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Abstract. We consider two-player zero-sum games on graphs. On the bfsi
the information available to the players these games catelsified as follows:
(a) partial-observation (both players have partial viewhefgame); (b) one-sided
partial-observation (one player has partial-observatind the other player has
complete-observation); and (c) complete-observationh(iptayers have com-
plete view of the game). We survey the complexity resultgierproblem of de-
ciding the winner in various classes of partial-observaames withu-regular
winning conditions specified as parity objectives. We pnésereduction from
the class of parity objectives that depend on sequencetesstathe game to the
sub-class of parity objectives that only depend on the semuef observations.
We also establish that partial-observation acyclic game®8&PACE-complete.

1 Introduction

Games on graphsGames played on graphs provide the mathematical framework t
analyze several important problems in computer scienceedlss/mathematics. In par-
ticular, when the vertices and edges of a graph represestdles and transitions of a
reactive system, then the synthesis problem (Church’si@nmgbasks for the construc-
tion of a winning strategy in a game played on a graph [5, 2118D Game-theoretic
formulations have also proved useful for the verificatioly fgéfinement [13], and com-
patibility checking [9] of reactive systems. Games playedaphs are dynamic games
that proceed for an infinite number of rounds. In each roumptayers choose moves
which, together with the current state, determine the sgarestate. An outcome of the
game, called play, consists of the infinite sequence of states that are visited

Strategies and objectivesA strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can tsfieldsas follows:pure
strategies, which always deterministically choose a mowextend the play, andgn-
domizedstrategies, which may choose at a state a probability ligtan over the avail-
able moves. Objectives are generally Borel measurableitunsc[17]: the objective for

a player is a Borel sé® in the Cantor topology o8“ (whereS is the set of states), and
the player satisfies the objective iff the outcome of the gsraenember of3. In verifi-
cation, objectives are usually-regular languagesThew-regular languages generalize
the classical regular languages to infinite strings; theguo@n the low levels of the
Borel hierarchy (they lie in¥’s N I13) and they form a robust and expressive language
for determining payoffs for commonly used specificationg ®@nsider parity objec-
tives and its sub-classes that are canonical forms to expigectives in verification.



Classification of gamesGames played on graphs can be classified according to the
knowledge of the players about the state of the game. Acaghdithere are (g)artial-
observatiorgames, where each player only has a partial or incomplete afmut the
state and the moves of the other player;dbg-sided partial-observatiagames, where
one player has partial knowledge and the other player hapletenknowledge about
the state and moves of the other player; andc@nplete-observatiogames, where
each player has complete knowledge of the game.

Analysis. The analysis of games can be classifiedjaalitativeandquantitativeanal-
ysis. The qualitative analysis consists of the followingestions: given an objective
and a state of the game, (a) can Player 1 ensure the objedtivecertainty against
all strategies of Player Z(@re winningproblem); (b) can Player 1 ensure the objective
with probability 1 against all strategies of Playeradjost-sure winningroblem); and

(c) can Player 1 ensure the objective with probability aapily close to 1 against all
strategies of Player Zifhit-sure winningproblem). Given an objective, a state of the
game, and a rational threshald the quantitative analysis problem asks whether the
maximal probability with which Player 1 can ensure the otiyecagainst all Player 2
strategies is at least

Organization. The paper is organized as follows: In Section 3 we show a nsultre
that presents a reduction of general parity objectives diegend on state sequences
to visible objectives that only depend on the sequence of observatiatiser than
the sequence of states). In Section 4 we survey the complekisolving the three
classes of partial-observation games with parity objestand its sub-classes both for
qualitative and quantitative analysis. In Section 5 we shiwat for the special case of
acyclicgames the qualitative analysis problem is PSPACE-completefor one-sided
partial-observation and partial-observation games. TBBACE-completeness result
for acyclic games is in contrast to general games where tim@lexities are EXPTIME-
complete, 2EXPTIME-complete, and undecidable (dependintihe objective and the
specific qualitative analysis question).

2 Definitions

In this section we present the definition of partial-obsgovagames and their sub-
classes, and the notions of strategies and objectivgaoBability distributionon a
finite setA is a functions : A — [0, 1] suchthab . , x(a) = 1. We denote byD(A)

the set of probability distributions oA. We focus on partial-observation turn-based
games, where at each round one of the players is in charg@ostiy the next action.

Partial-observation gamesA partial-observation gaméor simply agam@ is a tuple
G = (51U Sy, Ay, Ay, 61 U b2, 01, O3) with the following components:

1. (State space)s = S; U S; is a finite set of states, whesg N S; = 0 (i.e., S; and
S, are disjoint), states if; are Player 1 states, and statesSinare Player 2 states.

2. (Actions).A; (i = 1,2) is afinite set of actions for Player

3. (Transition function).For i € {1, 2}, the transition function for Player is the
functiond; : S; x A; — Ss_; that maps a state € S;, and actioru; € A; to the
successor statg(s;, a;) € Ss_; (i.e., games are alternating).



4. (Observations)?; C 2% (i = 1,2) is a finite set of observations for Playiethat
partition the state spacg. These partitions uniquely define functiosts; : S; —
O; (1 = 1,2) that map each Playérstate to its observation such thag obs;(s)
forall s € S;.

Special casesWe consider the following special cases of partial-obg@megames,
obtained by restrictions in the observations:

— (Observation restriction)The games wittone-sided partial-observatioare the
special case of games whet® = {{s} | s € Sz} (Player 2 has complete
observation), i.e., only Player 1 has partial-observatidre games of complete-
observationare the special case of games whéte = {{s} | s € S;} and
0y = {{s} | s € S2}, i.e, every state is visible to each player and hence both
players have complete observation. If a player has compledervation we omit
the corresponding observation sets from the descriptidheofjame.

Classes of game graph#/e use the following abbreviatioriBa for partial-observation,
Os for one-sided complete-observatioBp for complete-observation. Fof €
{Pa, Os, Co}, we denote byG. the set of allC games. Note that the following
strict inclusions hold: partial-observatioRd) is more general than one-sided partial-
observation©s) andOs is more general than complete-observatiGo)

Plays.In a game, in each turn, far € {1,2}, if the current states is in S;, then
Playeri chooses an actiom € A;, and the successor statedigs,a). A playin G is
an infinite sequence of states and actipns spagsia; - .. such that for allj > 0, if
s; € S;, fori € {1,2}, then there exista; € A; such that;(s;,a;) = s;4+1. The
prefix up tos,, of the playp is denoted by (n), its lengthis |p(n)| = n + 1 and its
last elements Last(p(n)) = s,. The set of plays irG is denoted byPlays(G), and
the set of corresponding finite prefixes is dend®eefs(G). Fori € {1,2}, we denote
by Prefs;(G) the set of finite prefixes id7 that end in a state ii¥;. The observation
sequencef p = sgapsia; - .. for Playeri (i = 1,2) is the unique infinite sequence of
observations and actions of Playier.e.,obs;(p) € (0;A;)“ defined as follows: (i) if
so € S;, thenobs;(p) = opapozazoy4 ... such thats; € o; for all evenj > 0; (ii) if
so € S3—;, thenobs;(p) = o1a103a305 ... such thats; € o; for all oddj > 1. The
observation sequence for finite sequences (prefix of playdgfined analogously.

StrategiesA pure strategyin G for Player1 is a functiono : Prefs; (G) — A;. A
randomized strategin G for Playerl is a functiono : Prefs;(G) — D(A4;). A (pure
or randomized) strategy for Player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obsy(p) = obsi(p’), theno(p) = o(p’). We omit analogous definitions
of strategies for Player. We denote byr, X9, X, 1, I1S andIIk the set of all
Playerd strategies irt7, the set of all observation-based Playestrategies, the set of all
pure Playert strategies, the set of all Playistrategies iz, the set of all observation-
based Playe?-strategies, and the set of all pure Plagestrategies, respectively. Note
that if Playerl has complete observation, th&f = Y.

ObjectivesAn objectivefor Playerl in G is a setp C S* of infinite sequences of states.
A play p € Plays(G) satisfieshe objectivep, denoted = ¢, if p € ¢. Objectives are
generally Borel measurable: a Borel objective is a Borelrséte Cantor topology on
S“ [15]. We specifically consider-regular objectives specified as parity objectives (a



canonical form to express all-regular objectives [25]). For a play = spagpsia; ...
we denote by, the k-th states;, of the play and denote binf(p) the set of states that
occur infinitely often inp, that is,Inf(p) = {s | s; = s for infinitely many;’s}. We
consider the following classes of objectives.

1. Reachability and safety objectiveSiven a setZ” C S of target states, theeacha-
bility objectiveReach(7) requires that a state i be visited at least once, that is,
Reach(7) = {p| 3k > 0- p;, € T }. Dually, thesafetyobjectiveSafe(7) requires
that only states iff” be visited. FormallySafe(7) = {p | Vk > 0 - p;, € T }.

2. Buchi and coBichi objectivesThe Biichi objectiveBuchi(7) requires that a state
in 7 be visited infinitely often, that iBuchi(7) = {p | Inf(p) N7 # 0}. Dually,
thecoBuchiobjectivecoBuchi(7) requires that only states ih be visited infinitely
often. FormallycoBuchi(7) = {p | Inf(p) C T}

3. Parity objectivesFord € N, letp : S — {0, 1, ..., d} be apriority function which
maps each state to a nonnegative integer priority.pJdréy objectiveParity(p) re-
quires that the minimum priority that occurs infinitely oftbe even. Formally,
Parity(p) = {p | min{p(s) | s € Inf(p)} is ever}. The Biichi and coBiichi objec-
tives are the special cases of parity objectives with tworfirés,p : S — {0, 1}
andp : S — {1, 2}, respectively.

4. Visible objectivesWe say that an objectivgis visiblefor Player: if for all p, p’ €
S« if p E ¢ andobs;(p) = obs;(p’), thenp’ = ¢. For example if the priority
function maps observations to priorities (i.e.; O; — {0,1,...,d}), then the
parity objective is visible for Player

Outcomes.The outcomeof two randomized strategies (for Player1) and = (for
Player2) from a states in G is the set of playg = sgs1 ... € Plays(G), with sg = s,
whereforallj > 0,if s; € S; (resp.s; € Ss), then there exists an actiap € A, (resp.
a; € Az), such thav(p(j))(a;) > 0 (resp.m(p(j))(a;) > 0) anddi(s;, a;) = sj41
(resp.da(s;,aj) = sj4+1). This set is denote@utcome(G, s, o, 7). The outcome of
two pure strategies is defined analogously by viewing puegies as randomized
strategies that play their chosen action with probabilitg.oTheoutcome sebf the
pure (resp. randomized) strategyfor Playerl in G is the setOutcome; (G, s,0) of
playsp such that there exists a pure (resp. randomized) stratefgy Player2 with
p € Outcome(G, s, 0, 7). The outcome sddutcomesy (G, s, ) for Player 2 is defined
symmetrically.

Sure winning, almost-sure winning, limit-sure winning aadlie functionAn events a
measurable set of plays, and given strategiasd~ for the two players, the probabili-
ties of events are uniquely defined [26]. For a Borel objectiwe denote byr? ™ (¢)
the probability thats is satisfied by the play obtained from the starting statdnen the
strategiesr andr are used. Given a gande an objectives, and a state, we consider
the following winning modes: (1) an observation-basedstnas for Player 1 issure
winning for the objectivep from s if Outcome(G, s, o, m) C ¢ for all observation-
based strategies for Player2; (2) an observation-based strategyfor Player1 is
almost-sure winnindor the objectivep from s if Pr?™(¢) = 1 for all observation-
based strategies for Player2; and (3) a family(o.).>o of observation-based strate-
gies for Playex is limit-sure winningfor the objectivep from s if Prf=™(¢) > 1 — ¢,



for all e > 0 and all observation-based strategiefor Player2. The value function
(1%, . S — R for objectiveg for Player 1 assigns to every state the maximal proba-

bility with which Player 1 can guarantee the satisfaction ofith an observation-based
strategy, against all observation-based strategies &yelPl. Formally we have

(1)5a(9)(s) = sup inf Pr77(g).

cexg mellQ

For ¢ > 0, an observation-based strategyci®ptimal for ¢ from s if we have
inf e o Pri7(¢) = (1nG (#)(s) — e. An optimal strategy is &-optimal strategy.
Given a rational valu® < v < 1 and a states, the value decision problemasks
whether the value of the gamesais at leastv. The qualitative analysis consists of the
sure, almost-sure and limit-sure winning problems, andjtrentitative analysis is the

value decision problem.

3 Reduction of Objectives to Visible Objectives

The complexity lower bounds in this paper are given for \esibjectives, while upper
bounds are given for general objectives. In [23, 7], al@pons based on a subset con-
struction are given for visible objective, establishinggapbounds (namely EXPTIME)
for visible objectives only.

We show that games with general parity objectives can becestito games with
visible parity objective with an exponential blow-up. Hoxee, this blow-up has no im-
pact on the complexity upper bounds because from a dgantiee reduction constructs
a game’’ as the product ofy with an exponentially large automatd, such that the
further subset construction of [7] applied €4 induces an exponential blow-up only
with respect ta7 (the subset construction f6¥ has sizeD(2/¢1-|M|) = O(2/¢1.2/¢1)
which is simply exponential). This is becautgis a deterministic automaton.

We give the idea of the construction. Assume that we have a&damith parity
objective given by the priority functiop : S — {0,1,...,d}. We construct a game
G’ with visible objective as a produc¥ x M where M is a finite automaton with
parity condition that “synchronizes” withi on observations and actions of Player
We constructV/ as the complement of the automatbfi that we define as follows.

The automatord/’ has state space, and alphabel’ = O; x A; that accepts the
observations of the plays that are losing for Plalyekn observation sequence is losing
if it is the observation of a losing play. The initial state/df is the initial state of the
game (we assume w.l.o.g that the game starts in a Playere).stée transitions of
M’ are(s, (obsi(s),a),s”) forall s,s” € S; anda € A; such thav,(s,a) = s’ and
02(s',b) = s” for somes’ € Sy andb € A,. The priority assigned to this transition is
1+ min{p(s), p(s')}. Note thatM’ has at most one run over each infinite word, and that
aruninM’ corresponds to a play i@. The language o#/’ is the set of infinite words
overY = O; x A; that have a run il/’ in which the least priority visited infinitely
often is even, i.e. such that the least priority (accordmg)tvisited infinitely often is
odd (and thus the corresponding run violates the winninglitimm of the game&?).
By complementingl/’, we get an exponentially larger automatbhthat accepts the
winning observation sequences [24]. We can assumeithé deterministic and that



the states rather than the transitions are labeled by fiei®and letters. The gant&

is obtained by a synchronized product@fand M in which Playerl can see the state
of M (i.e., the observation of a stafe, u) wheres is a state of¥ andu is a state of\/

is (obs; (s),u)). The priority of a statés, u) depends only om and therefore defines
a visible parity objective. Transitions i and M are synchronized on the obervations
and actions of Player 1.

Note that for reachability and safety objectives, therstsxa reduction to a visible
objective in polynomial time. First, we can assume that #ngdt state§” defining the
objective are sink states (because oficis reached, the winner of the game is fixed).
Second, we make the sink states visible, which makes thethgevissible, and does
not change the winner of the game (observing the sink state§no help since the
game is over when this happens).

Theorem 1. Given a gamé&~ € Gos With parity objective, one can construct a game
G’ as a product of7 with an exponentially large automatay with a visible parity
objective such that the following assertions hold:

1. G andG’ have the same answer to the sure winning problem; and
2. the sure winning problem fd#’ can be solved in time exponential in the siz&of

4 Complexity of Partial-Observation Parity Games

In this section we present a complete picture of the complexisults for the three
different classes of partial-observation games, witredéht classes of parity objectives,
both for qualitative and quantitative analysis.

4.1 Complexity of sure winning

We first show that for sure winning, pure strategies are sefficfor all partial-
observation games.

Lemma 1 (Pure strategies suffice for sure winning)For all gamesG € Gp, and
all objectivesg, if there is a sure winning strategy, then there is a pure sureing
strategy.

Proof. Consider a randomized strategyor Playerl, leto” be the pure strategy such
that for all p € Prefs;(G), the strategy” (p) chooses an action frofupp(o(p)).
Then for alls we haveOutcome; (G, s,0”) C Outcome; (G, s,0), and thus, ifo is
sure winning, then so is”. The result also holds for observation-based strateljies.

Spoiling strategiesTo spoil a strategy of Playér(for sure-winning), Playe? does not
need the full memory of the history of the play, but only needsnting strategies [7].
We say that a pure strategy : Prefso(G) — A, for Player2 is countingif for all
prefixesp, p’ € Prefsy(G) suchthatp| = |p’| andLast(p) = Last(p’), we haver(p) =
m(p'). Let II§ be the set of counting strategies for PlageThe memory needed by
a counting strategy is only the number of turns that have Ipd@yed. This type of
strategy is sufficient to spoil the non-winning strategieBlayer1.



Lemma 2 (Counting spoiling strategies suffice)Let G be a partial-observation
game andp be an objective. There exists a pure observation-basetegiya® € X<
such that for all=® € I1Q we haveOutcome(G, s, 0%, 7°) € ¢ if and only if there
exists a pure observation-based strategyc ¢ such that for all counting strategies
7 € 11§ we haveDutcome(G, s,0°, ) € ¢.

Proof. We prove the equivalent statement that: for all pure obsienvdased strate-
gieso? € 28 there existsr® € Hg such thatOutcome(G, s,0°,7°) C ¢ iff
for all pure observation-based strategies € X there existst® € IIS such
that Outcome(G, s,0°,7¢) C ¢. The right implication(«) is trivial. For the left
implication (—), let 0° € X9 be an arbitrary pure observation-based strategy for
Playerl in G. Letm° € II§ be a strategy for Player such that there exists* €
Outcome(G, s,0°,7°) andp* &€ ¢. Let p* = spapsiay ...an—18xay ... and define
a counting strategy* for Player2 such that for allp € Prefso(G) if Last(p) = sp—1
for n = |p|, thenn¢(p) = s,, and otherwiser<(p) is fixed arbitrarily. Clearlys¢ is
a counting strategy and we hapé € Outcome(G, s,0°, 7°). Hence it follows that
Outcome(G, s,0°,7°) C ¢, and we obtain the desired resdlt.

Sure winning coincide for Pa and Os games.For all Oy partitions of a partial-
observation game, a counting strategy is an observatisaebstrategy. From Lemma 1
it follows that pure strategies suffice for sure winning, arthma 2 shows that counting
strategies suffice for spoiling pure strategies. Hencellivs that for spoiling strate-
gies in sure winning games, the observation for Player 2 doematter, and hence for
sure winningPa andOs games coincide.

Lemma 3. For a partial-observation gamé' = (S; U Sy, A1, A2, 1 U d2, 01, O3)
with an objectivep, consider the one-sided partial-observation gaéie = (S; U
Sa, A1, Az, 61 U 02, 01, O%) such thatO) = {{s} | s € S2}. The answer to the sure
winning questions itz and G’ coincide for objectiveb.

Complexity of sure winning. The results for complete-observation games are as fol-
lows: (1) safety and reachability objectives can be solveliniear-time (this is alter-
nating reachability in AND-OR graphs) [14]; (2) Biichi andBiichi objectives can
be solved in quadratic time [25]; and (3) parity objectiviesih NP N coNP [10] and
no polynomial time algorithm is known. The results for onges partial-observation
games are as follows: (1) the EXPTIME-completeness forhrahitity objectives fol-
lows from the results of [22]; (2) the EXPTIME-completendgs safety objectives
follows from the results of [4]; and (3) the EXPTIME-uppenral for all parity objec-
tive follows from the results of [7] and hence it follows tHat all Biichi, coBuchi and
parity objectives we have EXPTIME-complete bound. From b8 the results fol-
low for partial-observation games. The results are sunzediin the following theorem
and shown in Table 1.

Theorem 2 (Complexity of sure winning).The following assertions hold:

1. The sure winning problem for complete-observation ga)esith reachability
and safety objectives can be solved in linear time; (ii) wBilchi and coBichi
objectives can be solved in quadratic time; and (iii) witlripaobjectives is in NP
N coNP.



Complete-observatioh One-sided Partial-observation
Safety Linear-time EXPTIME-complete| EXPTIME-complete
Reachability, Linear-time EXPTIME-complete| EXPTIME-complete
Buchi Quadratic-time EXPTIME-complete| EXPTIME-complete
coBiichi Quadratic-time EXPTIME-complete| EXPTIME-complete
Parity NP N coNP EXPTIME-complete| EXPTIME-complete
Table 1. Complexity of sure winning.
Complete-observatiop One-sided Partial-observation
Safety Linear-time EXPTIME-complete| EXPTIME-complete
Reachability] Linear-time EXPTIME-complete| 2EXPTIME-complete
Buchi Quadratic-time EXPTIME-complete| 2EXPTIME-complete
coBuchi Quadratic-time Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable

Table 2. Complexity of almost-sure winning.

2. The sure winning problem for partial-observation and -@ded partial-
observation games with reachability, safetyicBi, coRichi and parity objectives
are EXPTIME-complete.

4.2 Complexity of almost-sure winning

In contrast to sure winning (Lemma 1), for almost-sure wiignirandomized strate-
gies are more powerful than pure strategies (for exampl§rdefor one-sided partial-
observation games. The celebrated determinacy result ofifMa6] shows that for
complete-observation games either there is a sure winrinagegy for Player 1, or
there is a pure strategy for Player 2 that ensures againBtagler 1 strategies the ob-
jective is not satisfied. It follows that for complete-obsdion games, the almost-sure,
limit-sure winning, and value decision problems coincidéhwhe sure winning prob-
lem. For safety objectives, the counter-examples are aiaite prefixes, and it can
be shown that for a given observation-based strategy fgePlaif there is a strategy
for Player 2 to produce a finite counter-example, then theefcounter-example is pro-
duced with some constant positive probability. It followst for partial-observation
games and one-sided partial-observation games with salfgggtives, the almost-sure
and the limit-sure winning problems coincide with the sufening problem.

Lemma 4. The following assertions hold:

1. For complete-observation games, the almost-sure,-Bonié winning, and value
decision problems coincide with the sure winning problem.

2. For safety objectives, the almost-sure and the limiesninning problems coin-
cide with the sure winning problem for partial-observati@md one-sided partial-
observation games.



Complete-observatioh One-sided Partial-observatio
Safety Linear-time EXPTIME-completd EXPTIME-complete
Reachability| Linear-time Undecidable Undecidable
Buchi Quadratic-time Undecidable Undecidable
coBuchi Quadratic-time Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable

Table 3. Complexity of limit-sure winning.

Complexity of almost-sure winning. In view of Lemma 4 the almost-sure win-
ning analysis for complete-observation games with all s#asof objectives follow
from Theorem 2. Similarly due to Lemma 4 the results for pd&dbservation games
and one-sided partial-observation games with safety &tipgecfollow from Theo-
rem 2. The EXPTIME-completeness for almost-sure winninthweachability and
Buchi objectives for one-sided partial-observation garf@lows from [7]; and the
2EXPTIME-completeness for almost-sure winning with resdility and Bichi objec-
tives for partial-observation games follows from [3, 12heTundecidability result for
almost-sure winning for coBuichi objectives for one-sigeaditial-observation games is
obtained as follows: (i) in [2] it was shown that for probadiic automata with coBuchi
conditions, the problem of deciding if there exists a woraltils accepted with prob-
ability 1 is undecidable and from this it follows that for esigled partial-observation
games with probabilistic transitions, the problem of dawdhe existence of a pure
observation-based almost-sure winning strategy is uddétg; (i) it was shown in [6]
that probabilistic transitions can be removed from the gagnaph, and the problem
remains undecidable under randomized observation-basgegies. The undecidabil-
ity for the more general parity objectives, and partialarvation games follows. This
gives us the results for almost-sure winning, and they anensarized in the theorem
below (see also Table 2).

Theorem 3 (Complexity of almost-sure winning).The following assertions hold:

1. The almost-sure winning problem for one-sided partiaé@rvation games (i) with
safety, reachability and iBhi objectives are EXPTIME-complete, and (ii) is unde-
cidable for coBichi and parity objectives.

2. The almost-sure winning problem for partial-observatgames (i) with safety,
reachability and Bichi objectives are 2EXPTIME-complete, and (ii) is undabid
for coBlchi and parity objectives.

4.3 Complexity of limit-sure winning and value decision prdlems

The complexity results for limit-sure winning and value d&mn problems are as fol-
lows.

Complexity of limit-sure winning. In view of Lemma 4 the results for (i) limit-sure
winning and value decision problem for complete-obseovajames with all classes



Complete-observation One-sided | Partial-observation
Safety Linear-time Undecidable Undecidable
Reachability, Linear-time Undecidable Undecidable
Buchi Quadratic-time Undecidable Undecidable
coBuchi Quadratic-time Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable

Table 4. Complexity of value decision.

of objectives, and (ii) for partial-observation games and-gided partial-observation
games with safety objectives with limit-sure winning, &l from Theorem 2. It fol-
lows from the results of [11] that the following question isdecidable for probabilistic
automata with reachability condition: for all> 0 is there a wordu. that is accepted
with probability greater than — ? It follows that for one-sided partial-information
games with probabilistic transitions, the problem of dewdhe existence of a fam-
ily of pure observation-based limit-sure winning stragegis undecidable; and again
it follows from [6] that the problem is undecidable by remmyiprobabilistic transi-
tions from the game graph, and also for randomized obsensased strategies. Since
(i) reachability objectives are special cases of BuichBiathi and parity objectives, and
(i) one-sided partial-observation games are specialscaSpartial-observation games,
the undecidability results for the more general casesvolltis gives us the results for
limit-sure winning, and they are summarized in the theorefow (see also Table 3).

Theorem 4 (Complexity of limit-sure winning). The following assertions hold:

1. The limit-sure winning problem for one-sided partialsebvation games (i) with
safety objectives are EXPTIME-complete, and (ii) with Fresility, Buchi,
coBuchi, and parity objectives are undecidable.

2. The limit-sure winning problem for partial-observatigames (i) with safety objec-
tives are EXPTIME-complete, and (ii) with reachabilityjdhi, coBichi, and parity
objectives are undecidable.

Complexity of the value decision problemsSince the limit-sure winning problem is
a special case of the value decision problem (with 1), the undecidability results for
all objectives other than safety objectives follow from ©hem 4. The undecidability
of the value decision problem for probabilistic safety aiéba was shown in [8], and
from [6] the undecidability follows for the value decisioroplem of one-sided partial-
observation games with safety objectives. We summarizesthdts in Theorem 5 and
Table 4.

Theorem 5 (Complexity of value decision problems)The value decision problems
for partial-observation and one-sided partial-obseregatigames with safety, reacha-
bility, Buichi, coBichi, and parity objectives are undecidable.



5 The Complexity of Acyclic Games

We show that partial-observation games with reachability safety objective played
on acyclic graphs are PSPACE-complete. Note that for sustegathe notion of sure-
winning, almost-sure winning, and limit-sure winning caite, and that randomized
strategies are no more powerful than pure strategies.

A partial-observation game ayclicif there are two distinguished sink states.
ands,.; (accepting and rejecting states) such that the transiélation is acyclic over
S\ {Sace, Srej}- The objective isReach({sqc.}) or equivalentlySafe(S \ {src;}).
Clearly the winner of an acyclic game is known after at mi§$tounds of playing. We
claim that the qualitative analysis of acyclic partial-ebstion games (with reachabil-
ity or safety objective) is PSPACE-complete. Since for éicygames parity objectives
reduce to safety or reachability objectives, the PSPACHEateteness follows for all
parity objectives.

PSPACE upper bouné PSPACE algorithm to solve acyclic games is as follows.tStar
ing fromty = {so}, we choose an actiane A; and we check that Playéris winning
from each set; = Post,(tg) N o1 for eacho; € Oy wherePost,(t) = {s” | 3s €
t,b € Ay : 52(61(s,a),b) = s”}. For each observation € O, we can reuse the space
used by previous checks. Since the number of rounds is at |ifidstve can check if
Playerl is winning using a recursive procedure that tries out alicd®of actions (the
stack remains bounded by a polynomialfi|).

PSPACE lower boundVe prove PSPACE-hardness using a reduction from QBF, which
is the problem of evaluating a quantified boolean formulaiakatown to be PSPACE-
complete [19]. A formula is defined over a finite sétof boolean variables, and is of
the formy = Qiz1...Quan A\, ci, Where@Qy, € {3,V}, 2, € X (k =1...n)and
each clause; is of the formu; V us V uz andwu; are literals (i.e., either a variable
or the negation of a variable). We assume without loss of igdibethat all variables
occurring iny are quantified. Given a formula, we construct an acyclic gande, and
states; such that Player has a sure winning strategy @, from s; if and only if the
formulay is true.

The idea of the construction is as follows. Let us call Playehe Jdplayer and
Player2 thevplayer. In the gamé&',, theVplayer chooses a valuation of the universally
quantified variables, and th#player chooses a valuation of the existentially quantified
variables. The choices are made in alternation, accorditigetstructure of the formula.
Moreover, thevplayer (secretly) chooses one clause that he will monitmceSthe
Jdplayer does not know which clause is chosen bysblayer, she has to ensure that all
clauses are satisfied by her choice of valuation.

To be fair, when thélplayer is asked to choose a value for an existentially gfiedti
variablez, theVplayer should have announced the value he has chosen fauthbéles
that are quantified befotein the formula. We use observations to simulate this.

Note that, having chosen a clause, tf@ayer has a unique clever choice of the
value of the universally quantified variables (namely st the corresponding literals
in the clause are all false). Indeed, for any other choieecthuse would be satisfied no
matter thedplayer’s choice, and there would be nothing to check.
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Fig. 1. Reduction of QBF to acyclic games for = 3z Vy 32Vt (z V g V ¥) A ... Circles are
states ofiplayer, boxes are states'blayer.

The reduction is illustrated in Fig.1. We formally describelow the game
G,. W.lo.g. we assume that the quantifiersgnare alternating, i.ep is of the

form 3z,Vxy ... 3x9,—1Vre, A, ci. The set of actions inG, is 41 = Ay =
{0,1} and the state space iS; U Sa U {Sacc, Srej} Where S1 = {(c,z) |
cis a clause inp andz is an existentially quantified variable and S2 = {s;} U

{(c,x) | cisaclause inp andz is a universally quantified variable The transitions
are as follows, for each clausef ¢:

— (s1,a,(c,21)) for eacha € {0,1}. Intuitively, Player2 initially chooses which
clause he will track;

— ((¢,24),a, 8acc) forall 1 < i < 2nif a = 0andz; € ¢, orifa = 1 andz; € c.
Intuitively, the states,.. is reached if the assignment to varialpjanakes the clause
ctrue;

- (¢, x4),a, (c,xiq1)) foralll <i <2nif a=0andz; € ¢, orifa =1andz; € ¢
(and we assume thét, z2,41) denotes,;). Intuitively, the states,..; is reached
if no literal in ¢ is set to true by the players.

The set of observations for Playeiis Oy = {init} U{z =0 |z € X} U{z =1 |
x € X}, and the observation function is defineddis; (¢, 21) = init for all clauses:
$Z:1 if$i,1 gC
z; = 0 otherwise
Intuitively, the Iplayer does not know which clause is monitored by ‘tidayer, but
knows the value assigned by thplayer to the universally quantified variables.

The correctness of this construction is established aewvisll First, assume that
dplayer has a sure winning strategyGh,. Since strategies are observation-based, the
action choice after a prefix of a playao(c, z1)a; . .. (¢, zx) is independent of and
depends only on the sequence of previous actions and okisesvahich provide the
value of variablesy, ..., z;_1 only. Therefore we can view the winning strategy as a
function that assigns to each existentially quantifiedalzle a value that depends on
the value of the variables quantified earlier in the formUlas function is a witness for
showing thatp holds, since the statg..; is avoided.

in ¢, andobs; (¢, ;) = for all clauses: in ¢, and alll < ¢ < n.



Conversely, ifp holds, then there is a strategy to assign a value to the ekt
quantified variables given the value of the variables qtiadtiearlier in the formula,
from which it is easy to construct a winning strategydn to reachs,...

Thus PSPACE-completeness follows for one-sided parbiakovation games for
sure winning. Since sure, almost-sure, and limit-sure migrcoincide for acyclic
games, and for sure winning partial-observation games@®rwith one-sided partial-
observation games (Lemma 3), the PSPACE-completenest floe gualitative analy-
sis problems follow.

Theorem 6 (Complexity of acyclic games)The sure, almost-sure, and limit-sure win-
ning problems for acyclic games of partial observation ané-sided partial observa-
tion with all parity objectives are PSPACE-complete.
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