Presburger Arithmetic Reversal-Bounded Counter Machines

Stéphane Demri (demri@lsv.fr)

October 16th, 2015

Slides and lecture notes

http://www.lsv.fr/~demri/notes-de-cours.html
https://wikimpri.dptinfo.ens-cachan.fr/doku. php?id=cours:c-2-9-1

Plan of the lecture

- Previous lecture:
- Introduction to Presburger arithmetic.
- Decidability and quantifier elimination.
- Automata-based approach.
- Presburger sets are the semilinear sets.
- Application: Parikh image of regular languages.
- Introduction to reversal-bounded counter machines.
- Runs in normal form.

The previous lecture in 2 slides ($1 / 2$)

- First-order theory $\mathrm{FO}(\mathbb{N})$ on $\langle\mathbb{N}, \leq,+\rangle$:

$$
\varphi::=\top|\perp| t \leq t^{\prime}|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \exists \mathrm{x} \varphi \mid \forall \mathrm{x} \varphi
$$

- Presburger sets

$$
\llbracket \varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) \rrbracket \stackrel{\text { def }}{=}\left\{\left\langle\mathfrak{v}\left(\mathrm{x}_{1}\right), \ldots, \mathfrak{v}\left(\mathrm{x}_{n}\right)\right\rangle \in \mathbb{N}^{n}: \mathfrak{v} \models \varphi\right\}
$$

- Quantifier-free fragment

$$
\top|\perp| t \leq t^{\prime}\left|t \equiv_{k} t^{\prime}\right| t=t^{\prime}\left|t<t^{\prime}\right| t \geq t^{\prime} \mid t>t^{\prime}
$$

- The satisfiability problem for the quantifier-free fragment is NP-complete.

Previous lecture in 2 slides (2/2)

- For every φ, there is a quantifier-free formula φ^{\prime} such that

1. $\operatorname{free}\left(\varphi^{\prime}\right) \subseteq \operatorname{free}(\varphi)$.
2. φ^{\prime} is logically equivalent to φ.
3. φ^{\prime} can be effectively built from φ.

- Presburger arithmetic is decidable.
- Alternative proof with the automata-based approach:
"Presburger sets as regular languages of finite words"

Semilinear Sets

Formulae with one free variable

$$
\begin{gathered}
\varphi(x) \stackrel{\text { def }}{=}(x \neq 1 \wedge x \neq 2) \wedge(x=0 \vee(x \geq 3 \wedge \exists y(x=3+2 y))) \\
\llbracket \varphi(x) \rrbracket=\{0\} \cup\{3+2 n: n \geq 0\}
\end{gathered}
$$

- After the value 3 , every two value belongs to $\llbracket \varphi(\mathrm{x}) \rrbracket$.
- This can be generalized.
$X \subseteq \mathbb{N}$ is ultimately periodic

$$
\stackrel{\text { def }}{\stackrel{1}{g}}
$$

there exist $N \geq 0$ and $P \geq 1$ such that for all $n \geq N$, we have $n \in X$ iff $n+P \in X$.
N first values period of length P

Examples of ultimately periodic sets

- The set of even numbers is ultimately periodic (with $N=0$ and $P=2$).
- The set of odd numbers is ultimately periodic (with $N=1$ and $P=2$).
- $\llbracket \mathrm{x} \equiv{ }_{k} k^{\prime} \rrbracket$ is ultimately periodic (with $N=0$ and $P=k$).
- Ultimately periodic sets are closed under union, intersection and complementation.

Proof for complementation

- Suppose X is ultimately periodic and $\bar{X}=\mathbb{N} \backslash X$.
- The statements below are equivalent for $n \geq N$:
- $n \in \bar{X}$,
- $n \notin X$
(by definition of \bar{X}),
- $n+P \notin X$
(X is ultimately periodic with parameters N and P),
- $n+P \in \bar{X}$
(by definition of \bar{X}).
- \bar{X} is ultimately periodic too and the same parameters N and P can be used.

Ultimately periodic sets X are Presburger sets

$$
\begin{gathered}
\left(\bigwedge_{k \in[0, N-1] \wedge x} \mathrm{x} \neq k\right) \wedge\left[\left(\bigvee_{k \in[0, N-1] \cap x} \mathrm{x}=k\right) \vee\right. \\
\left.\left((\mathrm{x} \geq N) \wedge\left(\exists \mathrm{y} \bigvee_{k \in[N, N+P-1] \cap x}(\mathrm{x}=k+P \mathrm{y})\right)\right)\right]
\end{gathered}
$$

It remains to show the converse result.

Semilinear sets of dimension 1

For every formula $\varphi(\mathrm{x})$ with a unique free variable $\mathrm{x}, \llbracket \varphi \rrbracket$ is an ultimately periodic set.

- Formula $\varphi(\mathrm{x})$ with a unique free variable x .
- φ^{\prime} : equivalent quantifier-free formula.
- φ^{\prime} is a Boolean combination of atomic formulae of one of the forms below: $\mathrm{T}, \perp, \mathrm{x} \leq k, \mathrm{x} \equiv_{k} k^{\prime}$.
- Each atomic formula defines an ultimately periodic set and ultimately periodic sets are closed under union, intersection and complementation.
- So $\llbracket \varphi^{\prime} \rrbracket=\llbracket \varphi \rrbracket$ is ultimately periodic.

Semilinear sets

- A linear set X is defined by a basis $\mathbf{b} \in \mathbb{N}^{d}$ and a finite set of periods $\mathfrak{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right\} \subseteq \mathbb{N}^{d}$:

$$
X=\left\{\mathbf{b}+\sum_{i=1}^{i=m} n_{i} \mathbf{p}_{i}: n_{1}, \ldots, n_{m} \in \mathbb{N}\right\}
$$

- A linear set:

$$
\left\{\binom{3}{4}+i \times\binom{ 2}{5}+j \times\binom{ 4}{7}: i, j \in \mathbb{N}\right\}
$$

- A semilinear set is a finite union of linear sets.
- Each semilinear set can be represented by a finite set of pairs of the form $\langle\mathbf{b}, \mathfrak{P}\rangle$.

Ultimately periodic sets are semilinear sets

- Ultimately periodic set X with parameters N and P.

$$
X=\left(\bigcup_{n \in[0, N-1] \cap x}\{n\}\right) \cup\left(\bigcup_{n \in[N, N+P-1] \cap x}\{n+\lambda P: \lambda \in \mathbb{N}\}\right)
$$

- $\{n\}$ is a linear set with no period.
- $\{n+\lambda P: \lambda \in \mathbb{N}\}$ is a linear set with basis n and unique period P.

The fundamental characterisation

[Ginsburg \& Spanier, PJM 66]

- For every Presburger formula φ with $d \geq 1$ free variables, $\llbracket \varphi \rrbracket$ is a semilinear subset of \mathbb{N}^{d}.
- For every semilinear set $X \subseteq \mathbb{N}^{d}$, there is φ such that $X=\llbracket \varphi \rrbracket$.
- The class of semilinear sets are effectively closed under union, intersection, complementation and projection.
- For instance, $\left(X_{1}=\llbracket \varphi_{1} \rrbracket\right.$ and $\left.X_{2}=\llbracket \varphi_{2} \rrbracket\right)$ imply $X_{1} \cap X_{2}=\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket$
- Presburger formula for

$$
\begin{aligned}
& \left\{\binom{3}{4}+i \times\binom{ 2}{5}+j \times\binom{ 4}{7}: i, j \in \mathbb{N}\right\} \\
& \exists \mathrm{y}, \mathrm{y}^{\prime}\left(\mathrm{x}_{1}=3+2 \mathrm{y}+4 \mathrm{y}^{\prime} \wedge \mathrm{x}_{2}=4+5 \mathrm{y}+7 \mathrm{y}^{\prime}\right)
\end{aligned}
$$

$X=\left\{2^{n}: n \in \mathbb{N}\right\}$ is not a Presburger set

- Ad absurdum, suppose that X is semilinear.
- Since X is infinite, there are $\mathbf{b} \geq 0$ and $\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}>0$ ($m \geq 1$) such that

$$
Y \stackrel{\text { def }}{=}\left\{\mathbf{b}+\sum_{i=1}^{m} \lambda_{i} \mathbf{p}_{i}: \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}\right\} \subseteq X
$$

- There exists $2^{\alpha} \in Y$ such that $\mathbf{p}_{1}<2^{\alpha}$.
- By definition of Y, we have $2^{\alpha}+\mathbf{p}_{1} \in Y$.
- But, $2^{\alpha}<2^{\alpha}+\mathbf{p}_{1}<2^{\alpha+1}$, contradiction.

$X=\left\{n^{2}: n \in \mathbb{N}\right\}$ is not a Presburger set

- Ad absurdum, suppose that X is semilinear.
- Since X is infinite, there are $\mathbf{b} \geq 0$ and $\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}>0$ ($m \geq 1$) such that

$$
Z \stackrel{\text { def }}{=}\left\{\mathbf{b}+\sum_{i=1}^{m} \lambda_{i} \mathbf{p}_{i}: \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}\right\} \subseteq X
$$

- Let $N \in \mathbb{N}$ be such that $N^{2} \in Z$ and $(2 N+1)>\mathbf{p}_{1}$.
- Since Z is a linear set, we also have $\left(N^{2}+\mathbf{p}_{1}\right) \in Z$.
- However $(N+1)^{2}-N^{2}=(2 N+1)>\mathbf{p}_{1}$.
- Hence $N^{2}<N^{2}+\mathbf{p}_{1}<(N+1)^{2}$, contradiction.

A VASS weakly computing multiplication

Weak multiplication

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
a \\
b \\
f
\end{array}\right) \in \mathbb{N}^{3} \left\lvert\, \exists\left(\begin{array}{c}
c \\
d \\
e
\end{array}\right) \in \mathbb{N}^{3}\right.,\left\langle q_{0},\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right\rangle \xrightarrow{*}\left\langle q_{1},\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right)\right\rangle\right\}= \\
\left\{\left(\begin{array}{l}
n \\
m \\
p
\end{array}\right) \in \mathbb{N}^{3}: p \leq n \times m\right\} .
\end{gathered}
$$

Weak multiplication in a VASS

- Suppose there is $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}\right)$ such that

$$
\llbracket \varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}\right) \rrbracket=\left\{\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right) \left\lvert\,\left\langle q_{0},\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right\rangle \stackrel{*}{\rightarrow}\left\langle q_{1},\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right)\right\rangle\right.\right\}
$$

- Formula $\psi(\mathrm{x})$ below verifies $\llbracket \psi(\mathrm{x}) \rrbracket=\left\{n^{2} \mid n \in \mathbb{N}\right\}$

$$
\begin{gathered}
\exists x_{1}, \ldots, x_{5} \varphi\left(x_{1}, \ldots, x_{5}, x\right) \wedge x_{1}=x_{2} \wedge \\
\forall x^{\prime}\left(x^{\prime}>x\right) \Rightarrow \neg \exists x_{3}, x_{4}, x_{5} \varphi\left(x_{1}, \ldots, x_{5}, x^{\prime}\right)
\end{gathered}
$$

Contradiction!

Parikh Image of Regular Languages

Parikh image

- $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ with ordering $a_{1}<\cdots<a_{k}$.
- Parikh image of $u \in \Sigma^{*}:\left(\begin{array}{c}n_{1} \\ n_{2} \\ \vdots \\ n_{k}\end{array}\right) \in \mathbb{N}^{k}$ where each n_{j} is the number of occurrences of a_{j} in u.
- Parikh image of $a b a b$ is $\binom{3}{2}$.
- Definition for Parikh image extends to languages.
- The Parikh image of any context-free language is semilinear.
- Effective computation from pushdown automata.

Bounded languages

- Language $\mathrm{L} \subseteq \Sigma^{*}$ bounded $\stackrel{\text { def }}{\Rightarrow}$

$$
\mathrm{L} \subseteq u_{1}^{*} \cdots u_{n}^{*}
$$

for some words u_{1}, \ldots, u_{n} in Σ^{*}.

- $\mathrm{L} \subseteq \Sigma^{*}$ is bounded and regular iff it is a finite union of languages of the form

$$
u_{0} v_{1}^{*} u_{1} \cdots v_{k}^{*} u_{k}
$$

- The Parikh images of bounded and regular languages are semilinear (i.e. Presburger sets).

Counting letters in bounded and regular languages

- Parikh image of $u_{0} v_{1}^{*} u_{1} \cdots v_{k}^{*} u_{k}$ is equal to

$$
\left\{\mathbf{b}+\lambda_{1} \mathbf{p}_{1}+\cdots \lambda_{k} \mathbf{p}_{k}: \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{N}\right\}
$$

with

- $\mathbf{b}=\Pi\left(u_{0}\right)+\cdots+\Pi\left(u_{k}\right)$,
- $\mathbf{p}_{i}=\Pi\left(v_{i}\right)$ for every $i \in[1, k]$.
- Finite union of such languages handled by finite unions of linear sets.
- Then, contructing a Presburger formula for the Parikh image easily follows.

Underapproximation by bounded languages

- For every regular language L , there is a bounded and regular language L'such that

$$
\begin{aligned}
& \text { 1. } L^{\prime} \subseteq \mathrm{L} \\
& \text { 2. } \Pi\left(\mathrm{L}^{\prime}\right)=\Pi(\mathrm{L}) .
\end{aligned}
$$

- The proof consists in constructing effectively the bounded language L'.
- $\mathcal{A}=\left\langle\Sigma, Q, Q_{0}, \delta, F\right\rangle$ such that $\operatorname{Lan}(\mathcal{A})=\mathrm{L}$.
- W.l.o.g., $Q_{0} \cap F \neq \emptyset$ (otherwise add ε to the bounded language).

Paths, simple loops and extended paths

- Path π : finite sequence of transitions corresponding to a path in the control graph of \mathcal{A}.
- $\operatorname{first}(\pi)$ [resp. last $(\pi)]$: first [resp. last] state of a path π.
- lab (π) : label of π as a word of Σ^{*}.
- Simple loop sl: non-empty path that starts and ends by the same state and this is the only repeated state in it.
- "sl loops on its first state".
- Number of simple loops $\leq \operatorname{card}(\delta)^{\operatorname{card}(Q)}$.
- Arbitrary total linear ordering \prec on simple loops.

Generalising the notion of path

- Encoding families of paths with extended paths.
- Extended path P:

$$
\pi_{0} S_{1} \pi_{1} \cdots S_{\alpha} \pi_{\alpha}
$$

1. the S_{i} 's are non-empty sets of simple loops,
2. the π_{i} 's are non-empty paths,
3. if S occurs just before [resp. after] a path π, then all the simple loops in S loops on the first [resp. last] state of π.

Some more auxiliary notions

- Skeleton of \mathbf{P} is the path $\pi_{0} \cdots \pi_{\alpha}$.
- $S=\left\{s l_{1}, \ldots, s l_{m}\right\}$ with $s l_{1} \prec \cdots \prec s l_{m}$

$$
e(S) \stackrel{\text { def }}{=} \operatorname{lab}\left(s /_{1}\right)^{+} \ldots \operatorname{lab}\left(s s_{m}\right)^{+}
$$

- $e(\mathbf{P}) \stackrel{\text { dee }}{=} \operatorname{lab}\left(\pi_{0}\right) \cdot e\left(S_{1}\right) \cdots e\left(S_{\alpha}\right) \cdot \operatorname{lab}\left(\pi_{\alpha}\right)$.
- Lan(e): language defined by the regular expression e.
- $\operatorname{Lan}(\mathbf{P}) \stackrel{\text { def }}{=} \operatorname{Lan}(e(\mathbf{P}))$.
- When the first state occuring in the skeleton of \mathbf{P} is in Q_{0} and the last state is in F, then

$$
\operatorname{Lan}(e(\mathbf{P})) \subseteq \operatorname{Lan}(\mathcal{A})
$$

Small extended path

- Small extended path:

1. π_{0} and π_{α} have at most $2 \times \operatorname{card}(Q)$ transitions,
2. $\pi_{1}, \ldots, \pi_{\alpha-1}$ have at most $\operatorname{card}(Q)$ transitions,
3. for each $q \in Q$, there is at most one set S containing simple loops on q.

- Length of the skeleton bounded by $\operatorname{card}(Q)(3+\operatorname{card}(Q))$.
- The set of small extended paths is finite.

Example

- Small extended path \mathbf{P}

$$
t_{0} \cdot t_{1} \cdot\left\{t_{1}, t_{2}\right\} \cdot t_{3} \cdot\left\{t_{4}, t_{5}\right\} \cdot t_{4} \cdot t_{5} \cdot t_{5}
$$

- Regular expression $e(\mathbf{P})$ (with $t_{1} \prec t_{2}$ and $t_{5} \prec t_{4}$)

$$
a \cdot b \cdot b^{+} \cdot c^{+} \cdot b \cdot b^{+} \cdot a^{+} \cdot a \cdot b \cdot b
$$

How to proceed from a given run ρ

- Sequence of accepting extended paths $\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{\beta}$ such that
- all the \mathbf{P}_{i} 's are accepting extended paths,
- \mathbf{P}_{0} is equal to ρ viewed as an extended path,
- \mathbf{P}_{β} is a small and accepting extended path,
- \mathbf{P}_{i+1} is obtained from \mathbf{P}_{i} by removing a simple loop while $\Pi\left(\operatorname{Lan}\left(\mathbf{P}_{i}\right)\right) \subseteq \Pi\left(\operatorname{Lan}\left(\mathbf{P}_{i+1}\right)\right)$.
- At the end of this process,
$\Pi(\operatorname{lab}(\rho)) \in \Pi\left(\operatorname{Lan}\left(\mathbf{P}_{\beta}\right)\right) \quad$ and $\quad \Pi\left(\operatorname{Lan}\left(\mathbf{P}_{\beta}\right)\right) \subseteq \Pi(\operatorname{Lan}(\mathcal{A}))$

From \mathbf{P}_{i} to \mathbf{P}_{i+1}

$$
\mathbf{P}_{i}=\pi_{0} S_{1} \pi_{1} \cdots S_{\alpha} \pi_{\alpha}
$$

(a) $\alpha \leq \operatorname{card}(Q)$,
(b) each path in $\pi_{1}, \ldots, \pi_{\alpha-1}$ have length less than $\operatorname{card}(Q)$,
(c) each state has at most one S_{i} with simple loops on it.
\mathbf{P}_{0} verifies these conditions.

Three cases (1/2)

- \mathbf{P}_{i} is a small extended path. We are done.
- $\pi_{\alpha}=\pi \cdot s l \cdot \pi^{\prime}$ where

1. $s /$ is a simple loop on q,
2. $\pi \pi^{\prime} \neq \varepsilon$,
3. S_{γ} already contains simple loops on q.
\mathbf{P}_{i+1} is equal to:

$$
\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1}\left(S_{\gamma} \cup\{s /\}\right) \cdots \pi_{\alpha-1} S_{\alpha}\left(\pi \pi^{\prime}\right)
$$

Three cases (2/2)

- $\pi_{\alpha}=\pi \cdot s l \cdot \pi^{\prime}$ where

1. $s /$ is a simple loop on q,
2. the first one occurring in $\pi \cdot s /$,
3. $\pi \pi^{\prime} \neq \varepsilon$,
4. no S_{γ} already contains simple loops on q.
\mathbf{P}_{i+1} is equal to: $\pi_{0} \cdots S_{\alpha} \pi\{s /\} \pi^{\prime}$.

- Three properties easy to prove:

1. $\Pi\left(\operatorname{Lan}\left(\mathbf{P}_{i}\right)\right) \subseteq \Pi\left(\operatorname{Lan}\left(\mathbf{P}_{i+1}\right)\right)$.
2. \mathbf{P}_{i+1} satisfies the three previous conditions.
3. $\operatorname{Lan}\left(\mathbf{P}_{i+1}\right) \subseteq \operatorname{Lan}(\mathcal{A})$.

Example

$$
t_{0} \cdot\left(t_{1}\right)^{7} \cdot\left(t_{2}\right)^{7}\left(t_{1}\right)^{8} \cdot t_{3} \cdot\left(t_{4}\right)^{7} \cdot\left(t_{5}\right)^{7} \cdot\left(t_{4}\right)^{8}
$$

- $\mathbf{P}_{22}=t_{0} \cdot\left\{t_{1}, t_{2}\right\} \cdot t_{3} \cdot\left(t_{4}\right)^{7} \cdot\left(t_{5}\right)^{7} \cdot\left(t_{4}\right)^{8}$.
- $\mathbf{P}_{38}=t_{0} \cdot\left\{t_{1}, t_{2}\right\} \cdot t_{3} \cdot\left\{t_{4}, t_{5}\right\} \cdot\left(t_{4}\right)^{6}$.
- \mathbf{P}_{38} is a small extended path.

Time to conclude!

- FSA \mathcal{A} over a k-size alphabet Σ. One can compute a formula $\varphi_{\mathcal{A}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$ in $\mathrm{FO}(\mathbb{N})$ such that

$$
\Pi(\operatorname{Lan}(\mathcal{A}))=\llbracket \varphi_{\mathcal{A}} \rrbracket
$$

- Lan (\mathcal{A}) includes a bounded and regular language L with the same Parikh image.
- L can be computed by enumerating the regular expressions obtained from small and accepting extended paths and then check inclusion with $\operatorname{Lan}(\mathcal{A})$.
- Disjunction made of the formulae obtained for each bounded and regular language included in $\operatorname{Lan}(\mathcal{A})$.
- When $Q_{0} \cap F \neq \emptyset$, we include a disjunct stating that all the values are equal to zero.

Presburger Counter Machines

Presburger counter machines (PCM)

- Presburger counter machine $\mathcal{M}=\langle Q, T, C\rangle$:
- Q is a nonempty finite set of control states.
- C is a finite set of counters $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}\right\}$ for some $d \geq 1$.
- $T=$ finite set of transitions of the form $t=\left\langle q, \varphi, q^{\prime}\right\rangle$ where $q, q^{\prime} \in Q$ and φ is a Presburger formula with free variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{d}, \mathrm{x}_{1}^{\prime}, \ldots, \mathrm{x}_{d}^{\prime}$.

- Configuration $\langle q, \mathbf{x}\rangle \in Q \times \mathbb{N}^{d}$.

Transition system $\mathfrak{T}(\mathcal{M})$

- Transition system $\mathfrak{T}(\mathcal{M})=\left\langle Q \times \mathbb{N}^{d}, \rightarrow\right\rangle$:

$$
\langle q, \mathbf{x}\rangle \rightarrow\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle \stackrel{\text { def }}{\Leftrightarrow} \quad \text { there is } t=\left\langle q, \varphi, q^{\prime}\right\rangle \text { s.t. } \mathfrak{v}\left[\overline{\mathrm{x}} \leftarrow \mathbf{x}, \overline{\mathrm{x}^{\prime}} \leftarrow \mathbf{x}^{\prime}\right] \vDash \varphi
$$

$\rightarrow \xrightarrow{*}:$ reflexive and transitive closure of \rightarrow.

Decision problems

- Reachability problem:

Input: PCM $\mathcal{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and $\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$.
Question: $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

- Control state reachability problem:

Input: $\operatorname{PCM} \mathcal{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and q_{f}.
Question: $\exists \mathbf{x}_{f}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\left\langle q_{f}, \mathbf{x}_{f}\right\rangle$?

- Control state repeated reachability problem:

Input: PCM $\mathcal{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and q_{f}.
Question: is there an infinite run starting from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ such that the control state q_{f} is repeated infinitely often?

- Boundedness problem:

Input: PCM \mathcal{M} and $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$.
Question: is the set of configurations reachable from $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ finite?

What is Reversal-Boundedness?

Reversal-bounded counter machines

- Reversal: Alternation from nonincreasing mode to nondecreasing mode and vice-versa.
- Sequence with 3 reversals:

$$
0011223334444 \overline{3} 33222 \overline{3} 334444555555 \overline{4}
$$

- A run is r-reversal-bounded whenever the number of reversals of each counter is less or equal to r.

$\varphi=\left(\mathrm{x}_{1} \geq 2 \wedge \mathrm{x}_{2} \geq 1 \wedge\left(\mathrm{x}_{2}+1 \geq \mathrm{x}_{1}\right) \vee\left(\mathrm{x}_{2} \geq 2 \wedge \mathrm{x}_{1} \geq 1 \wedge \mathrm{x}_{1}+1 \geq \mathrm{x}_{2}\right)\right.$

$$
\llbracket \varphi \rrbracket=\left\{\mathbf{y} \in \mathbb{N}^{2}:\left\langle q_{1}, \mathbf{0}\right\rangle \xrightarrow{*}\left\langle q_{9}, \mathbf{y}\right\rangle\right\}
$$

Presburger-definable reachability sets

- Let $\left\langle\mathcal{M},\left\langle q_{0}, \mathbf{x}_{0}\right\rangle\right\rangle$ be r-reversal-bounded for some $r \geq 0$. For each control state q, the set

$$
R=\left\{\mathbf{y} \in \mathbb{N}^{d}: \exists \operatorname{run}\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{*}\langle q, \mathbf{y}\rangle\right\}
$$

is effectively semilinear [Ibarra, JACM 78].

- One can compute effectively a Presburger formula φ such that $\llbracket \varphi \rrbracket=R$.
- The reachability problem with bounded number of reversals:

Input: PCM $\mathcal{M},\langle q, \mathbf{x}\rangle,\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ and $r \geq 0$.
Question: Is there a run $\langle q, \mathbf{x}\rangle \xrightarrow{*}\left\langle q^{\prime}, \mathbf{x}^{\prime}\right\rangle$ s.t. each counter performs during the run a number of reversals bounded by r ?

- The problem is decidable for a large class of counter machines.

Proof ideas

- Reachability relation of simple loops can be expressed in Presburger arithmetic.
- Runs can be normalized so that:
- each simple loop is visited at most a doubly-exponential number of times,
- the different simple loops are visited in a structured way.
- Parikh images of context-free languages are effectively semilinear.
[Parikh, JACM 66]

The class of counter machines $\mathcal{M}=\langle Q, T, C\rangle$

- Q is a finite set of control states and $C=\left\{x_{1}, \ldots, x_{d}\right\}$.
- T is a finite set of transitions.
- Each transition is labelled by $\langle g, \mathbf{a}\rangle$ where $\mathbf{a} \in \mathbb{Z}^{d}$ (update) and g is a guard following

$$
g::=\top|\perp| x \sim k|g \wedge g| g \vee g \mid \neg g
$$

where $\mathrm{x} \in \mathcal{C}, \sim \in\{\leq, \geq,=\}$ and $k \in \mathbb{N}$.

- Update functions are those for VASS.
- Guards are more general than those for Minsky machines.
- Minsky machines and VASS belong to this class.

Mode vectors
 - counter values for reversals -

- From a run

$$
\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{t_{1}}\left\langle q_{1}, \mathbf{x}_{1}\right\rangle, \ldots
$$

we define mode vectors $\mathfrak{m d}_{0}, \mathfrak{m d}_{1}, \ldots$ such that each $\mathfrak{m o}_{i} \in\{\text { INC, DEC }\}^{d}$.

- By convention, $\mathfrak{m d} \mathfrak{d}_{0}$ is the unique vector in $\{\operatorname{INC}\}^{d}$.
- For all $j \geq 0$ and for all $i \in[1, d]$, we have

1. $\mathfrak{m d}_{j+1}(i) \stackrel{\text { def }}{=} \mathfrak{m d}_{j}(i)$ when $\mathbf{x}_{j}(i)=\mathbf{x}_{j+1}(i)$.
2. $\mathfrak{m o} \mathfrak{d}_{j+1}(i) \stackrel{\text { def }}{=}$ INC when $\mathbf{x}_{j+1}(i)-\mathbf{x}_{j}(i)>0$.
3. $\mathfrak{m d}_{j+1}(i) \stackrel{\text { def }}{=}$ DEC when $\mathbf{x}_{j+1}(i)-\mathbf{x}_{j}(i)<0$.

- Number of reversals:

$$
\operatorname{Rev}_{i} \stackrel{\text { def }}{=}\left\{j \in[0,|\rho|-1]: \mathfrak{m} \mathfrak{d}_{j}(i) \neq \mathfrak{m} \mathfrak{d}_{j+1}(i)\right\}
$$

Reversal-boundedness formally

- Run ρ is r-reversal-bounded with respect to $i \stackrel{\text { def }}{\Leftrightarrow}$ $\operatorname{card}\left(\operatorname{Rev}_{i}\right) \leq r$.
- Run ρ is r-reversal-bounded $\stackrel{\text { def }}{\stackrel{ }{\circ}}$ for every $i \in[1, d]$, we have $\operatorname{card}\left(\operatorname{Rev}_{i}\right) \leq r$.
- $\langle\mathcal{M},\langle q, \mathbf{x}\rangle\rangle$ is r-reversal-bounded $\stackrel{\text { ded }}{\stackrel{ }{\rho}}$ every run from $\langle q, \mathbf{x}\rangle$ is r-reversal-bounded.
- $\langle\mathcal{M},\langle q, \mathbf{x}\rangle\rangle$ is reversal-bounded $\stackrel{\text { det }}{\Rightarrow}$ there is some $r \geq 0$ such that every run from $\langle q, \mathbf{x}\rangle$ is r-reversal-bounded.

Semantical restriction

- \mathcal{M} is uniformly reversal-bounded $\stackrel{\text { def }}{\Rightarrow}$ there is $r \geq 0$ such that for every initial configuration, the initialized counter machine is r-reversal-bounded.
- In the sequel, reversal-bounded counter machines come with a maximal number of reversals $r \geq 0$.
- Reversal-boundedness is essentially a semantical restriction on the runs.
- Reversal-boundedness detection problem on VASS is EXPSPACE-complete (the bound r can be computed).
- Reversal-boundedness detection problem on Minsky machines is undecidable.

Structure of the forthcoming proof

- Design a notion of extended path for which no reversal occurs and satisfaction of the guards remains constant.
- Any finite r-reversal-bounded run can be generated by a small sequence of small such extended paths.
- Reachability relation generated by any extended path is definable in Presburger arithmetic.

Intervals

- $\mathcal{M}=\langle Q, T, C\rangle$ with negation-free guards.
- AG: set of atomic guards of the form $\mathrm{x} \sim k$ occurring in \mathcal{M}.
- $\mathcal{K}=\left\{0=k_{1}<k_{2}<\cdots<k_{K}\right\}$ and $K=\operatorname{card}(\mathcal{K})$.
- I: set of non-empty intervals

$$
\begin{gathered}
\left\{\left[k_{1}, k_{1}\right],\left[k_{1}+1, k_{2}-1\right],\left[k_{2}, k_{2}\right],\left[k_{2}+1, k_{3}-1\right],\left[k_{3}, k_{3}\right], \ldots,\right. \\
\left.\left[k_{K}, k_{K}\right],\left[k_{K}+1,+\infty\right)\right\} \backslash\{\emptyset\}
\end{gathered}
$$

- At most $2 K$ intervals and at least $K+1$ intervals.

Counter values symbolically

- Linear ordering on \mathcal{I} (for non-empty intervals):

$$
\begin{gathered}
{\left[k_{1}, k_{1}\right] \leq\left[k_{1}+1, k_{2}-1\right] \leq\left[k_{2}, k_{2}\right] \leq\left[k_{2}+1, k_{3}-1\right] \leq\left[k_{2}, k_{2}\right] \leq \ldots} \\
\left.\ldots \leq\left[k_{K}, k_{K}\right] \leq\left[k_{K}+1,+\infty\right)\right\}
\end{gathered}
$$

- Interval map $\mathfrak{i m}: C \rightarrow \mathcal{I}$.
- Symbolic satisfaction relation $\mathfrak{i m} \vdash g$:
- $\mathfrak{i m} \vdash g_{1} \vee g_{2} \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{i m} \vdash g_{1}$ or $\mathfrak{i m} \vdash g_{2}$.
- $\mathfrak{i m} \vdash g_{1} \wedge g_{2} \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{i m} \vdash g_{1}$ and $\mathfrak{i m} \vdash g_{2}$.
- $\mathfrak{i m} \vdash \mathrm{x}=k \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{i m}(\mathrm{x})=[k, k]$.
- $\mathfrak{i m} \vdash \mathrm{x} \geq k \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{i m}(\mathrm{x}) \subseteq[k,+\infty)$.
- $\mathfrak{i m} \vdash \mathrm{x} \leq k \stackrel{\text { def }}{\Leftrightarrow} \mathfrak{i m}(\mathrm{x}) \subseteq[0, k]$.

Completeness

- Interval maps and guards are built over the same set of constants.
$-\mathfrak{i m} \vdash g$ can be checked in polynomial time in the sum of the respective sizes of $\mathfrak{i m}$ and g.
- $\mathfrak{i m} \vdash g$ iff for all $\mathfrak{f}: C \rightarrow \mathbb{N}$ and for all $\mathrm{x} \in C$, we have $\mathfrak{f}(\mathrm{x}) \in \mathfrak{i m}(\mathrm{x})$ implies $\mathfrak{f}=g$ (in Presburger arithmetic).

Guarded modes

- Guarded mode $\mathfrak{g m d}$ is a pair $\langle\mathfrak{i m}, \mathfrak{m d}\rangle$ where
- $\mathfrak{i m}$ is an interval map,
- $\mathfrak{m d} \in\{\text { INC, DEC }\}^{d}$.
- $t=q \stackrel{\langle g, \mathbf{a}\rangle}{\longrightarrow} q^{\prime}$ is compatible with $\mathfrak{g m d} \stackrel{\text { def }}{\Leftrightarrow}$

1. $\mathfrak{i m} \vdash g$,
2. for every $i \in[1, d]$,

- $\mathfrak{m o}(i)=$ INC implies $\mathbf{a}(i) \geq 0$,
- $\mathfrak{m o}(i)=$ DEC implies $\mathbf{a}(i) \leq 0$.

"Bis repetita placent"

- Path π is a sequence of transitions

$$
q_{1} \xrightarrow{\left\langle g_{1}, \mathbf{a}_{1}\right\rangle} q_{1}^{\prime}, \ldots, q_{n} \xrightarrow{\left\langle g_{n}, \mathbf{a}_{n}\right\rangle} q_{n}^{\prime}
$$

so that for every $i \in[1, n]$, we have $q_{i}^{\prime}=q_{i+1}$.

- The effect of π is the update $\mathfrak{e f}(\pi) \stackrel{\text { def }}{=} \sum_{j} \mathbf{a}_{j} \in \mathbb{Z}^{d}$.
- Simple loop sl is a non-empty path that starts and ends by the same state and that's the only repeated state.
- Number of simple loops is $\leq \operatorname{card}(T)^{\operatorname{card}(Q)}$.
- Arbitrary total linear ordering \prec on simple loops.

Values

- Scale $\mathfrak{s c}(\mathcal{M})$: maximal absolute value among the updates a in \mathcal{M}.
- If size of \mathcal{M} is N, then $\mathfrak{s c}(\mathcal{M}) \leq 2^{N}$.
- The effect $\mathfrak{e f}(s l)$ of a simple loop $s /$ is in

$$
[-\operatorname{card}(Q) \mathfrak{s c}(\mathcal{M}), \operatorname{card}(Q) \mathfrak{s c}(\mathcal{M})]^{d}
$$

- The number of effects from simple loops is bounded by

$$
(1+2 \times \operatorname{card}(Q) \mathfrak{s c}(\mathcal{M}))^{d}
$$

Extended path (bis)

- Extended path P:

$$
\pi_{0} S_{1} \pi_{1} \cdots S_{\alpha} \pi_{\alpha}
$$

1. the Si's are non-empty sets of simple loops,
2. the π 's are non-empty paths,
3. if S occurs just before [resp. after] a path π, then all the simple loops in S loops on the first [resp. last] state of π.

Some more auxiliary notions

- A sequence of transitions is compatible with the guarded mode $\mathfrak{g m d} \stackrel{\text { def }}{\Leftrightarrow}$ all its transitions are compatible with $\mathfrak{g m o}$.
- Skeleton of \mathbf{P} is the path $\pi_{0} \cdots \pi_{\alpha}$.
- $S=\left\{s l_{1}, \ldots, s l_{m}\right\}$ with $s l_{1} \prec \cdots \prec s l_{m}$

$$
e(S) \stackrel{\text { def }}{=}\left(s l_{1}\right)^{+} \cdots(s / m)^{+}
$$

(the underlying alphabet is T)

- $e(\mathbf{P}) \stackrel{\text { def }}{=} \pi_{0} \cdot e\left(S_{1}\right) \cdots e\left(S_{\alpha}\right) \cdot \pi_{\alpha}$.
- $\operatorname{Lan}(\mathbf{P}) \stackrel{\text { def }}{=} \operatorname{Lan}(\boldsymbol{e}(\mathbf{P}))$.
- Run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{t_{1}} \cdots \xrightarrow{t_{\ell}}\left\langle\boldsymbol{q}_{\ell}, \mathbf{x}_{\ell}\right\rangle$ respects $\mathbf{P} \stackrel{\text { det }}{\Rightarrow}$ $\pi=t_{1} \cdots t_{\ell} \in \operatorname{Lan}(\mathbf{P})$.

Global reversal phases (Intervals may change)

- Global reversal phase: finite sequence of transitions such that each transition in it is compatible with some guarded mode $\langle\mathfrak{i m}, \mathfrak{m d}\rangle$, for some mode $\mathfrak{m d} \in\{\text { INC, DEC }\}^{d}$.
- A run respecting a global reversal phase has no reversal for all the counters.
- r-reversal-bounded run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$.
- ρ can be divided as a sequence of subruns $\rho=\rho_{1} \cdot \rho_{2} \cdots \rho_{L}$.
- Each ρ_{i} respects a global reversal phase.
- $L \leq(d \times r)+1$.

Local reversal phases

- Local reversal phase: finite sequence of transitions such that each transition in it is compatible with some guarded mode $\langle\mathfrak{i m}, \mathfrak{m d}\rangle$.
- A run respecting a local reversal phase has no reversals and the counter values satisfy the same atomic guards.
- r-reversal-bounded run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$.
- ρ can be divided as a sequence $\rho=\rho_{1} \cdot \rho_{2} \cdots \rho_{L^{\prime}}$.
- Each ρ_{i} respects a local reversal phase.
- $L^{\prime} \leq((d \times r)+1) \times 2 K d$.

Proof idea (1/2)

- ρ can be divided in at most $(d \times r)+1$ subruns respecting a global reversal phase.
- We show that each such subrun can be divided in at most $2 K d$ subruns respecting a local guard phase.
- Binary relation $\preceq_{\mathbf{a}}$ with $\mathbf{a} \in \mathbb{Z}^{d}$ on interval maps.
- $\mathfrak{i m} \preceq_{\mathbf{a}} \mathfrak{i m}^{\prime} \stackrel{\text { def }}{\Leftrightarrow}$ for every $i \in[1, d]$,
- $\mathfrak{i m}\left(\mathrm{x}_{i}\right) \leq \mathfrak{i m}^{\prime}\left(\mathrm{x}_{i}\right)$ if $\mathbf{a}(i) \geq 0$,
- $\mathfrak{i m}^{\prime}\left(\mathrm{x}_{i}\right) \leq \mathfrak{i m}\left(\mathrm{x}_{i}\right)$ if $\mathbf{a}(i) \leq 0$,
- $\mathfrak{i m}^{\prime}\left(\mathrm{x}_{i}\right)=\mathfrak{i m}\left(\mathrm{x}_{i}\right)$ if $\mathbf{a}(i)=0$.
- $\mathfrak{i m} \prec_{\mathbf{a}} \mathfrak{i m} \mathfrak{m}^{\prime}: \mathfrak{i m} \preceq_{\mathbf{a}} \mathfrak{i m}{ }^{\prime}$ and $\mathfrak{i m} \neq \mathfrak{i m}^{\prime}$.
\mathbf{x} agrees with $\mathfrak{i m}$ and $\mathbf{x}^{\prime}+\mathbf{a}$ agrees with $\mathfrak{i m}{ }^{\prime}$ imply $\mathfrak{i m} \preceq \mathfrak{a}^{\mathfrak{i} \mathfrak{m}^{\prime}}$

Proof idea (2/2)

- Number of interval maps in $\mathcal{O}\left(K^{d}\right)$.
- Let $\mathbf{a} \in \mathbb{Z}^{d}$ and $\mathfrak{i m}_{1} \prec_{\mathbf{a}} \mathfrak{i m}_{2} \prec_{\mathbf{a}} \cdots \prec_{\mathbf{a}} \mathfrak{i m}_{\beta}$. Then, $\beta \leq 2 K d$.
- In a subrun respecting a global reversal phase, each counter is compared against at most K constants and all the counters have a monotonous behaviour.
- Each counter during the global reversal phase can visit at most $2 K$ distinct intervals in \mathcal{I}.
- Hence, the bound $2 K d$ for the maximal number of local reversal phases.

Sequences of extended paths

- $\mathbf{P}_{1} \ldots \mathbf{P}_{L^{\prime}}$ such that
- each \mathbf{P}_{i} is an extended path compatible with some guarded mode,
- $\mathbf{P}_{1} \ldots \mathbf{P}_{L^{\prime}}$ is compatible with the control graph of \mathcal{M}.
- Any r-reversal-bounded run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$ respects a sequence of extended paths $\mathbf{P}_{1} \cdots \mathbf{P}_{L^{\prime}}$ with

$$
L^{\prime} \leq((d \times r)+1) \times 2 K d
$$

Small extended path (bis)

- Small extended path:

1. π_{0} and π_{α} have at most $2 \times \operatorname{card}(Q)$ transitions,
2. $\pi_{1}, \ldots, \pi_{\alpha-1}$ have at most $\operatorname{card}(Q)$ transitions,
3. for each $q \in Q$, there is at most one set S containing simple loops on q.

- Length of the skeleton bounded by $\operatorname{card}(Q)(3+\operatorname{card}(Q))$.
- The set of small extended paths is finite.

Runs in normal form

- Run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$ respecting \mathbf{P} compatible with some guarded mode $\mathfrak{g m o}$.
- Then, there is small \mathbf{P}^{\prime} still compatible with $\mathfrak{g m d}$ and a run

$$
\rho^{\prime}=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle\boldsymbol{q}_{\ell}, \mathbf{x}_{\ell}\right\rangle
$$

such that ρ^{\prime} respects \mathbf{P}^{\prime}.

- Generalization of the case for finite-state automata but with constraints on initial and final counter values.

Proof (1/9)

- Run $\rho=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \xrightarrow{t_{1}} \cdots \xrightarrow{t_{\ell}}\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$ respecting \mathbf{P} compatible with $\mathfrak{g m d}$.
- $\pi=t_{1} \cdots t_{\ell} \in \operatorname{Lan}(\mathbf{P})$.
- We build a small \mathbf{P}^{\prime} such that
- \mathbf{P}^{\prime} is compatible with $\mathfrak{g m o}$,
- there is a run ρ^{\prime} respecting \mathbf{P}^{\prime} that starts and ends by the same configurations as ρ.

Proof (2/9)

We define a sequence of $\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{\beta}$ such that

- Each \mathbf{P}_{i} is compatible with $\mathfrak{g m d}$ and there is a run ρ_{i} respecting \mathbf{P}_{i} that starts and ends by the same configurations.
- \mathbf{P}_{0} is equal to $t_{1} \cdots t_{\ell}$ viewed as an extended path.
- \mathbf{P}_{β} is a small extended path.
- \mathbf{P}_{i+1} is obtained from \mathbf{P}_{i}

1. by removing a simple loop on q and,
2. possibly adding it to a set of simple loops S already in \mathbf{P}_{i} or by creating one if none exists.

Proof (3/9): from \mathbf{P}_{i} to \mathbf{P}_{i+1} (bis)

$$
\mathbf{P}_{i}=\pi_{0} S_{1} \pi_{1} \cdots S_{\alpha} \pi_{\alpha}
$$

(a) $\alpha \leq \operatorname{card}(Q)$,
(b) each path in $\pi_{1}, \ldots, \pi_{\alpha-1}$ have length less than $\operatorname{card}(Q)$,
(c) each state has at most one S_{i} with simple loops on it.
\mathbf{P}_{0} verifies these conditions.

Proof (4/9): three cases

- \mathbf{P}_{i} is a small extended path. We are done.
- $\pi_{\alpha}=\pi \cdot s l \cdot \pi^{\prime}$ where

1. $s /$ is a simple loop on q,
2. $\pi \pi^{\prime} \neq \varepsilon$,
3. S_{γ} already contains simple loops on q.
\mathbf{P}_{i+1} is equal to:

$$
\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1}\left(S_{\gamma} \cup\{s /\}\right) \cdots \pi_{\alpha-1} S_{\alpha}\left(\pi \pi^{\prime}\right)
$$

- $\pi_{\alpha}=\pi \cdot s l \cdot \pi^{\prime}$ where

1. $s /$ is a simple loop on q,
2. the first one occurring in $\pi \cdot s l$,
3. $\pi \pi^{\prime} \neq \varepsilon$,
4. no S_{γ} already contains simple loops on q.
\mathbf{P}_{i+1} is equal to: $\pi_{0} \cdots S_{\alpha} \pi\{s /\} \pi^{\prime}$.

Proof (5/9)

- It remains to show that there is a run ρ_{i+1} respecting \mathbf{P}_{i+1} that starts by $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and ends by $\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$.
- Satisfaction of the conditions (a)-(c) are by an easy verification.
- All the transitions in \mathbf{P}_{i+1} are compatible with $\mathfrak{g m d}$ (by construction).
- The counter values have a monotonous behaviour (increase or decrease) and the atomic guards are convex.

Let us treat the case 2

- Recapitulation.
- Run ρ_{i} respecting \mathbf{P}_{i}, starting by $\left\langle q_{0}, \mathbf{x}_{0}\right\rangle$ and ending by $\left\langle q_{\ell}, \mathbf{x}_{\ell}\right\rangle$.
- $\mathbf{P}_{i}=\pi_{0} S_{1} \pi_{1} \cdots S_{\alpha}\left(\pi \cdot s l \cdot \pi^{\prime}\right)$.
- $\mathbf{P}_{i+1}=\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1}\left(S_{\gamma} \cup\{s /\}\right) \cdots \pi_{\alpha-1} S_{\alpha}\left(\pi \pi^{\prime}\right)$.
- $S_{\gamma}=S_{\gamma}^{1} \uplus S_{\gamma}^{2}$ and for all $s l^{\prime} \in S_{\gamma}^{1}\left[\right.$ resp. $\left.s l^{\prime} \in S_{\gamma}^{2}\right]$, we have $s l^{\prime} \prec s l\left[r e s p . s l \prec s l^{\prime}\right]$.
- As \mathbf{P}_{i} is compatible with $\mathfrak{g m d}=\langle\mathfrak{i m}, \mathfrak{m d}\rangle$, for $j \in[1, d]$:
- $\mathfrak{m d}(j)=$ INC implies that for all $\mathbf{x} \in \mathbb{N}^{d}$ in ρ_{i}, we get that $\mathbf{x}_{0}(j) \leq \mathbf{x}(j) \leq \mathbf{x}_{\ell}(j)$.
- $\mathfrak{m o}(j)=$ DEC implies that for all $\mathbf{x} \in \mathbb{N}^{d}$ in ρ_{i}, we get that $\mathbf{x}_{\ell}(j) \leq \mathbf{x}(j) \leq \mathbf{x}_{0}(j)$.

Proof (7/9)

- $\mathbf{y} \in \mathbb{N}^{d}$: penultimate vector of counter values in ρ.
- For all $\mathbf{x} \in \mathbb{N}^{d}$ occurring in ρ_{i} until that occurrence of \mathbf{y}, for every atomic guard $\mathrm{x}_{j} \sim k$ in $A G$, equivalence between

1. $\mathfrak{i m} \vdash \mathrm{x}_{j} \sim k$,
2. $\mathbf{x}(j) \sim k$,
3. $\mathbf{x}_{0}(j) \sim k$,
4. $\mathbf{y}(j) \sim k$.

- Run ρ_{i} :

$$
\rho_{i}=\overbrace{\rho_{1}^{\star}}^{\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1} S_{\gamma}^{1}} \cdot \overbrace{\rho_{2}^{\star}}^{S_{\gamma}^{2} \pi_{\gamma} \cdots \pi_{\alpha-1} S_{\alpha} \pi} \cdot \overbrace{\rho_{3}^{\star}}^{s /} \cdot \overbrace{\rho_{4}^{\star}}^{\pi^{\prime}}
$$

- For each ρ_{i}^{\star}, we write $\left\langle q_{0}^{i}, \mathbf{x}_{0}^{i}\right\rangle$ [resp. $\left\langle q_{f}^{i}, \mathbf{x}_{f}^{i}\right\rangle$] to denote its first [resp. last] configuration.

- $\rho_{3}^{\star \star}$: sequence of configurations obtained from $\left\langle q_{0}^{2}, \mathbf{x}_{0}^{2}\right\rangle$ by firing the transitions of the simple loop sl.
- $\rho_{2}^{+c f(s)}$: sequence of configurations obtained from the last configuration of $\rho_{3}^{\star \star}$ by firing the sequence of transitions used for ρ_{2}^{\star}.

$$
\rho_{i+1}=\overbrace{\rho_{1}^{\star}}^{\pi_{0} \cdots S_{\gamma-1} \pi_{\gamma-1} S_{\gamma}^{1}} \cdot \overbrace{\rho_{3}^{\star}}^{s l} . \overbrace{\rho_{2}^{+c f(S l)}}^{S_{\gamma}^{2} \pi_{\gamma} \cdots \pi_{\alpha-1} S_{\alpha} \pi} \cdot \overbrace{\rho_{4}^{\star}}^{\pi^{\prime}}
$$

Properties of ρ_{i+1}

- The sequence of configurations respects the updates on the transitions.
- It remains to show that transitions in $\rho_{3}^{\star \star}$ and in $\rho_{2}^{+e f(s l)}$ can be fired by respecting the guards.
- Suppose that $\mathfrak{m d}(j)=$ INC for some $j \in[1, d]$ and \mathbf{y} in $\rho_{3}^{\star \star}$:

$$
\mathbf{x}_{0}(j)=\mathbf{x}_{0}^{1}(j) \leq \mathbf{x}_{f}^{1}(j)=\mathbf{x}_{0}^{2}(j) \leq \mathbf{y}(j) \leq \mathbf{x}_{0}^{4}(j) \leq \mathbf{x}_{f}^{4}(j)=\mathbf{x}_{\ell}(j)
$$

- By convexity of the atomic guards $\mathrm{x}_{j} \sim k$ in $A G, \mathbf{y}(j) \sim k$ iff $\mathbf{y}^{\prime}(j) \sim k$ where \mathbf{y}^{\prime} is the corresponding vector of counter values in the run ρ_{3}^{\star} (at the same position).
- So, $\rho_{3}^{\star \star}$ is indeed a run of \mathcal{M} respecting $s l$.
- Similary, $\rho_{2}^{+e f(s l)}$ respects $S_{\gamma}^{2} \pi_{\gamma} \cdots \pi_{\alpha-1} S_{\alpha} \pi$.

Time to wrap-up!

- $\rho=\left\langle\boldsymbol{q}_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle\boldsymbol{q}_{\ell}, \mathbf{x}_{\ell}\right\rangle$ respecting \mathbf{P} compatible with $\mathfrak{g m o}$.

There exist a small \mathbf{P}^{\prime} compatible with $\mathfrak{g m d}$ and $\rho^{\prime}=\left\langle q_{0}, \mathbf{x}_{0}\right\rangle \cdots\left\langle\boldsymbol{q}_{\ell}, \mathbf{x}_{\ell}\right\rangle$ such that ρ^{\prime} respects \mathbf{P}^{\prime}.

- Small sequence of extended paths:

1. number of elements $\leq((d \times r)+1) \times 2 K d$,
2. each extended path is small too.

- For any r-reversal-bounded run ρ, there is an r-reversal-bounded run ρ^{\prime} between the same configurations that respects a small sequence of extended paths.

Content of the next lecture on November 6th

- Reachability sets are computable Presburger sets.
- Repeated reachability problems for reversal-bounded counter machines.
- Decidable and undecidable extensions.

Exercises

- Show that the class of ultimately period sets is closed under union and intersection.
- Show that for every linear set there is an initialized 0 -reversal-bounded counter machine whose reachability set is equal to it.

