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Plan of the lecture

I Previous lecture :
I Introduction to Presburger arithmetic.

I Decidability and quantifier elimination.

I Automata-based approach.

I Presburger sets are the semilinear sets.

I Application: Parikh image of regular languages.

I Introduction to reversal-bounded counter machines.

I Runs in normal form.



The previous lecture in 2 slides (1/2)

I First-order theory FO(N) on 〈N,≤,+〉:

ϕ ::= > | ⊥ | t ≤ t ′ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ϕ | ∀x ϕ

I Presburger sets

Jϕ(x1, . . . , xn)K def
= {〈v(x1), . . . , v(xn)〉 ∈ Nn : v |= ϕ}

I Quantifier-free fragment

> | ⊥ | t ≤ t ′ | t ≡k t ′ | t = t ′ | t < t ′ | t ≥ t ′ | t > t ′

I The satisfiability problem for the quantifier-free fragment is
NP-complete.



Previous lecture in 2 slides (2/2)

I For every ϕ, there is a quantifier-free formula ϕ′ such that

1. free(ϕ′) ⊆ free(ϕ).

2. ϕ′ is logically equivalent to ϕ.

3. ϕ′ can be effectively built from ϕ.

I Presburger arithmetic is decidable.

I Alternative proof with the automata-based approach:
“Presburger sets as regular languages of finite words”



Semilinear Sets



Formulae with one free variable

ϕ(x)
def
= (x 6= 1 ∧ x 6= 2) ∧ (x = 0 ∨ (x ≥ 3 ∧ ∃ y (x = 3 + 2y)))

Jϕ(x)K = {0} ∪ {3 + 2n : n ≥ 0}
I After the value 3, every two value belongs to Jϕ(x)K.

• ◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • . . .

I This can be generalized.

X ⊆ N is ultimately periodic
def⇔

there exist N ≥ 0 and P ≥ 1 such that for all n ≥ N, we have
n ∈ X iff n + P ∈ X .

N first values︷ ︸︸ ︷
• ◦ ◦ • ◦ • ◦

period of length P︷ ︸︸ ︷
• • ◦ • • • • ◦ • • • • ◦ • • • • ◦ • • . . .



Examples of ultimately periodic sets

I The set of even numbers is ultimately periodic (with N = 0
and P = 2).

I The set of odd numbers is ultimately periodic (with N = 1
and P = 2).

I Jx ≡k k ′K is ultimately periodic (with N = 0 and P = k ).

I Ultimately periodic sets are closed under union,
intersection and complementation.



Proof for complementation

I Suppose X is ultimately periodic and X = Nr X .

I The statements below are equivalent for n ≥ N:
I n ∈ X ,
I n 6∈ X

(by definition of X ),
I n + P 6∈ X

(X is ultimately periodic with parameters N and P),
I n + P ∈ X

(by definition of X ).

I X is ultimately periodic too and the same parameters N
and P can be used.

• ◦ ◦ • ◦ • ◦ • • ◦ • • • • ◦ • • • • ◦ • • • • ◦ • • . . .

◦ • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ . . .



Ultimately periodic sets X are Presburger sets

(
∧

k∈[0,N−1]rX

x 6= k) ∧ [(
∨

k∈[0,N−1]∩X

x = k)∨

((x ≥ N) ∧ (∃ y
∨

k∈[N,N+P−1]∩X

(x = k + Py)))]

It remains to show the converse result.



Semilinear sets of dimension 1
For every formula ϕ(x) with a unique free variable x, JϕK is an
ultimately periodic set.

I Formula ϕ(x) with a unique free variable x.

I ϕ′: equivalent quantifier-free formula.

I ϕ′ is a Boolean combination of atomic formulae of one of
the forms below: >, ⊥, x ≤ k , x ≡k k ′.

I Each atomic formula defines an ultimately periodic set and
ultimately periodic sets are closed under union,
intersection and complementation.

I So Jϕ′K = JϕK is ultimately periodic.



Semilinear sets
I A linear set X is defined by a basis b ∈ Nd and a finite set

of periods P = {p1, . . . ,pm} ⊆ Nd :

X = {b +
i=m∑
i=1

nipi : n1, . . . ,nm ∈ N}

I A linear set:{(
3
4

)
+ i ×

(
2
5

)
+ j ×

(
4
7

)
: i , j ∈ N

}

I A semilinear set is a finite union of linear sets.

I Each semilinear set can be represented by a finite set of
pairs of the form 〈b,P〉.



Ultimately periodic sets are semilinear sets

I Ultimately periodic set X with parameters N and P.

X = (
⋃

n∈[0,N−1]∩X

{n}) ∪ (
⋃

n∈[N,N+P−1]∩X

{n + λP : λ ∈ N})

I {n} is a linear set with no period.

I {n + λP : λ ∈ N} is a linear set with basis n and unique
period P.



The fundamental characterisation
[Ginsburg & Spanier, PJM 66]

I For every Presburger formula ϕ with d ≥ 1 free variables,
JϕK is a semilinear subset of Nd .

I For every semilinear set X ⊆ Nd , there is ϕ such that
X = JϕK.

I The class of semilinear sets are effectively closed under
union, intersection, complementation and projection.

I For instance, (X1 = Jϕ1K and X2 = Jϕ2K) imply
X1 ∩ X2 = Jϕ1 ∧ ϕ2K

I Presburger formula for{(
3
4

)
+ i ×

(
2
5

)
+ j ×

(
4
7

)
: i , j ∈ N

}
∃ y, y′ (x1 = 3 + 2y + 4y′ ∧ x2 = 4 + 5y + 7y′)



X = {2n : n ∈ N} is not a Presburger set

I Ad absurdum, suppose that X is semilinear.

I Since X is infinite, there are b ≥ 0 and p1, . . . ,pm > 0
(m ≥ 1) such that

Y def
= {b +

m∑
i=1

λipi : λ1, . . . , λm ∈ N} ⊆ X

I There exists 2α ∈ Y such that p1 < 2α.

I By definition of Y , we have 2α + p1 ∈ Y .

I But, 2α < 2α + p1 < 2α+1, contradiction.



X = {n2 : n ∈ N} is not a Presburger set
I Ad absurdum, suppose that X is semilinear.

I Since X is infinite, there are b ≥ 0 and p1, . . . ,pm > 0
(m ≥ 1) such that

Z def
= {b +

m∑
i=1

λipi : λ1, . . . , λm ∈ N} ⊆ X

I Let N ∈ N be such that N2 ∈ Z and (2N + 1) > p1.

I Since Z is a linear set, we also have (N2 + p1) ∈ Z .

I However (N + 1)2 − N2 = (2N + 1) > p1.

I Hence N2 < N2 + p1 < (N + 1)2, contradiction.



A VASS weakly computing multiplication

q1 q2

q0



0
0
−1
0
0
0




0
0
0
0
0
0





0
0
0
−1
1
0





0
0
0
1
−1
1





0
0
0
0
0
0





1
0
1
0
0
0

,



0
1
0
1
0
0





Weak multiplication

{(
a
b
f

)
∈ N3 | ∃

(
c
d
e

)
∈ N3, 〈q0,


0
0
0
0
0
0

〉 ∗−→ 〈q1,


a
b
c
d
e
f

〉
}

=

{(
n
m
p

)
∈ N3 : p ≤ n ×m

}
.



Weak multiplication in a VASS

I Suppose there is ϕ(x1, . . . , x6) such that

Jϕ(x1, . . . , x6)K = {


a
b
c
d
e
f

 | 〈q0,


0
0
0
0
0
0

〉 ∗−→ 〈q1,


a
b
c
d
e
f

〉}

I Formula ψ(x) below verifies Jψ(x)K = {n2 | n ∈ N}

∃ x1, . . . , x5 ϕ(x1, . . . , x5, x) ∧ x1 = x2∧

∀ x′ (x′ > x)⇒ ¬∃ x3, x4, x5 ϕ(x1, . . . , x5, x′)

Contradiction!



Parikh Image of Regular Languages



Parikh image
I Σ = {a1, . . . ,ak} with ordering a1 < · · · < ak .

I Parikh image of u ∈ Σ∗:


n1
n2
...

nk

 ∈ Nk where each nj is the

number of occurrences of aj in u.

I Parikh image of a b a a b is
(

3
2

)
.

I Definition for Parikh image extends to languages.

I The Parikh image of any context-free language is
semilinear. [Parikh, JACM 66]

I Effective computation from pushdown automata.



Bounded languages

I Language L ⊆ Σ∗ bounded def⇔

L ⊆ u∗1 · · · u∗n
for some words u1, . . . ,un in Σ∗.

I L ⊆ Σ∗ is bounded and regular iff it is a finite union of
languages of the form

u0v∗1 u1 · · · v∗k uk

I The Parikh images of bounded and regular languages are
semilinear (i.e. Presburger sets).



Counting letters in bounded and regular languages

I Parikh image of u0v∗1 u1 · · · v∗k uk is equal to

{b + λ1p1 + · · ·λkpk : λ1, . . . , λk ∈ N}

with
I b = Π(u0) + · · ·+ Π(uk ),

I pi = Π(vi ) for every i ∈ [1, k ].

I Finite union of such languages handled by finite unions of
linear sets.

I Then, contructing a Presburger formula for the Parikh
image easily follows.



Underapproximation by bounded languages

I For every regular language L, there is a bounded and
regular language L′ such that

1. L′ ⊆ L,

2. Π(L′) = Π(L).

I The proof consists in constructing effectively the bounded
language L′.

I A = 〈Σ,Q,Q0, δ,F 〉 such that Lan(A) = L.

I W.l.o.g., Q0 ∩ F 6= ∅ (otherwise add ε to the bounded
language).



Paths, simple loops and extended paths

I Path π: finite sequence of transitions corresponding to a
path in the control graph of A.

I first(π) [resp. last(π)]: first [resp. last] state of a path π.

I lab(π): label of π as a word of Σ∗.

I Simple loop sl : non-empty path that starts and ends by the
same state and this is the only repeated state in it.

I “sl loops on its first state”.

I Number of simple loops ≤ card(δ)card(Q).

I Arbitrary total linear ordering ≺ on simple loops.



Generalising the notion of path

I Encoding families of paths with extended paths.

I Extended path P:

π0 S1 π1 · · · Sα πα

1. the Si ’s are non-empty sets of simple loops,

2. the πi ’s are non-empty paths,

3. if S occurs just before [resp. after] a path π, then all the
simple loops in S loops on the first [resp. last] state of π.



Some more auxiliary notions
I Skeleton of P is the path π0 · · ·πα.

I S = {sl1, . . . , slm} with sl1 ≺ · · · ≺ slm

e(S)
def
= lab(sl1)+ · · · lab(slm)+

I e(P)
def
= lab(π0) · e(S1) · · · e(Sα) · lab(πα).

I Lan(e): language defined by the regular expression e.

I Lan(P)
def
= Lan(e(P)).

I When the first state occuring in the skeleton of P is in Q0
and the last state is in F , then

Lan(e(P)) ⊆ Lan(A)



Small extended path

I Small extended path:

1. π0 and πα have at most 2× card(Q) transitions,

2. π1, . . . , πα−1 have at most card(Q) transitions,

3. for each q ∈ Q, there is at most one set S containing simple
loops on q.

I Length of the skeleton bounded by card(Q)(3 + card(Q)).

I The set of small extended paths is finite.



Example

q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

I Small extended path P

t0 · t1 · {t1, t2} · t3 · {t4, t5} · t4 · t5 · t5

I Regular expression e(P) (with t1 ≺ t2 and t5 ≺ t4)

a · b · b+ · c+ · b · b+ · a+ · a · b · b



How to proceed from a given run ρ

I Sequence of accepting extended paths P0, P1, . . . , Pβ
such that

I all the Pi ’s are accepting extended paths,

I P0 is equal to ρ viewed as an extended path,

I Pβ is a small and accepting extended path,

I Pi+1 is obtained from Pi by removing a simple loop while
Π(Lan(Pi )) ⊆ Π(Lan(Pi+1)).

I At the end of this process,

Π(lab(ρ)) ∈ Π(Lan(Pβ)) and Π(Lan(Pβ)) ⊆ Π(Lan(A))



From Pi to Pi+1

Pi = π0 S1 π1 · · · Sα πα

(a) α ≤ card(Q),

(b) each path in π1, . . . , πα−1 have length less than card(Q),

(c) each state has at most one Si with simple loops on it.

P0 verifies these conditions.



Three cases (1/2)

I Pi is a small extended path. We are done.

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. ππ′ 6= ε,
3. Sγ already contains simple loops on q.

Pi+1 is equal to:

π0 · · · Sγ−1 πγ−1 (Sγ ∪ {sl}) · · · πα−1 Sα (ππ′)



Three cases (2/2)

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. the first one occurring in π · sl ,
3. ππ′ 6= ε,
4. no Sγ already contains simple loops on q.

Pi+1 is equal to: π0 · · · Sα π {sl} π′.

I Three properties easy to prove:

1. Π(Lan(Pi )) ⊆ Π(Lan(Pi+1)).

2. Pi+1 satisfies the three previous conditions.

3. Lan(Pi+1) ⊆ Lan(A).



Example

q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

t0 · (t1)7 · (t2)7(t1)8 · t3 · (t4)7 · (t5)7 · (t4)8

I P22 = t0 · {t1, t2} · t3 · (t4)7 · (t5)7 · (t4)8.

I P38 = t0 · {t1, t2} · t3 · {t4, t5} · (t4)6.

I P38 is a small extended path.



Time to conclude!
I FSA A over a k -size alphabet Σ. One can compute a

formula ϕA(x1, . . . , xk ) in FO(N) such that

Π(Lan(A)) = JϕAK

I Lan(A) includes a bounded and regular language L with
the same Parikh image.

I L can be computed by enumerating the regular
expressions obtained from small and accepting extended
paths and then check inclusion with Lan(A).

I Disjunction made of the formulae obtained for each
bounded and regular language included in Lan(A).

I When Q0 ∩ F 6= ∅, we include a disjunct stating that all the
values are equal to zero.



Presburger Counter Machines



Presburger counter machines (PCM)
I Presburger counter machineM = 〈Q,T ,C〉:

I Q is a nonempty finite set of control states.

I C is a finite set of counters {x1, . . . ,xd} for some d ≥ 1.

I T = finite set of transitions of the form t = 〈q, ϕ,q′〉 where
q,q′ ∈ Q and ϕ is a Presburger formula with free variables
x1, . . . , xd , x′1, . . . , x

′
d .

q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

x1 = 3x3

x2++

x2++ x1 = 0?

x1++ x2 = 0?

x1++ x1-- x2++

x2++ x2-- x1++

∃ z x1 = 2z

x2++

x1--

x1++

x2 = 0? x1++

x1 = 0?

x2++

I Configuration 〈q,x〉 ∈ Q × Nd .



Transition system T(M)
I Transition system T(M) = 〈Q × Nd ,−→〉:

〈q,x〉 −→ 〈q′,x′〉 def⇔ there is t = 〈q, ϕ,q′〉 s.t. v[x← x, x′ ← x′] |= ϕ

q1

q2

q3

x-- x = 0?

x++

x--

〈q1,0〉 〈q1,1〉 〈q1,2〉 〈q1,3〉 〈q1,4〉

〈q2,0〉 〈q2,1〉 〈q2,2〉 〈q2,3〉

〈q3,0〉

I
∗−→: reflexive and transitive closure of −→.



Decision problems
I Reachability problem:

Input: PCMM, 〈q0,x0〉 and 〈qf ,xf 〉.
Question: 〈q0,x0〉

∗−→ 〈qf ,xf 〉?

I Control state reachability problem:
Input: PCMM, 〈q0,x0〉 and qf .

Question: ∃xf 〈q0,x0〉
∗−→ 〈qf ,xf 〉?

I Control state repeated reachability problem:
Input: PCMM, 〈q0,x0〉 and qf .

Question: is there an infinite run starting from 〈q0,x0〉
such that the control state qf is repeated
infinitely often?

I Boundedness problem:
Input: PCMM and 〈q0,x0〉.

Question: is the set of configurations reachable from
〈q0,x0〉 finite?



What is Reversal-Boundedness?



Reversal-bounded counter machines

I Reversal: Alternation from nonincreasing mode to
nondecreasing mode and vice-versa.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

I Sequence with 3 reversals:

001122333444433322233344445555554

I A run is r -reversal-bounded whenever the number of
reversals of each counter is less or equal to r .



q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

x1++

x2++

x2++ x1 = 0?

x1++ x2 = 0?

x1++ x1-- x2++

x2++ x2-- x1++

x1++

x2++

x1--

x1++

x2 = 0? x1++

x1 = 0?

x2++

ϕ = (x1 ≥ 2∧x2 ≥ 1∧(x2+1 ≥ x1)∨(x2 ≥ 2∧x1 ≥ 1∧x1+1 ≥ x2)

JϕK = {y ∈ N2 : 〈q1,0〉
∗−→ 〈q9,y〉}



Presburger-definable reachability sets
I Let 〈M, 〈q0,x0〉〉 be r -reversal-bounded for some r ≥ 0.

For each control state q, the set

R = {y ∈ Nd : ∃ run 〈q0,x0〉
∗−→ 〈q,y〉}

is effectively semilinear [Ibarra, JACM 78].

I One can compute effectively a Presburger formula ϕ such
that JϕK = R.

I The reachability problem with bounded number of
reversals:

Input: PCMM, 〈q,x〉, 〈q′,x′〉 and r ≥ 0.
Question: Is there a run 〈q,x〉 ∗−→ 〈q′,x′〉 s.t. each

counter performs during the run a number of
reversals bounded by r?

I The problem is decidable for a large class of counter
machines.



Proof ideas

I Reachability relation of simple loops can be expressed in
Presburger arithmetic.

I Runs can be normalized so that:
I each simple loop is visited at most a doubly-exponential

number of times,

I the different simple loops are visited in a structured way.

I Parikh images of context-free languages are effectively
semilinear. [Parikh, JACM 66]



The class of counter machinesM = 〈Q,T ,C〉
I Q is a finite set of control states and C = {x1, . . . ,xd}.

I T is a finite set of transitions.

I Each transition is labelled by 〈g,a〉 where a ∈ Zd (update)
and g is a guard following

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

where x ∈ C, ∼∈ {≤,≥,=} and k ∈ N.

I Update functions are those for VASS.

I Guards are more general than those for Minsky machines.

I Minsky machines and VASS belong to this class.



Mode vectors
– counter values for reversals –

I From a run
ρ = 〈q0,x0〉

t1−→ 〈q1,x1〉, . . .
we define mode vectors md0,md1, . . . such that each
mdi ∈ {INC,DEC}d .

I By convention, md0 is the unique vector in {INC}d .

I For all j ≥ 0 and for all i ∈ [1,d ], we have

1. mdj+1(i) def
= mdj (i) when xj (i) = xj+1(i).

2. mdj+1(i) def
= INC when xj+1(i)− xj (i) > 0.

3. mdj+1(i) def
= DEC when xj+1(i)− xj (i) < 0.

I Number of reversals:

Revi
def
= {j ∈ [0, |ρ| − 1] : mdj(i) 6= mdj+1(i)}



Reversal-boundedness formally

I Run ρ is r -reversal-bounded with respect to i def⇔
card(Revi) ≤ r .

I Run ρ is r -reversal-bounded def⇔ for every i ∈ [1,d ], we
have card(Revi) ≤ r .

I 〈M, 〈q,x〉〉 is r -reversal-bounded def⇔ every run from 〈q,x〉
is r -reversal-bounded.

I 〈M, 〈q,x〉〉 is reversal-bounded def⇔ there is some r ≥ 0
such that every run from 〈q,x〉 is r -reversal-bounded.



Semantical restriction

I M is uniformly reversal-bounded def⇔ there is r ≥ 0 such
that for every initial configuration, the initialized counter
machine is r -reversal-bounded.

I In the sequel, reversal-bounded counter machines come
with a maximal number of reversals r ≥ 0.

I Reversal-boundedness is essentially a semantical
restriction on the runs.

I Reversal-boundedness detection problem on VASS is
EXPSPACE-complete (the bound r can be computed).

I Reversal-boundedness detection problem on Minsky
machines is undecidable.



Structure of the forthcoming proof

I Design a notion of extended path for which no reversal
occurs and satisfaction of the guards remains constant.

I Any finite r -reversal-bounded run can be generated by a
small sequence of small such extended paths.

I Reachability relation generated by any extended path is
definable in Presburger arithmetic.



Intervals

I M = 〈Q,T ,C〉 with negation-free guards.

I AG: set of atomic guards of the form x ∼ k occurring inM.

I K = {0 = k1 < k2 < · · · < kK} and K = card(K).

I I: set of non-empty intervals

{[k1, k1], [k1 + 1, k2 − 1], [k2, k2], [k2 + 1, k3 − 1], [k3, k3], . . . ,

[kK , kK ], [kK + 1,+∞)}r {∅}

I At most 2K intervals and at least K + 1 intervals.



Counter values symbolically

I Linear ordering on I (for non-empty intervals):

[k1, k1] ≤ [k1+1, k2−1] ≤ [k2, k2] ≤ [k2+1, k3−1] ≤ [k2, k2] ≤ . . .

. . . ≤ [kK , kK ] ≤ [kK + 1,+∞)}

I Interval map im : C → I.

I Symbolic satisfaction relation im ` g:
I im ` g1 ∨ g2

def⇔ im ` g1 or im ` g2.
I im ` g1 ∧ g2

def⇔ im ` g1 and im ` g2.
I im ` x = k def⇔ im(x) = [k , k ].
I im ` x ≥ k def⇔ im(x) ⊆ [k ,+∞).
I im ` x ≤ k def⇔ im(x) ⊆ [0, k ].



Completeness

I Interval maps and guards are built over the same set of
constants.

I im ` g can be checked in polynomial time in the sum of the
respective sizes of im and g.

I im ` g iff for all f : C → N and for all x ∈ C, we have
f(x) ∈ im(x) implies f |= g (in Presburger arithmetic).



Guarded modes

I Guarded mode gmd is a pair 〈im,md〉 where
I im is an interval map,

I md ∈ {INC,DEC}d .

I t = q
〈g,a〉−−→ q′ is compatible with gmd

def⇔
1. im ` g,

2. for every i ∈ [1,d ],
I md(i) = INC implies a(i) ≥ 0,

I md(i) = DEC implies a(i) ≤ 0.



“Bis repetita placent”

I Path π is a sequence of transitions

q1
〈g1,a1〉−−−→ q′1, . . . ,qn

〈gn,an〉−−−→ q′n

so that for every i ∈ [1,n], we have q′i = qi+1.

I The effect of π is the update ef(π)
def
=
∑

j aj ∈ Zd .

I Simple loop sl is a non-empty path that starts and ends by
the same state and that’s the only repeated state.

I Number of simple loops is ≤ card(T )card(Q).

I Arbitrary total linear ordering ≺ on simple loops.



Values

I Scale sc(M): maximal absolute value among the updates
a inM.

I If size ofM is N, then sc(M) ≤ 2N .

I The effect ef(sl) of a simple loop sl is in

[−card(Q)sc(M), card(Q)sc(M)]d

I The number of effects from simple loops is bounded by

(1 + 2× card(Q)sc(M))d



Extended path (bis)

I Extended path P:

π0 S1 π1 · · · Sα πα

1. the Si ’s are non-empty sets of simple loops,

2. the πi ’s are non-empty paths,

3. if S occurs just before [resp. after] a path π, then all the
simple loops in S loops on the first [resp. last] state of π.



Some more auxiliary notions
I A sequence of transitions is compatible with the guarded

mode gmd
def⇔ all its transitions are compatible with gmd.

I Skeleton of P is the path π0 · · ·πα.

I S = {sl1, . . . , slm} with sl1 ≺ · · · ≺ slm

e(S)
def
= (sl1)+ · · · (slm)+

(the underlying alphabet is T )

I e(P)
def
= π0 · e(S1) · · · e(Sα) · πα.

I Lan(P)
def
= Lan(e(P)).

I Run ρ = 〈q0,x0〉
t1−→ · · · t`−→ 〈q`,x`〉 respects P def⇔

π = t1 · · · t` ∈ Lan(P).



Global reversal phases
(Intervals may change)

I Global reversal phase: finite sequence of transitions such
that each transition in it is compatible with some guarded
mode 〈im,md〉, for some mode md ∈ {INC,DEC}d .

I A run respecting a global reversal phase has no reversal
for all the counters.

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.
I ρ can be divided as a sequence of subruns ρ = ρ1 · ρ2 · · · ρL.

I Each ρi respects a global reversal phase.

I L ≤ (d × r) + 1.



Local reversal phases

I Local reversal phase: finite sequence of transitions such
that each transition in it is compatible with some guarded
mode 〈im,md〉.

I A run respecting a local reversal phase has no reversals
and the counter values satisfy the same atomic guards.

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.
I ρ can be divided as a sequence ρ = ρ1 · ρ2 · · · ρL′ .

I Each ρi respects a local reversal phase.

I L′ ≤ ((d × r) + 1)× 2Kd .



Proof idea (1/2)
I ρ can be divided in at most (d × r) + 1 subruns respecting

a global reversal phase.

I We show that each such subrun can be divided in at most
2Kd subruns respecting a local guard phase.

I Binary relation �a with a ∈ Zd on interval maps.

I im �a im′
def⇔ for every i ∈ [1,d ],

I im(xi ) ≤ im′(xi ) if a(i) ≥ 0,

I im′(xi ) ≤ im(xi ) if a(i) ≤ 0,

I im′(xi ) = im(xi ) if a(i) = 0.

I im ≺a im′: im �a im′ and im 6= im′.

x agrees with im and x′ + a agrees with im′ imply im �a im′



Proof idea (2/2)

I Number of interval maps in O(K d ).

I Let a ∈ Zd and im1 ≺a im2 ≺a · · · ≺a imβ. Then, β ≤ 2Kd .

I In a subrun respecting a global reversal phase, each
counter is compared against at most K constants and all
the counters have a monotonous behaviour.

I Each counter during the global reversal phase can visit at
most 2K distinct intervals in I.

I Hence, the bound 2Kd for the maximal number of local
reversal phases.



Sequences of extended paths

I P1 · · ·PL′ such that
I each Pi is an extended path compatible with some guarded

mode,

I P1 · · ·PL′ is compatible with the control graph ofM.

I Any r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉
respects a sequence of extended paths P1 · · ·PL′ with

L′ ≤ ((d × r) + 1)× 2Kd



Small extended path (bis)

I Small extended path:

1. π0 and πα have at most 2× card(Q) transitions,

2. π1, . . . , πα−1 have at most card(Q) transitions,

3. for each q ∈ Q, there is at most one set S containing simple
loops on q.

I Length of the skeleton bounded by card(Q)(3 + card(Q)).

I The set of small extended paths is finite.



Runs in normal form

I Run ρ = 〈q0,x0〉 · · · 〈q`,x`〉 respecting P compatible with
some guarded mode gmd.

I Then, there is small P′ still compatible with gmd and a run

ρ′ = 〈q0,x0〉 · · · 〈q`,x`〉

such that ρ′ respects P′.

I Generalization of the case for finite-state automata but with
constraints on initial and final counter values.



Proof (1/9)

I Run ρ = 〈q0,x0〉
t1−→ · · · t`−→ 〈q`,x`〉 respecting P compatible

with gmd.

I π = t1 · · · t` ∈ Lan(P).

I We build a small P′ such that
I P′ is compatible with gmd,

I there is a run ρ′ respecting P′ that starts and ends by the
same configurations as ρ.



Proof (2/9)

We define a sequence of P0, P1, . . . , Pβ such that

I Each Pi is compatible with gmd and there is a run ρi
respecting Pi that starts and ends by the same
configurations.

I P0 is equal to t1 · · · t` viewed as an extended path.

I Pβ is a small extended path.

I Pi+1 is obtained from Pi
1. by removing a simple loop on q and,
2. possibly adding it to a set of simple loops S already in Pi or

by creating one if none exists.



Proof (3/9): from Pi to Pi+1 (bis)

Pi = π0 S1 π1 · · · Sα πα

(a) α ≤ card(Q),

(b) each path in π1, . . . , πα−1 have length less than card(Q),

(c) each state has at most one Si with simple loops on it.

P0 verifies these conditions.



Proof (4/9): three cases
I Pi is a small extended path. We are done.

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. ππ′ 6= ε,
3. Sγ already contains simple loops on q.

Pi+1 is equal to:

π0 · · · Sγ−1 πγ−1 (Sγ ∪ {sl}) · · · πα−1 Sα (ππ′)

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. the first one occurring in π · sl ,
3. ππ′ 6= ε,
4. no Sγ already contains simple loops on q.

Pi+1 is equal to: π0 · · · Sα π {sl} π′.



Proof (5/9)

I It remains to show that there is a run ρi+1 respecting Pi+1
that starts by 〈q0,x0〉 and ends by 〈q`,x`〉.

I Satisfaction of the conditions (a)–(c) are by an easy
verification.

I All the transitions in Pi+1 are compatible with gmd (by
construction).

I The counter values have a monotonous behaviour
(increase or decrease) and the atomic guards are convex.



Let us treat the case 2

I Recapitulation.
I Run ρi respecting Pi , starting by 〈q0,x0〉 and ending by
〈q`,x`〉.

I Pi = π0 S1 π1 · · · Sα (π · sl · π′).
I Pi+1 = π0 · · · Sγ−1 πγ−1 (Sγ ∪ {sl}) · · · πα−1 Sα (ππ′).

I Sγ = S1
γ ] S2

γ and for all sl ′ ∈ S1
γ [resp. sl ′ ∈ S2

γ ], we have
sl ′ ≺ sl [resp. sl ≺ sl ′].

I As Pi is compatible with gmd = 〈im,md〉, for j ∈ [1,d ]:
I md(j) = INC implies that for all x ∈ Nd in ρi , we get that

x0(j) ≤ x(j) ≤ x`(j).

I md(j) = DEC implies that for all x ∈ Nd in ρi , we get that
x`(j) ≤ x(j) ≤ x0(j).



Proof (7/9)
I y ∈ Nd : penultimate vector of counter values in ρ.

I For all x ∈ Nd occurring in ρi until that occurrence of y, for
every atomic guard xj ∼ k in AG, equivalence between

1. im ` xj ∼ k ,
2. x(j) ∼ k ,
3. x0(j) ∼ k ,
4. y(j) ∼ k .

I Run ρi :

ρi =

π0 ··· Sγ−1 πγ−1 S1
γ︷ ︸︸ ︷

ρ?1 ·

S2
γ πγ ···πα−1 Sα π︷ ︸︸ ︷

ρ?2 ·
sl︷︸︸︷
ρ?3 ·

π′︷︸︸︷
ρ?4

I For each ρ?i , we write 〈qi
0,x

i
0〉 [resp. 〈qi

f ,x
i
f 〉] to denote its

first [resp. last] configuration.



ρi =

π0 ··· Sγ−1 πγ−1 S1
γ︷ ︸︸ ︷

ρ?1 ·

S2
γ πγ ···πα−1 Sα π︷ ︸︸ ︷

ρ?2 ·
sl︷︸︸︷
ρ?3 ·

π′︷︸︸︷
ρ?4

I ρ??3 : sequence of configurations obtained from 〈q2
0 ,x

2
0〉 by

firing the transitions of the simple loop sl .

I ρ
+ef(sl)
2 : sequence of configurations obtained from the last

configuration of ρ??3 by firing the sequence of transitions
used for ρ?2.

ρi+1 =

π0 ··· Sγ−1 πγ−1 S1
γ︷ ︸︸ ︷

ρ?1 ·
sl︷︸︸︷
ρ??3 ·

S2
γ πγ ···πα−1 Sα π︷ ︸︸ ︷

ρ
+ef(sl)
2 ·

π′︷︸︸︷
ρ?4



Properties of ρi+1
I The sequence of configurations respects the updates on

the transitions.

I It remains to show that transitions in ρ??3 and in ρ+ef(sl)
2 can

be fired by respecting the guards.

I Suppose that md(j) = INC for some j ∈ [1,d ] and y in ρ??3 :

x0(j) = x1
0(j) ≤ x1

f (j) = x2
0(j) ≤ y(j) ≤ x4

0(j) ≤ x4
f (j) = x`(j)

I By convexity of the atomic guards xj ∼ k in AG, y(j) ∼ k iff
y′(j) ∼ k where y′ is the corresponding vector of counter
values in the run ρ?3 (at the same position).

I So, ρ??3 is indeed a run ofM respecting sl .

I Similary, ρ+ef(sl)
2 respects S2

γ πγ · · ·πα−1 Sα π.



Time to wrap-up!

I ρ = 〈q0,x0〉 · · · 〈q`,x`〉 respecting P compatible with gmd.
There exist a small P′ compatible with gmd and
ρ′ = 〈q0,x0〉 · · · 〈q`,x`〉 such that ρ′ respects P′.

I Small sequence of extended paths:

1. number of elements ≤ ((d × r) + 1)× 2Kd ,

2. each extended path is small too.

I For any r -reversal-bounded run ρ, there is an
r -reversal-bounded run ρ′ between the same
configurations that respects a small sequence of extended
paths.



Content of the next lecture on November 6th

I Reachability sets are computable Presburger sets.

I Repeated reachability problems for reversal-bounded
counter machines.

I Decidable and undecidable extensions.



Exercises

I Show that the class of ultimately period sets is closed
under union and intersection.

I Show that for every linear set there is an initialized
0-reversal-bounded counter machine whose reachability
set is equal to it.


