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Tree Automata and Applications

M1 course, 2024/2025

Mostly based on slides by Stefan Schwoon
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Organization

Schedule
◮ Exercises: Wednesday 8:30 – 10:30 (Luc Lapointe)

◮ Lectures: Wednesday 10:45 – 12:45 (Laurent Doyen)
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Organization

Schedule
◮ Exercises: Wednesday 8:30 – 10:30 (Luc Lapointe)

◮ Lectures: Wednesday 10:45 – 12:45 (Laurent Doyen)

Assessment
◮ DM or CC (to be specified by Luc)

◮ Final Exam: 2h, 15th January 10am

◮ First session: DM/CC + Exam (50/50)

◮ Second session: DM/CC + Repeat Exam (50/50)
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Material

Course material
◮ Website: lecturer’s homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

◮ Main reference: H. Comon et al. Tree Automata Techniques and
Applications, 2008.
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Material

Course material
◮ Website: lecturer’s homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

◮ Main reference: H. Comon et al. Tree Automata Techniques and
Applications, 2008.

Other relevant resources
◮ C. Löding, W. Thomas. Automata on finite trees. Handbook of
Automata Theory (I.), pp. 235-264, 2021.

◮ L. Doyen. Top-Down Complementation of Automata on Finite Trees.
IPL 187:106499, 2025.
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Motivation

Context

1. Natural extension of formal languages and automata on words

2. Connection with Logic & Games

3. Treatment of tree-like data structures: parse trees, XML documents

4. Applications e.g. in compiler construction, formal verification
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Trees
We consider finite ordered ranked trees. Let N0 = N \ {0}

◮ finite set nodes (positions), denoted by Pos ⊆ N∗
0 (with ε ∈ Pos)

◮ ordered : internal nodes have children 1, . . . , n

◮ ranked : number of children fixed by node’s label

ε

1 2 3

21 22

Definition: Tree

A (finite, ordered) tree is a nonempty, finite, prefix-closed set Pos ⊆ N∗
0 such

that w · (i + 1) ∈ Pos implies w · i ∈ Pos for all w ∈ N∗, i ∈ N0.

◮ In the sequel, we write wi instead of w · i

◮ prefix-closed: wi ∈ Pos implies w ∈ Pos
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Ranked Trees

Ranked symbols

Ranked alphabet F : finite set of symbols, each with an arity 0, 1, . . .
Denote by Fi the symbols of arity i (hence F :=

⋃
i Fi ).

◮ arity 0: constants

◮ arity ≥ 1: functions (unary, binary, etc.)

Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (of arity 0), disjoint from the other symbols.
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Ranked Trees

Ranked symbols

Ranked alphabet F : finite set of symbols, each with an arity 0, 1, . . .
Denote by Fi the symbols of arity i (hence F :=

⋃
i Fi ).

◮ arity 0: constants

◮ arity ≥ 1: functions (unary, binary, etc.)

Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (of arity 0), disjoint from the other symbols.

Definition: Ranked tree

A ranked tree is a mapping t : Pos → (F ∪ X ) satisfying:

◮ Pos is a tree;

◮ for all p ∈ Pos, if t(p) ∈ Fn, n ≥ 1 then Pos ∩ pN = {p1, . . . , pn};

◮ for all p ∈ Pos, if t(p) ∈ X ∪ F0 then Pos ∩ pN = ∅.
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Trees and Terms

Definition: Terms

The set of terms T (F ,X ) is the smallest set satisfying:

◮ X ∪ F0 ⊆ T (F ,X );

◮ if t1, . . . , tn ∈ T (F ,X ) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X ).

We write T (F) := T (F ,∅), called the set of ground terms.
A term of T (F ,X ) is linear if every variable occurs at most once.
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Trees and Terms

Definition: Terms

The set of terms T (F ,X ) is the smallest set satisfying:

◮ X ∪ F0 ⊆ T (F ,X );

◮ if t1, . . . , tn ∈ T (F ,X ) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X ).

We write T (F) := T (F ,∅), called the set of ground terms.
A term of T (F ,X ) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}

◮ f (g(a), b) ∈ T (F);

◮ f (x , f (b, y)) ∈ T (F ,X ) is linear;

◮ f (x , x) ∈ T (F ,X ) is non-linear.
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Trees and Terms

Definition: Terms

The set of terms T (F ,X ) is the smallest set satisfying:

◮ X ∪ F0 ⊆ T (F ,X );

◮ if t1, . . . , tn ∈ T (F ,X ) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X ).

We write T (F) := T (F ,∅), called the set of ground terms.
A term of T (F ,X ) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}

◮ f (g(a), b) ∈ T (F);

◮ f (x , f (b, y)) ∈ T (F ,X ) is linear;

◮ f (x , x) ∈ T (F ,X ) is non-linear.

We use ‘terms’ and ‘trees’ interchangeably (obvious bijection).
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Height and Size

Definition

Let t ∈ T (F ,X ). We denote by H(t) the height, and by |t| the size, of t.

◮ if t ∈ X , then H(t) := 0 and |t| := 0; (for notational convenience)

◮ if t ∈ F0, then H(t) := 1 and |t| := 1;

◮ if t = f (t1, . . . , tn), then H(t) := 1 + max{H(t1), . . . ,H(tn)} and
|t| := 1 + |t1|+ · · · + |tn|.
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Subterms / subtrees

Definition: Subtree

Let t, u ∈ T (F ,X ) and p a position. Then t|p : Posp → T (F ,X ) is the
ranked tree defined by

◮ Posp := { q | pq ∈ Pos };

◮ t|p(q) := t(pq).

Moreover, t[u]p is the tree obtained by replacing t|p by u in t.

t D t ′ (resp. t ⊲ t ′) denotes that t ′ is a (proper) subtree of t.
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Substitutions and Context

Definition: Substitution
◮ (Ground) substitution σ: mapping from X to T (F ,X ), resp., T (F)

◮ Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}

◮ Extension to terms: for all f ∈ Fm and t ′1, . . . , t
′
m ∈ T (F ,X )

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t

′
m))

◮ Notation: tσ for σ(t)
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Substitutions and Context

Definition: Substitution
◮ (Ground) substitution σ: mapping from X to T (F ,X ), resp., T (F)

◮ Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}

◮ Extension to terms: for all f ∈ Fm and t ′1, . . . , t
′
m ∈ T (F ,X )

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t

′
m))

◮ Notation: tσ for σ(t)

Definition: Context

A context is a linear term C ∈ T (F ,X ) with variables x1, . . . , xn.
We note C [t1, . . . , tn] := C{x1 ← t1, . . . , xn ← tn}.

Cn(F) denotes the contexts with n variables and C(F) := C1(F).
Let C ∈ C(F). We note C 0 := x1 and Cn+1 = Cn[C ] for n ≥ 0.
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Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling
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Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)

◮ Non-deterministic bottom-up and top-down are equally powerful

◮ Deterministic bottom-up equally powerful

◮ Deterministic top-down less powerful
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Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

◮ Q is a finite set of states;

◮ F a finite ranked alphabet;

◮ G ⊆ Q are the final states;

◮ ∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.
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Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

◮ Q is a finite set of states;

◮ F a finite ranked alphabet;

◮ G ⊆ Q are the final states;

◮ ∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Example: Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf
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Move relation and Recognized language

A = 〈Q,F ,G ,∆〉

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

◮ t = C [f (q1, . . . , qn)] for some context C ;

◮ t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗

A for the transitive and reflexive closure of →A.
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Move relation and Recognized language

A = 〈Q,F ,G ,∆〉

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

◮ t = C [f (q1, . . . , qn)] for some context C ;

◮ t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗

A for the transitive and reflexive closure of →A.

Recognized Language

◮ A tree t is accepted by A if t →∗
A q for some q ∈ G .

◮ L(A) denotes the set of trees accepted by A.

◮ L is recognizable if L = L(A) for some NFTA A.
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NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA A = 〈Q,F ,G ,∆〉, where ∆ can additionally contain
rules of the form q → q′, with q, q′ ∈ Q.

Semantics: allow to re-label a position from q to q′: C [q]→A C [q′].

Equivalence of ε-NFTA

For every ε-NFTA A there exists an equivalent NFTA A′.

Proof (sketch): construct the rules of A′ by a saturation procedure.
Initialize ∆′ = ∆ and apply:

f (q1, . . . , qn)→ q ∈ ∆′ q → q′ ∈ ∆

f (q1, . . . , qn)→ q′ ∈ ∆′
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Deterministic, complete, and reduced

NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f ∈ Fn and q1, . . . , qn ∈ Q, there exists
at least one rule f (q1, . . . , qn)→ q ∈ ∆.

A state q of A is accessible if there exists a tree t s.t. t →∗
A q.

A is said to be reduced if all its states are accessible.
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Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f )→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.
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Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f )→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if

◮ t = C [q(f (t1, . . . , tn))] for some context C ;

◮ t ′ = C [f (q1(t1), . . . , qn(tn))] for some rule q(f )→ (q1, . . . , qn) of A.

t is accepted by A if q(t)→∗
A t for some q ∈ I .
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From top-down to bottom-up
Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F , I ,∆′〉, with I = G and

∆′ := { q(f )→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

(and vice versa) ∆ := { f (q1, . . . , qn)→ q | q(f )→ (q1, . . . , qn) ∈ ∆′ }
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From top-down to bottom-up
Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F , I ,∆′〉, with I = G and

∆′ := { q(f )→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗
A q iff q(t)→∗

A′ t.

◮ Base: t = a (for some a ∈ F0)

t = a→∗
A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗

A′ a

◮ Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→
∗
A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →

∗
A qi

⇐⇒ ∃q1, . . . , qn : q(f )→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti )→
∗
A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→
∗
A′ f (t1, . . . , tn)
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Run (Computation tree)
A = 〈Q,F , I ,∆〉

Definition: (Run)

Let t : Pos → F a ground tree. A run of A on t is a labelling t ′ : Pos → Q
compatible with ∆, i.e.:

◮ for all p ∈ Pos, if t(p) = f ∈ Fn, t
′(p) = q, and t ′(pj) = qj for all

pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆
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Run (Computation tree)
A = 〈Q,F , I ,∆〉

Definition: (Run)

Let t : Pos → F a ground tree. A run of A on t is a labelling t ′ : Pos → Q
compatible with ∆, i.e.:

◮ for all p ∈ Pos, if t(p) = f ∈ Fn, t
′(p) = q, and t ′(pj) = qj for all

pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆

Recognized Language

◮ A run t ′ is initialized (or accepting) if t ′(ε) ∈ I .

◮ A tree t is accepted by A if there exists an initialized run of A on t.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

◮ Notation: Aq = 〈Q,F , {q},∆〉 and Lq(A) = L(Aq), so
L(A) =

⋃
q∈I Lq(A).
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From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.
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From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

◮ G ′ = {S ⊆ Q | S ∩ G 6= ∅ }

◮ for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,
where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗
A′ { q | t →∗

A q }, by structural induction.
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Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

◮ G ′ = {S ⊆ Q | S ∩ G 6= ∅ }

◮ for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,
where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗
A′ { q | t →∗

A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.
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From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

◮ G ′ = {S ⊆ Q | S ∩ G 6= ∅ }

◮ for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,
where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗
A′ { q | t →∗

A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.
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A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all t ∈ L with
H(t) > k , there exist contexts C ,D ∈ T (F , {x}) and u ∈ T (F) satisfying:

◮ D is non-trivial (i.e., not just a variable);

◮ t = C [D[u]];

◮ for all n ≥ 0, we have C [Dn[u]] ∈ L.
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A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all t ∈ L with
H(t) > k , there exist contexts C ,D ∈ T (F , {x}) and u ∈ T (F) satisfying:

◮ D is non-trivial (i.e., not just a variable);

◮ t = C [D[u]];

◮ for all n ≥ 0, we have C [Dn[u]] ∈ L.

Proof: Let k be the number of states of an NFTA A recognizing L.
In an accepting run on a tree t ∈ L, there exist two positions p, pp′ (p′ 6= ε)
labelled by the same state q.

Let C = t[x ]p, D = t|p[x ]p′ , and u = t|pp′ , thus t = C [D[u]].

The accepting run on t entails:

u →∗
A q,D[q]→∗

A q, and C [q]→∗
A qf , for some final state qf .

Therefore, Dn[q]→∗
A q for all n ≥ 0 (by induction, where D0[q] := q) and

C [Dn[u]]→∗
A C [Dn[q]]→∗

A C [q]→∗
A qf
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A pumping lemma for tree languages

Mostly used in the form:

Lemma

If for all k ,
there exists t ∈ L with H(t) > k ,

for all contexts C ,D ∈ T (F , {x}) and u ∈ T (F) such that
t = C [D[u]] and D is non-trivial,

there exists n ≥ 0 : C [Dn[u]] 6∈ L,
then L is not recognizable.
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Illustration of pumping lemma

Let L = { f (g i (a), g i (a)) | i ≥ 0 } for F = {f (2), g(1), a}.

Given k , let t = f (gk(a), gk(a)).

D

u

f

g g

g g

g g

a a

...
...

...
...

...
...

qf

q

q
k + 1

Pumping D creates trees outside L ⇒ L not recognizable.
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Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.
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Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Proof hint: uniqueness of the run on the input tree.
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Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Proof hint: uniqueness of the run on the input tree.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1 ⊎ Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.
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Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q
′
n〉)→ 〈q, q

′〉 ∈ ∆
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Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q
′
n〉)→ 〈q, q

′〉 ∈ ∆

Remarks:

◮ If A1,A2 are D(C)FTA, then so is A.

◮ If A1,A2 are complete, replace G1 × G2 with (G1 × Q2) ∪ (Q1 × G2)
to recognize L1 ∪ L2.
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Single tree

Singleton Language

Given a tree t : Pos → F , the language L = {t} is recognized by
At = 〈Q,F , I ,∆〉 where:

◮ Q = Pos

◮ I = {ε}

◮ ∆ = {f (p1, . . . , pn)→ p | f = t(p) ∈ Fn}



25/140

Single tree

Singleton Language

Given a tree t : Pos → F , the language L = {t} is recognized by
At = 〈Q,F , I ,∆〉 where:

◮ Q = Pos

◮ I = {ε}

◮ ∆ = {f (p1, . . . , pn)→ p | f = t(p) ∈ Fn}

Remark: At is deterministic.

Proof: Show t ′ →∗
At

p iff t ′ = t|p
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Tree homomorphism

Definition

Let Xn := {x1, . . . , xn} and F ,F
′ ranked alphabets.

A tree homomorphism is a mapping h : F → T (F ′,X ),
with h(f ) ∈ T (F ,Xn) if f ∈ Fn.

Extension of h to trees (T (F)→ T (F ′)):

◮ h(f (t1, . . . , tn)) = h(f ){x1 ← h(t1), . . . , xn ← h(tn)}

Intuition:

◮ h(f ) “explodes” f -positions into trees

◮ reorders/copies/deletes subtrees.
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Examples
Example

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c , d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c , d)

f

g g

a a

=⇒

f ′

g ′

g ′

g ′

c d
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Examples
Example

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c , d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c , d)

f

g g

a a

=⇒

f ′

g ′

g ′

g ′

c d

c

d

Example (ternary to binary tree)

◮ F = {f (3), a, b}, F ′ = {g(2), a, b}

◮ h32(f ) = g(x1, g(x2, x3)), h32(a) = a, h32(b) = b
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Properties of homomorphisms

A homomorphism h is

◮ linear if h(f ) linear for all f ;

◮ non-erasing if H(h(f )) > 0 for all f ;

◮ flat if H(h(f )) = 1 for all f ;

◮ complete if f ∈ Fn implies that h(f ) contains all of Xn;

◮ permuting if h is complete, linear, and flat;

◮ alphabetic if h(f ) has the form g(x1, . . . , xn) for all f .

Example: h32 is linear, non-erasing, and complete.
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Properties of homomorphisms

A homomorphism h is

◮ linear if h(f ) linear for all f ;

◮ non-erasing if H(h(f )) > 0 for all f ;

◮ flat if H(h(f )) = 1 for all f ;

◮ complete if f ∈ Fn implies that h(f ) contains all of Xn;

◮ permuting if h is complete, linear, and flat;

◮ alphabetic if h(f ) has the form g(x1, . . . , xn) for all f .

Example: h32 is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

◮ Example: h(f ) = f ′(x1, x1), h(g) = g(x1), h(a) = a

◮ L = { f (g i (a)) | i ≥ 0 } (recognizable)

◮ h(L) = { f ′(g i (a), g i (a)) | i ≥ 0 } (not recognizable)
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Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.
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Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

◮ L = { f (g i (a), gk(a)) | i , k ≥ 1 }

◮ A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with
∆ := {α :a → q0, β :g(q0) → q1, γ :g(q1) → q1, δ :f (q1, q1) → qf }
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Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

◮ L = { f (g i (a), gk(a)) | i , k ≥ 1 }

◮ A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with
∆ := {α :a → q0, β :g(q0) → q1, γ :g(q1) → q1, δ :f (q1, q1) → qf }
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g g
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f ′

g ′

g ′

g ′

c d

c

d

Run on A
Rules used

to produce states

Construct automaton
for h(L) preserving
state labels from A
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Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

◮ L = { f (g i (a), gk(a)) | i , k ≥ 1 }

◮ A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with
∆ := {α :a → q0, β :g(q0) → q1, γ :g(q1) → q1, δ :f (q1, q1) → qf }
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Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

◮ F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}

◮ h(f ) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

◮ L = { f (g i (a), gk(a)) | i , k ≥ 1 }

◮ A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with
∆ := {α :a → q0, β :g(q0) → q1, γ :g(q1) → q1, δ :f (q1, q1) → qf }

f

g g

a a

=⇒

qf

q1

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

qf

q1

q0

Run on A
Rules used

to produce states

Run on A

Rules used
to produce states

Construct automaton
for h(L) preserving
state labels from A

Construct automaton
for h(L) preserving
state labels from A

+
Guess the rules.

α β

δ
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Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′

,F ′
,G ,∆′〉 for h(L).

◮ Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆,∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f ) };

◮ ∆′ =
⋃

r∈∆∆′
r where for each transition r : f (q1, . . . , qn)→ q in ∆,

the set ∆′
r contains, for all positions p ∈ Posh(f ):

◮ f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f )(p) = f ′ ∈ F ′
k

◮ qi → 〈r , p〉 if h(f )(p) = xi
◮ 〈r , ε〉 → q

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

〈δ, ε〉

〈δ, 12〉
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Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′

,F ′
,G ,∆′〉 for h(L).

◮ Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆,∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f ) };

◮ ∆′ =
⋃

r∈∆∆′
r where for each transition r : f (q1, . . . , qn)→ q in ∆,

the set ∆′
r contains, for all positions p ∈ Posh(f ):

◮ f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f )(p) = f ′ ∈ F ′
k

◮ qi → 〈r , p〉 if h(f )(p) = xi
◮ 〈r , ε〉 → q

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

q0

〈α, ε〉

〈α, 1〉 〈α, 2〉

〈δ, ε〉

〈δ, 12〉
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Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′

,F ′
,G ,∆′〉 for h(L).

◮ Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆,∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f ) };

◮ ∆′ =
⋃

r∈∆∆′
r where for each transition r : f (q1, . . . , qn)→ q in ∆,

the set ∆′
r contains, for all positions p ∈ Posh(f ):

◮ f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f )(p) = f ′ ∈ F ′
k
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◮ 〈r , ε〉 → q
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///q0
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g ′

g ′

g ′

c d

c

d

q0
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〈α, 1〉 〈α, 2〉

q1

〈β, 1〉

〈β, 2〉
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qf

〈δ, 11〉
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〈δ, ε〉
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Correctness

To prove: A′ accepts h(L).
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For all t ∈ T (F), prove that t →∗

A q implies h(t)→∗
A′ q,
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by structural induction over t.
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◮ h(L) ⊆ L(A′):
For all t ∈ T (F), prove that t →∗

A q implies h(t)→∗
A′ q,

by structural induction over t.

◮ h(L) ⊇ L(A′):
For all t ′ ∈ T (F ′), prove that if t ′ →∗

A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗

A q,
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Correctness

To prove: A′ accepts h(L).

◮ h(L) ⊆ L(A′):
For all t ∈ T (F), prove that t →∗

A q implies h(t)→∗
A′ q,

by structural induction over t.

◮ h(L) ⊇ L(A′):
For all t ′ ∈ T (F ′), prove that if t ′ →∗

A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗

A q,
by induction on number of states (of Q) in the computation t ′ →∗

A′ q.
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by structural induction over t.
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Correctness

To prove: A′ accepts h(L).

◮ h(L) ⊆ L(A′):
For all t ∈ T (F), show that t →∗

A q implies h(t)→∗
A′ q,

by structural induction over t.

◮ Base case: t = a (leaf) where a ∈ F0 (constant)
a→∗

A q ⇐⇒ a→ q︸ ︷︷ ︸
r

∈ ∆

Then h(a)→∗
A′ q using rules in ∆′

r (single tree)
Note: ta is a ground term, rules qi → 〈r , p〉 not used
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Correctness

To prove: A′ accepts h(L).

◮ h(L) ⊆ L(A′):
For all t ∈ T (F), show that t →∗

A q implies h(t)→∗
A′ q,

by structural induction over t.

◮ Base case: t = a (leaf) where a ∈ F0 (constant)
a→∗

A q ⇐⇒ a→ q︸ ︷︷ ︸
r

∈ ∆

Then h(a)→∗
A′ q using rules in ∆′

r (single tree)
Note: ta is a ground term, rules qi → 〈r , p〉 not used

◮ Inductive case: t = f (u1, . . . , un)
t →∗

A f (q1, . . . , qn)→ q︸ ︷︷ ︸
r∈∆

and ui →∗
A qi (i = 1, . . . , n)

Then h(t) = h(f ){x1 ← h(u1), . . . , xn ← h(un)}
and by induction hypothesis h(ui )→∗

A′ qi , so h(t)→∗
A′ h(f )(q1, . . . , qn)

To show: h(f )(q1, . . . , qn)→∗
A′ q using rules in ∆′

r (single tree)
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Correctness

To prove: A′ accepts h(L).

◮ L(A′) ⊆ h(L):
For all t ′ ∈ T (F ′), show that if t ′ →∗

A′ q ∈ Q,
then there exists t ∈ T (F) such that t →∗

A q and h(t) = t ′,
by induction on number of states (of Q) in the runs of A′ (with
ε-transitions removed) on t ′ corresponding to t ′ →∗

A′ q.
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Correctness

To prove: A′ accepts h(L).

◮ L(A′) ⊆ h(L):
For all t ′ ∈ T (F ′), show that if t ′ →∗

A′ q ∈ Q,
then there exists t ∈ T (F) such that t →∗

A q and h(t) = t ′,
by induction on number of states (of Q) in the runs of A′ (with
ε-transitions removed) on t ′ corresponding to t ′ →∗

A′ q.

◮ Base case: t ′ →∗
A′ q, with no intermediate state from Q

Since ∆′
r are disjoint, only rules from ∆′

r for a single r are used.

(no variable in t ′ – rules qi → 〈r , p〉 not used)

Let r = f (q1, . . . , qn)→ q.

Then t ′ = h(f ) (single tree) and we construct t = f (u1, . . . , un) where
ui →∗

A qi (why is it possible ?).
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Correctness

To prove: A′ accepts h(L).

◮ L(A′) ⊆ h(L):
For all t ′ ∈ T (F ′), show that if t ′ →∗

A′ q ∈ Q,
then there exists t ∈ T (F) such that t →∗

A q and h(t) = t ′,
by induction on number of states (of Q) in the runs of A′ (with
ε-transitions removed) on t ′ corresponding to t ′ →∗

A′ q.

◮ Inductive case: t ′ →∗
A′ v{x1 ← q1, . . . , xn ← qn}
→∗

A′ v{x1 ← 〈r1, p1〉, . . . , xn ← 〈rn, pn〉} →
∗
A′ q︸ ︷︷ ︸

no intermediate state from Q

where v is a linear term in T (F ′,X )

Hence t ′ = v{x1 ← u′1, . . . , xn ← u′n} where u′i →
∗
A′ qi (i = 1, . . . , n)
(why is it possible ?)

Also r1 = r2 = · · · = rn = r = f (q1, . . . , qn)→ q and v = h(f ) (single
tree)

By induction hyp., there exist ui →∗
A qi with h(ui ) = u′i and we

construct t = f (u1, . . . , un) and show that h(t) = t ′ and t →∗
A q.
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Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L ⊆ T (F ′) be recognizable and h : F → F ′ a tree homomorphism (not
necessarily linear). Then h−1(L) is recognizable.
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Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L ⊆ T (F ′) be recognizable and h : F → F ′ a tree homomorphism (not
necessarily linear). Then h−1(L) is recognizable.

Given an NFTA A′ = 〈Q,F ′
,G ,∆′〉 for L,

construct NFTA A = 〈Q ⊎ {⊤},F ,G ,∆〉 for h−1(L).

For all n ≥ 0 and f ∈ Fn, and p1, . . . , pn ∈ Q,

◮ add f (⊤, . . . ,⊤)→ ⊤ to ∆;

◮ if h(f ){x1 ← p1, . . . , xn ← pn} →
∗
A′ q, add f (q1, . . . , qn)→ q to ∆,

with:

qi =

{
pi if xi appears in h(f )

⊤ otherwise

Proof: Show t →∗
A q iff h(t)→∗

A′ q, for all t ∈ T (F).
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Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) ∈ F∗
0 denotes the word obtained from

reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac
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Leaf languages

◮ Let L be a recognizable tree language. Then fr(L) is context-free.

◮ Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).
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Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) ∈ F∗
0 denotes the word obtained from

reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

◮ Let L be a recognizable tree language. Then fr(L) is context-free.

◮ Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

◮ Given a T-NFTA recognizing L, construct a CFG from it.

◮ L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.
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Regular Expressions

Words (alphabet Σ)

◮ ∅, ε, a (a ∈ Σ)

◮ union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)

◮ No empty tree

◮ n-ary symbols

◮ concatenation, iteration ?
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Regular Expressions

Words (alphabet Σ)

◮ ∅, ε, a (a ∈ Σ)

◮ union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)

◮ No empty tree

◮ n-ary symbols

◮ concatenation, iteration ?

 use placeholders

Let K = {�1,�2, . . . } be a set of placeholders (symbols of arity 0).

T (F ,K): set of all terms over ranked alphabet F ∪ K.
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Placeholders

Placeholder substitution
◮ Substitution: {�← L} where L is a tree language

◮ Can replace different occurrences of � by different elements of L

Semantics

Based on semantics of t{�← L}, by structural induction on t ∈ T (F ,K):

◮ t = a of arity 0: a{�← L} = L if a = � (otherwise {a})

◮ t = f of arity n > 0:
f (t1, . . . , tn){�← L} = {f (s1, . . . , sn) | si ∈ ti{�← L}, 1 ≤ i ≤ n}

◮ L1{�← L} = {t{�← L} | t ∈ L1}

Abbreviation: {�1 ← L1, . . . ,�n ← Ln} = {�1 ← L1} ◦ · · · ◦ {�n ← Ln}
(Li ⊆ T (F))
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Concatenation - Iteration
Concatenation

L1 ·� L2 =
⋃

t∈L1
t{�← L2}

t1

t2
t′2

t1 ∈ L1
t2, t

′
2 ∈ L2
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Concatenation - Iteration
Concatenation

L1 ·� L2 =
⋃

t∈L1
t{�← L2}

t1

t2
t′2

t1 ∈ L1
t2, t

′
2 ∈ L2

Iteration

L∗� =
⋃

k∈N Lk where L0 = {�} and Lk+1 = Lk ·� (L ∪ L0)

Note: � ∈ L∗� for all L. Kleene plus: L+� =
⋃

k>0 L
k .

For L = {f (�,�, a)}:
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Regular Expressions

Syntax

A regular expression is obtained by the following grammar:

E := ∅ | f | E1 + E2 | E1 ·�E2 | E
∗�

f ∈ F ,� ∈ K

Semantics
◮ [[∅]]= ∅

◮ [[f ]]= {f (�1, . . . ,�n)} (f ∈ Fn)

◮ [[E1 + E2]]=[[E1]] ∪ [[E2]]

◮ [[E1 ·�E2]]=[[E1]] ·� [[E2]]

◮ [[E ∗� ]]=[[E ]]∗�

A tree language L is regular if L =[[E ]] for some regular expression E .

Shortcut: f (E1, . . . ,En) = f ·�1E1 . . . ·�iEi . . . ·�nEn
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Regular Expressions - Examples

E = f (�, a)∗� ·� a

f

� a
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Regular Expressions - Examples

E = f (�, a)∗� ·� a

f

f a

Left “comb”

f

a

a a

E = f (f (�,�), f (�,�))∗� ·� a







∗�

·� a

f

f f

� � � �
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Regular Expressions - Examples

E = f (�, a)∗� ·� a

f

f a

Left “comb”

f

a

a a

E = f (f (�,�), f (�,�))∗� ·� a

All branches are of even length







∗�

·� a

f

f f

� � � �



41/140

Kleene Theorem for Tree Languages

Theorem (RegExp ≡ NFTA)

L is regular iff L is recognizable by an NFTA.

Proof (⇒)

By induction over the structure of regular expressions:

◮ Base case: ∅ and {f (�1, . . . ,�n)} are finite languages, hence
recognizable.

◮ Inductive case: given Ai = 〈Qi ,F ∪ K,Gi ,∆i 〉 NFTAs recognizing
L(Ai) = [[Ei ]] (i = 1, 2),

◮ [[E1 + E2]] is recognized by 〈Q1 ⊎ Q2,F ∪K,G1 ∪ G2,∆1 ∪∆2〉
◮ [[E1 ·�E2]] is recognized by 〈Q1 ⊎Q2,F ∪ K,G1,∆〉 where

∆ = ∆1 \ {�→ q | q ∈ Q1} ∪∆2 ∪ {f (q1, . . . , qn)→ q |
∃q′ ∈ G2 : f (q1, . . . , qn)→ q′ ∈ ∆2 and �→ q ∈ ∆1}

◮ [[E+�
1 ]] is recognized by 〈Q1,F ∪K,G1,∆〉 where

∆ = ∆1 ∪ {f (q1, . . . , qn)→ q |
∃q′ ∈ G1 : f (q1, . . . , qn)→ q′ ∈ ∆1 and �→ q ∈ ∆1}
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Kleene Theorem for Tree Languages

Theorem (RegExp ≡ NFTA)

L is regular iff L is recognizable by an NFTA.

Proof (⇐)

Given NFTA A = 〈Q,F ,G ,∆〉, we construct a regular expression E such
that [[E ]]= L(A).

◮ Let K = {�q | q ∈ Q} be a set of placeholders.

◮ Let A′ = 〈Q,F ∪K,G ,∆′〉 where ∆′ = ∆ ∪ {�q → q | q ∈ Q}.
Then L(A′) ∩ T (F) = L(A).

◮ For q ∈ Q and N,K ⊆ Q, let L(q,N,K ) be the set of all trees
t ∈ T (F ∪ {�q | q ∈ K}) having a run r of A′ such that:

◮ r(ε) = q
◮ r(p) ∈ N for all positions p 6= ε such that t(p) ∈ F
◮ (note: the leaves of t are labeled by F0 ∪ {�q | q ∈ K})
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Kleene Theorem for Tree Languages

Proof (⇐) (cont’d)

Since L(A) =
⋃

q∈G L(q,Q,∅), showing that all sets L(q,N,K ) are regular
is sufficient. By induction on |N|:

◮ Base case: N = ∅, then all languages L(q,∅,K ) are finite (trees of
height at most 1), hence regular.

◮ Inductive case: let N = N0 ∪ {qi} (qi 6∈ N0),
Given a run r on t ∈ L(q,N,K ), decompose t into subtrees with:

(1) root labeled by qi in r (by q in topmost subtree),
(2a) internal nodes are either labeled by states of N0 in r ,
(2b) or labeled labeled by qi in r (and their t-symbol is replaced by �qi ).

By (2) and induction hyp., we can construct a regular exp. for the
subtree-components. We construct a reg. exp. for L(q,N,K ) using:

L(q,N0 ∪ {qi},K ) = L(q,N0,K )+
L(q,N0,K ∪ {�qi}) ·�qi (L(qi ,N0,K ∪ {�qi }))

∗�qi ·�qiL(qi ,N0,K )
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q

N0 ∪ {qi}

F0 ∪ {�q | q ∈ K}

L(q,N0 ∪ {qi},K ) = L(q,N0,K )+
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q

qiqi

qi

qiqi

L(q,N0 ∪ {qi},K ) = L(q,N0,K )+
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1

3
2

2

33

q

qiqi

qi

qiqi

L(q,N0 ∪ {qi},K ) = L(q,N0,K )+

L(q,N0,K ∪ {�qi})︸ ︷︷ ︸
1

·�qi (L(qi ,N0,K ∪ {�qi }))︸ ︷︷ ︸
2

∗�qi ·�qi L(qi ,N0,K )︸ ︷︷ ︸
3
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Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

◮ ≡ is called a congruence
if for all n ≥ 0 and f ∈ Fn, u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

◮ ≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.
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Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

◮ ≡ is called a congruence
if for all n ≥ 0 and f ∈ Fn, u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

◮ ≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.

For L ⊆ T (F), write u ≡L v if

∀C ∈ C(F) : C [u] ∈ L⇔ C [v ] ∈ L

Myhill-Nerode Theorem for trees

The following are equivalent:

1. L ⊆ T (F) is recognizable.

2. L is saturated by some congruence of finite index.

3. ≡L is of finite index.



46/140

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k , consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.
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For any pair i 6= k , consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

◮ 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗
A q ∗

A ← v .
Then ≡ is of finite index and saturates L.
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Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k , consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

◮ 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗
A q ∗

A ← v .
Then ≡ is of finite index and saturates L.

◮ 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v ] for all C , by induction on height of
position of x in C ).
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Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k , consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

◮ 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗
A q ∗

A ← v .
Then ≡ is of finite index and saturates L.

◮ 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v ] for all C , by induction on height of
position of x in C ).

◮ 3→ 1: Let A = 〈T (F)/≡L
,F , L/≡L

,∆〉, with ∆ containing

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the ≡L-equivalence class of u ∈ T (F);
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Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k , consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

◮ 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗
A q ∗

A ← v .
Then ≡ is of finite index and saturates L.

◮ 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v ] for all C , by induction on height of
position of x in C ).

◮ 3→ 1: Let A = 〈T (F)/≡L
,F , L/≡L

,∆〉, with ∆ containing

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the ≡L-equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.
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Decision Problems (on words)

(*) A,B: nondeterministic automata

◮ Emptiness

Given A, is L(A) = ∅ ?

◮ Universality

Given A, is L(A) = Σ∗ ?

◮ Language Inclusion

Given A,B, is L(A) ⊆ L(B) ?

◮ Language Equivalence

Given A,B, is L(A) = L(B) ?
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Decision Problems (on trees)

(*) A,B: nondeterministic automata

◮ Emptiness

Given A, is L(A) = ∅ ?

◮ Universality

Given A, is L(A) = T (F) ?

◮ Language Inclusion

Given A,B, is L(A) ⊆ L(B) ?

◮ Language Equivalence

Given A,B, is L(A) = L(B) ?

P-complete

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete
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Emptiness of NFTA

Emptiness is P-complete

◮ in P: reachable states by (bottom-up) saturation algorithm

◮ P-hard: reduction from AND-OR graph reachability

AND-OR graph: G = 〈VA ⊎ VO ,E 〉

We say that vt is reachable from u in G if

◮ u = vt , or

◮ u ∈ VA, and vt is reachable from v for all v ∈ E (u), or

◮ u ∈ VO , and vt is reachable from v for some v ∈ E (u)

AND-OR graph reachability: given 〈G , vs , vt〉, is vt reachable from vs ?

Reduction: T-NFTA A = 〈VA ∪ VO ,F , {vs},∆〉 where ∆ contains:

◮ vt(a)→ ε,

◮ u(fn)→ (v1, . . . , vn) for all u ∈ VA where E (u) = {v1, . . . , vn},

◮ u(f1)→ v for all u ∈ VO , v ∈ E (u).
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Reminder: NFA universality

NFA universality is PSPACE-complete

◮ in (N)PSPACE: emptiness of subset construction

◮ PSPACE-hard: reduction from membership problem of PSpace TM
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Reminder: NFA universality

NFA universality is PSPACE-complete

◮ in (N)PSPACE: emptiness of subset construction

◮ PSPACE-hard: reduction from membership problem of PSpace TM

Execution of a TM on input word w :

c0 ⊢ c1 ⊢ · · · ⊢ ck

where ci ∈ Σ∗ with Σ = Γ ∪ (Q × Γ)
c0 = (q,w0)w1w2 . . .wn, accepts if ck ∈ (Qacc × Γ)Γ∗.

The successor relation ⊢ is determined by a function Next : Σ3 → Σ:
ci+1, j = Next(ci , j−1, ci , j , ci , j+1)

ci−1

j−1 j j+1

ci

j
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Reminder: NFA universality

NFA universality is PSPACE-complete

◮ in (N)PSPACE: emptiness of subset construction

◮ PSPACE-hard: reduction from membership problem of PSpace TM

GivenM with space bounded by p(·) and input word w , construct AM to
accept (encoding) of accepting runs ofM on w :

◮ AM has alphabet Σ
◮ AM = Ainit ∩

⋂
1≤i≤p(|w |)Ai ∩ Afinal (interesection of DFAs)

◮ L(Ainit): run starts with c0
◮ L(Ai ): the i-th tape cell is correctly updated along the run
◮ L(Afinal): run contains some q ∈ Qacc

How to proceed deterministically?

How many states in Ainit? in Ai? in Afinal ?

◮ L(AM) 6= ∅ iffM accepts w .

Let A = Ainit ∪
⋃

1≤i≤p(|w |)Ai ∪ Afinal

Then L(A) 6= Σ∗ iffM accepts w . How many states in A?
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Decision Problems (on words)

(*) A,B: nondeterministic automata

◮ Emptiness

Given A, is L(A) = ∅ ?

◮ Universality

Given A, is L(A) = Σ∗ ?

◮ Language Inclusion

Given A,B, is L(A) ⊆ L(B) ?

◮ Language Equivalence

Given A,B, is L(A) = L(B) ?

◮ Intersection Emptiness

Given DFA A1, . . . ,An, is
⋂

i L(Ai) = ∅ ?

NL-complete

PSPACE-complete

PSPACE-complete

PSPACE-complete

PSPACE-complete
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Decision Problems (on trees)

(*) A,B: nondeterministic automata

◮ Emptiness

Given A, is L(A) = ∅ ?

◮ Universality

Given A, is L(A) = T (F) ?

◮ Language Inclusion

Given A,B, is L(A) ⊆ L(B) ?

◮ Language Equivalence

Given A,B, is L(A) = L(B) ?

◮ Intersection Emptiness

Given NFTA A1, . . . ,An, is
⋂

i L(Ai ) = ∅ ?

(even top-down or bottom-up DFTA)

P-complete

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete
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Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?
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Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

◮ in EXPTIME: compute reachable tuples of states in A1 × · · · × An.

◮ Hardness: reduction from membership problem of alternating TM
with polynomial space.
Runs of ATM are encoded as trees.
Construct a product of tree automata to recognize accepting runs of
the ATM on input word:

◮ the run starts with c0 (Ainit)
◮ the i-th tape cell is correctly updated along all branches (Ai )
◮ all branches contain some q ∈ Qacc (Afinal )

Can we proceed (top-down/bottom-up) deterministically?
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Path languages

Path languages

Let t ∈ T (F). The path language π(t) is defined as follows:

◮ if t = a ∈ F0, then π(t) = {a};

◮ if t = f (t1, . . . , tn), for f ∈ Fn, then π(t) = {fiw | w ∈ π(ti ) }.

We write π(L) =
⋃
{π(t) | t ∈ L } for L ⊆ T (F).

Example: L = {f (a, b), f (b, a)}, π(L) = {f 1a, f 2b, f 1b, f 2a}.
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Path languages

Path languages

Let t ∈ T (F). The path language π(t) is defined as follows:

◮ if t = a ∈ F0, then π(t) = {a};

◮ if t = f (t1, . . . , tn), for f ∈ Fn, then π(t) = {fiw | w ∈ π(ti ) }.

We write π(L) =
⋃
{π(t) | t ∈ L } for L ⊆ T (F).

Example: L = {f (a, b), f (b, a)}, π(L) = {f 1a, f 2b, f 1b, f 2a}.

Path closure

Let L ⊆ T (F) be a tree language.

◮ The path closure of L is pc(L) = { t | π(t) ⊆ π(L) } ⊇ L.

◮ L is called path-closed if L = pc(L).

Example: pc(L) = {f (a, a), f (a, b), f (b, a), f (b, b)}, so L is not path-closed.
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Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

◮ π(L) is a recognizable word language.

◮ pc(L) is a recognizable tree language.
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◮ Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)
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Let L ⊆ T (F) be a recognizable tree language. Then:

◮ π(L) is a recognizable word language.

◮ pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

◮ Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

◮ Construct Apc = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

q(f )→∆ (qi ,1, . . . , qi ,n)
i = 1, . . . , n

→ q(f )→∆′ (q1,1, . . . , qn,n)
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Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

◮ π(L) is a recognizable word language.

◮ pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

◮ Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

◮ Construct Apc = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

q(f )→∆ (qi ,1, . . . , qi ,n)
i = 1, . . . , n

→ q(f )→∆′ (q1,1, . . . , qn,n)

Show Lq(A
pc) = pc(Lq(A)), i.e., t ∈ Lq(A

pc)⇔ π(t) ⊆ π(Lq(A))
for all q ∈ Q, t ∈ T (F) (by induction).
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Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.
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Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.
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Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

◮ “→”: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F , {G},∆′〉 as follows:

◮ for a ∈ F0, let S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
◮ for f ∈ Fn (n ≥ 1), let S(f )→∆′ (S1, . . . , Sn)

where Si = { qi | ∃q ∈ S , q(f )→∆ (q1, . . . , qn) }.

Show that LS (A
′) =

⋃
q∈S Lq(A), for all S ⊆ Q.
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Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

◮ “→”: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F , {G},∆′〉 as follows:

◮ for a ∈ F0, let S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
◮ for f ∈ Fn (n ≥ 1), let S(f )→∆′ (S1, . . . , Sn)

where Si = { qi | ∃q ∈ S , q(f )→∆ (q1, . . . , qn) }.

Show that LS (A
′) =

⋃
q∈S Lq(A), for all S ⊆ Q.

◮ “←”:
Let A be a redcued T-DCFTA for L. Prove that
if π(t) ⊆ π(Lq(A)), then t ∈ Lq(A), for all q ∈ Q, t ∈ T (F).


