f(u1,. .., u,) where
uj =% q; (why is it possible 7).



Correctness

To prove: A" accepts h(L).

» L(A) C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A" (with
e-transitions removed) on t’ corresponding to t' =%, q.

» Inductive case: t' =%, v{xi <= q1,...,Xn < Gn}
= v < (r,p1), e X0 < (e pe)} =00 g
no intermediate state from Q

where v is a linear term in T(F', X)

Hence t' = v{xy = u},..., X, < u,} where ui =%, qi (i=1,...,n)

(why is it possible ?)
Alson=n=---=r,=r="f(q,...,9,) = g and v = h(f) (single
tree)

By induction hyp., there exist u; —% q; with h(u;) = u! and we
construct t = f(uy,...,u,) and show that h(t) =t’ and t =% q.



Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L C T(F') be recognizable and h : F — F’ a tree homomorphism (not
necessarily linear). Then h=1(L) is recognizable.



Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L C T(F') be recognizable and h : F — F’ a tree homomorphism (not
necessarily linear). Then h=1(L) is recognizable.

Given an NFTA A" = (Q, F', G, A') for L,
construct NFTA A= (QW {T}, F, G, A) for h=1(L).
Forall n>0and f € F,, and p1,...,pn € Q,

add f(T,...,T) = T to A;

if h(F){x1 < p1,..., X0 < pn} =% q, add f(q1,...,qn) = g to A,
with:

pi if x; appears in h(f)
qi = .
T otherwise

Proof: Show t —% q iff h(t) =%, q, for all t € T(F).



Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac
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their positions).
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Leaf languages

Let L be a recognizable tree language. Then fr(L) is context-free.

Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).



Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac

Leaf languages
Let L be a recognizable tree language. Then fr(L) is context-free.
Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).
Proof (idea):
» Given a T-NFTA recognizing L, construct a CFG from it.

» L is generated by a CFG using productions of the form A — BC | a
only. Replace A— BC by A — A, and A, — BC, construct a
T-NFTA from the result.



Regular Expressions

Words (alphabet ¥)
F,e,a(ael)
union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)
No empty tree
n-ary symbols

concatenation, iteration ?



Regular Expressions

Words (alphabet ¥)
F,e,a(ael)

union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)
No empty tree
n-ary symbols
concatenation, iteration ?
~~ use placeholders

Let £ = {0;,0s,...} be a set of placeholders (symbols of arity 0).
T(F,K): set of all terms over ranked alphabet F U K.



Placeholders

Placeholder substitution
Substitution: {{J < L} where L is a tree language
Can replace different occurrences of [ by different elements of L

Semantics
Based on semantics of t{{J <— L}, by structural induction on t € T(F, K):

» t=aof arity 0: a{0 < L} = L if a =0 (otherwise {a})

» t=f of arity n > 0:

f(tr,....tn){O« L} ={f(s1,...,50) | si € ti{0 «+ L},1 <i < n}

» L{O«— L} ={t{0« L} |teli}
Abbreviation: {0y < L;,..., 0, « Ly} ={01 < L1} o---o{, < Ly}
(Li € T(F))



Concatenation - lteration
L ol = Ut€L1 t{D — L2}

t1 € L1

b, ty € Ly



Concatenation - lteration
Concatenation

L ol = Ut€L1 t{D — L2}

t1 € L1
|

th, th € Lp
teration

= Uen L where [0 = {0} and L¥F1 = [k .o(LU LO)
Note: J € L*® for all L.
For L ={f(0,0,a)}:

Kleene plus: LT

AL R R

[m]



Regular Expressions

A regular expression is obtained by the following grammar:
EZ:®|f|E1+E2|E1~EIE2|E*D

feF,Oek
> |[®]]: %)
> [fl= {f(C,...,00)} (f € Fn)
> |[E1 + E2]]=|[E1]I U |IE2]]
> [E 0 E]=[E] ©[E]
> |[E*E']|:|[E]I*EI

A tree language L is regular if L =[E] for some regular expression E.

Shortcut: f(El, ce En) =f-mE ... GE; ... O,E,




Regular Expressions - Examples

E=1f(0,a)" 0a

/ N\
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a a Left “comb”



Regular Expressions - Examples

E = f(0,a)" 0a E = f(f(0,0), f(O,0))= -0a
f'
/ \ f i
fa / N\
J A\ fooof 0a
/S a /A A
f [ I R I
/ \

a a Left “comb”



Regular Expressions - Examples

= f(0,a)* 0a E = f(f(0,0), f(0,0))* -0a
f
/\ f -
f a / N\
/ \ f f ‘0Oa
S a /N
f O 0o OO
/ \

a a Left “comb” All branches are of even length



Kleene Theorem for Tree Languages

Theorem (RegExp = NFTA)
L is regular iff L is recognizable by an NFTA.

Proof (=)

By induction over the structure of regular expressions:

» Base case: @ and {f(Oy,...,0,)} are finite languages, hence
recognizable.

» Inductive case: given A; = (Q;, F UK, Gj, A;) NFTAs recognizing
L(Ai) =[E] (i =1,2),

> [E1 + E2] is recognized by (Q1 W Q2, FUK, G1 U Gy, A U Ayp)
» [E1 -OE;] is recognized by (@ W Q, F UK, Gy, A) where
g € G : f(qr,...,qn) > g €Ay and 0 — g € Aq}
» [E, "] is recognized by (@1, F UK, Gi, A) where
A:Alu{f(ql7aqn)—>q|
g € G : f(qr,...,qn) > g €Ay and 0 — g € Aq}



Kleene Theorem for Tree Languages

Theorem (RegExp = NFTA)
L is regular iff L is recognizable by an NFTA.

Proof (<)
Given NFTA A = (Q,F, G,A), we construct a regular expression E such
that [E]= L(A).
» Let £ = {04 | g € Q} be a set of placeholders.
» Let A/ =(Q,FUK,G,A’) where A" =AU{0; - q| qe Q}.
Then L(A")N T(F) = L(A).
» Forge Q and N, K C Q, let L(g, N, K) be the set of all trees
te T(FU{Q, | g € K}) having a run r of A’ such that:

> r(E) = q
» r(p) € N for all positions p # € such that t(p) € F
> (note: the leaves of t are labeled by Fo U{, | g € K})



Kleene Theorem for Tree Languages

Proof (<) (cont'd)

Since L(A) = Uyec L(q, Q, D), showing that all sets L(q, N, K) are regular
is sufficient. By induction on |N|:

» Base case: N = &, then all languages L(q, @, K) are finite (trees of
height at most 1), hence regular.

» Inductive case: let N = No U {q;} (g;i & No),
Given a run ron t € L(g, N, K), decompose t into subtrees with:
(1) root labeled by g; in r (by g in topmost subtree),
(2a) internal nodes are either labeled by states of Ny in r,
(2b) or labeled labeled by g; in r (and their t-symbol is replaced by Og,).
By (2) and induction hyp., we can construct a regular exp. for the
subtree-components. We construct a reg. exp. for L(q, N, K) using:
L(q, No U {qi}, K) = L(q, No, K)+
L(qa No, K U {Dq,'}) ’DQi(L(qia No, K' U {DQi})) i 'DQiL(qh No, K)



No U{qi}

Fou{lg | qe K}

L(q7 NO U {qi}> K) = L(q> NOa K) +



YAVA

ANAN

L(q, No U{qi},K) = L(q, No, K) +



L(q, No U{qi},K) = L(q, No, K) +
L(q> No, KU {in}) -in(/_(q;, No, KU {DCIf})) “ai ‘Og; L(qi> No, K)
—_——

1 2 3




AA

L(q, No U {qi}, K) = L(q, No, K
L(q> No, KU {in}) 'DCIf( (qi> N0> KU {DCIf})) “ai ‘Og; L(qi> No, K)
—_——
1 2 3




Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

., Up = v, we have
f(ur,...,up) = (v,
» = saturates L if u=v impliesu € L < v e L.

ceey V)



Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

f(ul,.

., Up = v, we have
Sup) = (v,
» = saturates L if u=v impliesu € L < v e L.

ceey V)
For L C T(F), write u=; v if

VCeC(F): Cluel& Clvlel




Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

., Up = v, we have
flur, ... up) = f(vi,...,vn)
» = saturates L if u=v impliesu € L < v e L.
For L C T(F), write u =, v if

VCeC(F): Cluel& Clvlel
The following are equivalent:
1. L C T(F) is recognizable.

2. L is saturated by some congruence of finite index
3. = is of finite index.




Myhill-Nerode Theorem

Application:
Consider L = { f(g'(a),g'(a)) | i > 0}.
For any pair i # k, consider C = f(x, g'(a)).

Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) #L &%(a)
Therefore =/ is not of finite index, and L is not recognizable.
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Application:
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For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.
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Application:
Consider L = { f(g'(a),g'(a)) | i > 0}.
For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.
Proof of the theorem (sketch):
» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).



Myhill-Nerode Theorem

Application:

Consider L = { f(g'(a),g'(a)) | i > 0}.

For any pair i # k, consider C = f(x, g'(a)).

Then Clg(a)] € L but C[gh(a)] & L = g'(a) #. g"(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).

» 3= 1 Let A=(T(F)/=,,F,L/=,,A), with A containing

f([ta], -, [un]) = [F(u1,y ... up)]
foralln>0, f € Fp, u1,...,un € T(F),
where [u] is the =;-equivalence class of u € T(F);



Myhill-Nerode Theorem
Application:
Consider L = { f(g(a),g'(a)) | i >0}.
For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):
» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).

» 3= 1 Let A=(T(F)/=,,F,L/=,,A), with A containing
F(lual, - [unl) = [F(u1, .- s un)]

foralln>0, f € Fp, u1,...,un € T(F),
where [u] is the =;-equivalence class of u € T(F);

Remark: This can be shown to be the canonical minimal DCFTA.



Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ?

Universality
Given A, is L(A) =X*7?
Language Inclusion

Given A, B, is L(A) C L(B) ?

Language Equivalence

Given A, B, is L(A) = L(B) ?



Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ? NL-complete

Universality
Given A, is L(A) =X*7? PSPACE-complete

Language Inclusion
Given A, B, is L(A) C L(B) ? PSPACE-complete

Language Equivalence
Given A, B, is L(A) = L(B) ? PSPACE-complete



Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ?

Universality
Given A, is L(A) = T(F)?
Language Inclusion

Given A, B, is L(A) C L(B) ?

Language Equivalence

Given A, B, is L(A) = L(B) ?



Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ? P-complete

Universality
Given A, is L(A) = T(F)? EXPTIME-complete

Language Inclusion
Given A, B, is L(A) C L(B) ? EXPTIME-complete

Language Equivalence
Given A, B, is L(A) = L(B) ? EXPTIME-complete



Emptiness of NFTA

Emptiness is P-complete
in P: reachable states by (bottom-up) saturation algorithm
P-hard: reduction from AND-OR graph reachability
AND-OR graph: G = (VaW Vg, E)
We say that v; is reachable from v in G if
> U=V Or
» u € Vp, and v; is reachable from v for all v € E(u), or
» u € Vp, and v; is reachable from v for some v € E(u)
AND-OR graph reachability: given (G, vs, v¢), is v reachable from v ?
Reduction: T-NFTA A = (VaU Vo, F,{vs},A) where A contains:
» vi(a) — ¢,
» u(fy) = (vi,...,vy) for all u € Va where E(u) = {v1,..., v},
» u(fi) — vforallue Vo, veE(u).



Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM



Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM

Execution of a TM on input word w:

C0|_C1|—---|—Ck

where ¢; € ¥* with X =T U (Q xTI)
co = (g, wo)wiws ... wy, accepts if cx € (Qace X NI .

The successor relation I is determined by a function Next : ¥3 — ¥:
Ciy1,j = Next(cj j-1, ¢ j, G j+1) j

o T1 1]

Ci—1

j—1jj+1



Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM

Given M with space bounded by p(-) and input word w, construct A to
accept (encoding) of accepting runs of M on w:

» Aaq has alphabet ¥
» Ay = Aipie N mléiép(\WI) Ai N Afinar (interesection of DFASs)

> L(Ainit): run starts with ¢
> L(A;): the i-th tape cell is correctly updated along the run
> L(Afinar): run contains some q € Qacc
How to proceed deterministically?

How many states in Ajpi? in A;? in Agipa?

» L(Apm) # @ iff M accepts w.

Let A == ./Tlinit U U]-S"SPUWD ./Tli @] ./Tlﬁna/
Then L(A) # X* iff M accepts w. How many states in A?



Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness

NL- let
Given A, is L(A) =2 7 complete

Universality

Given A, is L(A) = ¥* ? PSPACE-complete

Language Inclusion

PSPACE- [
Given A, B, is L(A) C L(B) ? SPACE-complete

Language Equivalence

Given A, B, is L(A) = L(B) ? PSPACE-complete

Intersection Emptiness

PSPACE- let
Given DFA Ay, ..., A, is (), L(A) =2 7 S complete



Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 7

P-complete

Universality

Given A, is L(A) = T(F) ? EXPTIME-complete

Language Inclusion

Given A, B, is L(A) C L(B) ? EXPTIME-complete

Language Equivalence

Given A, B, is L(A) = L(B) ? EXPTIME-complete

Intersection Emptiness
Given NFTA Ay, ..., Ay is(); L(A) =27

(even top-down or bottom-up DFTA)

EXPTIME-complete



Intersection problem

The following problem is EXPTIME-complete:
Given tree automata Az, ..., A, is L(A1) N---NL(A,) # 27




Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata Az, ..., A, is L(A1) N---NL(A,) # 27

Proof (sketch):
» in EXPTIME: compute reachable tuples of states in Ay x -+ X A,.

» Hardness: reduction from membership problem of alternating TM

with polynomial space.
Runs of ATM are encoded as trees.
Construct a product of tree automata to recognize accepting runs of
the ATM on input word:

» the run starts with co (Ajnit)

> the i-th tape cell is correctly updated along all branches (A;)

» all branches contain some q € Qacc (Afinar)

Can we proceed (top-down/bottom-up) deterministically?



Path languages

Let t € T(F). The path language 7(t) is defined as follows:
» if t = a € Fo, then n(t) = {a};
> if t = f(tg,..

., tn), for f € Fp, then w(t) = { fiw | w € n(t;) }.
We write 7(L) = J{n(t) | t € L} for L C T(F).

Example: L= {f(a,b),f(b,a)}, m(L) = {fla,f2b,f1b, f2a}.




Path languages

Path languages

Let t € T(F). The path language 7(t) is defined as follows:
» if t = a € Fo, then n(t) = {a};

> if t =f(t1,...,tn), for f € F,, then 7(t) = {fiw | w € 7(t;) }.
We write 7(L) = J{n(t) | t € L} for L C T(F).

Example: L= {f(a,b),f(b,a)}, m(L) = {fla,f2b,f1b, f2a}.

Let L C T(F) be a tree language.

» The path closure of L is pc(L) = {t|x(t) Cw(L)} D L.
» L is called path-closed if L = pc(L).

Example: pc(L) = {f(a,a), f(a, b),f(b,a),f(b,b)}, so L is not path-closed.




Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.



Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)



Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)
» Construct AP = (Q, F, G, A’) for pc(L) as follows:
for all a € Fy:
g(a) »ae — q(a) —are

foralln>1, f € Fp:

q(f) =a (9i1,---,qin)
i=1,...,n

— q(f) — A/ (q171,...

. Gnn)



Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)
» Construct AP = (Q, F, G, A’) for pc(L) as follows:
for all a € Fy:
g(a) »ae — q(a) —are
foralln>1, f € Fp:
q(f) —a (qi15- -, qin)
i=1,...,n
Show Lg(AP€) = pc(Lg(A)), i.e., t € Lg(AP?) & 7(t) C n(Lg(A))
for all g € Q, t € T(F) (by induction).

— q(f) — A (‘-71,17 DRI CIn,n)



Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.
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Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem
Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.
Proof:
» "= Let A= (Q,F,G,A) be a reduced T-NFTA for L.
Construct a T-DFTA A’ = (29 F,{G}, A’) as follows:

> for a € Fo, let S(a) »ar e if 3g € S, q(a) —a &
» for f € F, (n>1), let S(f) =a (S1,---,5n)
where S; ={q;|3g € S,q(f) =a (q1,..-,an) }

Show that Ls(A") = Uges Lg(A), for all S C Q.



Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:
» "= Let A= (Q,F,G,A) be a reduced T-NFTA for L.
Construct a T-DFTA A’ = (29 F,{G}, A’) as follows:

> for a € Fo, let S(a) »ar e if 3g € S, q(a) —a &
» for f € F, (n>1), let S(f) —ar (51,---,5n)
where S; ={q;|3g € S,q(f) =a (q1,..-,an) }
Show that Ls(A") = Uges Lg(A), for all S C Q.
»
Let A be a redcued T-DCFTA for L. Prove that
if 7(t) C m(Lg(A)), then t € Lg(A), for all g € Q,t € T(F).



