Tree Automata and Applications

M1 course, 2024/2025

Mostly based on slides by Stefan Schwoon

10 → 120 → 12 → 12 → 12 → 240 → 2/140

Organization

4 ロ → K @ → K 할 → K 할 → 인 할 → 인 Q @ 2/140

Schedule

- Exercises: Wednesday $8:30 10:30$ (Luc Lapointe)
- Electures: Wednesday $10:45 12:45$ (Laurent Doyen)

Organization

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q @ - 2/140

Schedule

- Exercises: Wednesday $8:30 10:30$ (Luc Lapointe)
- ► Lectures: Wednesday 10:45 12:45 (Laurent Doyen)

Assessment

- DM or CC (to be specified by Luc)
- ◮ Final Exam: 2h, 15th January 10am
- ► First session: $DM/CC + Exam (50/50)$
- Second session: $DM/CC + Rep$ eat Exam (50/50)

Material

Course material

- Website: lecturer's homepage $+$ Wiki MPRI, course 1-18 (exercise sheets, slides, former exams)
- Main reference: H. Comon et al. Tree Automata Techniques and Applications, 2008.

Tree Automata Techniques and Applications

MAX DAUCHET RÉMI GILLERON HUBERT COMON FLORENT JACQUEMARD DENS LUGIEZ CHRISTOF LÖDING 3/140 → 3/140 → 3/140 → 3/140

Material

Course material

- Website: lecturer's homepage $+$ Wiki MPRI, course 1-18 (exercise sheets, slides, former exams)
- Main reference: H. Comon et al. Tree Automata Techniques and Applications, 2008.

Other relevant resources

- C. Löding, W. Thomas. Automata on finite trees. Handbook of Automata Theory (I.), pp. 235-264, 2021.
- L. Doyen. Top-Down Complementation of Automata on Finite Trees. IPL 187:106499, 2025.

4 ロ → 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q @ - 3/140

Motivation

Context

- 1. Natural extension of formal languages and automata on words
- 2. Connection with Logic & Games
- 3. Treatment of tree-like data structures: parse trees, XML documents

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q @ + 4/140

4. Applications e.g. in compiler construction, formal verification

Trees

We consider *finite ordered ranked* trees. Let $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$

- ► finite set nodes (positions), denoted by $Pos \subseteq \mathbb{N}_0^*$ (with $\varepsilon \in Pos$)
- \triangleright ordered : internal nodes have children $1, \ldots, n$
- \triangleright ranked : number of children fixed by node's label

Definition: Tree

A (finite, ordered) *tree* is a nonempty, finite, prefix-closed set $Pos\subseteq \mathbb{N}_0^*$ such that $w \cdot (i + 1) \in Pos$ implies $w \cdot i \in Pos$ for all $w \in \mathbb{N}^*$, $i \in \mathbb{N}_0$.

- In the sequel, we write wi instead of $w \cdot i$
- ► prefix-closed: $wi \in Pos$ implies $w \in Pos$

Ranked Trees

Ranked symbols

Ranked alphabet \mathcal{F} : finite set of symbols, each with an *arity* $0, 1, \ldots$ Denote by \mathcal{F}_i the symbols of arity i (hence $\mathcal{F} := \bigcup_i \mathcal{F}_i$).

- ◮ arity 0: constants
- arity ≥ 1 : functions (unary, binary, etc.)

Notation (example): $\mathcal{F} = \{f(2), g(1), a, b\}$ Let X denote a set of variables (of arity 0), disjoint from the other symbols.

4 ロ > 4 団 > 4 ミ > 4 ミ > - ミ - 9 Q Q - 6/140

Ranked Trees

Ranked symbols

Ranked alphabet \mathcal{F} : finite set of symbols, each with an *arity* $0, 1, \ldots$ Denote by \mathcal{F}_i the symbols of arity i (hence $\mathcal{F} := \bigcup_i \mathcal{F}_i$).

- ◮ arity 0: constants
- arity > 1 : functions (unary, binary, etc.)

Notation (example): $\mathcal{F} = \{f(2), g(1), a, b\}$ Let X denote a set of variables (of arity 0), disjoint from the other symbols.

Definition: Ranked tree

A ranked tree is a mapping $t : Pos \rightarrow (F \cup \mathcal{X})$ satisfying:

- \triangleright Pos is a tree;
- ► for all $p \in Pos$, if $t(p) \in \mathcal{F}_n$, $n \geq 1$ then $Pos \cap p\mathbb{N} = \{p1, \ldots, pn\}$;
- ► for all $p \in Pos$, if $t(p) \in \mathcal{X} \cup \mathcal{F}_0$ then $Pos \cap p\mathbb{N} = \emptyset$.

Trees and Terms

Definition: Terms

The set of terms $T(F, \mathcal{X})$ is the smallest set satisfying:

$$
\quad \blacktriangleright \ \mathcal{X} \cup \mathcal{F}_0 \subseteq \mathcal{T}(\mathcal{F},\mathcal{X});
$$

if $t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_n$, then $f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{X})$. We write $T(F) := T(F, \emptyset)$, called the set of ground terms. A term of $T(F, \mathcal{X})$ is linear if every variable occurs at most once.

1 미 ▶ 1 @ ▶ 1 로 ▶ 1 로 ▶ 그로 → 9 Q @ - 7/140

Trees and Terms

Definition: Terms

The set of terms $T(F, \mathcal{X})$ is the smallest set satisfying:

$$
\quad \blacktriangleright \ \mathcal{X} \cup \mathcal{F}_0 \subseteq \mathcal{T}(\mathcal{F},\mathcal{X});
$$

if $t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_n$, then $f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{X})$. We write $T(F) := T(F, \emptyset)$, called the set of ground terms. A term of $T(F, \mathcal{X})$ is linear if every variable occurs at most once.

10 → 120 → 12 → 12 → 22 → 240 → 2/140

Example:
$$
\mathcal{F} = \{f(2), g(1), a, b\}, \mathcal{X} = \{x, y\}
$$

$$
\blacktriangleright \ \ f(g(a),b)\in \mathcal{T}(\mathcal{F});
$$

- \blacktriangleright $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- \blacktriangleright $f(x, x) \in T(\mathcal{F}, \mathcal{X})$ is non-linear.

Trees and Terms

Definition: Terms

The set of terms $T(F, \mathcal{X})$ is the smallest set satisfying:

$$
\quad \blacktriangleright \ \mathcal{X} \cup \mathcal{F}_0 \subseteq \mathcal{T}(\mathcal{F},\mathcal{X});
$$

► if $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_n$, then $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{X})$. We write $T(F) := T(F, \emptyset)$, called the set of ground terms. A term of $T(F, \mathcal{X})$ is linear if every variable occurs at most once.

Example:
$$
\mathcal{F} = \{f(2), g(1), a, b\}, \mathcal{X} = \{x, y\}
$$

$$
\blacktriangleright \ \ f(g(a),b) \in \mathcal{T}(\mathcal{F});
$$

- \blacktriangleright $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- \blacktriangleright $f(x, x) \in T(\mathcal{F}, \mathcal{X})$ is non-linear.

We use 'terms' and 'trees' interchangeably (obvious bijection).

Height and Size

Definition

Let $t \in \mathcal{T}(\mathcal{F}, \mathcal{X})$. We denote by $\mathcal{H}(t)$ the *height*, and by |t| the size, of t.

- if $t \in \mathcal{X}$, then $\mathcal{H}(t) := 0$ and $|t| := 0$; (for notational convenience)
- ► if $t \in \mathcal{F}_0$, then $\mathcal{H}(t) := 1$ and $|t| := 1$;
- if $t = f(t_1, \ldots, t_n)$, then $\mathcal{H}(t) := 1 + \max\{\mathcal{H}(t_1), \ldots, \mathcal{H}(t_n)\}\)$ and $|t| := 1 + |t_1| + \cdots + |t_n|.$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q @ - 8/140

Subterms / subtrees

Definition: Subtree

Let $t,u\in\mathcal{T}(\mathcal{F},\mathcal{X})$ and p a position. Then $t_{|p}:\mathit{Pos}_p\to\mathcal{T}(\mathcal{F},\mathcal{X})$ is the ranked tree defined by

◆ロメ ◆ @ ▶ ◆ ミメ ◆ ミメン ミン ◆ 9 ◇ 9 /140

- \triangleright Pos_n := { q | pq \in Pos };
- \blacktriangleright t_{|p}(q) := t(pq).

Moreover, $t[u]_p$ is the tree obtained by replacing $t_{|p}$ by u in t.

 $t \geq t'$ (resp. $t \rhd t'$) denotes that t' is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution

► (Ground) substitution σ : mapping from $\mathcal X$ to $\mathcal T(\mathcal F,\mathcal X)$, resp., $\mathcal T(\mathcal F)$

10 → 1日 → 1日 → 1日 → 1日 → 2000 10/140

- Notation: $\sigma := \{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$, with $\sigma(x) := x$ for all $x \in \mathcal{X} \setminus \{x_1, \ldots, x_n\}$
- ► Extension to terms: for all $f \in \mathcal{F}_m$ and $t'_1, \ldots, t'_m \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ $\sigma(f(t'_1, ..., t'_m)) = f(\sigma(t'_1), ..., \sigma(t'_m))$
- Notation: $t\sigma$ for $\sigma(t)$

Substitutions and Context

Definition: Substitution

- ► (Ground) substitution σ : mapping from $\mathcal X$ to $\mathcal T(\mathcal F,\mathcal X)$, resp., $\mathcal T(\mathcal F)$
- ► Notation: $\sigma := \{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$, with $\sigma(x) := x$ for all $x \in \mathcal{X} \setminus \{x_1, \ldots, x_n\}$
- ► Extension to terms: for all $f \in \mathcal{F}_m$ and $t'_1, \ldots, t'_m \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ $\sigma(f(t'_1, ..., t'_m)) = f(\sigma(t'_1), ..., \sigma(t'_m))$
- Notation: $t\sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ with variables x_1, \ldots, x_n . We note $C[t_1, ..., t_n] := C\{x_1 \leftarrow t_1, ..., x_n \leftarrow t_n\}.$

 $\mathcal{C}^n(\mathcal{F})$ denotes the contexts with n variables and $\mathcal{C}(\mathcal{F}):=\mathcal{C}^1(\mathcal{F}).$ Let $C\in\mathcal{C}(\mathcal{F}).$ We note $C^0:=x_1$ and $C^{n+1}=C^n[C]$ for $n\geq 0.$

Tree automata

Basic idea: Extension of finite automata from words to trees Direct extension of automata theory when words seen as unary terms:

abc $\widehat{=} a(b(c(\$)))$

Finite automaton: labels every prefix of a word with a state. Tree automaton: labels every position/subtree of a tree with a state. Two variants: bottom-up vs top-down labelling

Tree automata

Basic idea: Extension of finite automata from words to trees Direct extension of automata theory when words seen as unary terms:

abc $\widehat{=}$ a(b(c(\\$)))

Finite automaton: labels every prefix of a word with a state. Tree automaton: labels every position/subtree of a tree with a state. Two variants: bottom-up vs top-down labelling

Basic results (preview)

- Non-deterministic bottom-up and top-down are equally powerful
- \triangleright Deterministic bottom-up equally powerful
- Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $A = \langle Q, F, G, \Delta \rangle$, where:

- \triangleright Q is a finite set of *states*:
- \triangleright $\mathcal F$ a finite ranked alphabet;
- ► $G \subseteq Q$ are the final states:
- \triangleright \wedge is a finite set of rules of the form

$$
f(q_1,\ldots,q_n)\to q
$$

10 → 1日 → 1 日 → 1 日 → 1 팀 → 9 Q ① 12/140

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in \mathcal{Q}$.

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $A = \langle Q, F, G, \Delta \rangle$, where:

- \triangleright Q is a finite set of *states*:
- \triangleright $\mathcal F$ a finite ranked alphabet;
- ► $G \subseteq Q$ are the final states;
- \triangleright \wedge is a finite set of rules of the form

$$
f(q_1,\ldots,q_n)\to q
$$

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in \mathcal{Q}$.

Example: $Q := \{q_0, q_1, q_f\}, \, \mathcal{F} = \{f(2), g(1), a\}, \, G := \{q_f\}$, and rules $a \rightarrow q_0$ $g(q_0) \rightarrow q_1$ $g(q_1) \rightarrow q_1$ $f(q_1, q_1) \rightarrow q_f$

Move relation and Recognized language

 $\mathcal{A} = \langle \mathcal{Q}, \mathcal{F}, \mathcal{G}, \Delta \rangle$ Move relation Let $t, t' \in \mathcal{T}(\mathcal{F}, \mathcal{Q})$. We write $t \to_{\mathcal{A}} t'$ if the following are satisfied: $t = C[f(q_1, \ldots, q_n)]$ for some context C; $\mathfrak{r}^{\prime}=\mathcal{C}[q]$ for some rule $f(q_{1},\ldots,q_{n})\rightarrow q$ of $\mathcal{A}.$

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow^*_\mathcal{A}$ for the transitive and reflexive closure of $\rightarrow_\mathcal{A}.$

Move relation and Recognized language

 $\mathcal{A} = \langle \mathcal{Q}, \mathcal{F}, \mathcal{G}, \Delta \rangle$ Move relation Let $t, t' \in \mathcal{T}(\mathcal{F}, \mathcal{Q})$. We write $t \to_{\mathcal{A}} t'$ if the following are satisfied: $t = C[f(q_1, \ldots, q_n)]$ for some context C; $\mathfrak{r}^{\prime}=\mathcal{C}[q]$ for some rule $f(q_{1},\ldots,q_{n})\rightarrow q$ of $\mathcal{A}.$

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow^*_\mathcal{A}$ for the transitive and reflexive closure of $\rightarrow_\mathcal{A}.$

Recognized Language

- ► A tree t is *accepted* by $\mathcal A$ if $t \to_{\mathcal A}^* q$ for some $q \in \mathcal G$.
	- $\mathcal{L}(\mathcal{A})$ denotes the set of trees accepted by \mathcal{A} .
	- L is recognizable if $L = \mathcal{L}(\mathcal{A})$ for some NFTA \mathcal{A} .

NFTA with ε -moves

Definition:

An ε -NFTA is an NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where Δ can additionally contain rules of the form $q \to q'$, with $q, q' \in Q$.

Semantics: allow to re-label a position from q to q' : $C[q] \rightarrow_{\mathcal{A}} C[q']$.

Equivalence of ε -NFTA

For every ε -NFTA $\mathcal A$ there exists an equivalent NFTA $\mathcal A'$.

Proof (sketch): construct the rules of A' by a saturation procedure. Initialize $\Delta' = \Delta$ and apply:

$$
\frac{f(q_1,\ldots,q_n)\to q\in\Delta'\quad q\to q'\in\Delta}{f(q_1,\ldots,q_n)\to q'\in\Delta'}
$$

Deterministic, complete, and reduced **NFTA**

An NFTA is *deterministic* if no two rules have the same left-hand side. An NFTA is *complete* if for every $f \in \mathcal{F}_n$ and $q_1, \ldots, q_n \in \mathcal{Q}$, there exists at least one rule $f(q_1, \ldots, q_n) \to q \in \Delta$.

10 → 1日 → 1 리 → 1 리 → 리 코 → 이익 → 15/140

A state q of ${\cal A}$ is *accessible* if there exists a tree t s.t. $t\rightarrow^*_{\cal A} q.$ $\mathcal A$ is said to be *reduced* if all its states are accessible.

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $A = \langle Q, \mathcal{F}, I, \Delta \rangle$, where Q, F are as in NFTA, $I \subseteq Q$ is a set of *initial states*, and Δ contains rules of the form

$$
q(f)\to (q_1,\ldots,q_n)
$$

16/140

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in \mathcal{Q}$.

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $A = \langle Q, \mathcal{F}, I, \Delta \rangle$, where Q, F are as in NFTA, $I \subseteq Q$ is a set of *initial states*, and Δ contains rules of the form

$$
q(f)\to (q_1,\ldots,q_n)
$$

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in \mathcal{Q}$.

Move relation

Let
$$
t, t' \in \mathcal{T}(\mathcal{F}, Q)
$$
. We write $t \to_{\mathcal{A}} t'$ if
\n $t = C[q(f(t_1,..., t_n))]$ for some context C ;
\n $t' = C[f(q_1(t_1),..., q_n(t_n))]$ for some rule $q(f) \to (q_1,..., q_n)$ of \mathcal{A} .

t is accepted by $\mathcal A$ if $q(t) \to_{\mathcal A}^* t$ for some $q \in I$.

From top-down to bottom-up

Theorem $(T-NFTA = NFTA)$

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ iff it is accepted by T-NFTA $\mathcal{A}' = \langle Q, \mathcal{F}, I, \Delta' \rangle$, with $I = G$ and

 $\Delta' := \set{q(f) \to (q_1, \ldots, q_n) \mid f(q_1, \ldots, q_n) \to q \in \Delta}$

 $(\textsf{and vice versa})\;\Delta:=\set{f(q_1,\ldots,q_n)\to q\mid q(f)\to(q_1,\ldots,q_n)\in \Delta'}$

1日 대한 대학 대학 대학 시 학교 수 있다.

From top-down to bottom-up

Theorem $(T-NFTA = NFTA)$

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA $A = \langle Q, F, G, \Delta \rangle$ iff it is accepted by T-NFTA $\mathcal{A}' = \langle Q, \mathcal{F}, I, \Delta' \rangle$, with $I = G$ and $\Delta' := \set{q(f) \to (q_1, \ldots, q_n) \mid f(q_1, \ldots, q_n) \to q \in \Delta}$ Proof: Let $t \in \mathcal{T}(\mathcal{F})$. We show $t \to_{\mathcal{A}}^* q$ iff $q(t) \to_{\mathcal{A}'}^* t$. ► Base: $t = a$ (for some $a \in \mathcal{F}_0$) $t =$ a $\to^\ast_\mathcal{A}$ $q \Longleftrightarrow$ a $\to_\Delta q \Longleftrightarrow$ $q(a) \to_{\Delta'}^\ast \varepsilon \Longleftrightarrow$ $q(a) \to^\ast_{\mathcal{A}'}$ a Induction: $t = f(t_1, \ldots, t_n)$, hypothesis holds for t_1, \ldots, t_n $f(t_1,\ldots,t_n)\rightarrow^*_{\mathcal{A}} q \Longleftrightarrow \exists q_1,\ldots q_n : f(q_1,\ldots,q_n)\rightarrow_{\Delta} q \wedge \forall i : t_i\rightarrow^*_{\mathcal{A}} q_i$ $\Longleftrightarrow \exists q_1,\ldots,q_n:q(f)\rightarrow_{\Delta'} (q_1,\ldots,q_n)\wedge \forall i:q_i(t_i)\rightarrow^*_{\mathcal{A}'} t_i$ $\Longleftrightarrow q(f(t_1,\ldots,t_n))\rightarrow_{\mathcal{A}'} f(q_1(t_1),\ldots,q_n(t_n))\rightarrow_{\mathcal{A}'}^* f(t_1,\ldots,t_n)$

Run (Computation tree)

 $\mathcal{A} = \langle Q, \mathcal{F}, I, \Delta \rangle$

Definition: (Run)

Let $t: \mathit{Pos} \to \mathcal{F}$ a ground tree. A run of $\mathcal A$ on t is a labelling $t': \mathit{Pos} \to \mathcal Q$ compatible with ∆, i.e.:

► for all $p \in Pos$, if $t(p) = f \in \mathcal{F}_n$, $t'(p) = q$, and $t'(pj) = q_j$ for all $pi \in Pos \cap pN$, then $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$

18/140

Run (Computation tree)

 $\mathcal{A} = \langle Q, \mathcal{F}, I, \Delta \rangle$

Definition: (Run)

Let $t: \mathit{Pos} \to \mathcal{F}$ a ground tree. A run of $\mathcal A$ on t is a labelling $t': \mathit{Pos} \to \mathcal Q$ compatible with ∆, i.e.:

► for all $p \in Pos$, if $t(p) = f \in \mathcal{F}_n$, $t'(p) = q$, and $t'(pj) = q_j$ for all $pj \in Pos \cap pN$, then $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$

Recognized Language

- A run t' is initialized (or accepting) if $t'(\varepsilon) \in I$.
	- A tree t is accepted by A if there exists an initialized run of A on t.

As usual, a DFTA has at most one run per tree. A DCFTA as exactly one run per tree.

► Notation:
$$
A_q = \langle Q, \mathcal{F}, \{q\}, \Delta \rangle
$$
 and $L_q(\mathcal{A}) = L(\mathcal{A}_q)$, so $L(\mathcal{A}) = \bigcup_{q \in I} L_q(\mathcal{A})$.

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}'=\langle 2^Q,\mathcal{F},G',\Delta'\rangle$ also recognizes L:

$$
\;\blacktriangleright\; G' = \{\, S \subseteq Q \mid S \cap G \neq \varnothing \,\}
$$

► for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \to S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$

Proof: For $t \in \mathcal{T}(\mathcal{F})$, show $t \to_{\mathcal{A}'}^* \{ q \mid t \to_{\mathcal{A}}^* q \}$, by structural induction.

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}'=\langle 2^Q,\mathcal{F},G',\Delta'\rangle$ also recognizes L:

$$
\;\blacktriangleright\; G' = \{\, S \subseteq Q \mid S \cap G \neq \varnothing \,\}
$$

► for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \to S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \to q \in \Delta \}$

Proof: For $t \in \mathcal{T}(\mathcal{F})$, show $t \to_{\mathcal{A}'}^* \{ q \mid t \to_{\mathcal{A}}^* q \}$, by structural induction.

DFTA with accessible states

In practice, the construction of A' can be restricted to accessible states: Start with transitions $a \rightarrow S$, then saturate.

10 → 1日 → 1 로 → 1 로 → 1 로 → 9 Q → 19/140

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $A = \langle Q, F, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}'=\langle 2^Q,\mathcal{F},G',\Delta'\rangle$ also recognizes L:

$$
\;\blacktriangleright\; G' = \{\, S \subseteq Q \mid S \cap G \neq \varnothing \,\}
$$

► for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \to S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$

Proof: For $t \in \mathcal{T}(\mathcal{F})$, show $t \to_{\mathcal{A}'}^* \{ q \mid t \to_{\mathcal{A}}^* q \}$, by structural induction.

DFTA with accessible states

In practice, the construction of A' can be restricted to accessible states: Start with transitions $a \rightarrow S$, then saturate.

Deterministic top-down are less powerful

E.g., $L = \{f(a, b), f(b, a)\}\)$ can be recognized by DFTA but not by T-DFTA.

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all $t \in L$ with $\mathcal{H}(t) > k$, there exist contexts $C, D \in \mathcal{T}(\mathcal{F}, \{x\})$ and $u \in \mathcal{T}(\mathcal{F})$ satisfying:

4 ロ → 4 @ ▶ 4 建 → 4 建 → 20 원 → 20/140

- \triangleright D is non-trivial (i.e., not just a variable);
- \blacktriangleright t = C[D[u]];
- ► for all $n \geq 0$, we have $C[Dⁿ[u]] \in L$.

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists k such that for all $t \in L$ with $\mathcal{H}(t) > k$, there exist contexts $C, D \in \mathcal{T}(\mathcal{F}, \{x\})$ and $u \in \mathcal{T}(\mathcal{F})$ satisfying:

- \triangleright D is non-trivial (i.e., not just a variable);
- \blacktriangleright t = C[D[u]];
- ► for all $n \geq 0$, we have $C[Dⁿ[u]] \in L$.

Proof: Let k be the number of states of an NFTA A recognizing L . In an accepting run on a tree $t\in\mathsf{L},$ there exist two positions p,pp' $(\mathsf{p}'\neq\mathsf{\varepsilon})$ labelled by the same state q.

Let
$$
C = t[x]_p
$$
, $D = t_{|p}[x]_{p'}$, and $u = t_{|pp'}$, thus $t = C[D[u]]$.

The accepting run on t entails:

 $u \rightarrow^*_{\mathcal{A}} q$, $D[q] \rightarrow^*_{\mathcal{A}} q$, and $C[q] \rightarrow^*_{\mathcal{A}} q$, for some final state q_f .

Therefore, $D^{n}[q]\rightarrow_{\mathcal{A}}^{*}q$ for all $n\geq0$ (by induction, where $D^{0}[q]:=q)$ and $C[Dⁿ[u]] \rightarrow^*_{\mathcal{A}} C[Dⁿ[q]] \rightarrow^*_{\mathcal{A}} C[q] \rightarrow^*_{\mathcal{A}} q_{n}$
A pumping lemma for tree languages

Mostly used in the form:

Lemma

If for all k . there exists $t \in L$ with $\mathcal{H}(t) > k$, for all contexts $C, D \in \mathcal{T}(\mathcal{F}, \{x\})$ and $u \in \mathcal{T}(\mathcal{F})$ such that $t = C[D[u]]$ and D is non-trivial, there exists $n \geq 0$: $C[Dⁿ[u]] \notin L$, then L is not recognizable.

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q @ - 21/140

Illustration of pumping lemma

Let $L=\{\,f(\mathrm{g}^{i}(\mathsf{a}),\mathrm{g}^{i}(\mathsf{a}))\mid i\geq 0\,\}$ for $\mathcal{F}=\{f(2),g(1),\mathrm{a}\}.$ Given k, let $t = f(g^k(a), g^k(a))$.

Pumping D creates trees outside $L \Rightarrow L$ not recognizable.

Closure properties

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 23 → 23/140

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Closure properties

4 ロ → 4 @ → 4 할 → 4 할 → 1할 → 9 Q → 23/140

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states) Let $\langle Q, \mathcal{F}, G, \Delta \rangle$ be a DCFTA recognizing L. Then $\langle Q, \mathcal{F}, Q \setminus G, \Delta \rangle$ recognizes $\mathcal{T}(\mathcal{F}) \setminus L$.

Proof hint: uniqueness of the run on the input tree.

Closure properties

4 ロ → 4 @ → 4 할 → 4 할 → 1할 → 9 Q → 23/140

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let $\langle Q, \mathcal{F}, G, \Delta \rangle$ be a DCFTA recognizing L. Then $\langle Q, \mathcal{F}, Q \setminus G, \Delta \rangle$ recognizes $T(\mathcal{F}) \setminus L$.

Proof hint: uniqueness of the run on the input tree.

Union (juxtapose)

Let $\langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i , for $i = 1, 2$. Then $\langle Q_1 \uplus Q_2, \mathcal{F}, G_1 \cup G_2, \Delta_1 \cup \Delta_2 \rangle$ recognizes $L_1 \cup L_2$.

Cross-product construction

Direct intersection

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i , for $i = 1, 2$. Then $A = \langle Q_1 \times Q_2, \mathcal{F}, G_1 \times G_2, \Delta \rangle$ recognizes $L_1 \cap L_2$, where

$$
\frac{f(q_1,\ldots,q_n)\to q\in\Delta_1 \quad f(q'_1,\ldots,q'_n)\to q'\in\Delta_2}{f(\langle q_1,q'_1\rangle,\ldots,\langle q_n,q'_n\rangle)\to \langle q,q'\rangle\in\Delta}
$$

4 ロ → 4 @ → 4 할 → 4 할 → 1할 → 9 Q O + 24/140

Cross-product construction

Direct intersection

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i , for $i = 1, 2$. Then $A = \langle Q_1 \times Q_2, F, G_1 \times G_2, \Delta \rangle$ recognizes $L_1 \cap L_2$, where

$$
\frac{f(q_1,\ldots,q_n)\to q\in\Delta_1 \quad f(q'_1,\ldots,q'_n)\to q'\in\Delta_2}{f(\langle q_1,q'_1\rangle,\ldots,\langle q_n,q'_n\rangle)\to \langle q,q'\rangle\in\Delta}
$$

Remarks:

- If A_1, A_2 are D(C)FTA, then so is A.
- ► If A_1, A_2 are complete, replace $G_1 \times G_2$ with $(G_1 \times Q_2) \cup (Q_1 \times G_2)$ to recognize $L_1 \cup L_2$.

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ 그럴 → 9 Q @ - 24/140

Single tree

Singleton Language

Given a tree t : $Pos \rightarrow F$, the language $L = \{t\}$ is recognized by $\mathcal{A}_t = \langle Q, \mathcal{F}, I, \Delta \rangle$ where:

- \triangleright Q = Pos
- \blacktriangleright $I = \{\varepsilon\}$
- $\triangleright \Delta = \{f(p1,\ldots, pn) \rightarrow p \mid f = t(p) \in \mathcal{F}_n\}$

Single tree

4 ロ → 4 @ ▶ 4 建 → 4 建 → 25 → 25 → 25 / 140

Singleton Language

Given a tree t : $Pos \rightarrow \mathcal{F}$, the language $L = \{t\}$ is recognized by $\mathcal{A}_t = \langle Q, \mathcal{F}, I, \Delta \rangle$ where: \triangleright Q = Pos \blacktriangleright $I = \{\varepsilon\}$ $\triangleright \Delta = \{f(p1,\ldots, pn) \rightarrow p \mid f = t(p) \in \mathcal{F}_n\}$

Remark: A_t is deterministic.

Proof: Show $t' \rightarrow^*_{\mathcal{A}_t} p$ iff $t' = t_{|p|}$

Tree homomorphism

4 ロ → 4 @ → 4 할 → 4 할 → 26 원 → 26/140

Definition

Let $\mathcal{X}_n := \{x_1, \ldots, x_n\}$ and $\mathcal{F}, \mathcal{F}'$ ranked alphabets. A tree homomorphism is a mapping $h:\mathcal{F}\rightarrow \mathcal{T}(\mathcal{F}',\mathcal{X}),$ with $h(f) \in \mathcal{T}(\mathcal{F}, \mathcal{X}_n)$ if $f \in \mathcal{F}_n$.

Extension of h to trees $(T(\mathcal{F}) \to T(\mathcal{F}'))$:

$$
\blacktriangleright h(f(t_1,\ldots,t_n))=h(f)\{x_1\leftarrow h(t_1),\ldots,x_n\leftarrow h(t_n)\}
$$

Intuition:

- \blacktriangleright h(f) "explodes" f-positions into trees
- reorders/copies/deletes subtrees.

Examples

Example

$$
\mathcal{F} = \{f(2), g(1), a\}, \ \mathcal{F}' = \{f'(1), g'(2), c, d\} \\
= h(f) = f'(g'(x_2, d)), \ h(g) = g'(x_1, c), \ h(a) = g'(c, d)
$$

(ロト (日) (ミ) (ミ) (ミ) (ミ) のQ (27/140)

Examples

Example

$$
\mathcal{F} = \{f(2), g(1), a\}, \ \mathcal{F}' = \{f'(1), g'(2), c, d\} \\
= h(f) = f'(g'(x_2, d)), \ h(g) = g'(x_1, c), \ h(a) = g'(c, d)
$$

Example (ternary to binary tree)

$$
\vdash \mathcal{F} = \{f(3), a, b\}, \ \mathcal{F}' = \{g(2), a, b\}
$$

$$
h_{32}(f) = g(x_1, g(x_2, x_3)), h_{32}(a) = a, h_{32}(b) = b
$$

 $27/140$

÷.

Properties of homomorphisms

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q → 28/140

A homomorphism h is

- Iinear if $h(f)$ linear for all f;
- ▶ non-erasing if $\mathcal{H}(h(f)) > 0$ for all f;
- flat if $\mathcal{H}(h(f)) = 1$ for all f;
- ► complete if $f \in \mathcal{F}_n$ implies that $h(f)$ contains all of \mathcal{X}_n ;
- permuting if h is complete, linear, and flat;
- alphabetic if $h(f)$ has the form $g(x_1, \ldots, x_n)$ for all f.

Example: h_{32} is linear, non-erasing, and complete.

Properties of homomorphisms

A homomorphism h is

- Iinear if $h(f)$ linear for all f;
- ▶ non-erasing if $\mathcal{H}(h(f)) > 0$ for all f;
- If flat if $\mathcal{H}(h(f)) = 1$ for all f;
- ► complete if $f \in \mathcal{F}_n$ implies that $h(f)$ contains all of \mathcal{X}_n ;
- permuting if h is complete, linear, and flat;
- alphabetic if $h(f)$ has the form $g(x_1, \ldots, x_n)$ for all f.

Example: h_{32} is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

- Example: $h(f) = f'(x_1, x_1)$, $h(g) = g(x_1)$, $h(a) = a$
- ► $L = \{ f(g^{i}(a)) \mid i \ge 0 \}$ (recognizable)
- $h(h) = \{ f'(g^i(a), g^i(a)) \mid i \geq 0 \}$ (not recognizable)

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq \mathcal{T}(\mathcal{F})$ be recognizable and $h: \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq \mathcal{T}(\mathcal{F})$ be recognizable and $h: \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $\mathcal{F} = \{f(2), g(1), a\}, \mathcal{F}' = \{f'(1), g'(2), c, d\}$
- $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$
- \blacktriangleright $L = \{ f(g^{i}(a), g^{k}(a)) | i, k \geq 1 \}$
- $A = \langle {q_0, q_1, q_f}, \mathcal{F}, {q_f}, \Delta \rangle$ recognizes L with $\Delta := {\alpha : a \to q_0, \quad \beta : g(q_0) \to q_1, \quad \gamma : g(q_1) \to q_1, \quad \delta : f(q_1, q_1) \to q_f}$

4 ロ → 4 @ ▶ 4 建 → 4 建 → 20 원 → 20/140

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq \mathcal{T}(\mathcal{F})$ be recognizable and $h: \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $\mathcal{F} = \{f(2), g(1), a\}, \mathcal{F}' = \{f'(1), g'(2), c, d\}$
- $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$
- \blacktriangleright $L = \{ f(g^{i}(a), g^{k}(a)) | i, k \geq 1 \}$
- ► $A = \langle \{q_0, q_1, q_f\}, \mathcal{F}, \{q_f\}, \Delta \rangle$ recognizes L with $\Delta := {\alpha : a \to q_0, \quad \beta : g(q_0) \to q_1, \quad \gamma : g(q_1) \to q_1, \quad \delta : f(q_1, q_1) \to q_f}$

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq \mathcal{T}(\mathcal{F})$ be recognizable and $h: \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $\mathcal{F} = \{f(2), g(1), a\}, \mathcal{F}' = \{f'(1), g'(2), c, d\}$
- $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$
- \blacktriangleright $L = \{ f(g^{i}(a), g^{k}(a)) | i, k \geq 1 \}$
- $A = \langle \{q_0, q_1, q_f\}, \mathcal{F}, \{q_f\}, \Delta \rangle$ recognizes L with $\Delta := {\alpha : a \to q_0, \quad \beta : g(q_0) \to q_1, \quad \gamma : g(q_1) \to q_1, \quad \delta : f(q_1, q_1) \to q_f}$

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq \mathcal{T}(\mathcal{F})$ be recognizable and $h: \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

 $\mathcal{F} = \{f(2), g(1), a\}, \mathcal{F}' = \{f'(1), g'(2), c, d\}$

• $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$

$$
\blacktriangleright L = \{ f(g^{i}(a), g^{k}(a)) \mid i, k \geq 1 \}
$$

 \blacktriangleright $\mathcal{A} = \langle \{q_0, q_1, q_f \}, \mathcal{F}, \{q_f \}, \Delta \rangle$ recognizes L with $\Delta := {\alpha : a \to q_0, \quad \beta : g(q_0) \to q_1, \quad \gamma : g(q_1) \to q_1, \quad \delta : f(q_1, q_1) \to q_f}$

Given a reduced NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ for L, construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', G, \Delta' \rangle$ for $h(L)$.

\n- \n
$$
Q' := Q \cup \{ \langle r, p \rangle \mid r \in \Delta, \exists f \in \mathcal{F} : r = f(\ldots) \to \ldots, p \in \text{Pos}_{h(f)} \};
$$
\n
\n- \n $\Delta' = \bigcup_{r \in \Delta} \Delta'_r$ where for each transition $r : f(q_1, \ldots, q_n) \to q$ in Δ , the set Δ'_r contains, for all positions $p \in \text{Pos}_{h(f)}:$ \n
\n- \n $f'(\langle r, p1 \rangle, \ldots, \langle r, pk \rangle) \to \langle r, p \rangle$ if $h(f)(p) = f' \in \mathcal{F}'_k$ \n
\n- \n $q_i \to \langle r, p \rangle$ if $h(f)(p) = x_i$ \n
\n- \n $\langle r, \varepsilon \rangle \to q$ \n
\n

Given a reduced NFTA $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ for L, construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', G, \Delta' \rangle$ for $h(L)$.

\n- \n
$$
Q' := Q \cup \{ \langle r, p \rangle \mid r \in \Delta, \exists f \in \mathcal{F} : r = f(\ldots) \to \ldots, p \in \text{Pos}_{h(f)} \};
$$
\n
\n- \n $\Delta' = \bigcup_{r \in \Delta} \Delta'_r$ where for each transition $r : f(q_1, \ldots, q_n) \to q$ in Δ , the set Δ'_r contains, for all positions $p \in \text{Pos}_{h(f)}:$ \n
\n- \n $f'(\langle r, p1 \rangle, \ldots, \langle r, pk \rangle) \to \langle r, p \rangle$ if $h(f)(p) = f' \in \mathcal{F}'_k$ \n
\n- \n $q_i \to \langle r, p \rangle$ if $h(f)(p) = x_i$ \n
\n- \n $\langle r, \varepsilon \rangle \to q$ \n
\n

Given a reduced NFTA $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ for L, construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', G, \Delta' \rangle$ for $h(L)$.

\n- \n
$$
Q' := Q \cup \{ \langle r, p \rangle \mid r \in \Delta, \exists f \in \mathcal{F} : r = f(\ldots) \to \ldots, p \in \text{Pos}_{h(f)} \};
$$
\n
\n- \n $\Delta' = \bigcup_{r \in \Delta} \Delta'_r$ where for each transition $r : f(q_1, \ldots, q_n) \to q$ in Δ , the set Δ'_r contains, for all positions $p \in \text{Pos}_{h(f)}:$ \n
\n- \n $f'(\langle r, p1 \rangle, \ldots, \langle r, pk \rangle) \to \langle r, p \rangle$ if $h(f)(p) = f' \in \mathcal{F}'_k$ \n
\n- \n $q_i \to \langle r, p \rangle$ if $h(f)(p) = x_i$ \n
\n- \n $\langle r, \varepsilon \rangle \to q$ \n
\n

Given a reduced NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ for L, construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', G, \Delta' \rangle$ for $h(L)$.

\n- \n
$$
Q' := Q \cup \{ \langle r, p \rangle \mid r \in \Delta, \exists f \in \mathcal{F} : r = f(\ldots) \to \ldots, p \in \text{Pos}_{h(f)} \};
$$
\n
\n- \n $\Delta' = \bigcup_{r \in \Delta} \Delta'_r$ where for each transition $r : f(q_1, \ldots, q_n) \to q$ in Δ , the set Δ'_r contains, for all positions $p \in \text{Pos}_{h(f)}:$ \n
\n- \n $f'(\langle r, p1 \rangle, \ldots, \langle r, pk \rangle) \to \langle r, p \rangle$ if $h(f)(p) = f' \in \mathcal{F}'_k$ \n
\n- \n $q_i \to \langle r, p \rangle$ if $h(f)(p) = x_i$ \n
\n- \n $\langle r, \varepsilon \rangle \to q$ \n
\n

4日→ 4日→ 4号→ 4号→ - 팀 - 9909-31/140

\n- $$
h(L) \subseteq \mathcal{L}(\mathcal{A}')
$$
:
\n- For all $t \in \mathcal{T}(\mathcal{F})$, prove that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$,
\n

4日→ 4日→ 4号→ 4号→ - 팀 - 9909-31/140

\n- $$
h(L) \subseteq \mathcal{L}(\mathcal{A}')
$$
: For all $t \in \mathcal{T}(\mathcal{F})$, prove that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}}^* q$, by structural induction over t .
\n

◆ロト ◆ @ ト ◆ ミト ◆ ミト → ミー ◆ ⊙ Q (~ 31/140)

- \blacktriangleright $h(L) \subseteq \mathcal{L}(\mathcal{A}')$: For all $t \in \mathcal{T}(\mathcal{F})$, prove that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$, by structural induction over t.
- ► $h(L) \supseteq L(\mathcal{A}')$: For all $t' \in \mathcal{T}(\mathcal{F}'),$ prove that if $t' \to_{\mathcal{A}'}^* q \in Q$, then there exists $t \in \mathcal{T}(\mathcal{F}) \cap h^{-1}(t')$ with $t \to_{\mathcal{A}}^* q$,

To prove: A' accepts $h(L)$.

- \blacktriangleright $h(L) \subseteq \mathcal{L}(\mathcal{A}')$: For all $t \in \mathcal{T}(\mathcal{F})$, prove that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$, by structural induction over t.
- ► $h(L) \supseteq L(\mathcal{A}')$: For all $t' \in \mathcal{T}(\mathcal{F}'),$ prove that if $t' \to_{\mathcal{A}'}^* q \in Q$, then there exists $t \in \mathcal{T}(\mathcal{F}) \cap h^{-1}(t')$ with $t \to_{\mathcal{A}}^* q$, by induction on number of states (of Q) in the computation $t'\rightarrow^\ast_{\mathcal{A}'} q.$

◆ロト ◆ @ ト ◆ ミト ◆ ミト → ミー ◆ ⊙ Q (~ 31/140)

To prove: A' accepts $h(L)$.

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9 9 0 - 32/140

To prove: A' accepts $h(L)$.

 \blacktriangleright $h(L) \subseteq \mathcal{L}(\mathcal{A}')$: For all $t \in \mathcal{T}(\mathcal{F})$, show that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$, by structural induction over t.

◆ロト ◆ 御 ▶ ◆ 君 ▶ → 君 → → 司 → ① Q (2× 32/140)

To prove: A' accepts $h(L)$.

 \blacktriangleright $h(L) \subseteq \mathcal{L}(\mathcal{A}')$: For all $t \in \mathcal{T}(\mathcal{F})$, show that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$, by structural induction over t.

\n- Base case:
$$
t = a
$$
 (leaf) where $a \in \mathcal{F}_0$ (constant)
\n- $a \rightarrow_A^* q \iff a \rightarrow q \in \Delta$
\n- Then $h(a) \rightarrow_A^* q$ using rules in Δ'_r (single tree)
\n- Note: t_a is a ground term, rules $q_i \rightarrow \langle r, p \rangle$ not used
\n

To prove: A' accepts $h(L)$.

 \blacktriangleright $h(L) \subseteq \mathcal{L}(\mathcal{A}')$: For all $t \in \mathcal{T}(\mathcal{F})$, show that $t \to_{\mathcal{A}}^* q$ implies $h(t) \to_{\mathcal{A}'}^* q$, by structural induction over t.

\n- Base case:
$$
t = a
$$
 (leaf) where $a \in \mathcal{F}_0$ (constant)
\n- $a \rightarrow^*_{\mathcal{A}} q \iff a \rightarrow q \in \Delta$
\n- Then $h(a) \rightarrow^*_{\mathcal{A}'} q$ using rules in Δ'_r (single tree)
\n- Note: t_a is a ground term, rules $q_i \rightarrow \langle r, p \rangle$ not used
\n- Inductive case: $t = f(u_1, \ldots, u_n)$
\n

$$
t \rightarrow_A^* \underbrace{f(q_1, \ldots, q_n) \rightarrow q}_{r \in \Delta} \text{ and } u_i \rightarrow_A^* q_i \ (i = 1, \ldots, n)
$$

Then
$$
h(t) = h(f)\{x_1 \leftarrow h(u_1), \ldots, x_n \leftarrow h(u_n)\}
$$
and by induction hypothesis
$$
h(u_i) \rightarrow_A^* q_i
$$
, so
$$
h(t) \rightarrow_A^* h(f)(q_1, \ldots, q_n)
$$

To show:
$$
h(f)(q_1, \ldots, q_n) \rightarrow_A^* q
$$
 using rules in Δ'_f (single tree)

To prove: A' accepts $h(L)$.

 \blacktriangleright $\mathcal{L}(\mathcal{A}') \subseteq h(L)$: For all $t' \in \mathcal{T}(\mathcal{F}'),$ show that if $t' \to_{\mathcal{A}'}^* q \in Q$, then there exists $t \in \mathcal{T}(\mathcal{F})$ such that $t \to_{\mathcal{A}}^* q$ and $h(t) = t'$, by induction on number of states (of Q) in the runs of \mathcal{A}' (with ε -transitions removed) on t' corresponding to $t' \rightarrow^*_{\mathcal{A}'} q.$

◆ロト ◆ @ ト ◆ ミト ◆ ミト → ミー ◆ ⊙ Q (→ 33/140)

To prove: A' accepts $h(L)$.

- \blacktriangleright $\mathcal{L}(\mathcal{A}') \subseteq h(L)$: For all $t' \in \mathcal{T}(\mathcal{F}'),$ show that if $t' \to_{\mathcal{A}'}^* q \in Q$, then there exists $t \in \mathcal{T}(\mathcal{F})$ such that $t \to_{\mathcal{A}}^* q$ and $h(t) = t'$, by induction on number of states (of Q) in the runs of \mathcal{A}' (with ε -transitions removed) on t' corresponding to $t' \rightarrow^*_{\mathcal{A}'} q.$
	- ► Base case: $t' \rightarrow_{\mathcal{A}'}^* q$, with no intermediate state from Q Since Δ'_{r} are disjoint, only rules from Δ'_{r} for a single r are used. (no variable in t' – rules $q_i \rightarrow \langle r, p \rangle$ not used) Let $r = f(q_1, \ldots, q_n) \rightarrow q$. Then $t' = h(f)$ (single tree) and we construct $t = f(u_1, \ldots, u_n)$ where $u_i \rightarrow_A^* q_i$ (why is it possible ?).

33/140 → 33/140

To prove: A' accepts $h(L)$.

 \blacktriangleright $\mathcal{L}(\mathcal{A}') \subseteq h(L)$: For all $t' \in \mathcal{T}(\mathcal{F}'),$ show that if $t' \to_{\mathcal{A}'}^* q \in Q$, then there exists $t \in \mathcal{T}(\mathcal{F})$ such that $t \to_{\mathcal{A}}^* q$ and $h(t) = t'$, by induction on number of states (of Q) in the runs of \mathcal{A}' (with ε -transitions removed) on t' corresponding to $t' \rightarrow^*_{\mathcal{A}'} q.$

► Inductive case:
$$
t' \rightarrow^*_{\mathcal{A}'} v\{x_1 \leftarrow q_1, ..., x_n \leftarrow q_n\}
$$

\n $\rightarrow^*_{\mathcal{A}'} v\{x_1 \leftarrow \langle r_1, p_1 \rangle, ..., x_n \leftarrow \langle r_n, p_n \rangle\} \rightarrow^*_{\mathcal{A}'} q$
\nno intermediate state from Q

where v is a linear term in $\mathcal{T}(\mathcal{F}',\mathcal{X})$

Hence $t' = v\{x_1 \leftarrow u'_1, \ldots, x_n \leftarrow u'_n\}$ where $u'_i \rightarrow^*_{A'} q_i$ $(i = 1, \ldots, n)$ (why is it possible ?)

Also $r_1 = r_2 = \cdots = r_n = r = f(q_1, \ldots, q_n) \rightarrow q$ and $v = h(f)$ (single tree)

33/140 By induction hyp., there exist $u_i \rightarrow_A^* q_i$ with $h(u_i) = u'_i$ and we Bymodellar [h](#page-71-0)yp., [t](#page-0-0)here exist $u_i \rightarrow_A q_i$ with $h(u_i) = u_i$ [and](#page-0-0) we
construct $t = f(u_1, \dots, u_n)$ and show t[ha](#page-69-0)t $h(t) = t'$ and $t \rightarrow_A^* q$.

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let $L\subseteq \mathcal{T}(\mathcal{F}')$ be recognizable and $h:\mathcal{F}\to \mathcal{F}'$ a tree homomorphism (not necessarily linear). Then $h^{-1}(L)$ is recognizable.

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q (+ 34/140)
Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let $L\subseteq \mathcal{T}(\mathcal{F}')$ be recognizable and $h:\mathcal{F}\to \mathcal{F}'$ a tree homomorphism (not necessarily linear). Then $h^{-1}(L)$ is recognizable.

Given an NFTA
$$
A' = \langle Q, \mathcal{F}', G, \Delta' \rangle
$$
 for L ,
construct NFTA $A = \langle Q \uplus \{\top\}, \mathcal{F}, G, \Delta \rangle$ for $h^{-1}(L)$.
For all $n \ge 0$ and $f \in \mathcal{F}_n$, and $p_1, ..., p_n \in Q$,
 \vdash add $f(\top,..., \top) \rightarrow \top$ to Δ ;
 \vdash if $h(f)\{x_1 \leftarrow p_1,..., x_n \leftarrow p_n\} \rightarrow^*_{A'} q$, add $f(q_1,..., q_n) \rightarrow q$ to Δ ,
with:
 $q_i = \begin{cases} p_i & \text{if } x_i \text{ appears in } h(f) \\ \top & \text{otherwise} \end{cases}$

Proof: Show $t \to^*_{\mathcal{A}} q$ iff $h(t) \to^*_{\mathcal{A}'} q$, for all $t \in \mathcal{T}(\mathcal{F})$.

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then $\mathit{fr}(t) \in \mathcal{F}^*_0$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

◆ロト ◆ @ ト ◆ ミト ◆ ミト → ミー ◆ ⊙ Q (~ 35/140)

Example: $t = f(a, g(b, a), c)$, $fr(t) = abac$

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then $\mathit{fr}(t) \in \mathcal{F}^*_0$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example:
$$
t = f(a, g(b, a), c)
$$
, $fr(t) = abac$

Leaf languages

- Let L be a recognizable tree language. Then $fr(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA A with $L = fr(\mathcal{L}(\mathcal{A}))$.

Tree languages and context-free languages

Frontier

Let t be a ground tree. Then $\mathit{fr}(t) \in \mathcal{F}^*_0$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example:
$$
t = f(a, g(b, a), c)
$$
, $fr(t) = abac$

Leaf languages

- Let L be a recognizable tree language. Then $fr(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA A with $L = fr(\mathcal{L}(\mathcal{A}))$.

Proof (idea):

- \triangleright Given a T-NFTA recognizing L, construct a CFG from it.
- ► L is generated by a CFG using productions of the form $A \rightarrow BC \mid a$ only. Replace $A \rightarrow BC$ by $A \rightarrow A_2$ and $A_2 \rightarrow BC$, construct a T-NFTA from the result.

Regular Expressions

4 ロ → 4 @ → 4 로 → 4 로 → 2 로 → 9 Q (* 36/140)

Words (alphabet Σ)

- $\varnothing, \varepsilon, a$ $(a \in \Sigma)$
- union, concatenation, iteration (Kleene star)

Trees (ranked alphabet \mathcal{F})

- No empty tree
- n -ary symbols
- concatenation, iteration?

Regular Expressions

Words (alphabet Σ)

 $\varnothing, \varepsilon, a \ (a \in \Sigma)$

union, concatenation, iteration (Kleene star)

Trees (ranked alphabet \mathcal{F})

- No empty tree
- n -ary symbols
- concatenation, iteration?
	- \rightsquigarrow use placeholders

Let $\mathcal{K} = \{\Box_1, \Box_2, \dots\}$ be a set of placeholders (symbols of arity 0).

 $T(F, K)$: set of all terms over ranked alphabet $F \cup K$.

Placeholders

Placeholder substitution

- Substitution: $\{\Box \leftarrow L\}$ where L is a tree language
- Can replace different occurrences of \Box by different elements of L

Semantics

Based on semantics of $t\{\Box \leftarrow L\}$, by structural induction on $t \in \mathcal{T}(\mathcal{F},\mathcal{K})$:

 \triangleright t = a of arity 0: a{ $\Box \leftarrow L$ } = L if a = \Box (otherwise {a})

\n- $$
t = f
$$
 of arity $n > 0$:
\n- $f(t_1, \ldots, t_n) \{ \Box \leftarrow L \} = \{ f(s_1, \ldots, s_n) \mid s_i \in t_i \{ \Box \leftarrow L \}, 1 \leq i \leq n \}$
\n- $L_1 \{ \Box \leftarrow L \} = \{ t \{ \Box \leftarrow L \} \mid t \in L_1 \}$
\n

Abbreviation: $\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\} = \{\Box_1 \leftarrow L_1\} \circ \cdots \circ \{\Box_n \leftarrow L_n\}$ $(L_i \subset \mathcal{T}(\mathcal{F}))$

Concatenation - Iteration

38/140 38/140

Concatenation

$$
L_1 \oplus L_2 = \bigcup_{t \in L_1} t \{ \Box \leftarrow L_2 \}
$$

Concatenation - Iteration

Concatenation

$$
\mathit{L}_1 \cdot \square \, \mathit{L}_2 = \bigcup_{t \in \mathit{L}_1} \, t \{\square \leftarrow \mathit{L}_2\}
$$

 \wedge

$$
\begin{matrix} t_1 \\ t_2 \\ t_3 \end{matrix} \xrightarrow{\qquad \qquad } t_1 \in \mathcal{L}_1 \\ t_2, t_2' \in \mathcal{L}_2
$$

Iteration

$$
L^{*_\Box}=\bigcup\nolimits_{k\in\mathbb{N}}L^k\text{ where }L^0=\{\Box\}\text{ and }L^{k+1}=L^k\cdot\Box\,(L\cup L^0)
$$

 $*$ for all L. Kleene plus: L^{+} = $\bigcup_{k>0} L^k$. Note: $\square \in L^{*_{\square}}$ for all L. For $L = \{f(\Box, \Box, a)\}$: \Box

Regular Expressions

Syntax

A regular expression is obtained by the following grammar:

$E := \varnothing \mid f \mid E_1 + E_2 \mid E_1 \cdot \Box E_2 \mid E^{*\Box}$

 $f \in \mathcal{F}, \Box \in \mathcal{K}$

Semantics

- \blacktriangleright $\lbrack \varnothing \rbrack = \varnothing$
- \blacktriangleright $\llbracket f \rrbracket = \{ f(\Box_1, \ldots, \Box_n) \}$ $(f \in \mathcal{F}_n)$
- \blacktriangleright $\llbracket E_1 + E_2 \rrbracket = \llbracket E_1 \rrbracket \cup \llbracket E_2 \rrbracket$
- \blacktriangleright $\mathbb{E}[E_1 \cdot \Box E_2] = \mathbb{E}[E_1] \cdot \Box \mathbb{E}[E_2]$
- \blacktriangleright $[$ E^*]= $[$ E] $*$ ^o

A tree language L is regular if $L = \llbracket E \rrbracket$ for some regular expression E.

Shortcut: $f(E_1,\ldots,E_n)=f\cdot\Box_1E_1\ldots\cdot\Box_iE_i\ldots\cdot\Box_nE_n$

(ロ) (個) (ミ) (ミ) (ミ) (ミ) のQC (40/140)

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ - 할 → 9 Q ① - 40/140

$$
E = f(f(\Box, \Box), f(\Box, \Box))^* \Box a
$$
\n
$$
\begin{pmatrix}\n f \\
f \\
\wedge \\
\Box\n \Box\n \end{pmatrix}^{*_{\Box}} \neg \Box a
$$

All branches are of even length

(ロ) (個) (ミ) (ミ) (ミ) ラ 9 (0 40/140

Kleene Theorem for Tree Languages

Theorem ($RegExp \equiv NFTA$)

L is regular iff L is recognizable by an NFTA.

Proof (\Rightarrow)

By induction over the structure of regular expressions:

- ► Base case: \emptyset and $\{f(\Box_1,\ldots,\Box_n)\}\$ are finite languages, hence recognizable.
- ► Inductive case: given $\mathcal{A}_i = \langle Q_i, \mathcal{F} \cup \mathcal{K}, G_i, \Delta_i \rangle$ NFTAs recognizing $L(A_i) = [E_i]$ $(i = 1, 2)$,
	- \blacktriangleright $[[E_1 + E_2]]$ is recognized by $\langle Q_1 \uplus Q_2, \mathcal{F} \cup \mathcal{K}, G_1 \cup G_2, \Delta_1 \cup \Delta_2 \rangle$
	- ► $[[E_1 \square E_2]]$ is recognized by $\langle Q_1 \boxplus Q_2, \mathcal{F} \cup \mathcal{K}, G_1, \Delta \rangle$ where $\Delta = \Delta_1 \setminus \{ \square \to q \mid q \in Q_1 \} \cup \Delta_2 \cup \{ f(q_1, \ldots, q_n) \to q \mid$ $\exists q' \in \mathsf{G}_2 : f(q_1, \ldots, q_n) \rightarrow q' \in \Delta_2$ and $\square \rightarrow q \in \Delta_1$
	- \blacktriangleright $\llbracket E_1^{+\Box} \rrbracket$ is recognized by $\langle Q_1, {\cal F} \cup {\cal K}, G_1, \Delta \rangle$ where $\Delta = \Delta_1 \cup \{f(q_1,\ldots,q_n) \to q \mid$ $\exists q' \in \hat G_1: f(q_1,\ldots,q_n) \to q' \in \Delta_1$ and $\Box \to q \in \Delta_1\}$

Kleene Theorem for Tree Languages

Theorem ($RegExp \equiv NFTA$)

L is regular iff L is recognizable by an NFTA.

Proof (\Leftarrow)

Given NFTA $A = \langle Q, F, G, \Delta \rangle$, we construct a regular expression E such that $[[E]] = L(A)$.

- ► Let $\mathcal{K} = {\square_q | q \in Q}$ be a set of placeholders.
- ► Let $\mathcal{A}' = \langle Q, \mathcal{F} \cup \mathcal{K}, \mathsf{G}, \Delta' \rangle$ where $\Delta' = \Delta \cup \{\Box_q \to q \mid q \in Q\}.$ Then $L(\mathcal{A}') \cap T(\mathcal{F}) = L(\mathcal{A})$.
- ► For $q \in Q$ and $N, K \subseteq Q$, let $L(q, N, K)$ be the set of all trees $t \in \mathcal{T}(\mathcal{F} \cup \{\Box_q \mid q \in K\})$ having a run r of \mathcal{A}' such that:
	- \blacktriangleright r(ε) = q
	- r(p) \in N for all positions $p \neq \varepsilon$ such that $t(p) \in \mathcal{F}$
	- ► (note: the leaves of t are labeled by $\mathcal{F}_0 \cup {\square_a | q \in K}$)

Kleene Theorem for Tree Languages

Proof (\Leftarrow) (cont'd)

Since $L(\mathcal{A}) = \bigcup_{q \in G} L(q, Q, \varnothing)$, showing that all sets $L(q, N, K)$ are regular is sufficient. By induction on $|N|$:

- ► Base case: $N = \emptyset$, then all languages $L(q, \emptyset, K)$ are finite (trees of height at most 1), hence regular.
- ► Inductive case: let $N = N_0 \cup \{q_i\}$ $(q_i \notin N_0)$, Given a run r on $t \in L(q, N, K)$, decompose t into subtrees with:
	- (1) root labeled by q_i in r (by q in topmost subtree),
	- $(2a)$ internal nodes are either labeled by states of N_0 in r,
	- $(2b)$ or labeled labeled by q_i in r (and their t -symbol is replaced by \Box_{q_i}).

By (2) and induction hyp., we can construct a regular exp. for the subtree-components. We construct a reg. exp. for $L(q, N, K)$ using:

$$
L(q, N_0 \cup \{q_i\}, K) = L(q, N_0, K) +
$$

$$
L(q, N_0, K \cup \{\Box_{q_i}\}) \cdot \Box_{q_i} (L(q_i, N_0, K \cup \{\Box_{q_i}\}))^{*_{\Box_{q_i}}} \cdot \Box_{q_i} L(q_i, N_0, K)
$$

 $L(q, N_0 \cup \{q_i\}, K) = L(q, N_0, K) +$

◆ロト ◆ 御ト ◆ 君 ▶ ◆ 君 ▶ │ 君 │ ◆ 9 Q ◆ │ 44/140│

 $L(q, N_0 \cup \{q_i\}, K) = L(q, N_0, K) +$

$$
L(q, N_0 \cup \{q_i\}, K) = L(q, N_0, K) + \underbrace{L(q, N_0, K \cup \{\Box_{q_i}\})}_{1} \cdot \Box_{q_i} (\underbrace{L(q_i, N_0, K \cup \{\Box_{q_i}\})}_{2})^{*\Box_{q_i}} \cdot \Box_{q_i} \underbrace{L(q_i, N_0, K)}_{3}
$$

Congruences on trees

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ - 할 - 9 Q @ - 45/140 |

Definition: Congruence

Let \equiv be an equivalence relation on $T(F)$.

 $\blacktriangleright \equiv$ is called a *congruence* if for all $n \geq 0$ and $f \in \mathcal{F}_n$, $u_1 \equiv v_1, \ldots, u_n \equiv v_n$ we have $f(u_1,\ldots,u_n)\equiv f(v_1,\ldots,v_n)$

 $\triangleright \equiv$ saturates L if $u \equiv v$ implies $u \in L \iff v \in L$.

Congruences on trees

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ▶ - 할 - 9 Q @ - 45/140 |

Definition: Congruence

Let \equiv be an equivalence relation on $T(F)$.

 $\blacktriangleright \equiv$ is called a *congruence* if for all $n \geq 0$ and $f \in \mathcal{F}_n$, $u_1 \equiv v_1, \ldots, u_n \equiv v_n$ we have $f(u_1,\ldots,u_n)\equiv f(v_1,\ldots,v_n)$

 $\triangleright \equiv$ saturates L if $u \equiv v$ implies $u \in L \iff v \in L$.

For
$$
L \subseteq T(\mathcal{F})
$$
, write $u \equiv_L v$ if
\n $\forall C \in C(\mathcal{F}) : C[u] \in L \Leftrightarrow C[v] \in L$

Congruences on trees

Definition: Congruence

Let \equiv be an equivalence relation on $T(F)$.

$$
\triangleright \equiv \text{is called a congruence}
$$

if for all $n \ge 0$ and $f \in \mathcal{F}_n$, $u_1 \equiv v_1, \ldots, u_n \equiv v_n$ we have

$$
f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)
$$

 $\triangleright \equiv$ saturates L if $u \equiv v$ implies $u \in L \iff v \in L$.

For
$$
L \subseteq T(\mathcal{F})
$$
, write $u \equiv_L v$ if
\n $\forall C \in C(\mathcal{F}) : C[u] \in L \Leftrightarrow C[v] \in L$

Myhill-Nerode Theorem for trees

The following are equivalent:

- 1. $L \subseteq T(F)$ is recognizable.
- 2. L is saturated by some congruence of finite index.
- $3. \equiv$ is of finite index.

4日 ▶ 4日 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q ① 46/140

Application:

Consider $L = \{ f(g^{i}(a), g^{i}(a)) \mid i \ge 0 \}.$ For any pair $i \neq k$, consider $C = f(x, g^i(a))$. Then $C[g^i(a)] \in L$ but $C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a)$ Therefore \equiv _L is not of finite index, and L is not recognizable.

Kロメ K日 K K ミメ K ミド → ミー ◆ Q Q (* 16/140)

Application:

Consider $L = \{ f(g^{i}(a), g^{i}(a)) \mid i \ge 0 \}.$ For any pair $i \neq k$, consider $C = f(x, g^i(a))$. Then $C[g^i(a)] \in L$ but $C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a)$ Therefore \equiv _L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

► 1 \rightarrow 2: Let $\mathcal A$ be DCFTA and let $u \equiv v$ iff $u \rightarrow^*_{\mathcal A} q^*_{\mathcal A} \leftarrow v$. Then \equiv is of finite index and saturates L.

Application:

Consider $L = \{ f(g^{i}(a), g^{i}(a)) \mid i \ge 0 \}.$ For any pair $i \neq k$, consider $C = f(x, g^i(a))$. Then $C[g^i(a)] \in L$ but $C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a)$ Therefore \equiv , is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

- ► 1 \rightarrow 2: Let $\mathcal A$ be DCFTA and let $u \equiv v$ iff $u \rightarrow^*_{\mathcal A} q^*_{\mathcal A} \leftarrow v$. Then \equiv is of finite index and saturates L.
- ► 2 \rightarrow 3: Let \equiv be a saturating congruence, $u \equiv v$ implies $u \equiv_l v$ (prove $u \equiv v$ implies $C[u] \equiv C[v]$ for all C, by induction on height of position of x in C).

Kロメ K日 K K ミメ K ミド → ミー ◆ Q Q (* 16/140)

Application:

Consider $L = \{ f(g^{i}(a), g^{i}(a)) \mid i \ge 0 \}.$ For any pair $i \neq k$, consider $C = f(x, g^i(a))$. Then $C[g^i(a)] \in L$ but $C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a)$ Therefore \equiv ₁ is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

- ► 1 \rightarrow 2: Let $\mathcal A$ be DCFTA and let $u \equiv v$ iff $u \rightarrow^*_{\mathcal A} q^*_{\mathcal A} \leftarrow v$. Then \equiv is of finite index and saturates L.
- ► 2 \rightarrow 3: Let \equiv be a saturating congruence, $u \equiv v$ implies $u \equiv_l v$ (prove $u \equiv v$ implies $C[u] \equiv C[v]$ for all C, by induction on height of position of x in C).

▶ 3 → 1: Let
$$
A = \langle T(F)_{\neq} \subseteq_L, F, L_{\neq} \subseteq_L, \Delta \rangle
$$
, with Δ containing
 $f([u_1], \dots, [u_n]) \rightarrow [f(u_1, \dots, u_n)]$

for all $n \geq 0$, $f \in \mathcal{F}_n$, $u_1, \ldots, u_n \in \mathcal{T}(\mathcal{F})$, where $[u]$ is the \equiv_L -equivalence class of $u \in \mathcal{T}(\mathcal{F})$;

Application:

Consider $L = \{ f(g^{i}(a), g^{i}(a)) \mid i \ge 0 \}.$ For any pair $i \neq k$, consider $C = f(x, g^i(a))$. Then $C[g^i(a)] \in L$ but $C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a)$ Therefore \equiv _L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

- ► 1 \rightarrow 2: Let $\mathcal A$ be DCFTA and let $u \equiv v$ iff $u \rightarrow^*_{\mathcal A} q^*_{\mathcal A} \leftarrow v$. Then \equiv is of finite index and saturates L.
- ► 2 \rightarrow 3: Let \equiv be a saturating congruence, $u \equiv v$ implies $u \equiv_l v$ (prove $u \equiv v$ implies $C[u] \equiv C[v]$ for all C, by induction on height of position of x in C).

▶ 3 → 1: Let
$$
A = \langle T(F)_{\neq} \subseteq_L, F, L_{\neq} \subseteq_L, \Delta \rangle
$$
, with Δ containing $f([u_1], \dots, [u_n]) \rightarrow [f(u_1, \dots, u_n)]$

for all $n \geq 0$, $f \in \mathcal{F}_n$, $u_1, \ldots, u_n \in \mathcal{T}(\mathcal{F})$, where [u] is the \equiv ₁-equivalence class of $u \in \mathcal{T}(\mathcal{F})$;

Remark: This [ca](#page-99-0)n be shown to be the canonical [m](#page-101-0)[in](#page-96-0)[i](#page-100-0)[m](#page-101-0)[al DCFTA](#page-0-0). $\circ \circ \circ$ 46/140

Decision Problems (on words)

(*) A, B : nondeterministic automata

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q (* 47/140)

\blacktriangleright Emptiness

Given A, is $L(A) = \emptyset$?

 \blacktriangleright Universality

Given A, is $L(A) = \Sigma^*$?

- \blacktriangleright Language Inclusion Given A, B , is $L(A) \subseteq L(B)$?
- \blacktriangleright Language Equivalence Given A, B , is $L(A) = L(B)$?

Decision Problems (on words)

(*) A, B : nondeterministic automata

\blacktriangleright Emptiness

Given A, is $L(A) = \emptyset$?

NL-complete

\blacktriangleright Universality

Given A, is $L(A) = \Sigma^*$?

PSPACE-complete

 \blacktriangleright Language Inclusion Given A, B , is $L(A) \subseteq L(B)$?

- PSPACE-complete
- \blacktriangleright Language Equivalence Given A, B , is $L(A) = L(B)$? PSPACE-complete

Decision Problems (on trees)

(*) A, B : nondeterministic automata

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q (* 47/140)

\blacktriangleright Emptiness

Given A, is $L(A) = \emptyset$?

 \blacktriangleright Universality

Given A, is $L(A) = T(F)$?

- \blacktriangleright Language Inclusion Given A, B , is $L(A) \subseteq L(B)$?
- \blacktriangleright Language Equivalence Given A, B , is $L(A) = L(B)$?

Decision Problems (on trees)

(*) A, B : nondeterministic automata

\blacktriangleright Emptiness

Given A, is $L(A) = \emptyset$?

P-complete

\blacktriangleright Universality

Given A, is $L(A) = T(F)$?

EXPTIME-complete

- \blacktriangleright Language Inclusion Given A, B , is $L(A) \subseteq L(B)$?
- \blacktriangleright Language Equivalence Given A, B , is $L(A) = L(B)$?

EXPTIME-complete

EXPTIME-complete

Emptiness of NFTA

Emptiness is P-complete

- \triangleright in P: reachable states by (bottom-up) saturation algorithm
- ► P-hard: reduction from AND-OR graph reachability

AND-OR graph: $G = \langle V_A \uplus V_O, E \rangle$

We say that v_t is *reachable* from u in G if

- $u = v_t$, or
- \blacktriangleright $u\in V_A$, and v_t is reachable from v for all $v\in E(u)$, or
- \blacktriangleright $u\in V_O$, and v_t is reachable from v for some $v\in E(u)$

AND-OR graph reachability: given $\langle G, v_s, v_t \rangle$, is v_t reachable from v_s ? Reduction: T-NFTA $A = \langle V_A \cup V_O, \mathcal{F}, \{v_s\}, \Delta \rangle$ where Δ contains:

$$
\quad \blacktriangleright \ \ v_t(a) \to \varepsilon,
$$

- ► $u(f_n) \rightarrow (v_1, \ldots, v_n)$ for all $u \in V_A$ where $E(u) = \{v_1, \ldots, v_n\},\$
- ► $u(f_1) \rightarrow v$ for all $u \in V_O$, $v \in E(u)$.

Reminder: NFA universality

NFA universality is PSPACE-complete

- in (N)PSPACE: emptiness of subset construction
- ◮ PSPACE-hard: reduction from membership problem of PSpace TM

4 미 ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q Q + 49/140

Reminder: NFA universality

NFA universality is PSPACE-complete

- in (N)PSPACE: emptiness of subset construction
- PSPACE-hard: reduction from membership problem of PSpace TM

Execution of a TM on input word w :

$$
c_0 \vdash c_1 \vdash \cdots \vdash c_k
$$

where $c_i \in \Sigma^*$ with $\Sigma = \Gamma \cup (Q \times \Gamma)$ $c_0 = (q, w_0)w_1w_2 \ldots w_n$, accepts if $c_k \in (Q_{acc} \times \Gamma)\Gamma^*$.

The successor relation \vdash is determined by a function Next : $\Sigma^3 \to \Sigma$: $c_{i+1,j} = \text{Next}(c_{i,j-1}, c_{i,j}, c_{i,j+1})$ j

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q ① 49/140
Reminder: NFA universality

NFA universality is PSPACE-complete

- in (N)PSPACE: emptiness of subset construction
- PSPACE-hard: reduction from membership problem of PSpace TM

Given M with space bounded by $p(\cdot)$ and input word w, construct $\mathcal{A}_{\mathcal{M}}$ to accept (encoding) of accepting runs of M on w:

- \blacktriangleright $\mathcal{A}_{\mathcal{M}}$ has alphabet Σ
- \blacktriangleright $\mathcal{A}_\mathcal{M} = \mathcal{A}_{init} \cap \bigcap_{1 \leq i \leq p(\lvert w \rvert)} \mathcal{A}_i \cap \mathcal{A}_{final}$ (interesection of DFAs)
	- \blacktriangleright $L(A_{init})$: run starts with c_0
	- \blacktriangleright $L(\mathcal{A}_i)$: the *i*-th tape cell is correctly updated along the run
	- \blacktriangleright L(\mathcal{A}_{final}): run contains some $q \in Q_{acc}$

How to proceed deterministically?

How many states in A_{init} ? in A_i ? in A_{final} ?

$$
\blacktriangleright \ \mathcal{L}(\mathcal{A}_{\mathcal{M}}) \neq \varnothing \ \text{iff} \ \mathcal{M} \ \text{accepts} \ \text{w}.
$$

Let $\mathcal{A}=\overline{\mathcal{A}}_{init}\cup\bigcup_{1\leq i\leq p(|w|)}\overline{\mathcal{A}}_i\cup\overline{\mathcal{A}}_{final}$ Then $L(\mathcal{A}) \neq \Sigma^*$ iff $\mathcal M$ accepts w . [How many](#page-0-0) states in $\mathcal A$?

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 2 로 → 9 Q Q → 49/140

Decision Problems (on words)

(*) A, B : nondeterministic automata

Decision Problems (on trees)

(*) A, B : nondeterministic automata

► Emptiness

Given A, is $L(A) = \emptyset$?

\blacktriangleright Universality

Given A, is $L(A) = T(F)$?

\blacktriangleright Language Inclusion Given A, B , is $L(A) \subseteq L(B)$?

\blacktriangleright Language Equivalence Given A, B , is $L(A) = L(B)$?

 \blacktriangleright Intersection Emptiness Given NFTA A_1, \ldots, A_n , is $\bigcap_i L(A_i) = \varnothing$?

(even top-down or bottom-up DFTA)

P-complete

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete

EXPTIME-complete

Intersection problem

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 - 90 Q + 51/140

Theorem

The following problem is EXPTIME-complete: Given tree automata A_1, \ldots, A_n , is $\mathcal{L}(A_1) \cap \cdots \cap \mathcal{L}(A_n) \neq \varnothing$?

Intersection problem

Theorem

The following problem is EXPTIME-complete: Given tree automata A_1, \ldots, A_n , is $\mathcal{L}(\mathcal{A}_1) \cap \cdots \cap \mathcal{L}(\mathcal{A}_n) \neq \varnothing$?

Proof (sketch):

- in EXPTIME: compute reachable tuples of states in $A_1 \times \cdots \times A_n$.
- \triangleright Hardness: reduction from membership problem of alternating TM with polynomial space.

Runs of ATM are encoded as trees.

Construct a product of tree automata to recognize accepting runs of the ATM on input word:

- ightharpoonup the run starts with c_0 (\mathcal{A}_{init})
- ightharpoonup the i-th tape cell is correctly updated along all branches (A_i)
- ► all branches contain some $q \in Q_{acc} (\mathcal{A}_{final})$

Can we proceed (top-down/bottom-up) deterministically?

Path languages

Path languages

Let $t \in \mathcal{T}(\mathcal{F})$. The path language $\pi(t)$ is defined as follows:

• if
$$
t = a \in \mathcal{F}_0
$$
, then $\pi(t) = \{a\}$;

• if
$$
t = f(t_1, ..., t_n)
$$
, for $f \in \mathcal{F}_n$, then $\pi(t) = \{ \text{fiw} \mid w \in \pi(t_i) \}$.

KロメK部メKミメKミメ 및 990 52/140

We write $\pi(L) = \bigcup \{ \pi(t) | t \in L \}$ for $L \subseteq \mathcal{T}(\mathcal{F})$.

Example: $L = \{f(a, b), f(b, a)\}, \pi(L) = \{f1a, f2b, f1b, f2a\}.$

Path languages

Path languages

Let $t \in \mathcal{T}(\mathcal{F})$. The path language $\pi(t)$ is defined as follows:

• if
$$
t = a \in \mathcal{F}_0
$$
, then $\pi(t) = \{a\}$;

• if
$$
t = f(t_1, ..., t_n)
$$
, for $f \in \mathcal{F}_n$, then $\pi(t) = \{ \text{fiw} \mid w \in \pi(t_i) \}$.

We write $\pi(L) = \bigcup \{ \pi(t) | t \in L \}$ for $L \subseteq \mathcal{T}(\mathcal{F})$.

Example: $L = \{f(a, b), f(b, a)\}, \pi(L) = \{f1a, f2b, f1b, f2a\}.$

Path closure

Let $L \subseteq T(F)$ be a tree language.

- ► The *path closure* of L is $pc(L) = \{ t | \pi(t) \subseteq \pi(L) \} \supseteq L$.
- ► L is called *path-closed* if $L = pc(L)$.

Example: $pc(L) = \{f(a, a), f(a, b), f(b, a), f(b, b)\}\$, so L is not path-closed.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 그럴 ▶ 이익 ① 53/140

Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\blacktriangleright \pi(L)$ is a recognizable word language.
- \blacktriangleright pc(L) is a recognizable tree language.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @ - 53/140 |

Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\blacktriangleright \pi(L)$ is a recognizable word language.
- pc(L) is a recognizable tree language.

Proof: Let $A = \langle Q, F, G, \Delta \rangle$ be a reduced T-NFTA for L.

 \triangleright Construct a finite (word) automaton out of A. (Easy, but does require $\mathcal A$ to be reduced!)

Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\blacktriangleright \pi(L)$ is a recognizable word language.
- pc(L) is a recognizable tree language.

Proof: Let $A = \langle Q, F, G, \Delta \rangle$ be a reduced T-NFTA for L.

- \triangleright Construct a finite (word) automaton out of A. (Easy, but does require $\mathcal A$ to be reduced!)
- ► Construct ${\mathcal A}^{\sf pc} = \langle Q, {\mathcal F}, \mathit{G}, \Delta'\rangle$ for $\mathit{pc}(\mathit{L})$ as follows: for all $a \in \mathcal{F}_0$:

$$
q(a) \to_{\Delta} \varepsilon \quad \to \quad q(a) \to_{\Delta'} \varepsilon
$$

for all
$$
n \ge 1
$$
, $f \in \mathcal{F}_n$:
\n $q(f) \to_{\Delta} (q_{i,1}, \ldots, q_{i,n}) \to q(f) \to_{\Delta'} (q_{1,1}, \ldots, q_{n,n})$
\n $i = 1, \ldots, n$

Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\blacktriangleright \pi(L)$ is a recognizable word language.
- pc(L) is a recognizable tree language.

Proof: Let $A = \langle Q, F, G, \Delta \rangle$ be a reduced T-NFTA for L.

- \triangleright Construct a finite (word) automaton out of A. (Easy, but does require $\mathcal A$ to be reduced!)
- ► Construct ${\mathcal A}^{\sf pc} = \langle Q, {\mathcal F}, \mathit{G}, \Delta'\rangle$ for $\mathit{pc}(\mathit{L})$ as follows: for all $a \in \mathcal{F}_0$:

$$
q(a) \to_{\Delta} \varepsilon \quad \to \quad q(a) \to_{\Delta'} \varepsilon
$$

for all
$$
n \ge 1
$$
, $f \in \mathcal{F}_n$:
\n $q(f) \rightarrow_\Delta (q_{i,1}, \ldots, q_{i,n}) \rightarrow q(f) \rightarrow_{\Delta'} (q_{1,1}, \ldots, q_{n,n})$
\n $i = 1, \ldots, n$

Show $L_q(\mathcal{A}^{pc}) = pc(L_q(\mathcal{A}))$, i.e., $t \in L_q(\mathcal{A}^{pc}) \Leftrightarrow \pi(t) \subseteq \pi(L_q(\mathcal{A}))$ for all $q \in Q$, $t \in T(F)$ (by induction).

Corollary

It is decidable whether a recognizable tree language is path-closed.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @ - 54/140 |

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. L is path-closed iff it is recognized by a T-DFTA.

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let $L \subset T(F)$ be a recognizable tree language. L is path-closed iff it is recognized by a T-DFTA.

Proof:

 \triangleright "→": Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ be a reduced T-NFTA for L. Construct a T-DFTA $\mathcal{A}' = \langle 2^{\mathcal{Q}}, \mathcal{F}, \{G\}, \Delta' \rangle$ as follows:

\n- for
$$
a \in \mathcal{F}_0
$$
, let $S(a) \rightarrow \Delta' \varepsilon$ if $\exists q \in S$, $q(a) \rightarrow \Delta \varepsilon$;
\n- for $f \in \mathcal{F}_n$ $(n \geq 1)$, let $S(f) \rightarrow \Delta' (S_1, \ldots, S_n)$ where $S_i = \{ q_i \mid \exists q \in S, q(f) \rightarrow \Delta (q_1, \ldots, q_n) \}$.
\n

◆ロト ◆ @ ト ◆ ミト ◆ ミト → ミー ◆ 9 Q ① - 54/140

Show that $L_S(\mathcal{A}') = \bigcup_{q \in S} L_q(\mathcal{A})$, for all $S \subseteq Q$.

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let $L \subset T(F)$ be a recognizable tree language. L is path-closed iff it is recognized by a T-DFTA.

Proof:

 \triangleright "→": Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ be a reduced T-NFTA for L. Construct a T-DFTA $\mathcal{A}' = \langle 2^{\mathcal{Q}}, \mathcal{F}, \{G\}, \Delta' \rangle$ as follows:

\n- for
$$
a \in \mathcal{F}_0
$$
, let $S(a) \rightarrow_{\Delta'} \varepsilon$ if $\exists q \in S, q(a) \rightarrow_{\Delta} \varepsilon$;
\n- for $f \in \mathcal{F}_n$ $(n \geq 1)$, let $S(f) \rightarrow_{\Delta'} (S_1, \ldots, S_n)$ where $S_i = \{ q_i \mid \exists q \in S, q(f) \rightarrow_{\Delta} (q_1, \ldots, q_n) \}$.
\n

Show that $L_S(\mathcal{A}') = \bigcup_{q \in S} L_q(\mathcal{A})$, for all $S \subseteq Q$. \blacktriangleright " \leftarrow ":

K ロ ▶ K @ ▶ K 로 ▶ K 로 ▶ 그로 → ⊙ Q Q + 54/140 Let A be a redcued T-DCFTA for L . Prove that if $\pi(t) \subseteq \pi(L_q(\mathcal{A}))$, then $t \in L_q(\mathcal{A})$, for all $q \in Q, t \in \mathcal{T}(\mathcal{F})$.