Tree Automata and Applications

M1 course, 2024 /2025

Mostly based on slides by Stefan Schwoon

Organization

Schedule
» Exercises: Wednesday 8:30 — 10:30 (Luc Lapointe)
» Lectures: Wednesday 10:45 — 12:45 (Laurent Doyen)

Organization

Schedule
» Exercises: Wednesday 8:30 — 10:30 (Luc Lapointe)
» Lectures: Wednesday 10:45 — 12:45 (Laurent Doyen)

Assessment
DM or CC (to be specified by Luc)
Final Exam: 2h, 15th January 10am
First session: DM/CC + Exam (50/50)
Second session: DM/CC + Repeat Exam (50/50)

Material

Course material

Website: lecturer's homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

Main reference: H. Comon et al. Tree Automata Techniques and
Applications, 2008.

Tree

Automata
Techniques and
Applications

HuserT COMON MAX DAUCHET ~REMI GILLERON
FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LODING
SoPHIE TISON MARC TOMMASI

Material

Course material
Website: lecturer's homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

Main reference: H. Comon et al. Tree Automata Techniques and
Applications, 2008.

Other relevant resources
C. Loding, W. Thomas. Automata on finite trees. Handbook of
Automata Theory (l.), pp. 235-264, 2021.

L. Doyen. Top-Down Complementation of Automata on Finite Trees.
IPL 187:106499, 2025.

Motivation

1. Natural extension of formal languages and automata on words
2. Connection with Logic & Games
3. Treatment of tree-like data structures: parse trees, XML documents

4. Applications e.g. in compiler construction, formal verification

u]

b}
I
i

!

Trees
We consider finite ordered ranked trees. Let Ng = N\ {0}

» finite set nodes (positions), denoted by Pos C N§ (with ¢ € Pos)
» ordered : internal nodes have children 1,...,n

» ranked : number of children fixed by node's label
€
1 2 3
/\
1 2

2 2

Definition: Tree

A (finite, ordered) tree is a nonempty, finite, prefix-closed set Pos C N; such
that w - (i + 1) € Pos implies w - i € Pos for all w € N*, i € Np.

» In the sequel, we write wi instead of w - |

» prefix-closed: wi € Pos implies w € Pos

Ranked Trees

Ranked symbols
Ranked alphabet F: finite set of symbols, each with an arity 0,1, ...
Denote by F; the symbols of arity i (hence F := |J; F).

arity 0: constants

arity > 1: functions (unary, binary, etc.)

Notation (example): F = {f(2),g(1), a, b}
Let X’ denote a set of variables (of arity 0), disjoint from the other symbols.

Ranked Trees

Ranked symbols
Ranked alphabet F: finite set of symbols, each with an arity 0,1, ...
Denote by F; the symbols of arity i (hence F := |J; F).

arity 0: constants

arity > 1: functions (unary, binary, etc.)

Notation (example): F = {f(2),g(1), a, b}
Let X’ denote a set of variables (of arity 0), disjoint from the other symbols.

Definition: Ranked tree

A ranked tree is a mapping t : Pos — (F U X) satisfying:

» Pos is a tree;
» for all p € Pos, if t(p) € Fn, n > 1 then Pos N pN = {pl,...,pn};
» for all p € Pos, if t(p) € X U Fy then Pos N pN = &.

Trees and Terms

The set of terms T(F, X) is the smallest set satisfying:
» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, o), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.

Trees and Terms

Definition: Terms
The set of terms T(F, X) is the smallest set satisfying:

» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, @), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.
Example: F = {f(2),g(1),a, b}, X = {x,y}

> f(g(a), b) € T(F);

» f(x,f(b,y)) € T(F,X) is linear;

» f(x,x) € T(F,X) is non-linear.

Trees and Terms

Definition: Terms

The set of terms T(F, X) is the smallest set satisfying:

» XUFy C T(F,X);

»ifty,...,tp € T(F,X) and f € F,, then f(t1,...,t,) € T(F,X).
We write T(F) := T(F, @), called the set of ground terms.
A term of T(F,X) is linear if every variable occurs at most once.
Example: F = {f(2),g(1),a, b}, X = {x,y}

> f(g(a), b) € T(F);

» f(x,f(b,y)) € T(F,X) is linear;

» f(x,x) € T(F,X) is non-linear.

We use ‘terms’ and ‘trees’ interchangeably (obvious bijection).

Height and Size

Let t € T(F,X). We denote by #(t) the height, and by |t| the size, of t.
» if t € X, then H(t) :=0 and |t]| := 0;

» if t € Fo, then H(t) :=1 and |t| == 1;
»if t = f(tl,

(for notational convenience)
tl:=1+ [t + -+ |ta]-

., tn), then H(t) := 1 4+ max{H(t1),...,H(ts)} and

Subterms / subtrees

Definition: Subtree
Let t,u € T(F,X) and p a position. Then t, : Pos, — T(F,X) is the
ranked tree defined by

» Pos, :={q| pq € Pos };
> tp(q) == t(pq).

Moreover, t[u], is the tree obtained by replacing ¢, by v in t.

t > t’ (resp. t > t’) denotes that t’ is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution

» (Ground) substitution o: mapping from X' to T(F,X), resp., T(F)
» Notation: o := {xy < t1,...,Xxp < tp}, with o(x) := x for all
x€ X\ {x1,...,xn}
» Extension to terms: for all f € Fp, and t,...,t,, € T(F,X)
o(f(ty,...,th) = f(o(tl), ..., o(tm))
» Notation: to for o(t)

Substitutions and Context

Definition: Substitution

» (Ground) substitution o: mapping from X' to T(F,X), resp., T(F)
» Notation: o := {xy < t1,...,Xxp < tp}, with o(x) := x for all
x€ X\ {x1,...,xn}
» Extension to terms: for all f € Fp, and t,...,t,, € T(F,X)
o(f(ty,...,th) = f(o(tl), ..., o(tm))

» Notation: to for o(t)

Definition: Context
A context is a linear term C € T(F,X) with variables xi, ..., x,.
We note Clt1,...,ts] := C{x1 < t1,...,Xn < tn}.

C"(F) denotes the contexts with n variables and C(F) := C1(F).
Let C € C(F). We note C% := x; and C"*1 = C"[C] for n > 0.

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)
Non-deterministic bottom-up and top-down are equally powerful
Deterministic bottom-up equally powerful

Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)
A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G,A),
where:

» @ is a finite set of states;

» F a finite ranked alphabet;

» G C Q are the final states;

» A is a finite set of rules of the form

f(q1,...,qn) = q

for f € F,and q,q1,...,q9, € Q.

Bottom-up automata

Definition: (Bottom-up tree automata)
A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G,A),
where:

» @ is a finite set of states;

» F a finite ranked alphabet;

» G C Q are the final states;

» A is a finite set of rules of the form

f(q1,...,qn) = q

for f € F,and q,q1,...,q, € Q.

Example: Q :={qo,q1,9r}, 7 ={f(2),8(1),a}, G :={qgr}, and rules
a—qo &le)— a1 gla) = a1 f(g1,q1) = ar

Move relation and Recognized language

A=(Q,F,G,A)

Move relation

Let t,t' € T(F, Q). We write t — 4 t" if the following are satisfied:
t = C[f(q1,-.-.,qn)] for some context C;
t' = Clq] for some rule f(qi,...,qn) — g of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —% for the transitive and reflexive closure of — 4.

Move relation and Recognized language

A=(Q,F,G,A)

Move relation

Let t,t' € T(F, Q). We write t — 4 t" if the following are satisfied:
t = C[f(q1,-.-.,qn)] for some context C;
t' = Clq] for some rule f(qi,...,qn) — g of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —% for the transitive and reflexive closure of — 4.

Recognized Language
A tree t is accepted by A if t =% q for some g € G.
L(.A) denotes the set of trees accepted by A.
L is recognizable if L = L(.A) for some NFTA A.

NFTA with s-moves

An e-NFTA is an NFTA A = (Q, F, G, A), where A can additionally contain
rules of the form g — ¢/, with q,q' € Q.

Semantics: allow to re-label a position from g to ¢': C[q] —4 C[q].

For every e-NFTA A there exists an equivalent NFTA A’.

Proof (sketch): construct the rules of A’ by a saturation procedure.
Initialize A’ = A and apply:
f(q1,.---,qn) > g€ g—qd €A
f(qr,--.,qn) = q €A

u]

b}
1

u
i
S
yel
0

Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f € Fj, and qi1,...,qn € Q, there exists
at least one rule f(q1,...,qn) = q € A.

A state g of A is accessible if there exists a tree t s.t. t =7 q.
A is said to be reduced if all its states are accessible.

Top-down tree automata

A top-down tree automaton (T-NFTA) is a tuple A = (Q,F,[,A), where

Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,---,4n)
for f € Fpoand q,q1,...,qn € Q.

u]
b}
1
u
i

Top-down tree automata

Definition
A top-down tree automaton (T-NFTA) is a tuple A = (Q,F,[,A), where
Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,---,9n)

for f € F,and q,q91,...,9, € Q.
Move relation
Let t,t' € T(F, Q). We write t — 4 t’ if
t = Clq(f(t1,...,tn))] for some context C;
t' = C[f(qi(t1),- .., qn(tn))] for some rule g(f) — (q1,...,qn) of A.

t is accepted by A if g(t) =% t for some g € /.

From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.
Claim: L is accepted by NFTA A = (Q,F, G,A) iff it is accepted by
T-NFTA A" = (Q, F,I,A"), with | = G and
A" :={q(f) = (q1,---,qn) | f(q1,-..,qn) > g € A}
(and vice versa) A :={f(q1,.-.,q9n) = q | q(f) = (q1,-..,qn) € A"}

From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = (Q,F, G,A) iff it is accepted by
T-NFTA A’ = (Q, F,1,A), with | = G and

A :={q(f) = (91,---,9n) | f(q1,---,qn) > g€ A}
Proof: Let t € T(F). We show t =% q iff g(t) =%, t.
» Base: t = a (for some a € Fp)

t=a—%q a—aq q(a) —»ar e qla) =% a

» Induction: t = f(t1,...,t,), hypothesis holds for t1,...,t,
f(tr, ... th) 2% g 3q1, .- qn: F(q1, ..., qn) —a GAYI : ti =7 qi
g1, .., qn 1 q(f) =ar (g1, ..., qn) AVi:qi(ti) = p t
q(f(te, ... tn)) =a F(qu(t), ..., qn(tn)) =2 F(t1,..., tn)

Run (Computation tree)
A=(Q,F,I,A)
Definition: (Run)
Let t: Pos — F a ground tree. A run of A on tis a labelling t' : Pos — Q
compatible with A, i.e.

for all p € Pos, if t(p) = f € F,, t'(p) = q, and t'(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A

Run (Computation tree)
A=(Q,F,I,A)
Definition: (Run)
Let t: Pos — F a ground tree. A run of A on tis a labelling t' : Pos — Q
compatible with A, i.e.

for all p € Pos, if t(p) = f € F,, t'(p) = q, and t'(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A

Recognized Language
A run t’ is initialized (or accepting) if t'(¢) € I.
A tree t is accepted by A if there exists an initialized run of A on t.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

» Notation: Ag = (Q, F,{q},A) and Lg(A) = L(Ag), so
L(A) = Uges La(A).

From NFTA to DFTA
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

21N 64

From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A= (Q,F,G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G’, ") also recognizes L:

> G/={5§Q|SQG#®}

» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.

From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A= (Q,F,G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G’, ") also recognizes L:
» G'={SCQ|SNG#0}
» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.

From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = (Q,F, G,A) an NFTA recognizing L.
The following DCFTA A’ = (29 F, G', A') also recognizes L:

> G'={SCQ|SNG+#w)}

» for every f € F, and S1,...,5, C Q, let 7(S1,...,5,) = S e A,
where S={qge Q|3q1 € S1,...,9,. € Sp: f(q1,-..,9n) > g€ A}

Proof: For t € T(F), show t =%, {q |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.

Deterministic top-down are less powerful

E.g., L ={f(a,b),f(b,a)} can be recognized by DFTA but not by T-DFTA.

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all t € L with
H(t) > k, there exist contexts C, D € T(F,{x}) and u € T(F) satisfying:

D is non-trivial (i.e., not just a variable);
t = C[D[u]];
for all n > 0, we have C[D"[u]] € L.

A pumping lemma for tree languages

Lemma
Let L be recognizable. Then there exists k such that for all t € L with
H(t) > k, there exist contexts C, D € T(F,{x}) and u € T(F) satisfying:
D is non-trivial (i.e., not just a variable);
t = C[D[u]];
for all n > 0, we have C[D"[u]] € L.

Proof: Let k be the number of states of an NFTA A recognizing L.
In an accepting run on a tree t € L, there exist two positions p, pp’ (p’ # ¢)
labelled by the same state q.

Let C = t[x]p, D = t)p[x]p, and u = t,y, thus t = C[D[u]].
The accepting run on t entails:
u—7% q,D[q] =% q, and C[q] =7 gr, for some final state gy.

Therefore, D"[q] —% q for all n > 0 (by induction, where D°[q] := q) and
CID[u]] =7 CID"[q]] =74 Cla] =4 ar

A pumping lemma for tree languages

Mostly used in the form:

Lemma

If for all k,
there exists t € L with #H(t) > k,
for all contexts C,D € T(F,{x}) and u € T(F) such that
t = C[D[u]] and D is non-trivial,
there exists n > 0 : C[D"[u]] € L,
then L is not recognizable.

lllustration of pumping lemma

Let L= {f(g'(a).g'(a)) | i > 0} for F = {f(2), (1), 2}.
Given k, let t = f(g¥(a), g"(a)).

qff
g g
ig g
b— : : k+1
9g g
u
— A
a a

Pumping D creates trees outside L = L not recognizable.

Closure properties

Recognizable tree languages are closed under Boolean operations.

21N 64

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let (Q,F, G,A) be a DCFTA recognizing L.
Then (Q,F,Q\ G, A) recognizes T(F) \ L.

Proof hint: uniqueness of the run on the input tree.

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)
Let (Q,F, G,A) be a DCFTA recognizing L.
Then (Q,F,Q\ G, A) recognizes T(F) \ L.

Proof hint: uniqueness of the run on the input tree.

Union (juxtapose)

Let (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then (Q1 W o, F, G1 U G, A1 U Ay) recognizes Ly U L.

Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 x @, F, Gy X Gp, A) recognizes L1 N Ly, where

f(qr,---,qn) > g€ D1 f(qy,....q,) = q € Ay
f(<q17q5_>77<qn7q;1>) - <q7 q/> €A

Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, A;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 x @, F, Gy X Gp, A) recognizes L1 N Ly, where

f(qr,---,qn) > g€ D1 f(qy,....q,) = q € Ay
f(<q17q5_>77<qn7q;1>) - <q7 q/> €A

Remarks:

» If Ay, Ay are D(C)FTA, then so is A.

» If Ay, Ay are complete, replace G; x Gy with (G x @) U (Q1 X G2)
to recognize L1 U Lo.

Single tree

Singleton Language
Given a tree t : Pos — F, the language L = {t} is recognized by
A =(Q, F, I, A) where:

Q = Pos

I'={e}

A={f(pl,...,pn) = p| f =t(p) € Fn}

Single tree

Singleton Language

Given a tree t : Pos — F, the language L = {t} is recognized by
A =(Q, F, I, A) where:

Q = Pos

I ={e}

A ={f(pl,...,pn) = p|f=1t(p) € Fn}
Remark: A; is deterministic.
Proof: Show t' =% piff t' = t,

Tree homomorphism

Definition
Let X, := {x1,...,x,} and F, F’ ranked alphabets.
A tree homomorphism is a mapping h : F — T(F', X),
with h(f) € T(F,X,) if f € F,.
Extension of h to trees (T(F) — T(F")):

> h(f(t1,...,tn)) = h(F){x1 < h(t1),...,xn < h(tn)}
Intuition:

» h(f) “explodes” f-positions into trees

» reorders/copies/deletes subtrees.

Examples
Example
F={f(2),8(1),a}, 7' ={f'(1),8'(2), c, d}
h(f) = f'(g'(x2, d)), h(g) = &'(x1, c), h(a) = &'(c, d)

f f

RN |

g g = g

| | RN
a a g d
RN
g c
/N

Examples
Example
F={f(2),8(1),a}, 7' ={f'(1),8'(2), c, d}
h(f) = f'(g'(x2, d)), h(g) = &'(x1, c), h(a) = &'(c, d)

f f
RN |
g g = g
| | AN
a a g d
RN
g c
VAN
c d

Example (ternary to binary tree)
F ={f(3),a,b}, 7' ={g(2), a, b}
h3a(f) = g(x1,8(x2, x3)), h32(a) = a, h3a(b) = b

A homomorphism h is

| 2

| 2

| 2

| 2

| 2

>

Properties of homomorphisms

linear if h(f) linear for all f;

non-erasing if H(h(f)) > 0 for all f;

flat if H(h(f)) =1 for all f;

complete if f € F,, implies that h(f) contains all of X};
permuting if h is complete, linear, and flat;

alphabetic if h(f) has the form g(xi,...,x,) for all f.

Example: hsp is linear, non-erasing, and complete.

Properties of homomorphisms

A homomorphism h is

» linear if h(f) linear for all f;

» non-erasing if H(h(f)) > 0 for all f;

flat if H(h(f)) =1 for all f;

complete if f € F,, implies that h(f) contains all of X};

v

v

v

permuting if h is complete, linear, and flat;
alphabetic if h(f) has the form g(xi,...,x,) for all f.

v

Example: hsp is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability
Example: h(f) = f'(x1,x1), h(g) = g(x1), h(a) = a
L={f(g'(a))|i >0} (recognizable)

h(L) = {f'(g'(a),g'(a)) | i >0} (not recognizable)

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F= {f(2)7g(1)7 a}r F = {f’(1)7g/(2)7 c, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a),g"(a)) | i,k >1}

> A= ({qo,q1,qr}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, v:8(q)—q, 0:f(q,q)— aqr}

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F= {f(2)7g(1)7 a}r F = {f’(1)7g/(2)7 c, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a),g"(a)) | i,k >1}

> A= ({qo,q1,qr}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, v:8(q)—q, 0:f(q,q)— aqr}

q f
VRN |
g g = g
| | 7N
a a g d
RN
g c
VRN

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:
> F={f(2),8(1),a}, 7' ={f'(1),8'(2), ¢, d}
> h(f) = f'(&'(xe, d)), h(g) = &'(x1, c). h(a) = g'(c, d)
> L={f(g'(a).g"(a)) | i,k > 1}

» A= {{qo,q1,9r}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, 7:8(q)—q, :f(q,q)— aqr}

qr f 4§ f!
Run on A / \ ‘
q1 q1 — /
Rules used 5 & € 3 g
to produce states ‘ ‘ o - /N
« a & « / g \ d
/
g c

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h : F — F’ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

» F={f(2),g(1),a}, 7' = {f'(1),8'(2), c, d}
> h(f) = f'(g'(xe, d)), h(g) = g'(x1,¢), h(a) = g'(c,d)
> L=1{f(g'(a),g"(a)) | i,k > 1}
» A= {{qo,q1,9r}, F,{qr}, A) recognizes L with
A={a:a—qo, B:g(q)—q, 7:8(q)—q, :f(q,q)— aqr}

ar £ 1) qr f!
Run on A / \ G — ‘, k) Construct automaton
Rules used g €3 g for h(L) preserving
to produce states p ‘ ‘ qo o /N state labels from A
o a Z « g d +
/ \ Guess the rules.
q0 g/ c
7N B

© « d

Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(rye) = q
}f{i £
|
Ye g% = g
\ \ /N
%a a ® g d
AN
g c
VAN

Automaton construction for h(L)

Given a reduced NFTA A = (Q, F, G, A) for L,

construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,

the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = x
(r,e) = q

Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QU{(rp)|reAIfFecF:r=Ff(..)—...,p€ Posys };

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set Al contains, for all positions p € Pospfy:

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(rie) > q

fo(i £
\
%?g/ g% = g
ﬁ /
<31\/ \

QU/
/(u)\ H2\

Automaton construction for h(L)
Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
Q:=QuU{(rp)|reAIfFeF:r=1f(..)—....,p€ Posys)};

)
A" = J,cp A} where for each transition r : f(q1,...,q,) = g in A,
the set A} contains, for all positions p € Posyf):

f'((r,pl), ..., (r,pk)) = (r, p) if h(f)(p) = f" € F
qi — (r,p) if h(f)(p) = xi

(re) > q
a f ar g1 (6,¢)
/ |
%/g g qal — g (5,1)
| | 6/
o a 3 Q1 1 (B, €)
" “ ; & 15(12‘\
8,1y, \ (9,12)

qo0 g/ c
/(u, s)\ (B,2)
C

d
(e, 1) (a,2)

Correctness

To prove: A’ accepts h(L).

Correctness

To prove: A’ accepts h(L).

» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.

Correctness

To prove: A’ accepts h(L).

» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
by structural induction over t.

Correctness

To prove: A’ accepts h(L).

» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
by structural induction over t.

» h(L) D L(A):

For all t' € T(F'), prove that if ' =%, g € Q,
then there exists t € T(F) N h~(t') with t =% q,

Correctness

To prove: A’ accepts h(L).
» h(L) C L(A):
For all t € T(F), prove that t —% g implies h(t) =% q.
by structural induction over t.

» h(L) D L(A):
For all t' € T(F'), prove that if ' =%, g € Q,
then there exists t € T(F) N h~(t') with t =% q,
by induction on number of states (of @) in the computation t' =%, g.

Correctness

To prove: A" accepts h(L).

Correctness

To prove: A" accepts h(L).

» h(L) C L(A):
For all t € T(F), show that t —% q implies h(t) =%, q,
by structural induction over t.

Correctness

To prove: A" accepts h(L).
» h(L) C L(A):
For all t € T(F), show that t —% q implies h(t) =%, q,
by structural induction over t.

» Base case: t = a (leaf) where a € Fy (constant)
a—=%q & a—>qcA
——

r
Then h(a) =%, q using rules in A} (single tree)
Note: ¢, is a ground term, rules g; — (r, p) not used

Correctness

To prove: A" accepts h(L).

» h(L) C L(A):
For all t € T(F), show that t —% q implies h(t) =%, q,
by structural induction over t.

» Base case: t = a (leaf) where a € Fy (constant)
a—=%q & a—>qcA
——

r
Then h(a) =%, q using rules in A} (single tree)
Note: ¢, is a ground term, rules g; — (r, p) not used

> Inductive case: t = f(u1,..., un)
t =% f(q1,...,qn) 2> gand u; =% qi (i=1,...,n)
reA

Then h(t) = h(F){x1 < h(u1),...,xn < h(up)}
and by induction hypothesis h(u;) =%, qi, so h(t) =%, h(f)(q1,-..,qn)

To show: h(f)(q1,.-.,qn) =% q using rules in A} (single tree)

Correctness

To prove: A" accepts h(L).

» L(A") C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A’ (with
e-transitions removed) on t’ corresponding to t' =%, g.

Correctness

To prove: A" accepts h(L).

» L(A") C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A’ (with
e-transitions removed) on t’ corresponding to t' =%, g.

» Base case: t’ —* g, with no intermediate state from Q
Since A’ are disjoint, only rules from A/ for a single r are used.
(no variable in t' — rules g; — (r, p) not used)
Let r = f(q1,---,qn) = q.
Then t' = h(f) (single tree) and we construct t = f(u1,. .., u,) where
uj =% q; (why is it possible 7).

Correctness

To prove: A" accepts h(L).

» L(A) C h(L):
For all t' € T(F'), show that if t' =%, g € Q,
then there exists t € T(F) such that t =% q and h(t) = t/,
by induction on number of states (of Q) in the runs of A" (with
e-transitions removed) on t’ corresponding to t' =%, q.

» Inductive case: t' =%, v{xi <= q1,...,Xn < Gn}
= v < (r,p1), e X0 < (e pe)} =00 g
no intermediate state from Q

where v is a linear term in T(F', X)

Hence t' = v{xy = u},..., X, < u,} where ui =%, qi (i=1,...,n)

(why is it possible ?)
Alson=n=---=r,=r="f(q,...,9,) = g and v = h(f) (single
tree)

By induction hyp., there exist u; —% q; with h(u;) = u! and we
construct t = f(uy,...,u,) and show that h(t) =t’ and t =% q.

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L C T(F') be recognizable and h : F — F’ a tree homomorphism (not
necessarily linear). Then h=1(L) is recognizable.

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L C T(F') be recognizable and h : F — F’ a tree homomorphism (not
necessarily linear). Then h=1(L) is recognizable.

Given an NFTA A" = (Q, F', G, A') for L,
construct NFTA A= (QW {T}, F, G, A) for h=1(L).
Forall n>0and f € F,, and p1,...,pn € Q,

add f(T,...,T) = T to A;

if h(F){x1 < p1,..., X0 < pn} =% q, add f(q1,...,qn) = g to A,
with:

pi if x; appears in h(f)
qi = .
T otherwise

Proof: Show t —% q iff h(t) =%, q, for all t € T(F).

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac
Leaf languages

Let L be a recognizable tree language. Then fr(L) is context-free.

Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac

Leaf languages
Let L be a recognizable tree language. Then fr(L) is context-free.
Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).
Proof (idea):
» Given a T-NFTA recognizing L, construct a CFG from it.

» L is generated by a CFG using productions of the form A — BC | a
only. Replace A— BC by A — A, and A, — BC, construct a
T-NFTA from the result.

Regular Expressions

Words (alphabet ¥)
F,e,a(ael)
union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)
No empty tree
n-ary symbols

concatenation, iteration ?

Regular Expressions

Words (alphabet ¥)
F,e,a(ael)

union, concatenation, iteration (Kleene star)

Trees (ranked alphabet F)
No empty tree
n-ary symbols
concatenation, iteration ?
~~ use placeholders

Let £ = {0;,0s,...} be a set of placeholders (symbols of arity 0).
T(F,K): set of all terms over ranked alphabet F U K.

Placeholders

Placeholder substitution
Substitution: {{J < L} where L is a tree language
Can replace different occurrences of [by different elements of L

Semantics
Based on semantics of t{{J <— L}, by structural induction on t € T(F, K):

» t=aof arity 0: a{0 < L} = L if a =0 (otherwise {a})

» t=f of arity n > 0:

f(tr,....tn){O« L} ={f(s1,...,50) | si € ti{0 «+ L},1 <i < n}

» L{O«— L} ={t{0« L} |teli}
Abbreviation: {0y < L;,..., 0, « Ly} ={01 < L1} o---o{, < Ly}
(Li € T(F))

Concatenation - lteration
L ol = Ut€L1 t{D — L2}

t1 € L1

b, ty € Ly

Concatenation - lteration
Concatenation

L ol = Ut€L1 t{D — L2}

t1 € L1
|

th, th € Lp
teration

= Uen L where [0 = {0} and L¥F1 = [k .o(LU LO)
Note: J € L*® for all L.
For L ={f(0,0,a)}:

Kleene plus: LT

AL R R

[m]

Regular Expressions

A regular expression is obtained by the following grammar:
EZ:®|f|E1+E2|E1~EIE2|E*D

feF,Oek
> |[®]]: %)
> [fl= {f(C,...,00)} (f € Fn)
> |[E1 + E2]]=|[E1]I U |IE2]]
> [E 0 E]=[E] ©[E]
> |[E*E']|:|[E]I*EI

A tree language L is regular if L =[E] for some regular expression E.

Shortcut: f(El, ce En) =f-mE ... GE; ... O,E,

Regular Expressions - Examples

E=1f(0,a)" 0a

/ N\

Regular Expressions - Examples

a a Left “comb”

Regular Expressions - Examples

E = f(0,a)" 0a E = f(f(0,0), f(O,0))= -0a
f'
/ \ f i
fa / N\
J A\ fooof 0a
/S a /A A
f [I R I
/ \

a a Left “comb”

Regular Expressions - Examples

= f(0,a)* 0a E = f(f(0,0), f(0,0))* -0a
f
/\ f -
f a / N\
/ \ f f ‘0Oa
S a /N
f O 0o OO
/ \

a a Left “comb” All branches are of even length

Kleene Theorem for Tree Languages

Theorem (RegExp = NFTA)
L is regular iff L is recognizable by an NFTA.

Proof (=)

By induction over the structure of regular expressions:

» Base case: @ and {f(Oy,...,0,)} are finite languages, hence
recognizable.

» Inductive case: given A; = (Q;, F UK, Gj, A;) NFTAs recognizing
L(Ai) =[E] (i =1,2),

> [E1 + E2] is recognized by (Q1 W Q2, FUK, G1 U Gy, A U Ayp)
» [E1 -OE;] is recognized by (@ W Q, F UK, Gy, A) where
g € G : f(qr,...,qn) > g €Ay and 0 — g € Aq}
» [E, "] is recognized by (@1, F UK, Gi, A) where
A:Alu{f(ql7aqn)—>q|
g € G : f(qr,...,qn) > g €Ay and 0 — g € Aq}

Kleene Theorem for Tree Languages

Theorem (RegExp = NFTA)
L is regular iff L is recognizable by an NFTA.

Proof (<)
Given NFTA A = (Q,F, G,A), we construct a regular expression E such
that [E]= L(A).
» Let £ = {04 | g € Q} be a set of placeholders.
» Let A/ =(Q,FUK,G,A’) where A" =AU{0; - q| qe Q}.
Then L(A")N T(F) = L(A).
» Forge Q and N, K C Q, let L(g, N, K) be the set of all trees
te T(FU{Q, | g € K}) having a run r of A’ such that:

> r(E) = q
» r(p) € N for all positions p # € such that t(p) € F
> (note: the leaves of t are labeled by Fo U{, | g € K})

Kleene Theorem for Tree Languages

Proof (<) (cont'd)

Since L(A) = Uyec L(q, Q, D), showing that all sets L(q, N, K) are regular
is sufficient. By induction on |N|:

» Base case: N = &, then all languages L(q, @, K) are finite (trees of
height at most 1), hence regular.

» Inductive case: let N = No U {q;} (g;i & No),
Given a run ron t € L(g, N, K), decompose t into subtrees with:
(1) root labeled by g; in r (by g in topmost subtree),
(2a) internal nodes are either labeled by states of Ny in r,
(2b) or labeled labeled by g; in r (and their t-symbol is replaced by Og,).
By (2) and induction hyp., we can construct a regular exp. for the
subtree-components. We construct a reg. exp. for L(q, N, K) using:
L(q, No U {qi}, K) = L(q, No, K)+
L(qa No, K U {Dq,'}) ’DQi(L(qia No, K' U {DQi})) i 'DQiL(qh No, K)

No U{qi}

Fou{lg | qe K}

L(q7 NO U {qi}> K) = L(q> NOa K) +

YAVA

ANAN

L(q, No U{qi},K) = L(q, No, K) +

L(q, No U{qi},K) = L(q, No, K) +
L(q> No, KU {in}) -in(/_(q;, No, KU {DCIf})) “ai ‘Og; L(qi> No, K)
—_——

1 2 3

AA

L(q, No U {qi}, K) = L(q, No, K
L(q> No, KU {in}) 'DCIf((qi> N0> KU {DCIf})) “ai ‘Og; L(qi> No, K)
—_——
1 2 3

Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

., Up = v, we have
f(ur,...,up) = (v,
» = saturates L if u=v impliesu € L < v e L.

ceey V)

Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

f(ul,.

., Up = v, we have
Sup) = (v,
» = saturates L if u=v impliesu € L < v e L.

ceey V)
For L C T(F), write u=; v if

VCeC(F): Cluel& Clvlel

Congruences on trees
Definition: Congruence
Let = be an equivalence relation on T(F).
» = is called a congruence
if foralln>0and f € F,, u1 = v1,

., Up = v, we have
flur, ... up) = f(vi,...,vn)
» = saturates L if u=v impliesu € L < v e L.
For L C T(F), write u =, v if

VCeC(F): Cluel& Clvlel
The following are equivalent:
1. L C T(F) is recognizable.

2. L is saturated by some congruence of finite index
3. = is of finite index.

Myhill-Nerode Theorem

Application:
Consider L = { f(g'(a),g'(a)) | i > 0}.
For any pair i # k, consider C = f(x, g'(a)).

Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) #L &%(a)
Therefore =/ is not of finite index, and L is not recognizable.

Myhill-Nerode Theorem
Application:
Consider L = { f(g(a),g'(a)) | i >0}.
For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

Myhill-Nerode Theorem
Application:
Consider L = { f(g'(a),g'(a)) | i > 0}.
For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.
Proof of the theorem (sketch):
» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).

Myhill-Nerode Theorem

Application:

Consider L = { f(g'(a),g'(a)) | i > 0}.

For any pair i # k, consider C = f(x, g'(a)).

Then Clg(a)] € L but C[gh(a)] & L = g'(a) #. g"(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).

» 3= 1 Let A=(T(F)/=,,F,L/=,,A), with A containing

f([ta], -, [un]) = [F(u1,y ... up)]
foralln>0, f € Fp, u1,...,un € T(F),
where [u] is the =;-equivalence class of u € T(F);

Myhill-Nerode Theorem
Application:
Consider L = { f(g(a),g'(a)) | i >0}.
For any pair i # k, consider C = f(x, g'(a)).
Then Clg'(a)] € L but Clg"(a)] ¢ L = g'(a) £ &%(a)
Therefore =/ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):
» 1 —2: Let Abe DCFTA and let u= v iff u =% g% < v.
Then = is of finite index and saturates L.

» 2 — 3: Let = be a saturating congruence, u = v implies u =; v
(prove u = v implies C[u] = CJv] for all C, by induction on height of
position of x in C).

» 3= 1 Let A=(T(F)/=,,F,L/=,,A), with A containing
F(lual, - [unl) = [F(u1, .- s un)]

foralln>0, f € Fp, u1,...,un € T(F),
where [u] is the =;-equivalence class of u € T(F);

Remark: This can be shown to be the canonical minimal DCFTA.

Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ?

Universality
Given A, is L(A) =X*7?
Language Inclusion

Given A, B, is L(A) C L(B) ?

Language Equivalence

Given A, B, is L(A) = L(B) ?

Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ? NL-complete

Universality
Given A, is L(A) =X*7? PSPACE-complete

Language Inclusion
Given A, B, is L(A) C L(B) ? PSPACE-complete

Language Equivalence
Given A, B, is L(A) = L(B) ? PSPACE-complete

Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ?

Universality
Given A, is L(A) = T(F)?
Language Inclusion

Given A, B, is L(A) C L(B) ?

Language Equivalence

Given A, B, is L(A) = L(B) ?

Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 ? P-complete

Universality
Given A, is L(A) = T(F)? EXPTIME-complete

Language Inclusion
Given A, B, is L(A) C L(B) ? EXPTIME-complete

Language Equivalence
Given A, B, is L(A) = L(B) ? EXPTIME-complete

Emptiness of NFTA

Emptiness is P-complete
in P: reachable states by (bottom-up) saturation algorithm
P-hard: reduction from AND-OR graph reachability
AND-OR graph: G = (VaW Vg, E)
We say that v; is reachable from v in G if
> U=V Or
» u € Vp, and v; is reachable from v for all v € E(u), or
» u € Vp, and v; is reachable from v for some v € E(u)
AND-OR graph reachability: given (G, vs, v¢), is v reachable from v ?
Reduction: T-NFTA A = (VaU Vo, F,{vs},A) where A contains:
» vi(a) — ¢,
» u(fy) = (vi,...,vy) for all u € Va where E(u) = {v1,..., v},
» u(fi) — vforallue Vo, veE(u).

Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM

Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM

Execution of a TM on input word w:

C0|_C1|—---|—Ck

where ¢; € ¥* with X =T U (Q xTI)
co = (g, wo)wiws ... wy, accepts if cx € (Qace X NI .

The successor relation I is determined by a function Next : ¥3 — ¥:
Ciy1,j = Next(cj j-1, ¢ j, G j+1) j

o T1 1]

Ci—1

j—1jj+1

Reminder: NFA universality

NFA universality is PSPACE-complete
in (N)PSPACE: emptiness of subset construction
PSPACE-hard: reduction from membership problem of PSpace TM

Given M with space bounded by p(-) and input word w, construct A to
accept (encoding) of accepting runs of M on w:

» Aaq has alphabet ¥
» Ay = Aipie N mléiép(\WI) Ai N Afinar (interesection of DFASs)

> L(Ainit): run starts with ¢
> L(A;): the i-th tape cell is correctly updated along the run
> L(Afinar): run contains some q € Qacc
How to proceed deterministically?

How many states in Ajpi? in A;? in Agipa?

» L(Apm) # @ iff M accepts w.

Let A == ./Tlinit U U]-S"SPUWD ./Tli @] ./Tlﬁna/
Then L(A) # X* iff M accepts w. How many states in A?

Decision Problems (on words)

(*) A, B: nondeterministic automata

Emptiness

NL- let
Given A, is L(A) =2 7 complete

Universality

Given A, is L(A) = ¥* ? PSPACE-complete

Language Inclusion

PSPACE- [
Given A, B, is L(A) C L(B) ? SPACE-complete

Language Equivalence

Given A, B, is L(A) = L(B) ? PSPACE-complete

Intersection Emptiness

PSPACE- let
Given DFA Ay, ..., A, is (), L(A) =2 7 S complete

Decision Problems (on trees)

(*) A, B: nondeterministic automata

Emptiness
Given A, is L(A) =2 7

P-complete

Universality

Given A, is L(A) = T(F) ? EXPTIME-complete

Language Inclusion

Given A, B, is L(A) C L(B) ? EXPTIME-complete

Language Equivalence

Given A, B, is L(A) = L(B) ? EXPTIME-complete

Intersection Emptiness
Given NFTA Ay, ..., Ay is(); L(A) =27

(even top-down or bottom-up DFTA)

EXPTIME-complete

Intersection problem

The following problem is EXPTIME-complete:
Given tree automata Az, ..., A, is L(A1) N---NL(A,) # 27

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata Az, ..., A, is L(A1) N---NL(A,) # 27

Proof (sketch):
» in EXPTIME: compute reachable tuples of states in Ay x -+ X A,.

» Hardness: reduction from membership problem of alternating TM

with polynomial space.
Runs of ATM are encoded as trees.
Construct a product of tree automata to recognize accepting runs of
the ATM on input word:

» the run starts with co (Ajnit)

> the i-th tape cell is correctly updated along all branches (A;)

» all branches contain some q € Qacc (Afinar)

Can we proceed (top-down/bottom-up) deterministically?

Path languages

Let t € T(F). The path language 7(t) is defined as follows:
» if t = a € Fo, then n(t) = {a};
> if t = f(tg,..

., tn), for f € Fp, then w(t) = { fiw | w € n(t;) }.
We write 7(L) = J{n(t) | t € L} for L C T(F).

Example: L= {f(a,b),f(b,a)}, m(L) = {fla,f2b,f1b, f2a}.

Path languages

Path languages

Let t € T(F). The path language 7(t) is defined as follows:
» if t = a € Fo, then n(t) = {a};

> if t =f(t1,...,tn), for f € F,, then 7(t) = {fiw | w € 7(t;) }.
We write 7(L) = J{n(t) | t € L} for L C T(F).

Example: L= {f(a,b),f(b,a)}, m(L) = {fla,f2b,f1b, f2a}.

Let L C T(F) be a tree language.

» The path closure of L is pc(L) = {t|x(t) Cw(L)} D L.
» L is called path-closed if L = pc(L).

Example: pc(L) = {f(a,a), f(a, b),f(b,a),f(b,b)}, so L is not path-closed.

Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)
» Construct AP = (Q, F, G, A’) for pc(L) as follows:
for all a € Fy:
g(a) »ae — q(a) —are

foralln>1, f € Fp:

q(f) =a (9i1,---,qin)
i=1,...,n

— q(f) — A/ (q171,...

. Gnn)

Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
7(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.

» Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)
» Construct AP = (Q, F, G, A’) for pc(L) as follows:
for all a € Fy:
g(a) »ae — q(a) —are
foralln>1, f € Fp:
q(f) —a (qi15- -, qin)
i=1,...,n
Show Lg(AP€) = pc(Lg(A)), i.e., t € Lg(AP?) & 7(t) C n(Lg(A))
for all g € Q, t € T(F) (by induction).

— q(f) — A (‘-71,17 DRI CIn,n)

Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem
Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.
Proof:
» "= Let A= (Q,F,G,A) be a reduced T-NFTA for L.
Construct a T-DFTA A’ = (29 F,{G}, A’) as follows:

> for a € Fo, let S(a) »ar e if 3g € S, q(a) —a &
» for f € F, (n>1), let S(f) =a (S1,---,5n)
where S; ={q;|3g € S,q(f) =a (q1,..-,an) }

Show that Ls(A") = Uges Lg(A), for all S C Q.

Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:
» "= Let A= (Q,F,G,A) be a reduced T-NFTA for L.
Construct a T-DFTA A’ = (29 F,{G}, A’) as follows:

> for a € Fo, let S(a) »ar e if 3g € S, q(a) —a &
» for f € F, (n>1), let S(f) —ar (51,---,5n)
where S; ={q;|3g € S,q(f) =a (q1,..-,an) }
Show that Ls(A") = Uges Lg(A), for all S C Q.
»
Let A be a redcued T-DCFTA for L. Prove that
if 7(t) C m(Lg(A)), then t € Lg(A), for all g € Q,t € T(F).

