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Abstract. We consider two-player zero-sum games on graphs. On the basis of
the information available to the players these games can be classified as follows:
(a) partial-observation (both players have partial view ofthe game); (b) one-sided
partial-observation (one player has partial-observationand the other player has
complete-observation); and (c) complete-observation (both players have com-
plete view of the game). We survey the complexity results forthe problem of de-
ciding the winner in various classes of partial-observation games withω-regular
winning conditions specified as parity objectives. We present a reduction from
the class of parity objectives that depend on sequence of states of the game to the
sub-class of parity objectives that only depend on the sequence of observations.
We also establish that partial-observation acyclic games are PSPACE-complete.

1 Introduction

Games on graphs.Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In par-
ticular, when the vertices and edges of a graph represent thestates and transitions of a
reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [5, 21, 20, 18]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [13], and com-
patibility checking [9] of reactive systems. Games played on graphs are dynamic games
that proceed for an infinite number of rounds. In each round, the players choose moves
which, together with the current state, determine the successor state. An outcome of the
game, called aplay, consists of the infinite sequence of states that are visited.

Strategies and objectives.A strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can be classified as follows:pure
strategies, which always deterministically choose a move to extend the play, andran-
domizedstrategies, which may choose at a state a probability distribution over the avail-
able moves. Objectives are generally Borel measurable functions [17]: the objective for
a player is a Borel setB in the Cantor topology onSω (whereS is the set of states), and
the player satisfies the objective iff the outcome of the gameis a member ofB. In verifi-
cation, objectives are usuallyω-regular languages. Theω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of the
Borel hierarchy (they lie inΣ3 ∩Π3) and they form a robust and expressive language
for determining payoffs for commonly used specifications. We consider parity objec-
tives and its sub-classes that are canonical forms to express objectives in verification.



Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game. Accordingly, there are (a)partial-
observationgames, where each player only has a partial or incomplete view about the
state and the moves of the other player; (b)one-sided partial-observationgames, where
one player has partial knowledge and the other player has complete knowledge about
the state and moves of the other player; and (c)complete-observationgames, where
each player has complete knowledge of the game.

Analysis. The analysis of games can be classified asqualitativeandquantitativeanal-
ysis. The qualitative analysis consists of the following questions: given an objective
and a state of the game, (a) can Player 1 ensure the objective with certainty against
all strategies of Player 2 (sure winningproblem); (b) can Player 1 ensure the objective
with probability 1 against all strategies of Player 2 (almost-sure winningproblem); and
(c) can Player 1 ensure the objective with probability arbitrarily close to 1 against all
strategies of Player 2 (limit-sure winningproblem). Given an objective, a state of the
game, and a rational thresholdν, the quantitative analysis problem asks whether the
maximal probability with which Player 1 can ensure the objective against all Player 2
strategies is at leastν.

Organization. The paper is organized as follows: In Section 3 we show a new result
that presents a reduction of general parity objectives thatdepend on state sequences
to visible objectives that only depend on the sequence of observations(rather than
the sequence of states). In Section 4 we survey the complexity of solving the three
classes of partial-observation games with parity objectives and its sub-classes both for
qualitative and quantitative analysis. In Section 5 we showthat for the special case of
acyclicgames the qualitative analysis problem is PSPACE-completeboth for one-sided
partial-observation and partial-observation games. The PSPACE-completeness result
for acyclic games is in contrast to general games where the complexities are EXPTIME-
complete, 2EXPTIME-complete, and undecidable (dependingon the objective and the
specific qualitative analysis question).

2 Definitions

In this section we present the definition of partial-observation games and their sub-
classes, and the notions of strategies and objectives. Aprobability distributionon a
finite setA is a functionκ : A→ [0, 1] such that

∑

a∈A κ(a) = 1. We denote byD(A)
the set of probability distributions onA. We focus on partial-observation turn-based
games, where at each round one of the players is in charge of choosing the next action.

Partial-observation games.A partial-observation game(or simply agame) is a tuple
G = 〈S1 ∪ S2, A1, A2, δ1 ∪ δ2,O1,O2〉 with the following components:

1. (State space).S = S1 ∪ S2 is a finite set of states, whereS1 ∩ S2 = ∅ (i.e.,S1 and
S2 are disjoint), states inS1 are Player 1 states, and states inS2 are Player 2 states.

2. (Actions).Ai (i = 1, 2) is a finite set of actions for Playeri.
3. (Transition function).For i ∈ {1, 2}, the transition function for Playeri is the

functionδi : Si × Ai → S3−i that maps a statesi ∈ Si, and actionai ∈ Ai to the
successor stateδi(si, ai) ∈ S3−i (i.e., games are alternating).



4. (Observations).Oi ⊆ 2Si (i = 1, 2) is a finite set of observations for Playeri that
partition the state spaceSi. These partitions uniquely define functionsobsi : Si →
Oi (i = 1, 2) that map each Playeri state to its observation such thats ∈ obsi(s)
for all s ∈ Si.

Special cases.We consider the following special cases of partial-observation games,
obtained by restrictions in the observations:

– (Observation restriction).The games withone-sided partial-observationare the
special case of games whereO2 = {{s} | s ∈ S2} (Player 2 has complete
observation), i.e., only Player 1 has partial-observation. The games of complete-
observationare the special case of games whereO1 = {{s} | s ∈ S1} and
O2 = {{s} | s ∈ S2}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has completeobservation we omit
the corresponding observation sets from the description ofthe game.

Classes of game graphs.We use the following abbreviations:Pa for partial-observation,
Os for one-sided complete-observation,Co for complete-observation. ForC ∈
{Pa, Os, Co}, we denote byGC the set of allC games. Note that the following
strict inclusions hold: partial-observation (Pa) is more general than one-sided partial-
observation (Os) andOs is more general than complete-observation (Co).

Plays. In a game, in each turn, fori ∈ {1, 2}, if the current states is in Si, then
Playeri chooses an actiona ∈ Ai, and the successor state isδi(s, a). A play in G is
an infinite sequence of states and actionsρ = s0a0s1a1 . . . such that for allj ≥ 0, if
sj ∈ Si, for i ∈ {1, 2}, then there existsaj ∈ Ai such thatδi(sj , aj) = sj+1. The
prefix up tosn of the playρ is denoted byρ(n), its length is |ρ(n)| = n + 1 and its
last elementis Last(ρ(n)) = sn. The set of plays inG is denoted byPlays(G), and
the set of corresponding finite prefixes is denotedPrefs(G). For i ∈ {1, 2}, we denote
by Prefsi(G) the set of finite prefixes inG that end in a state inSi. Theobservation
sequenceof ρ = s0a0s1a1 . . . for Playeri (i = 1, 2) is the unique infinite sequence of
observations and actions of Playeri, i.e.,obsi(ρ) ∈ (OiAi)

ω defined as follows: (i) if
s0 ∈ Si, thenobsi(ρ) = o0a0o2a2o4 . . . such thatsj ∈ oj for all evenj ≥ 0; (ii) if
s0 ∈ S3−i, thenobsi(ρ) = o1a1o3a3o5 . . . such thatsj ∈ oj for all odd j ≥ 1. The
observation sequence for finite sequences (prefix of plays) is defined analogously.

Strategies.A pure strategyin G for Player1 is a functionσ : Prefs1(G) → A1. A
randomized strategyin G for Player1 is a functionσ : Prefs1(G) → D(A1). A (pure
or randomized) strategyσ for Player1 is observation-basedif for all prefixesρ, ρ′ ∈
Prefs(G), if obs1(ρ) = obs1(ρ

′), thenσ(ρ) = σ(ρ′). We omit analogous definitions
of strategies for Player2. We denote byΣG, ΣO

G , ΣP
G , ΠG, ΠO

G andΠP
G the set of all

Player-1 strategies inG, the set of all observation-based Player-1 strategies, the set of all
pure Player-1 strategies, the set of all Player-2 strategies inG, the set of all observation-
based Player-2 strategies, and the set of all pure Player-2 strategies, respectively. Note
that if Player1 has complete observation, thenΣO

G = ΣG.

Objectives.An objectivefor Player1 in G is a setφ ⊆ Sω of infinite sequences of states.
A play ρ ∈ Plays(G) satisfiesthe objectiveφ, denotedρ |= φ, if ρ ∈ φ. Objectives are
generally Borel measurable: a Borel objective is a Borel setin the Cantor topology on
Sω [15]. We specifically considerω-regular objectives specified as parity objectives (a



canonical form to express allω-regular objectives [25]). For a playρ = s0a0s1a1 . . .

we denote byρk thek-th statesk of the play and denote byInf(ρ) the set of states that
occur infinitely often inρ, that is,Inf(ρ) = {s | sj = s for infinitely manyj’s}. We
consider the following classes of objectives.

1. Reachability and safety objectives.Given a setT ⊆ S of target states, thereacha-
bility objectiveReach(T ) requires that a state inT be visited at least once, that is,
Reach(T ) = {ρ | ∃k ≥ 0 · ρk ∈ T }. Dually, thesafetyobjectiveSafe(T ) requires
that only states inT be visited. Formally,Safe(T ) = {ρ | ∀k ≥ 0 · ρk ∈ T }.

2. Büchi and coB̈uchi objectives.TheBüchi objectiveBuchi(T ) requires that a state
in T be visited infinitely often, that is,Buchi(T ) = {ρ | Inf(ρ) ∩ T 6= ∅}. Dually,
thecoBüchiobjectivecoBuchi(T ) requires that only states inT be visited infinitely
often. Formally,coBuchi(T ) = {ρ | Inf(ρ) ⊆ T }

3. Parity objectives.Ford ∈ N, letp : S → {0, 1, . . . , d} be apriority function, which
maps each state to a nonnegative integer priority. Theparity objectiveParity(p) re-
quires that the minimum priority that occurs infinitely often be even. Formally,
Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. The Büchi and coBüchi objec-
tives are the special cases of parity objectives with two priorities,p : S → {0, 1}
andp : S → {1, 2}, respectively.

4. Visible objectives.We say that an objectiveφ is visiblefor Playeri if for all ρ, ρ′ ∈
Sω, if ρ |= φ andobsi(ρ) = obsi(ρ

′), thenρ′ |= φ. For example if the priority
function maps observations to priorities (i.e.,p : Oi → {0, 1, . . . , d}), then the
parity objective is visible for Playeri.

Outcomes.The outcomeof two randomized strategiesσ (for Player1) and π (for
Player2) from a states in G is the set of playsρ = s0s1 . . . ∈ Plays(G), with s0 = s,
where for allj ≥ 0, if sj ∈ S1 (resp.sj ∈ S2), then there exists an actionaj ∈ A1 (resp.
aj ∈ A2), such thatσ(ρ(j))(aj) > 0 (resp.π(ρ(j))(aj) > 0) andδ1(sj , aj) = sj+1

(resp.δ2(sj , aj) = sj+1). This set is denotedOutcome(G, s, σ, π). The outcome of
two pure strategies is defined analogously by viewing pure strategies as randomized
strategies that play their chosen action with probability one. Theoutcome setof the
pure (resp. randomized) strategyσ for Player1 in G is the setOutcome1(G, s, σ) of
playsρ such that there exists a pure (resp. randomized) strategyπ for Player2 with
ρ ∈ Outcome(G, s, σ, π). The outcome setOutcome2(G, s, π) for Player 2 is defined
symmetrically.

Sure winning, almost-sure winning, limit-sure winning andvalue function.An eventis a
measurable set of plays, and given strategiesσ andπ for the two players, the probabili-
ties of events are uniquely defined [26]. For a Borel objectiveφ, we denote byPrσ,π

s (φ)
the probability thatφ is satisfied by the play obtained from the starting states when the
strategiesσ andπ are used. Given a gameG, an objectiveφ, and a states, we consider
the following winning modes: (1) an observation-based strategyσ for Player 1 issure
winning for the objectiveφ from s if Outcome(G, s, σ, π) ⊆ φ for all observation-
based strategiesπ for Player2; (2) an observation-based strategyσ for Player1 is
almost-sure winningfor the objectiveφ from s if Prσ,π

s (φ) = 1 for all observation-
based strategiesπ for Player2; and (3) a family(σε)ε>0 of observation-based strate-
gies for Player1 is limit-sure winningfor the objectiveφ from s if Prσε,π

s (φ) ≥ 1 − ε,



for all ε > 0 and all observation-based strategiesπ for Player2. Thevalue function
〈〈1〉〉G

val
: S → R for objectiveφ for Player 1 assigns to every state the maximal proba-

bility with which Player 1 can guarantee the satisfaction ofφ with an observation-based
strategy, against all observation-based strategies for Player 2. Formally we have

〈〈1〉〉G
val

(φ)(s) = sup
σ∈ΣO

G

inf
π∈ΠO

G

Prσ,π
s (φ).

For ε ≥ 0, an observation-based strategy isε-optimal for φ from s if we have
infπ∈ΠO

G

Prσ,π
s (φ) ≥ 〈〈1〉〉G

val
(φ)(s) − ε. An optimal strategy is a0-optimal strategy.

Given a rational value0 ≤ ν ≤ 1 and a states, the value decision problemasks
whether the value of the game ats is at leastν. The qualitative analysis consists of the
sure, almost-sure and limit-sure winning problems, and thequantitative analysis is the
value decision problem.

3 Reduction of Objectives to Visible Objectives

The complexity lower bounds in this paper are given for visible objectives, while upper
bounds are given for general objectives. In [23, 7], algorithms based on a subset con-
struction are given for visible objective, establishing upper bounds (namely EXPTIME)
for visible objectives only.

We show that games with general parity objectives can be reduced to games with
visible parity objective with an exponential blow-up. However, this blow-up has no im-
pact on the complexity upper bounds because from a gameG, the reduction constructs
a gameG′ as the product ofG with an exponentially large automatonM , such that the
further subset construction of [7] applied toG′ induces an exponential blow-up only
with respect toG (the subset construction forG′ has sizeO(2|G| · |M |) = O(2|G| ·2|G|)
which is simply exponential). This is becauseM is a deterministic automaton.

We give the idea of the construction. Assume that we have a game G with parity
objective given by the priority functionp : S → {0, 1, . . . , d}. We construct a game
G′ with visible objective as a productG × M whereM is a finite automaton with
parity condition that “synchronizes” withG on observations and actions of Player1.
We constructM as the complement of the automatonM ′ that we define as follows.

The automatonM ′ has state spaceS1 and alphabetΣ = O1 × A1 that accepts the
observations of the plays that are losing for Player1. An observation sequence is losing
if it is the observation of a losing play. The initial state ofM ′ is the initial state of the
game (we assume w.l.o.g that the game starts in a Player 1 state). The transitions of
M ′ are(s, (obs1(s), a), s′′) for all s, s′′ ∈ S1 anda ∈ A1 such thatδ1(s, a) = s′ and
δ2(s

′, b) = s′′ for somes′ ∈ S2 andb ∈ A2. The priority assigned to this transition is
1+min{p(s), p(s′)}. Note thatM ′ has at most one run over each infinite word, and that
a run inM ′ corresponds to a play inG. The language ofM ′ is the set of infinite words
overΣ = O1 × A1 that have a run inM ′ in which the least priority visited infinitely
often is even, i.e. such that the least priority (according to p) visited infinitely often is
odd (and thus the corresponding run violates the winning condition of the gameG).
By complementingM ′, we get an exponentially larger automatonM that accepts the
winning observation sequences [24]. We can assume thatM is deterministic and that



the states rather than the transitions are labeled by priorities and letters. The gameG′

is obtained by a synchronized product ofG andM in which Player1 can see the state
of M (i.e., the observation of a state(s, u) wheres is a state ofG andu is a state ofM
is (obs1(s), u)). The priority of a state(s, u) depends only onu and therefore defines
a visible parity objective. Transitions inG andM are synchronized on the obervations
and actions of Player 1.

Note that for reachability and safety objectives, there exists a reduction to a visible
objective in polynomial time. First, we can assume that the target statesT defining the
objective are sink states (because onceT is reached, the winner of the game is fixed).
Second, we make the sink states visible, which makes the objective vissible, and does
not change the winner of the game (observing the sink states is of no help since the
game is over when this happens).

Theorem 1. Given a gameG ∈ GOs with parity objective, one can construct a game
G′ as a product ofG with an exponentially large automatonM with a visible parity
objective such that the following assertions hold:

1. G andG′ have the same answer to the sure winning problem; and
2. the sure winning problem forG′ can be solved in time exponential in the size ofG.

4 Complexity of Partial-Observation Parity Games

In this section we present a complete picture of the complexity results for the three
different classes of partial-observation games, with different classes of parity objectives,
both for qualitative and quantitative analysis.

4.1 Complexity of sure winning

We first show that for sure winning, pure strategies are sufficient for all partial-
observation games.

Lemma 1 (Pure strategies suffice for sure winning).For all gamesG ∈ GPa and
all objectivesφ, if there is a sure winning strategy, then there is a pure surewinning
strategy.

Proof. Consider a randomized strategyσ for Player1, let σP be the pure strategy such
that for all ρ ∈ Prefs1(G), the strategyσP (ρ) chooses an action fromSupp(σ(ρ)).
Then for alls we haveOutcome1(G, s, σP ) ⊆ Outcome1(G, s, σ), and thus, ifσ is
sure winning, then so isσP . The result also holds for observation-based strategies.

Spoiling strategies.To spoil a strategy of Player1 (for sure-winning), Player2 does not
need the full memory of the history of the play, but only needscounting strategies [7].
We say that a pure strategyπ : Prefs2(G) → A2 for Player2 is countingif for all
prefixesρ, ρ′ ∈ Prefs2(G) such that|ρ| = |ρ′| andLast(ρ) = Last(ρ′), we haveπ(ρ) =
π(ρ′). Let ΠC

G be the set of counting strategies for Player2. The memory needed by
a counting strategy is only the number of turns that have beenplayed. This type of
strategy is sufficient to spoil the non-winning strategies of Player1.



Lemma 2 (Counting spoiling strategies suffice).Let G be a partial-observation
game andφ be an objective. There exists a pure observation-based strategyσo ∈ ΣO

G

such that for allπo ∈ ΠO
G we haveOutcome(G, s, σo, πo) ∈ φ if and only if there

exists a pure observation-based strategyσo ∈ ΣO
G such that for all counting strategies

πc ∈ ΠC
G we haveOutcome(G, s, σo, πc) ∈ φ.

Proof. We prove the equivalent statement that: for all pure observation-based strate-
gies σo ∈ ΣO

G there existsπo ∈ ΠO
G such thatOutcome(G, s, σo, πo) ( φ iff

for all pure observation-based strategiesσo ∈ ΣO
G there existsπc ∈ ΠC

G such
that Outcome(G, s, σo, πc) ( φ. The right implication(←) is trivial. For the left
implication (→), let σo ∈ ΣO

G be an arbitrary pure observation-based strategy for
Player1 in G. Let πo ∈ ΠO

G be a strategy for Player2 such that there existsρ∗ ∈
Outcome(G, s, σo, πo) andρ∗ 6∈ φ. Let ρ∗ = s0a0s1a1 . . . an−1snan . . . and define
a counting strategyπc for Player2 such that for allρ ∈ Prefs2(G) if Last(ρ) = sn−1

for n = |ρ|, thenπc(ρ) = sn, and otherwiseπc(ρ) is fixed arbitrarily. Clearly,πc is
a counting strategy and we haveρ∗ ∈ Outcome(G, s, σo, πo). Hence it follows that
Outcome(G, s, σo, πc) ( φ, and we obtain the desired result.

Sure winning coincide for Pa and Os games.For all O2 partitions of a partial-
observation game, a counting strategy is an observation-based strategy. From Lemma 1
it follows that pure strategies suffice for sure winning, andLemma 2 shows that counting
strategies suffice for spoiling pure strategies. Hence it follows that for spoiling strate-
gies in sure winning games, the observation for Player 2 doesnot matter, and hence for
sure winning,Pa andOs games coincide.

Lemma 3. For a partial-observation gameG = 〈S1 ∪ S2, A1, A2, δ1 ∪ δ2,O1,O2〉
with an objectiveφ, consider the one-sided partial-observation gameG′ = 〈S1 ∪
S2, A1, A2, δ1 ∪ δ2,O1,O′

2〉 such thatO′
2 = {{s} | s ∈ S2}. The answer to the sure

winning questions inG andG′ coincide for objectiveφ.

Complexity of sure winning. The results for complete-observation games are as fol-
lows: (1) safety and reachability objectives can be solved in linear-time (this is alter-
nating reachability in AND-OR graphs) [14]; (2) Büchi and coBüchi objectives can
be solved in quadratic time [25]; and (3) parity objectives lie in NP∩ coNP [10] and
no polynomial time algorithm is known. The results for one-sided partial-observation
games are as follows: (1) the EXPTIME-completeness for reachability objectives fol-
lows from the results of [22]; (2) the EXPTIME-completenessfor safety objectives
follows from the results of [4]; and (3) the EXPTIME-upper bound for all parity objec-
tive follows from the results of [7] and hence it follows thatfor all Büchi, coBüchi and
parity objectives we have EXPTIME-complete bound. From Lemma 3 the results fol-
low for partial-observation games. The results are summarized in the following theorem
and shown in Table 1.

Theorem 2 (Complexity of sure winning).The following assertions hold:

1. The sure winning problem for complete-observation games(i) with reachability
and safety objectives can be solved in linear time; (ii) withBüchi and coB̈uchi
objectives can be solved in quadratic time; and (iii) with parity objectives is in NP
∩ coNP.



Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-complete EXPTIME-complete

Reachability Linear-time EXPTIME-complete EXPTIME-complete
Büchi Quadratic-time EXPTIME-complete EXPTIME-complete

coBüchi Quadratic-time EXPTIME-complete EXPTIME-complete
Parity NP∩ coNP EXPTIME-complete EXPTIME-complete

Table 1.Complexity of sure winning.

Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-complete EXPTIME-complete

Reachability Linear-time EXPTIME-complete 2EXPTIME-complete
Büchi Quadratic-time EXPTIME-complete 2EXPTIME-complete

coBüchi Quadratic-time Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable

Table 2.Complexity of almost-sure winning.

2. The sure winning problem for partial-observation and one-sided partial-
observation games with reachability, safety, Büchi, coB̈uchi and parity objectives
are EXPTIME-complete.

4.2 Complexity of almost-sure winning

In contrast to sure winning (Lemma 1), for almost-sure winning, randomized strate-
gies are more powerful than pure strategies (for example see[7]) for one-sided partial-
observation games. The celebrated determinacy result of Martin [16] shows that for
complete-observation games either there is a sure winning strategy for Player 1, or
there is a pure strategy for Player 2 that ensures against allPlayer 1 strategies the ob-
jective is not satisfied. It follows that for complete-observation games, the almost-sure,
limit-sure winning, and value decision problems coincide with the sure winning prob-
lem. For safety objectives, the counter-examples are always finite prefixes, and it can
be shown that for a given observation-based strategy for Player 1 if there is a strategy
for Player 2 to produce a finite counter-example, then the finite counter-example is pro-
duced with some constant positive probability. It follows that for partial-observation
games and one-sided partial-observation games with safetyobjectives, the almost-sure
and the limit-sure winning problems coincide with the sure winning problem.

Lemma 4. The following assertions hold:

1. For complete-observation games, the almost-sure, limit-sure winning, and value
decision problems coincide with the sure winning problem.

2. For safety objectives, the almost-sure and the limit-sure winning problems coin-
cide with the sure winning problem for partial-observationand one-sided partial-
observation games.



Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-completeEXPTIME-complete

Reachability Linear-time Undecidable Undecidable
Büchi Quadratic-time Undecidable Undecidable

coBüchi Quadratic-time Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable

Table 3.Complexity of limit-sure winning.

Complexity of almost-sure winning. In view of Lemma 4 the almost-sure win-
ning analysis for complete-observation games with all classes of objectives follow
from Theorem 2. Similarly due to Lemma 4 the results for partial-observation games
and one-sided partial-observation games with safety objectives follow from Theo-
rem 2. The EXPTIME-completeness for almost-sure winning with reachability and
Büchi objectives for one-sided partial-observation games follows from [7]; and the
2EXPTIME-completeness for almost-sure winning with reachability and Büchi objec-
tives for partial-observation games follows from [3, 12]. The undecidability result for
almost-sure winning for coBüchi objectives for one-sidedpartial-observation games is
obtained as follows: (i) in [2] it was shown that for probabilistic automata with coBüchi
conditions, the problem of deciding if there exists a word that is accepted with prob-
ability 1 is undecidable and from this it follows that for one-sided partial-observation
games with probabilistic transitions, the problem of deciding the existence of a pure
observation-based almost-sure winning strategy is undecidable; (ii) it was shown in [6]
that probabilistic transitions can be removed from the gamegraph, and the problem
remains undecidable under randomized observation-based strategies. The undecidabil-
ity for the more general parity objectives, and partial-observation games follows. This
gives us the results for almost-sure winning, and they are summarized in the theorem
below (see also Table 2).

Theorem 3 (Complexity of almost-sure winning).The following assertions hold:

1. The almost-sure winning problem for one-sided partial-observation games (i) with
safety, reachability and B̈uchi objectives are EXPTIME-complete, and (ii) is unde-
cidable for coB̈uchi and parity objectives.

2. The almost-sure winning problem for partial-observation games (i) with safety,
reachability and B̈uchi objectives are 2EXPTIME-complete, and (ii) is undecidable
for coBüchi and parity objectives.

4.3 Complexity of limit-sure winning and value decision problems

The complexity results for limit-sure winning and value decision problems are as fol-
lows.

Complexity of limit-sure winning. In view of Lemma 4 the results for (i) limit-sure
winning and value decision problem for complete-observation games with all classes



Complete-observation One-sided Partial-observation
Safety Linear-time Undecidable Undecidable

Reachability Linear-time Undecidable Undecidable
Büchi Quadratic-time Undecidable Undecidable

coBüchi Quadratic-time Undecidable Undecidable
Parity NP∩ coNP Undecidable Undecidable

Table 4.Complexity of value decision.

of objectives, and (ii) for partial-observation games and one-sided partial-observation
games with safety objectives with limit-sure winning, follow from Theorem 2. It fol-
lows from the results of [11] that the following question is undecidable for probabilistic
automata with reachability condition: for allε > 0 is there a wordwε that is accepted
with probability greater than1 − ε? It follows that for one-sided partial-information
games with probabilistic transitions, the problem of deciding the existence of a fam-
ily of pure observation-based limit-sure winning strategies is undecidable; and again
it follows from [6] that the problem is undecidable by removing probabilistic transi-
tions from the game graph, and also for randomized observation-based strategies. Since
(i) reachability objectives are special cases of Büchi, coBüchi and parity objectives, and
(ii) one-sided partial-observation games are special cases of partial-observation games,
the undecidability results for the more general cases follow. This gives us the results for
limit-sure winning, and they are summarized in the theorem below (see also Table 3).

Theorem 4 (Complexity of limit-sure winning). The following assertions hold:

1. The limit-sure winning problem for one-sided partial-observation games (i) with
safety objectives are EXPTIME-complete, and (ii) with reachability, Büchi,
coBüchi, and parity objectives are undecidable.

2. The limit-sure winning problem for partial-observationgames (i) with safety objec-
tives are EXPTIME-complete, and (ii) with reachability, Büchi, coB̈uchi, and parity
objectives are undecidable.

Complexity of the value decision problems.Since the limit-sure winning problem is
a special case of the value decision problem (withν = 1), the undecidability results for
all objectives other than safety objectives follow from Theorem 4. The undecidability
of the value decision problem for probabilistic safety automata was shown in [8], and
from [6] the undecidability follows for the value decision problem of one-sided partial-
observation games with safety objectives. We summarize theresults in Theorem 5 and
Table 4.

Theorem 5 (Complexity of value decision problems).The value decision problems
for partial-observation and one-sided partial-observation games with safety, reacha-
bility, Büchi, coB̈uchi, and parity objectives are undecidable.



5 The Complexity of Acyclic Games

We show that partial-observation games with reachability and safety objective played
on acyclic graphs are PSPACE-complete. Note that for such games, the notion of sure-
winning, almost-sure winning, and limit-sure winning coincide, and that randomized
strategies are no more powerful than pure strategies.

A partial-observation game isacyclic if there are two distinguished sink statessacc

andsrej (accepting and rejecting states) such that the transition relation is acyclic over
S \ {sacc, srej}. The objective isReach({sacc}) or equivalentlySafe(S \ {srej}).
Clearly the winner of an acyclic game is known after at most|S| rounds of playing. We
claim that the qualitative analysis of acyclic partial-observation games (with reachabil-
ity or safety objective) is PSPACE-complete. Since for acyclic games parity objectives
reduce to safety or reachability objectives, the PSPACE-completeness follows for all
parity objectives.

PSPACE upper bound.A PSPACE algorithm to solve acyclic games is as follows. Start-
ing from t0 = {s0}, we choose an actiona ∈ A1 and we check that Player1 is winning
from each sett1 = Posta(t0) ∩ o1 for eacho1 ∈ O1 wherePosta(t) = {s′′ | ∃s ∈
t, b ∈ A2 : δ2(δ1(s, a), b) = s′′}. For each observationo1 ∈ O1, we can reuse the space
used by previous checks. Since the number of rounds is at most|S1|, we can check if
Player1 is winning using a recursive procedure that tries out all choices of actions (the
stack remains bounded by a polynomial in|S1|).

PSPACE lower bound.We prove PSPACE-hardness using a reduction from QBF, which
is the problem of evaluating a quantified boolean formula andis known to be PSPACE-
complete [19]. A formula is defined over a finite setX of boolean variables, and is of
the formϕ ≡ Q1x1 . . . Qnxn

∧

i ci, whereQk ∈ {∃, ∀}, xk ∈ X (k = 1 . . . n) and
each clauseci is of the formu1 ∨ u2 ∨ u3 anduj are literals (i.e., either a variable
or the negation of a variable). We assume without loss of generality that all variables
occurring inϕ are quantified. Given a formulaϕ, we construct an acyclic gameGϕ and
statesI such that Player1 has a sure winning strategy inGϕ from sI if and only if the
formulaϕ is true.

The idea of the construction is as follows. Let us call Player1 the ∃player and
Player2 the∀player. In the gameGϕ, the∀player chooses a valuation of the universally
quantified variables, and the∃player chooses a valuation of the existentially quantified
variables. The choices are made in alternation, according to the structure of the formula.
Moreover, the∀player (secretly) chooses one clause that he will monitor. Since the
∃player does not know which clause is chosen by the∀player, she has to ensure that all
clauses are satisfied by her choice of valuation.

To be fair, when the∃player is asked to choose a value for an existentially quantified
variablex, the∀player should have announced the value he has chosen for the variables
that are quantified beforex in the formula. We use observations to simulate this.

Note that, having chosen a clause, the∀player has a unique clever choice of the
value of the universally quantified variables (namely such that the corresponding literals
in the clause are all false). Indeed, for any other choice, the clause would be satisfied no
matter the∃player’s choice, and there would be nothing to check.
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Fig. 1. Reduction of QBF to acyclic games forϕ = ∃x∀y ∃z ∀t (x ∨ ȳ ∨ t̄) ∧ . . . Circles are
states of∃player, boxes are states of∀player.

The reduction is illustrated in Fig.1. We formally describebelow the game
Gϕ. W.l.o.g. we assume that the quantifiers inϕ are alternating, i.e.ϕ is of the
form ∃x1∀x2 . . . ∃x2n−1∀x2n

∧

i ci. The set of actions inGϕ is A1 = A2 =
{0, 1} and the state space isS1 ∪ S2 ∪ {sacc, srej} where S1 = {(c, x) |
c is a clause inϕ andx is an existentially quantified variable} and S2 = {sI} ∪
{(c, x) | c is a clause inϕ andx is a universally quantified variable}. The transitions
are as follows, for each clausec of ϕ:

– (sI , a, (c, x1)) for eacha ∈ {0, 1}. Intuitively, Player2 initially chooses which
clause he will track;

– ((c, xi), a, sacc) for all 1 ≤ i ≤ 2n if a = 0 andx̄i ∈ c, or if a = 1 andxi ∈ c.
Intuitively, the statesacc is reached if the assignment to variablexi makes the clause
c true;

– ((c, xi), a, (c, xi+1)) for all 1 ≤ i ≤ 2n if a = 0 andx̄i 6∈ c, or if a = 1 andxi 6∈ c

(and we assume that(c, x2n+1) denotessrej). Intuitively, the statesrej is reached
if no literal in c is set to true by the players.

The set of observations for Player1 is O1 = {init} ∪ {x = 0 | x ∈ X} ∪ {x = 1 |
x ∈ X}, and the observation function is defined byobs1(c, x1) = init for all clausesc

in ϕ, andobs1(c, xi) =

{

xi = 1 if xi−1 6∈ c

xi = 0 otherwise
for all clausesc in ϕ, and all1 < i ≤ n.

Intuitively, the∃player does not know which clause is monitored by the∀player, but
knows the value assigned by the∀player to the universally quantified variables.

The correctness of this construction is established as follows. First, assume that
∃player has a sure winning strategy inGϕ. Since strategies are observation-based, the
action choice after a prefix of a playsIa0(c, x1)a1 . . . (c, xk) is independent ofc and
depends only on the sequence of previous actions and observations which provide the
value of variablesx1, . . . , xk−1 only. Therefore we can view the winning strategy as a
function that assigns to each existentially quantified variable a value that depends on
the value of the variables quantified earlier in the formula.This function is a witness for
showing thatϕ holds, since the statesrej is avoided.



Conversely, ifϕ holds, then there is a strategy to assign a value to the existentially
quantified variables given the value of the variables quantified earlier in the formula,
from which it is easy to construct a winning strategy inGϕ to reachsacc.

Thus PSPACE-completeness follows for one-sided partial-observation games for
sure winning. Since sure, almost-sure, and limit-sure winning coincide for acyclic
games, and for sure winning partial-observation games coincide with one-sided partial-
observation games (Lemma 3), the PSPACE-completeness for all the qualitative analy-
sis problems follow.

Theorem 6 (Complexity of acyclic games).The sure, almost-sure, and limit-sure win-
ning problems for acyclic games of partial observation and one-sided partial observa-
tion with all parity objectives are PSPACE-complete.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Journal of the
ACM, 49:672–713, 2002.
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