Presburger Arithmetic Reversal-Bounded Counter Machines

Stéphane Demri (demri@lsv.fr)

October 16th, 2015

Slides and lecture notes

http://www.lsv.fr/~demri/notes-de-cours.html

https://wikimpri.dptinfo.ens-cachan.fr/doku.
php?id=cours:c-2-9-1

Plan of the lecture

- Previous lecture :
 - Introduction to Presburger arithmetic.
 - Decidability and quantifier elimination.
 - Automata-based approach.

- Presburger sets are the semilinear sets.
- Application: Parikh image of regular languages.
- Introduction to reversal-bounded counter machines.
- Runs in normal form.

The previous lecture in 2 slides (1/2)

► First-order theory FO(N) on $\langle \mathbb{N}, \leq, + \rangle$: $\varphi ::= \top \mid \perp \mid t \leq t' \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi$

Presburger sets

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket \stackrel{\text{\tiny def}}{=} \{ \langle \mathfrak{v}(\mathsf{x}_1),\ldots,\mathfrak{v}(\mathsf{x}_n) \rangle \in \mathbb{N}^n : \mathfrak{v} \models \varphi \}$$

Quantifier-free fragment

$$\top \ | \perp | \ t \le t' \ | \ t \equiv_k t' \ | \ t = t' \ | \ t < t' \ | \ t \ge t' \ | \ t > t'$$

 The satisfiability problem for the quantifier-free fragment is NP-complete.

Previous lecture in 2 slides (2/2)

For every φ , there is a quantifier-free formula φ' such that

- 1. *free*(φ') \subseteq *free*(φ).
- 2. φ' is logically equivalent to φ .

3. φ' can be effectively built from φ .

- Presburger arithmetic is decidable.
- Alternative proof with the automata-based approach: "Presburger sets as regular languages of finite words"

Semilinear Sets

Formulae with one free variable

$$\varphi(\mathbf{x}) \stackrel{\text{\tiny def}}{=} (\mathbf{x} \neq \mathbf{1} \land \mathbf{x} \neq \mathbf{2}) \land (\mathbf{x} = \mathbf{0} \lor (\mathbf{x} \geq \mathbf{3} \land \exists \ \mathbf{y} \ (\mathbf{x} = \mathbf{3} + \mathbf{2y})))$$

 $\llbracket \varphi(\mathsf{x}) \rrbracket = \{\mathsf{0}\} \cup \{\mathsf{3} + \mathsf{2}n : n \ge \mathsf{0}\}$

After the value 3, every two value belongs to [[φ(x)]].

This can be generalized.

$$X \subseteq \mathbb{N}$$
 is ultimately periodic
 $\stackrel{\text{def}}{\rightleftharpoons}$
there exist $N \ge 0$ and $P \ge 1$ such that for all $n \ge N$, we have
 $n \in X$ iff $n + P \in X$.

Examples of ultimately periodic sets

- The set of even numbers is ultimately periodic (with N = 0 and P = 2).
- The set of odd numbers is ultimately periodic (with N = 1 and P = 2).
- $[x \equiv_k k']$ is ultimately periodic (with N = 0 and P = k).
- Ultimately periodic sets are closed under union, intersection and complementation.

Proof for complementation

- Suppose X is ultimately periodic and $\overline{X} = \mathbb{N} \setminus X$.
- The statements below are equivalent for $n \ge N$:
 - $n \in \overline{X}$,
 - $n \notin X$ (by definition of \overline{X}),
 - $n + P \notin X$ (X is ultimately periodic with parameters N and P),
 - $n + P \in \overline{X}$ (by definition of \overline{X}).
- ► X is ultimately periodic too and the same parameters N and P can be used.

Ultimately periodic sets *X* are Presburger sets

$$(\bigwedge_{k \in [0, N-1] \setminus X} \mathbf{x} \neq k) \land [(\bigvee_{k \in [0, N-1] \cap X} \mathbf{x} = k) \lor$$
$$((\mathbf{x} \ge N) \land (\exists \mathbf{y} \bigvee_{k \in [N, N+P-1] \cap X} (\mathbf{x} = k + P\mathbf{y})))]$$

It remains to show the converse result.

Semilinear sets of dimension 1

For every formula $\varphi(x)$ with a unique free variable x, $[\![\varphi]\!]$ is an ultimately periodic set.

- Formula $\varphi(x)$ with a unique free variable x.
- φ' : equivalent quantifier-free formula.
- φ' is a Boolean combination of atomic formulae of one of the forms below: ⊤, ⊥, x ≤ k, x ≡_k k'.
- Each atomic formula defines an ultimately periodic set and ultimately periodic sets are closed under union, intersection and complementation.

So
$$\llbracket \varphi' \rrbracket = \llbracket \varphi \rrbracket$$
 is ultimately periodic.

Semilinear sets

A linear set X is defined by a basis b ∈ N^d and a finite set of periods 𝔅 = {p₁,..., p_m} ⊆ N^d:

$$X = \{\mathbf{b} + \sum_{i=1}^{i=m} n_i \mathbf{p}_i : n_1, \dots, n_m \in \mathbb{N}\}$$

A linear set:

$$\left\{ \left(\begin{array}{c} \mathbf{3} \\ \mathbf{4} \end{array}\right) + i \times \left(\begin{array}{c} \mathbf{2} \\ \mathbf{5} \end{array}\right) + j \times \left(\begin{array}{c} \mathbf{4} \\ \mathbf{7} \end{array}\right) : i, j \in \mathbb{N} \right\}$$

- A semilinear set is a finite union of linear sets.
- Each semilinear set can be represented by a finite set of pairs of the form (b, P).

Ultimately periodic sets are semilinear sets

▶ Ultimately periodic set *X* with parameters *N* and *P*.

$$X = (\bigcup_{n \in [0, N-1] \cap X} \{n\}) \cup (\bigcup_{n \in [N, N+P-1] \cap X} \{n + \lambda P : \lambda \in \mathbb{N}\})$$

- $\{n\}$ is a linear set with no period.
- {n + λP : λ ∈ ℕ} is a linear set with basis n and unique period P.

The fundamental characterisation

[Ginsburg & Spanier, PJM 66]

- For every Presburger formula φ with d ≥ 1 free variables, [[φ]] is a semilinear subset of N^d.
- For every semilinear set $X \subseteq \mathbb{N}^d$, there is φ such that $X = \llbracket \varphi \rrbracket$.
- The class of semilinear sets are effectively closed under union, intersection, complementation and projection.
- ► For instance, $(X_1 = \llbracket \varphi_1 \rrbracket$ and $X_2 = \llbracket \varphi_2 \rrbracket$) imply $X_1 \cap X_2 = \llbracket \varphi_1 \land \varphi_2 \rrbracket$
- Presburger formula for

$$\left\{ \left(\begin{array}{c} 3\\4 \end{array}\right) + i \times \left(\begin{array}{c} 2\\5 \end{array}\right) + j \times \left(\begin{array}{c} 4\\7 \end{array}\right) : i, j \in \mathbb{N} \right\}$$
$$\exists y, y' \ (x_1 = 3 + 2y + 4y' \land x_2 = 4 + 5y + 7y')$$

$X = \{2^n : n \in \mathbb{N}\}$ is not a Presburger set

- ► Ad absurdum, suppose that X is semilinear.
- Since X is infinite, there are b ≥ 0 and p₁,..., p_m > 0 (m ≥ 1) such that

$$Y \stackrel{\text{\tiny def}}{=} \{ \mathbf{b} + \sum_{i=1}^{m} \lambda_i \mathbf{p}_i : \lambda_1, \dots, \lambda_m \in \mathbb{N} \} \subseteq X$$

- There exists $2^{\alpha} \in Y$ such that $\mathbf{p}_1 < 2^{\alpha}$.
- By definition of *Y*, we have $2^{\alpha} + \mathbf{p}_1 \in Y$.
- But, $2^{\alpha} < 2^{\alpha} + \mathbf{p}_1 < 2^{\alpha+1}$, contradiction.

$X = \{n^2 : n \in \mathbb{N}\}$ is not a Presburger set

► Ad absurdum, suppose that X is semilinear.

Since X is infinite, there are b ≥ 0 and p₁,..., p_m > 0 (m ≥ 1) such that

$$Z \stackrel{\text{\tiny def}}{=} \{ \mathbf{b} + \sum_{i=1}^m \lambda_i \mathbf{p}_i : \lambda_1, \dots, \lambda_m \in \mathbb{N} \} \subseteq X$$

- Let $N \in \mathbb{N}$ be such that $N^2 \in Z$ and $(2N + 1) > \mathbf{p}_1$.
- Since Z is a linear set, we also have $(N^2 + \mathbf{p}_1) \in Z$.

• However
$$(N + 1)^2 - N^2 = (2N + 1) > \mathbf{p}_1$$
.

• Hence $N^2 < N^2 + \mathbf{p}_1 < (N+1)^2$, contradiction.

A VASS weakly computing multiplication

Weak multiplication

$$\begin{cases} \left(\begin{array}{c} a \\ b \\ f \end{array} \right) \in \mathbb{N}^3 \ | \ \exists \left(\begin{array}{c} c \\ d \\ e \end{array} \right) \in \mathbb{N}^3, \ \langle q_0, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rangle \xrightarrow{*} \langle q_1, \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} \rangle \\ \end{cases} = \\ \left\{ \left(\begin{array}{c} n \\ m \\ p \\ \end{array} \right) \in \mathbb{N}^3 : p \le n \times m \right\}.$$

Weak multiplication in a VASS

Suppose there is *φ*(x₁,...,x₆) such that

$$\llbracket \varphi(\mathbf{x}_1, \dots, \mathbf{x}_6) \rrbracket = \{ \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} \mid \langle q_0, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rangle \xrightarrow{*} \langle q_1, \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} \rangle \}$$

▶ Formula $\psi(\mathbf{x})$ below verifies $\llbracket \psi(\mathbf{x}) \rrbracket = \{ n^2 \mid n \in \mathbb{N} \}$

$$\exists x_1, \dots, x_5 \varphi(x_1, \dots, x_5, x) \land x_1 = x_2 \land$$
$$\forall x' (x' > x) \Rightarrow \neg \exists x_3, x_4, x_5 \varphi(x_1, \dots, x_5, x')$$

Contradiction!

Parikh Image of Regular Languages

Parikh image

• $\Sigma = \{a_1, \ldots, a_k\}$ with ordering $a_1 < \cdots < a_k$.

► Parikh image of
$$u \in \Sigma^*$$
: $\begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{pmatrix} \in \mathbb{N}^k$ where each n_j is the number of occurrences of a_j in u .

• Parikh image of
$$a b a a b$$
 is $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

- Definition for Parikh image extends to languages.
- The Parikh image of any context-free language is semilinear. [Parikh, JACM 66]
- Effective computation from pushdown automata.

Bounded languages

• Language $L \subseteq \Sigma^*$ bounded $\stackrel{\text{def}}{\Leftrightarrow}$

$$L \subseteq u_1^* \cdots u_n^*$$

for some words u_1, \ldots, u_n in Σ^* .

L ⊆ Σ* is bounded and regular iff it is a finite union of languages of the form

$$u_0 v_1^* u_1 \cdots v_k^* u_k$$

 The Parikh images of bounded and regular languages are semilinear (i.e. Presburger sets).

Counting letters in bounded and regular languages

• Parikh image of $u_0 v_1^* u_1 \cdots v_k^* u_k$ is equal to

$$\{\mathbf{b} + \lambda_1 \mathbf{p}_1 + \cdots + \lambda_k \mathbf{p}_k : \lambda_1, \dots, \lambda_k \in \mathbb{N}\}\$$

with

$$\mathbf{b} = \Pi(u_0) + \cdots + \Pi(u_k),$$

•
$$\mathbf{p}_i = \Pi(\mathbf{v}_i)$$
 for every $i \in [1, k]$.

- Finite union of such languages handled by finite unions of linear sets.
- Then, contructing a Presburger formula for the Parikh image easily follows.

Underapproximation by bounded languages

► For every regular language L, there is a bounded and regular language L' such that

```
1. L' \subseteq L,
```

```
2. \Pi(L') = \Pi(L).
```

The proof consists in constructing effectively the bounded language L'.

•
$$\mathcal{A} = \langle \Sigma, Q, Q_0, \delta, F \rangle$$
 such that $Lan(\mathcal{A}) = L$.

► W.I.o.g., Q₀ ∩ F ≠ Ø (otherwise add ε to the bounded language).

Paths, simple loops and extended paths

- Path π: finite sequence of transitions corresponding to a path in the control graph of A.
- first(π) [resp. last(π)]: first [resp. last] state of a path π .
- $lab(\pi)$: label of π as a word of Σ^* .
- Simple loop sl: non-empty path that starts and ends by the same state and this is the only repeated state in it.
- "sl loops on its first state".
- Number of simple loops $\leq \operatorname{card}(\delta)^{\operatorname{card}(Q)}$.
- ► Arbitrary total linear ordering ≺ on simple loops.

Generalising the notion of path

- Encoding families of paths with extended paths.
- Extended path P:

$$\pi_0 S_1 \pi_1 \cdots S_\alpha \pi_\alpha$$

- 1. the S_i 's are non-empty sets of simple loops,
- 2. the π_i 's are non-empty paths,
- 3. if *S* occurs just before [resp. after] a path π , then all the simple loops in *S* loops on the first [resp. last] state of π .

Some more auxiliary notions

Skeleton of **P** is the path $\pi_0 \cdots \pi_\alpha$.

•
$$S = \{sl_1, \ldots, sl_m\}$$
 with $sl_1 \prec \cdots \prec sl_m$

$$e(S) \stackrel{\text{\tiny def}}{=} lab(sl_1)^+ \cdots lab(sl_m)^+$$

•
$$e(\mathbf{P}) \stackrel{\text{def}}{=} lab(\pi_0) \cdot e(S_1) \cdots e(S_\alpha) \cdot lab(\pi_\alpha).$$

► Lan(e): language defined by the regular expression e.

►
$$\operatorname{Lan}(\mathbf{P}) \stackrel{\text{\tiny def}}{=} \operatorname{Lan}(\boldsymbol{e}(\mathbf{P})).$$

When the first state occuring in the skeleton of P is in Q₀ and the last state is in F, then

$$\operatorname{Lan}(\boldsymbol{e}(\mathbf{P})) \subseteq \operatorname{Lan}(\mathcal{A})$$

Small extended path

- Small extended path:
 - 1. π_0 and π_α have at most 2 × card(*Q*) transitions,

2. $\pi_1, \ldots, \pi_{\alpha-1}$ have at most card(*Q*) transitions,

- 3. for each $q \in Q$, there is at most one set *S* containing simple loops on *q*.
- Length of the skeleton bounded by card(Q)(3 + card(Q)).
- The set of small extended paths is finite.

Example

Small extended path P

$$t_0 \cdot t_1 \cdot \{t_1, t_2\} \cdot t_3 \cdot \{t_4, t_5\} \cdot t_4 \cdot t_5 \cdot t_5$$

▶ Regular expression $e(\mathbf{P})$ (with $t_1 \prec t_2$ and $t_5 \prec t_4$)

$$a \cdot b \cdot b^+ \cdot c^+ \cdot b \cdot b^+ \cdot a^+ \cdot a \cdot b \cdot b$$

How to proceed from a given run ρ

- Sequence of accepting extended paths P₀, P₁, ..., P_β such that
 - all the P_i's are accepting extended paths,
 - P₀ is equal to p viewed as an extended path,
 - \mathbf{P}_{β} is a small and accepting extended path,
 - ▶ \mathbf{P}_{i+1} is obtained from \mathbf{P}_i by removing a simple loop while $\Pi(\operatorname{Lan}(\mathbf{P}_i)) \subseteq \Pi(\operatorname{Lan}(\mathbf{P}_{i+1}))$.
- At the end of this process,

 $\Pi(lab(\rho)) \in \Pi(Lan(\mathbf{P}_{\beta}))$ and $\Pi(Lan(\mathbf{P}_{\beta})) \subseteq \Pi(Lan(\mathcal{A}))$

From \mathbf{P}_i to \mathbf{P}_{i+1}

$$\mathbf{P}_i = \pi_0 \ S_1 \ \pi_1 \ \cdots \ S_\alpha \ \pi_\alpha$$

(a) $\alpha \leq \operatorname{card}(Q)$,

(b) each path in $\pi_1, \ldots, \pi_{\alpha-1}$ have length less than card(*Q*),

(c) each state has at most one S_i with simple loops on it.

 \mathbf{P}_0 verifies these conditions.

Three cases (1/2)

▶ **P***ⁱ* is a small extended path. We are done.

 \mathbf{P}_{i+1} is equal to:

$$\pi_{\mathbf{0}} \cdots S_{\gamma-1} \pi_{\gamma-1} (S_{\gamma} \cup \{sl\}) \cdots \pi_{\alpha-1} S_{\alpha} (\pi\pi')$$

Three cases (2/2)

• $\pi_{\alpha} = \pi \cdot \boldsymbol{sl} \cdot \pi'$ where

- 1. *sl* is a simple loop on q,
- 2. the first one occurring in $\pi \cdot sl$,
- **3**. $\pi\pi' \neq \varepsilon$,
- 4. no S_{γ} already contains simple loops on q.

 \mathbf{P}_{i+1} is equal to: $\pi_0 \cdots S_\alpha \pi \{ sl \} \pi'$.

- Three properties easy to prove:
 - 1. $\Pi(\operatorname{Lan}(\mathbf{P}_i)) \subseteq \Pi(\operatorname{Lan}(\mathbf{P}_{i+1})).$
 - 2. \mathbf{P}_{i+1} satisfies the three previous conditions.
 - **3**. Lan(\mathbf{P}_{i+1}) \subseteq Lan(\mathcal{A}).

Example

$$t_0 \cdot (t_1)^7 \cdot (t_2)^7 (t_1)^8 \cdot t_3 \cdot (t_4)^7 \cdot (t_5)^7 \cdot (t_4)^8$$

$$\mathbf{P}_{22} = t_0 \cdot \{t_1, t_2\} \cdot t_3 \cdot (t_4)^7 \cdot (t_5)^7 \cdot (t_4)^8.$$

$$\mathbf{P}_{38} = t_0 \cdot \{t_1, t_2\} \cdot t_3 \cdot \{t_4, t_5\} \cdot (t_4)^6.$$

▶ **P**₃₈ is a small extended path.

Time to conclude!

FSA A over a k-size alphabet Σ. One can compute a formula φ_A(x₁,...,x_k) in FO(ℕ) such that

 $\Pi(\operatorname{Lan}(\mathcal{A})) = \llbracket \varphi_{\mathcal{A}} \rrbracket$

- ► Lan(A) includes a bounded and regular language L with the same Parikh image.
- ► L can be computed by enumerating the regular expressions obtained from small and accepting extended paths and then check inclusion with Lan(A).
- Disjunction made of the formulae obtained for each bounded and regular language included in Lan(A).
- When Q₀ ∩ F ≠ Ø, we include a disjunct stating that all the values are equal to zero.

Presburger Counter Machines
Presburger counter machines (PCM)

• Presburger counter machine $\mathcal{M} = \langle Q, T, C \rangle$:

- *Q* is a nonempty finite set of control states.
- *C* is a finite set of counters $\{x_1, \ldots, x_d\}$ for some $d \ge 1$.
- ► $T = \text{finite set of transitions of the form } t = \langle q, \varphi, q' \rangle$ where $q, q' \in Q$ and φ is a Presburger formula with free variables $x_1, \ldots, x_d, x'_1, \ldots, x'_d$.

• Configuration $\langle \boldsymbol{q}, \boldsymbol{x} \rangle \in \boldsymbol{Q} \times \mathbb{N}^{\boldsymbol{d}}$.

Transition system $\mathfrak{T}(\mathcal{M})$ ► Transition system $\mathfrak{T}(\mathcal{M}) = \langle Q \times \mathbb{N}^d, \rightarrow \rangle$:

 $\langle \boldsymbol{q}, \mathbf{x} \rangle \rightarrow \langle \boldsymbol{q}', \mathbf{x}' \rangle \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \text{there is } t = \langle \boldsymbol{q}, \varphi, \boldsymbol{q}' \rangle \text{ s.t. } \mathfrak{v}[\overline{\mathbf{x}} \leftarrow \mathbf{x}, \overline{\mathbf{x}'} \leftarrow \mathbf{x}'] \models \varphi$

• $\stackrel{*}{\rightarrow}$: reflexive and transitive closure of \rightarrow .

Decision problems

Reachability problem:

Input: PCM $\mathcal{M}, \langle q_0, \mathbf{x}_0 \rangle$ and $\langle q_f, \mathbf{x}_f \rangle$. Question: $\langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

► Control state reachability problem: Input: PCM \mathcal{M} , $\langle q_0, \mathbf{x}_0 \rangle$ and q_f . Question: $\exists \mathbf{x}_f \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q_f, \mathbf{x}_f \rangle$?

 Control state repeated reachability problem: Input: PCM M, (q₀, x₀) and q_f. Question: is there an infinite run starting from (q₀, x₀) such that the control state q_f is repeated infinitely often?

Boundedness problem:

Input: PCM \mathcal{M} and $\langle q_0, \mathbf{x}_0 \rangle$. Question: is the set of configurations reachable from $\langle q_0, \mathbf{x}_0 \rangle$ finite?

What is Reversal-Boundedness?

Reversal-bounded counter machines

 Reversal: Alternation from nonincreasing mode to nondecreasing mode and vice-versa.

Sequence with 3 reversals:

0011223334444333322233344445555554

A run is *r*-reversal-bounded whenever the number of reversals of each counter is less or equal to *r*.

$$\begin{split} \varphi &= (\mathbf{x}_1 \geq 2 \land \mathbf{x}_2 \geq 1 \land (\mathbf{x}_2 + 1 \geq \mathbf{x}_1) \lor (\mathbf{x}_2 \geq 2 \land \mathbf{x}_1 \geq 1 \land \mathbf{x}_1 + 1 \geq \mathbf{x}_2) \\ \\ & [\![\varphi]\!] = \{ \mathbf{y} \in \mathbb{N}^2 : \langle q_1, \mathbf{0} \rangle \xrightarrow{*} \langle q_9, \mathbf{y} \rangle \} \end{split}$$

Presburger-definable reachability sets

Let ⟨M, ⟨q₀, x₀⟩⟩ be *r*-reversal-bounded for some *r* ≥ 0. For each control state *q*, the set

 $\boldsymbol{\textit{R}} = \{\boldsymbol{y} \in \mathbb{N}^{d}: \ \exists \ \mathrm{run} \ \langle \boldsymbol{\textit{q}}_0, \boldsymbol{x}_0 \rangle \xrightarrow{*} \langle \boldsymbol{\textit{q}}, \boldsymbol{y} \rangle \}$

is effectively semilinear [Ibarra, JACM 78].

- ► One can compute effectively a Presburger formula φ such that [[φ]] = R.
- The reachability problem with bounded number of reversals:

Input: PCM $\mathcal{M}, \langle q, \mathbf{x} \rangle, \langle q', \mathbf{x}' \rangle$ and $r \ge 0$. Question: Is there a run $\langle q, \mathbf{x} \rangle \xrightarrow{*} \langle q', \mathbf{x}' \rangle$ s.t. each counter performs during the run a number of reversals bounded by r?

The problem is decidable for a large class of counter machines.

Proof ideas

- Reachability relation of simple loops can be expressed in Presburger arithmetic.
- Runs can be normalized so that:
 - each simple loop is visited at most a doubly-exponential number of times,
 - the different simple loops are visited in a structured way.
- Parikh images of context-free languages are effectively semilinear. [Parikh, JACM 66]

The class of counter machines $\mathcal{M} = \langle Q, T, C \rangle$

- *Q* is a finite set of control states and $C = \{x_1, \ldots, x_d\}$.
- T is a finite set of transitions.
- ► Each transition is labelled by (g, a) where a ∈ Z^d (update) and g is a guard following

$$g ::= op \mid \perp \mid \ \mathrm{x} \sim k \mid \ g \wedge g \mid \ g \lor g \mid \ \neg g$$

where $x \in C$, $\sim \in \{\leq, \geq, =\}$ and $k \in \mathbb{N}$.

- Update functions are those for VASS.
- Guards are more general than those for Minsky machines.
- Minsky machines and VASS belong to this class.

Mode vectors – counter values for reversals –

From a run

$$\rho = \langle \boldsymbol{q}_0, \boldsymbol{x}_0 \rangle \xrightarrow{t_1} \langle \boldsymbol{q}_1, \boldsymbol{x}_1 \rangle, \dots$$

we define mode vectors $\mathfrak{md}_0, \mathfrak{md}_1, \ldots$ such that each $\mathfrak{md}_i \in \{INC, DEC\}^d$.

- ▶ By convention, $\mathfrak{m}\mathfrak{d}_0$ is the unique vector in $\{INC\}^d$.
- ► For all $j \ge 0$ and for all $i \in [1, d]$, we have 1. $\mathfrak{m}_{i+1}(i) \stackrel{\text{def}}{=} \mathfrak{m}_{i}(i)$ when $\mathbf{x}_{i}(i) = \mathbf{x}_{i+1}(i)$.

2.
$$\mathfrak{md}_{j+1}(i) \stackrel{\text{def}}{=} \text{INC}$$
 when $\mathbf{x}_{j+1}(i) - \mathbf{x}_j(i) > 0$.

3.
$$\mathfrak{md}_{j+1}(i) \stackrel{\text{def}}{=} \operatorname{DEC}$$
 when $\mathbf{x}_{j+1}(i) - \mathbf{x}_j(i) < \mathbf{0}$.

Number of reversals:

$$\textit{Rev}_i \stackrel{\text{\tiny def}}{=} \{j \in [0, |\rho| - 1] : \mathfrak{md}_j(i)
eq \mathfrak{md}_{j+1}(i)\}$$

Reversal-boundedness formally

- ► Run ρ is *r*-reversal-bounded with respect to $i \Leftrightarrow^{\text{def}} card(Rev_i) \leq r$.
- ▶ Run ρ is *r*-reversal-bounded $\stackrel{\text{def}}{\Leftrightarrow}$ for every $i \in [1, d]$, we have card(*Rev*_i) ≤ *r*.
- ► $\langle \mathcal{M}, \langle q, \mathbf{x} \rangle \rangle$ is *r*-reversal-bounded $\stackrel{\text{def}}{\Leftrightarrow}$ every run from $\langle q, \mathbf{x} \rangle$ is *r*-reversal-bounded.
- 〈ℳ, ⟨q, x⟩⟩ is reversal-bounded ⇔ there is some r ≥ 0 such that every run from ⟨q, x⟩ is r-reversal-bounded.

Semantical restriction

- M is uniformly reversal-bounded ⇔ there is r ≥ 0 such that for every initial configuration, the initialized counter machine is r-reversal-bounded.
- In the sequel, reversal-bounded counter machines come with a maximal number of reversals r ≥ 0.
- Reversal-boundedness is essentially a semantical restriction on the runs.
- Reversal-boundedness detection problem on VASS is EXPSPACE-complete (the bound r can be computed).
- Reversal-boundedness detection problem on Minsky machines is undecidable.

Structure of the forthcoming proof

- Design a notion of extended path for which no reversal occurs and satisfaction of the guards remains constant.
- Any finite *r*-reversal-bounded run can be generated by a small sequence of small such extended paths.
- Reachability relation generated by any extended path is definable in Presburger arithmetic.

Intervals

- $\mathcal{M} = \langle \boldsymbol{Q}, \boldsymbol{T}, \boldsymbol{C} \rangle$ with negation-free guards.
- AG: set of atomic guards of the form $x \sim k$ occurring in M.

•
$$\mathcal{K} = \{0 = k_1 < k_2 < \cdots < k_K\} \text{ and } K = \operatorname{card}(\mathcal{K}).$$

► \mathcal{I} : set of non-empty intervals { $[k_1, k_1], [k_1 + 1, k_2 - 1], [k_2, k_2], [k_2 + 1, k_3 - 1], [k_3, k_3], \dots, [k_K, k_K], [k_K + 1, +\infty)$ } \{ \emptyset }

• At most 2K intervals and at least K + 1 intervals.

Counter values symbolically

Linear ordering on I (for non-empty intervals):

 $[k_1, k_1] \leq [k_1 + 1, k_2 - 1] \leq [k_2, k_2] \leq [k_2 + 1, k_3 - 1] \leq [k_2, k_2] \leq \dots$ $\dots \leq [k_K, k_K] \leq [k_K + 1, +\infty)\}$

- Interval map $\mathfrak{im}: C \to \mathcal{I}$.
- Symbolic satisfaction relation im ⊢ g:

•
$$\operatorname{im} \vdash g_1 \lor g_2 \stackrel{\text{def}}{\Leftrightarrow} \operatorname{im} \vdash g_1 \text{ or } \operatorname{im} \vdash g_2.$$

• $\operatorname{im} \vdash g_1 \land g_2 \stackrel{\text{def}}{\Leftrightarrow} \operatorname{im} \vdash g_1 \text{ and } \operatorname{im} \vdash g_2.$
• $\operatorname{im} \vdash x = k \stackrel{\text{def}}{\Leftrightarrow} \operatorname{im}(x) = [k, k].$
• $\operatorname{im} \vdash x \ge k \stackrel{\text{def}}{\Leftrightarrow} \operatorname{im}(x) \subseteq [k, +\infty).$
• $\operatorname{im} \vdash x \le k \stackrel{\text{def}}{\Leftrightarrow} \operatorname{im}(x) \subseteq [0, k].$

Completeness

- Interval maps and guards are built over the same set of constants.
- im ⊢ g can be checked in polynomial time in the sum of the respective sizes of im and g.
- $\mathfrak{im} \vdash g$ iff for all $\mathfrak{f} : C \to \mathbb{N}$ and for all $x \in C$, we have $\mathfrak{f}(x) \in \mathfrak{im}(x)$ implies $\mathfrak{f} \models g$ (in Presburger arithmetic).

Guarded modes

 \blacktriangleright Guarded mode \mathfrak{gmd} is a pair $\langle\mathfrak{im},\mathfrak{md}\rangle$ where

im is an interval map,

▶ $\mathfrak{md} \in {INC, DEC}^d$.

►
$$t = q \xrightarrow{\langle g, \mathbf{a} \rangle} q'$$
 is compatible with $\mathfrak{gmd} \Leftrightarrow$
1. $\mathfrak{im} \vdash g$,

2. for every $i \in [1, d]$,

- ▶ m∂(i) = INC implies a(i) ≥ 0,
- ▶ mo(*i*) = DEC implies **a**(*i*) ≤ 0.

"Bis repetita placent"

• Path π is a sequence of transitions

$$q_1 \xrightarrow{\langle g_1, \mathbf{a}_1 \rangle} q'_1, \ldots, q_n \xrightarrow{\langle g_n, \mathbf{a}_n \rangle} q'_n$$

so that for every $i \in [1, n]$, we have $q'_i = q_{i+1}$.

- The effect of π is the update $\mathfrak{ef}(\pi) \stackrel{\text{def}}{=} \sum_{j} \mathbf{a}_{j} \in \mathbb{Z}^{d}$.
- Simple loop sl is a non-empty path that starts and ends by the same state and that's the only repeated state.
- Number of simple loops is $\leq \operatorname{card}(T)^{\operatorname{card}(Q)}$.
- ► Arbitrary total linear ordering ≺ on simple loops.

Values

- Scale sc(M): maximal absolute value among the updates
 a in M.
- If size of \mathcal{M} is N, then $\mathfrak{sc}(\mathcal{M}) \leq 2^N$.
- The effect ef(sl) of a simple loop *sl* is in

$$[-\operatorname{card}(Q)\mathfrak{sc}(\mathcal{M}),\operatorname{card}(Q)\mathfrak{sc}(\mathcal{M})]^d$$

► The number of effects from simple loops is bounded by $(1 + 2 \times card(Q)\mathfrak{sc}(\mathcal{M}))^d$

Extended path (bis)

Extended path P:

$$\pi_0 S_1 \pi_1 \cdots S_\alpha \pi_\alpha$$

- 1. the S_i 's are non-empty sets of simple loops,
- 2. the π_i 's are non-empty paths,
- if S occurs just before [resp. after] a path π, then all the simple loops in S loops on the first [resp. last] state of π.

Some more auxiliary notions

- ► A sequence of transitions is compatible with the guarded mode gm0 def all its transitions are compatible with gm0.
- Skeleton of **P** is the path $\pi_0 \cdots \pi_\alpha$.

•
$$S = \{sl_1, \ldots, sl_m\}$$
 with $sl_1 \prec \cdots \prec sl_m$

$$e(S) \stackrel{\text{\tiny def}}{=} (sl_1)^+ \cdots (sl_m)^+$$

(the underlying alphabet is T)

•
$$e(\mathbf{P}) \stackrel{\text{def}}{=} \pi_0 \cdot e(S_1) \cdots e(S_\alpha) \cdot \pi_\alpha.$$

► $\operatorname{Lan}(\mathbf{P}) \stackrel{\text{\tiny def}}{=} \operatorname{Lan}(\boldsymbol{e}(\mathbf{P})).$

► Run
$$\rho = \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{t_1} \cdots \xrightarrow{t_\ell} \langle q_\ell, \mathbf{x}_\ell \rangle$$
 respects **P** $\Leftrightarrow^{\text{def}} \pi = t_1 \cdots t_\ell \in \text{Lan}(\mathbf{P}).$

Global reversal phases (Intervals may change)

- Global reversal phase: finite sequence of transitions such that each transition in it is compatible with some guarded mode (im, m∂), for some mode m∂ ∈ {INC, DEC}^d.
- A run respecting a global reversal phase has no reversal for all the counters.
- *r*-reversal-bounded run $\rho = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_\ell, \mathbf{x}_\ell \rangle$.
 - ρ can be divided as a sequence of subruns $\rho = \rho_1 \cdot \rho_2 \cdots \rho_L$.
 - Each ρ_i respects a global reversal phase.
 - $L \leq (d \times r) + 1$.

Local reversal phases

- Local reversal phase: finite sequence of transitions such that each transition in it is compatible with some guarded mode (im, mo).
- A run respecting a local reversal phase has no reversals and the counter values satisfy the same atomic guards.
- *r*-reversal-bounded run $\rho = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_{\ell}, \mathbf{x}_{\ell} \rangle$.
 - ρ can be divided as a sequence $\rho = \rho_1 \cdot \rho_2 \cdots \rho_{L'}$.
 - Each ρ_i respects a local reversal phase.
 - $L' \leq ((d \times r) + 1) \times 2Kd.$

Proof idea (1/2)

- ρ can be divided in at most (d × r) + 1 subruns respecting a global reversal phase.
- ► We show that each such subrun can be divided in at most 2Kd subruns respecting a local guard phase.
- ▶ Binary relation \leq_a with $a \in \mathbb{Z}^d$ on interval maps.
- ▶ im $\leq_{\mathbf{a}}$ im' $\stackrel{\text{def}}{\Leftrightarrow}$ for every $i \in [1, d]$, ▶ im(x_i) ≤ im'(x_i) if $\mathbf{a}(i) \ge 0$,

•
$$\mathfrak{im}'(x_i) \leq \mathfrak{im}(x_i)$$
 if $\mathbf{a}(i) \leq 0$,

•
$$\mathfrak{im}'(\mathbf{x}_i) = \mathfrak{im}(\mathbf{x}_i)$$
 if $\mathbf{a}(i) = 0$.

• im
$$\prec_{\mathbf{a}}$$
 im': im $\preceq_{\mathbf{a}}$ im' and im \neq im'.

x agrees with im and $\mathbf{x}' + \mathbf{a}$ agrees with im' imply im $\leq_{\mathbf{a}} im'$

Proof idea (2/2)

- Number of interval maps in $\mathcal{O}(K^d)$.
- ▶ Let $\mathbf{a} \in \mathbb{Z}^d$ and $\mathfrak{im}_1 \prec_{\mathbf{a}} \mathfrak{im}_2 \prec_{\mathbf{a}} \cdots \prec_{\mathbf{a}} \mathfrak{im}_\beta$. Then, $\beta \leq 2Kd$.
- In a subrun respecting a global reversal phase, each counter is compared against at most K constants and all the counters have a monotonous behaviour.
- Each counter during the global reversal phase can visit at most 2K distinct intervals in I.
- ► Hence, the bound 2*Kd* for the maximal number of local reversal phases.

Sequences of extended paths

• $\mathbf{P}_1 \cdots \mathbf{P}_{L'}$ such that

- each P_i is an extended path compatible with some guarded mode,
- $\mathbf{P}_1 \cdots \mathbf{P}_{L'}$ is compatible with the control graph of \mathcal{M} .
- ► Any *r*-reversal-bounded run $\rho = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_{\ell}, \mathbf{x}_{\ell} \rangle$ respects a sequence of extended paths $\mathbf{P}_1 \cdots \mathbf{P}_{L'}$ with

$$L' \leq ((d \times r) + 1) \times 2Kd$$

Small extended path (bis)

Small extended path:

1. π_0 and π_α have at most 2 × card(*Q*) transitions,

2. $\pi_1, \ldots, \pi_{\alpha-1}$ have at most card(*Q*) transitions,

- for each *q* ∈ *Q*, there is at most one set *S* containing simple loops on *q*.
- Length of the skeleton bounded by card(Q)(3 + card(Q)).
- The set of small extended paths is finite.

Runs in normal form

- ► Run ρ = ⟨q₀, x₀⟩ · · · ⟨q_ℓ, x_ℓ⟩ respecting P compatible with some guarded mode gm∂.
- ▶ Then, there is small \mathbf{P}' still compatible with gmd and a run

$$\rho' = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_\ell, \mathbf{x}_\ell \rangle$$

such that ρ' respects **P**'.

 Generalization of the case for finite-state automata but with constraints on initial and final counter values.

Proof (1/9)

► Run $\rho = \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{t_1} \cdots \xrightarrow{t_{\ell}} \langle q_{\ell}, \mathbf{x}_{\ell} \rangle$ respecting **P** compatible with gmo.

•
$$\pi = t_1 \cdots t_\ell \in \operatorname{Lan}(\mathbf{P}).$$

- We build a small P' such that
 - P' is compatible with gmd,
 - there is a run ρ' respecting P' that starts and ends by the same configurations as ρ.

Proof (2/9)

We define a sequence of $\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_{\beta}$ such that

- Each P_i is compatible with gmd and there is a run ρ_i respecting P_i that starts and ends by the same configurations.
- \mathbf{P}_0 is equal to $t_1 \cdots t_\ell$ viewed as an extended path.
- \mathbf{P}_{β} is a small extended path.
- \mathbf{P}_{i+1} is obtained from \mathbf{P}_i
 - 1. by removing a simple loop on q and,
 - 2. possibly adding it to a set of simple loops *S* already in **P**_{*i*} or by creating one if none exists.

Proof (3/9): from P_i to P_{i+1} (bis)

$$\mathbf{P}_i = \pi_0 \ S_1 \ \pi_1 \ \cdots \ S_\alpha \ \pi_\alpha$$

(a) $\alpha \leq \operatorname{card}(Q)$,

(b) each path in $\pi_1, \ldots, \pi_{\alpha-1}$ have length less than card(*Q*),

(c) each state has at most one S_i with simple loops on it.

 \mathbf{P}_0 verifies these conditions.

Proof (4/9): three cases

P $_i$ is a small extended path. We are done.

•
$$\pi_{\alpha} = \pi \cdot s \cdot \pi'$$
 where

1. *sl* is a simple loop on *q*,

2.
$$\pi\pi' \neq \varepsilon$$
,

3. S_{γ} already contains simple loops on q.

 \mathbf{P}_{i+1} is equal to:

$$\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1} (S_{\gamma} \cup \{sl\}) \cdots \pi_{\alpha-1} S_{\alpha} (\pi\pi')$$

q.

$$\mathbf{P}_{i+1}$$
 is equal to: $\pi_0 \cdots S_\alpha \pi \{sl\} \pi'$.

Proof (5/9)

- It remains to show that there is a run ρ_{i+1} respecting P_{i+1} that starts by ⟨q₀, x₀⟩ and ends by ⟨q_ℓ, x_ℓ⟩.
- Satisfaction of the conditions (a)–(c) are by an easy verification.
- ► All the transitions in P_{i+1} are compatible with gm∂ (by construction).
- The counter values have a monotonous behaviour (increase or decrease) and the atomic guards are convex.

Let us treat the case 2

- Recapitulation.
 - ► Run ρ_i respecting \mathbf{P}_i , starting by $\langle q_0, \mathbf{x}_0 \rangle$ and ending by $\langle q_\ell, \mathbf{x}_\ell \rangle$.

$$\blacktriangleright \mathbf{P}_{i} = \pi_{0} S_{1} \pi_{1} \cdots S_{\alpha} (\pi \cdot s I \cdot \pi').$$

- $\blacktriangleright \mathbf{P}_{i+1} = \pi_0 \cdots S_{\gamma-1} \pi_{\gamma-1} (S_{\gamma} \cup \{sl\}) \cdots \pi_{\alpha-1} S_{\alpha} (\pi\pi').$
- ► $S_{\gamma} = S_{\gamma}^1 \uplus S_{\gamma}^2$ and for all $sl' \in S_{\gamma}^1$ [resp. $sl' \in S_{\gamma}^2$], we have $sl' \prec sl$ [resp. $sl \prec sl'$].
- ▶ As \mathbf{P}_i is compatible with $\mathfrak{gmd} = \langle \mathfrak{im}, \mathfrak{md} \rangle$, for $j \in [1, d]$:
 - $\mathfrak{md}(j) = INC$ implies that for all $\mathbf{x} \in \mathbb{N}^d$ in ρ_i , we get that $\mathbf{x}_0(j) \leq \mathbf{x}_\ell(j) \leq \mathbf{x}_\ell(j)$.
 - $\mathfrak{md}(j) = \text{DEC}$ implies that for all $\mathbf{x} \in \mathbb{N}^d$ in ρ_i , we get that $\mathbf{x}_{\ell}(j) \leq \mathbf{x}_0(j) \leq \mathbf{x}_0(j)$.

Proof (7/9)

- $\mathbf{y} \in \mathbb{N}^d$: penultimate vector of counter values in ρ .
- For all **x** ∈ N^d occurring in ρ_i until that occurrence of **y**, for every atomic guard x_i ∼ k in AG, equivalence between
 - 1. $\operatorname{im} \vdash x_j \sim k$, 2. $\mathbf{x}(j) \sim k$, 3. $\mathbf{x}_0(j) \sim k$, 4. $\mathbf{y}(j) \sim k$.

• Run ρ_i :

$$\rho_{i} = \underbrace{\overbrace{\rho_{1}^{\star}}^{\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1}} S_{\gamma}^{1}}_{\rho_{1}^{\star}} \underbrace{\underbrace{S_{\gamma}^{2} \pi_{\gamma} \cdots \pi_{\alpha-1} S_{\alpha} \pi}_{\rho_{2}^{\star}} \cdot \underbrace{S_{\gamma}^{\prime}}_{\rho_{3}^{\star}} \cdot \underbrace{\rho_{4}^{\star}}_{\rho_{4}^{\star}}$$

For each ρ^{*}_i, we write ⟨qⁱ₀, xⁱ₀⟩ [resp. ⟨qⁱ_f, xⁱ_f⟩] to denote its first [resp. last] configuration.

$$\rho_{i} = \overbrace{\rho_{1}^{\star}}^{\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1}} S_{\gamma}^{1} \cdot \overbrace{\rho_{2}^{\star}}^{S_{\gamma}^{2} \pi_{\gamma} \cdots \pi_{\alpha-1}} S_{\alpha} \pi}^{\pi_{\alpha} \pi} \cdot \overbrace{\rho_{3}^{\star}}^{SI} \cdot \overbrace{\rho_{4}^{\star}}^{\pi'}$$

- ► $\rho_3^{\star\star}$: sequence of configurations obtained from $\langle q_0^2, \mathbf{x}_0^2 \rangle$ by firing the transitions of the simple loop *sl*.
- ρ₂^{+tf(s/)}: sequence of configurations obtained from the last configuration of ρ₃^{**} by firing the sequence of transitions used for ρ₂^{*}.

$$\rho_{i+1} = \underbrace{\overbrace{\rho_1^{\star}}^{\pi_0 \cdots S_{\gamma-1}} \pi_{\gamma-1} S_{\gamma}^1}_{\rho_1^{\star}} \cdot \underbrace{\overbrace{\rho_3^{\star \star}}^{sl}}_{\rho_2^{\star}} \cdot \underbrace{\overbrace{\rho_2^{+\mathfrak{ef}(sl)}}^{\gamma \cdots \pi_{\alpha-1}} S_{\alpha} \pi}_{\rho_2^{+\mathfrak{ef}(sl)}} \cdot \underbrace{\rho_4^{\star}}_{\rho_4^{\star}}$$
Properties of ρ_{i+1}

- The sequence of configurations respects the updates on the transitions.
- It remains to show that transitions in ρ₃^{**} and in ρ₂^{+εf(sl)} can be fired by respecting the guards.
- Suppose that m∂(j) = INC for some j ∈ [1, d] and y in ρ₃^{**}:

$$\mathbf{x}_{0}(j) = \mathbf{x}_{0}^{1}(j) \le \mathbf{x}_{f}^{1}(j) = \mathbf{x}_{0}^{2}(j) \le \mathbf{y}(j) \le \mathbf{x}_{0}^{4}(j) \le \mathbf{x}_{f}^{4}(j) = \mathbf{x}_{\ell}(j)$$

- By convexity of the atomic guards x_j ∼ k in AG, y(j) ∼ k iff y'(j) ∼ k where y' is the corresponding vector of counter values in the run ρ₃^{*} (at the same position).
- So, $\rho_3^{\star\star}$ is indeed a run of \mathcal{M} respecting *sl*.
- Similary, $\rho_2^{+\mathfrak{ef}(s)}$ respects $S_{\gamma}^2 \pi_{\gamma} \cdots \pi_{\alpha-1} S_{\alpha} \pi$.

Time to wrap-up!

• $\rho = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_{\ell}, \mathbf{x}_{\ell} \rangle$ respecting **P** compatible with gmd. There exist a small **P**' compatible with gmd and $\rho' = \langle q_0, \mathbf{x}_0 \rangle \cdots \langle q_{\ell}, \mathbf{x}_{\ell} \rangle$ such that ρ' respects **P**'.

- Small sequence of extended paths:
 - 1. number of elements $\leq ((d \times r) + 1) \times 2Kd$,
 - 2. each extended path is small too.
- For any *r*-reversal-bounded run ρ, there is an *r*-reversal-bounded run ρ' between the same configurations that respects a small sequence of extended paths.

Content of the next lecture on November 6th

- Reachability sets are computable Presburger sets.
- Repeated reachability problems for reversal-bounded counter machines.
- Decidable and undecidable extensions.

- Show that the class of ultimately period sets is closed under union and intersection.
- Show that for every linear set there is an initialized 0-reversal-bounded counter machine whose reachability set is equal to it.