Imperfect-Information Games for System Design

Dietmar Berwanger!  Laurent Doyen?

1LSV, CNRS & ENS Cachan

2Université Libre de Bruxelles

PSY Grenoble, June 2009

D. Berwanger, L. Doyen (CNRS, ULB) Imperfect-information games PSY, June'09

1/18



Games for Verification and Synthesis — in a Nutshell

Systems » Models

D. Berwanger, L. Doyen (CNRS, ULB) Imperfect-information games PSY, June'09 2 /18



Games for Verification and Synthesis — in a Nutshell

Systems » Models

security, dependability
concurrency, real-time
usability, ...
non-terminating dynamics
modularity & interaction
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Games for Verification and Synthesis — in a Nutshell

Systems » Models Specifications » Logics

avoid failure AG—
ensure progress AGEF—y

assume — guarantee ||y
compositionality
interactive analysis
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Games for Verification and Synthesis — in a Nutshell

Systems » Models Specifications » Logics

Games

o uniform framework
o modular and interactive
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Games for Verification and Synthesis — in a Nutshell

Systems » Models Specifications » Logics
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Why imperfect
information ?




Example

void main () {

1:
2:
3:

4:
5.

0:

}

int got_lock = 0;
do {
it (%) {
lock ();
got lock++;
}
if (got_lock !=0) {
unlock ();
}
got_lock--;
} while (*);

void lock () {
assert(L == 0);
L=1;

}

void unlock () {
assert(L ==1);
L =0;

}




Example

void main () {

1:
2:
3:

4.
5.

0:

}

int got_lock = 0;
do {
it (%) {
lock ();
got lock++;
}
if (got_lock !=0) {
unlock ();
}
got_lock--;
} while (*);

Wrong!

void lock () {
assert(L == 0);
L=1;

}

void unlock () {
assert(L == 1);
L =0;

}




Example

void main () {
int got_lock = 0;
do {
1 if (*) {
2: lock ();
3 } sO | s1

4: if (got_lock !=0) {
5.

unlock
1

6: sO | s1 | inc | dec;

} while (*);
}

| inc | dec;

();

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;

sO =got lock=0
s got lock =1
Inc = got_lock++
dec = got_lock--




Example

void main () {
int got_lock = 0;
do {
1: if (*){
2. lock ();
3 } sO | s1

4: if (got_lock !=0) {
5.

unlock
1

6: sO | s1 | inc | dec;

} while (*);
}

| inc | dec;

();

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;

Repair/synthesis as a game:

e System vs. Environment
e Turn-based game graph

e w-regular objective




Example

void main () {
int got_lock = 0;
o pc=1
1 if (*){ gOt_lOC]{? =0 L =0 Sg, Inc
2: lock (); € /
3: } sO | s1 | inc | dec; 3
4; if (got_lock != 0) { 0 1[>dec
o) unlock (); Sty
\ S0 Inc
6: " sO*|_s1 | inc | dec; 4 4 4 §
: el () 0 1 1 11 10
‘e
void lock () { void unlock () {
assert(L == 0); assert(L == 1);
L=1; L =0;
} }




Example

void main () {
int got_lock = 0;
do {
1: if (*){
2. lock ();
3 } sO | s1

4: if (got_lock !=0) {
5: (); -

6: sO | s1 | inc | dec;

unlock
1

} while (*);
}

| inc | dec;

pc =1
got_lock = 0 L=0

/L AN

| A winning strategy may use

the value of L to update
got_Jock accrodingly:

o if /==0 then play s0 (got_lock = 0)
e if L==1 then play sl (got _/lock = 1)

void lock () {

}

assert(L == 0);
L=1;
}

void unlock () {
assert(L ==1);

L =0;

¢° ~




Example

void main () { _ _
int got_lock = 0; Repair/synthesis as a game of
1 do{ ey imperfect information:
2: lock ();
3 } sO | s1 | inc | dec; pc—l
4. if (gOt_lOCk I= 0) { ggt lock = ()
5. unlock ();
!
6: sO | s1 | inc | dec;
} while (*);
}
visible hidden
void lock () { void unlock () {
assert(L == 0); assert(L ==
L=1; States that differ only by the value
} ) of L have the same observation




Example

void main () {
int got_lock = 0;
do {
1 if (*) {
2: lock ();
3 } sO | s1

4. if (got_lock !=0) {
5.

unlock
1

6: sO | s1|inc | dec;

} while (*):
}

| inc | dec;

();

pc=1
got_lock = 0

void lock () {

}

assert(L == 0);
L=1;

}

void unlock () {

assert(L ==1);
L =0;




Transition structure with imperfect information

o o o o
o o o o
o o o o
o o o o o States
o o o o
o o o o
o o o o
o o o o
o o o o
o o o o
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Transition structure with imperfect information

o Player 1 — actions: 1, |

o States

“«—O—>» « 0> « 0> « 0> <« 0> <«

—>» «—0O—>» «—O—> « 0> «<0—>» <O >
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“«—0O—>» « 0> « 0> « 0> <« 0> <«
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o Player 1 — actions: T, |

o States

Transition structure with imperfect information




Transition structure with imperfect information

o Player 1 — actions: T, |

o Transitions

| 1y
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Transition structure with imperfect information

<L} 1 L} LF——>0<—}
]HO(—D—)%—DH%—D*)(@(—%H
(—g D—)%—D %Hi(—[

States
Player 1 — actions: 1, |
Transitions

© ©0 o0 o

. Berwanger, L. Doyen (CNRS, ULB)

Imperfect-information games

Player 2 — observations: T R X K K
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K

Play:
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K
Play: =
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K
Play: ® | x
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G o Player 2 — observations: @ ®x ¥ K K

Play: @ | T
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G i o Player 2 — observations: @ ®x ¥ K K

Play: ® | T Tk
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K

Play: x |® T Tk Tk
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K

Play: ® | Tx T Tm [T
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
G @ o Player 2 — observations: @ ®x ¥ K K

Play: @ |® Tx Tm T Tm= ...
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
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Transition structure with imperfect information
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o Player 1 — actions: T, |
@ o Transitions
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Transition structure with imperfect information
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Transition structure with imperfect information

o o States
o Player 1 — actions: T, |
@ o Transitions
€ @ o Player 2 — observations: @ ®x ¥ K K
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Algorithms




Imperfect information

Games of imperfect information can be solved by a
reduction to games of perfect information.

G,Obs > G’ = Winning region
Imperfect Perfect
information information
\ 4 \ 4
subset classical

construction techniques



Subset construction

After a finite prefix of a play, Player 1 has a
partial knowledge of the current state of the
game: a set of states, called a cell.



Subset construction

After a finite prefix of a play, Player 1 has a
partial knowledge of the current state of the
game: a set of states, called a cell.

Initial knowledge: cell {v}




Subset construction

After a finite prefix of a play, Player 1 has a
partial knowledge of the current state of the
game: a set of states, called a cell.

Initial knowledge: cell {v}

Player 1 plays o,

Player 2 chooses V3l

_____

Current knowledge: cell {vo,v3}

|

Post,({v}) N6



Subset construction

After a finite prefix of a play, Player 1 has a
partial knowledge of the current state of the
game: a set of states, called a cell.

o ———

Subset construction [Reif84]:
e keeps track of the knowledge

e yields equivalent game of perfect
information with macro-states (=cell)




Classical solution

Powerset construction [Reif84]:
e keeps track of the knowledge of System

e yields equivalent game of perfect information

Memoryless strategies (in perfect-information)
translate to finite-memory strategies

(memory automaton tracks set of possible positions)



Complexity

e Problem is EXPTIME-complete
(even for safety and reachability)

e Exponential memory might be needed

The powerset solution [Reif84]
e iS an exponential construction
e is not on-the-fly

e is independent of the objective

Can we do better ?



Imperfect information

G,Obs > G’ =  Winning region
Imperfect Perfect
information information
\/ \
subset classical
construction techniques
Exponential

blow-up



Imperfect information

G,Obs > G’ =  Winning region
implicit
Imperfect Perfect
information information

Direct symbolic algorithm



Imperfect information

G,Obs > G’ =  Winning region
implicit
Imperfect Perfect
information information

Direct symbolic algorithm

Intuition: if s is winning, then s’ < s is also winning.
‘ The set of winning cells is downward-closed.



Symbolic algorithm

@/O\O/O\O/

@/\\ O//O\

copy the strategy from s

Intuition: if s is winning, then s’ < s is also winning.
‘ The set of winning cells is downward-closed.



Antichains

e Winning knowledge-sets are downward-closed

o Useful operations preserve downward-closedness

Compact representation using
maximal elements — Antichains

ArA




Antichains

The antichain {{1,2,3},{3,4}}
represents the set of cells

11,2,3}

{1,3} A = 1{{1,2,3},{3,4}}
{1,2) 2,3}

{1y {2} A3r {4}

i.e. the downward-closure of {{1,2,3},{3,4}}



Structure of antichains

Membership

q' = 151,55}

se |q iff 3s'eq :sCs



Structure of antichains

Inclusion

N -~

q = {81532133}

q' = 151,55}



Structure of antichains

Inclusion

N -~

q = {81532133}

q' = 151,55}

gC ¢ iffvseqg-3s' €q¢ :sC ¥

[ partial order on antichains



Structure of antichains

¢ = 151,52}



Structure of antichains

Union

q — {817 82}

q' = 151,55}

g U ¢ = maximal elements of ¢U¢'.

Computing ¢1 U g2 U ... LI gy, is polynomial.



Structure of antichains

Intersection

q =1{s1}



Structure of antichains

Intersection




Structure of antichains

Intersection
5 s sh
S1
M
q = {817 32}
q' = {51,585}

gM¢ = maximal elements of {sNs' |se€qgns’ €¢'}.

Computing g1 g2 T1...11¢, is exponential !



Structure of antichains

Independent set
(pairwise non-adjacent vertices)




Structure of antichains

Independent set
(pairwise non-adjacent vertices)

Computing largest independent set is NP-hard



Structure of antichains

Consider a graph G = (V, F))

The sets of vertices that do no contain edge (v,w) are
represented by the antichain {V \ {v}, V'\ {w}}

Hence, the maximal independent sets of G are defined by

Neo,wyer {V \{v}, VA {w}}

Computing g1 Mg M ...11¢q, is exponential (unless P=NP)



Structure of antichains

Intersection

S1
A /\ 3

Antichains partially-ordered by C is

a complete lattice

gM¢ = maximal elements of {sNs' |se€qgns’ €¢'}.

Computing g1 g2 T1...11¢, is exponential !



Symbolic algorithm

Controllable predecessor operator

CPre(Y) = cells s from which Player 1 has an action (0)
such that for all obs chosen by Player 2

the cell post,(s) Nobs isinY

post_(s)No1 inY

post_(s)Noz inY




Symbolic algorithm

Controllable predecessor operator
If Y is downward-closed, then ...

g, 01
®

U

o




Symbolic algorithm

Controllable predecessor operator
If Y is downward-closed, then CPre(Y) is downward-closed.

CPre(Y)

g, 01

‘ Cpre() preserves downward-closedness.



Symbolic algorithm

Controllable predecessor operator

CPre(Y) = cells s from which Player 1 has an action (0)
such that for all obs chosen by Player 2

the cell post,(s) Nobs isinY

post_(s)No1 inY 53

post_(s)Noz inY




Symbolic algorithm

Controllable predecessor operator

CPre(Y) = cells s from which Player 1 has an action (0)
such that for all obs chosen by Player 2

the cell post,(s) Nobs isinY

0,01 post,(s) No1 inY N S3
Js; € Y : post,(s)Noy C s; 52
post,(s) C s; Uo v

s C pre,(s; Uo1)



Symbolic algorithm

Controllable predecessor operator

CPre(Y) = cells s from which Player 1 has an action (0)
such that for all obs chosen by Player 2

the cell post,(s) Nobs isinY




Symbolic algorithm

Controllable predecessor operator

CPre(Y) = cells s from which Player 1 has an action (0)
such that for all obs chosen by Player 2

the cell post,(s) Nobs isinY

e combinatorially hard to compute

3 E CPre(Y) = |_| |_ |_| {pre,(s"U0)}

oce> 0oe0bs s’'eY

e implemented using BDDs




Symbolic algorithm

Safety game: avoid Bad

Good = {s | sN Bad = g} Good is downward-closed !

XO — GOOd



Symbolic algorithm

Safety game: avoid Bad

Good = {s | sNBad = @}  Good is downward-closed !
cells winning in 1 step: Good n CPre(Good)

X = Good

= Good N CPre(Xp)




Symbolic algorithm

Safety game: avoid Bad

Good = {s | sNBad = @}  Good is downward-closed !
cells winning in 2 steps: Good n CPre(Good) n CPre(X,)

XO — Good
= Good N CPre(Xp)

Good N CPre(X1)




Symbolic algorithm

Safety game: avoid Bad

Good = {s | sNBad = @}  Good is downward-closed !

cells winning in k steps: v X - Good N CPre(X)
XO — GOOd
= Good N CPre(Xp)

Good N CPre(X1)

X



Symbolic algorithm

Safety game: avoid Bad

Good = {s | sN Bad = g} Good is downward-closed !

cells winning in k steps: v X - Good N CPre(X)

Fixpoint after at most O(2") iterations
Computing CPre() is O(2l0bsl)

...but exponentially more succinct sets !



Strategy construction

Safety game: avoid Bad

From every winning cell, Player 1 has an
action to stay in the set of winning cells

Winning cells



Strategy construction

Safety game: avoid Bad

From every winning cell, Player 1 has an
action to stay in the set of winning cells

‘ Strategy automaton
(Moore machine)

Winning cells



Symbolic algorithm

Reachability game: reach Target

cells winning in k steps: pX - Target U CPre(X)

Xo = Target



Reachability

W

O




Reachability

a b CL,b
3 “»(2)5-(1)“
b

@ 1. From {1} play a




Reachability

a b CL,b
3 “»(2)5-(1)“
b

@ 1. From {1} play a
2. From {1,2} play b




Reachability

a b CL,b
3 “-(2)5—(1)“-6
b

@ 1. From {1} play a
2. From {1,2} play b

3. From{1,2,3} play a



Reachability

a b CL,b
3 “-(2)5—(1)“-@
b

1. From {1} play a
@ 2. From {1,2} play b
3. From{1,2,3} play a

Fixpoint of winning cells: {{1,2,3}}

Winning strategy ??



Reachability

a b CL,b
3 “-(2)5—(1)“-6
b

1. From {1} play a
@ 2. From {1,2} play b
3. From{1,2,3} play a

Fixpoint of winning (cell, action): {{1,2,3},,{1,2}}

Winning strategy ??



Reachability

a b CL,b
3 “-(2)5—(1)“-@
b

1. From {1} play a
@ 2. From {1,2} play b

3. From {1,2,3} play a
Winning strategy

Current knowledge K: select earliest (cell,action)

such that K < cell, play action



Strategy simplification #1

computed
later

<

A o

From {1,2,3} play a

From ... play ...
From ... play ...
From ... play ...

From {2} play b



Strategy simplification #1

computed
later

| 1. From {1,2,3} play a
2. From ... play ...
3. From ... play ...
4. From ... play ...
5

<

. From=(23=pfa¥ ®  Not necessary !

Rule 1: delete subsumed pairs computed later




Strategy simplification #2

computed
later

<

A o

From {1,2}
From {3,4}
From {1,3}

D

D

D

From {3,5} p
From {1,2,3} play a

ay a
ay ...
ay a

ay ...



Strategy simplification #2

computed
later

Fron=E=23iay a Not necessary !
From {3,4} play ...
From {1,3} play a

From {3,5} play ...

A o

<

From {1,2,3} play a

Rule 2: delete strongly-subsumed pairs




Alpaga

First prototype for solving parity games of imperfect
information

e Use antichains as compact representation of winning
sets of positions

o Compute Controllable Predecessor with BDDs

e Publish Reachability/Safety attractor moves to compose

s

the strategy (earlier published move sticks)

e Strategy simplification




Alpaga

First prototype for solving parity games of imperfect
information

e Implemented in Python + CUDD
e <1000 LoC

e Solves 50 states, 28 observations, 3 priorities (explicit
game graph)

http://www.antichains.be/alpaga h




Some experiments

Size Obs Priorities | Time (s)
Gamel 4 4 Reach. 1
Game2 3 2 Reach. 1
Game3 6 3 3 1
Game4 8 5 5 1.4
Game5 8 5 7 9.4
Gameb 11 9 10 50.7
Game?/ 11 8 10 579.0
Locking 22 14 Safety .6
Mutex 50 28 3 57.7

http://www.antichains.be/alpaga




Alpaga

First prototype for solving parity games of imperfect
information

Outlook
e Symbolic game graph
e Compact representation of strategies

e Almost-sure winning

e Relaxing visibility a




Thank you !

o

% Questions ?

http://www.antichains.be/alpaga
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