Computability and Complexity Results for a
Spatial Assertion Language for Data Structures

Cristiano Calcagno'2, Hongseok Yang?, and Peter W. O’Hearn'

1 Queen Mary, University of London
2 DISI, University of Genova
ROPAS, KAIST

Abstract. This paper studies a recently developed an approach to rea-
soning about mutable data structures, which uses an assertion language
with spatial conjunction and implication connectives. We investigate
computability and complexity properties of a subset of the language,
which allows statements about the shape of pointer structures (such as
“there is a link from x to 3”) to be made, but not statements about the
data held in cells (such as “z is a prime number”). We show that valid-
ity, even for this restricted language, is not r.e., but that the quantifier-
free sublanguage is decidable. We then consider the complexity of model
checking and validity for several fragments.

1 Introduction

This paper studies a recently developed an approach to reasoning about mutable
data structures [9J5]. The assertion language includes spatial conjunction and
implication connectives alongside those of classical logic, in the style of the logic
of Bunched Implications [§]. The conjunction P @ is true just when the current
heap can be split into disjoint components, one of which makes P true and the
other of which makes @ true. The implication P— @ says that whenever P is
true for a new or fresh piece of heap, @ is true for the combined new and old
heap. In addition, there is an atomic formula, the points-to relation E — F, G,
which says that E points to a cons cell holding F in its car and G in its cdr.
As a small example of x,

(= a,y)* (y— bx)

describes a two-element circular linked list, with a and b in the data fields. The
conjunction * here requires x and y to be pointers to distinct and non-overlapping
cells. For an example of —

(x — a,b) * ((x — ¢,b)—=P)

says that = points to a cell holding (a, b), and that P will hold if we update the
car to c.

The logic of [9J57] can be used to structure arguments in a way that leads
to pleasantly simple proofs of pointer algorithms. But the assertion language

R. Hariharan, M. Mukund, and V. Vinay (Eds.): FSTTCS 2001, LNCS 2245, pp. 108-[I19] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Spatial Assertion Language for Data Structures 109

that the logic uses to describe pre and postconditions is itself new, and its prop-
erties have not been studied in detail. The purpose of this paper is to study
computability and complexity problems for the language.

We consider a pared down sublanguage, which includes the points-to relation
and equality as atomic predicates, but not arithmetic or other expressions or
atomic predicates for describing data. We do this to separate out questions
about the shapes of data structures themselves from properties of the data held
in them. This also insulates us from decidability questions about the data. In
our language we can write a formula that says that x points to a linked list with
two nodes, but not a formula that says that the list is sorted.

Our first result is that, even with these restrictions, the question of validity
is not r.e. The spatial connectives are not needed for this negative result. This
result might seem somewhat surprising, given the sparseness of the language;
decidability would obtain immediately were we to omit the points-to relation.
The proof goes by reduction from a well-known non-r.e. problem of finite model
theory: deciding whether a closed first-order logic formula holds for all nonempty
finite structures.

This result has two consequences. The first is that it tells us that we cannot
hope to find an axiomatic description of —, adequate to the whole language. The
second is that we should look to sublanguages if we are to find a decidability
result.

Our second result is that the quantifier-free sublanguage is decidable. The
main subtlety in the proof is the treatment of —, whose semantics uses a uni-
versal quantification over heaps. This is dealt with by a bounding result, which
restricts the number of heaps that have to be considered to verify or falsify a
formula.

We then consider the complexity of model checking and validity. For the
quantifier-free fragment and several sublanguages both questions are shown to be
PSPACE-complete. One fragment is described where the former is NP-complete
and the latter IT¥-complete. We also remark on cases where (like in propositional
calculus) model checking is linear and validity coNP-complete.

2 The Model and the Assertion Language

In this section we present a spatial assertion language and its semantics. The
other sections study properties of fragments of this language.

Throughout the paper we will use the following notation. A finite map f
from X to Y is written f: X —p5, Y, and dom(f) indicates the domain of f.
The notation f#g¢g means that f and g have disjoint domains, and in that case
f * g is defined by (f x g)(z) =y iff f(x) =y or g(z) = y.

The syntax of expressions E and assertions P for binary heap cells is given
by the following grammar:

E:=z,y...|nil
P:=(E—E,E)|E=F/|false| P= P|Vz.P|emp|P*P|PxP

110 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn

Expressions are either variables or the constant nil. Assertions include equality,
usual connectives from first-order classical logic, and spatial connectives. The
predicate (E — Ejp, E5) asserts that E is the only allocated cell and it points
to a binary heap cell containing F; in the i-th component. The assertion emp
says that the heap is empty. The assertion P; * P, means that it is possible to
split the current heap in disjoint sub-heaps making the two assertions true. The
assertion P} — P, means that for each new heap disjoint from the current one
and making P; true, the combined new and old heap makes P, true.
The other logical connectives are expressible as usual as derived notation:

~P2P=fase P AP,2~(P,=-P) 3Jau.P2~(Vz.-P)

Expressions and assertions for binary heap cells are interpreted in the following
model:

Val 2 Loc U {nil}
Stack 2 Var — Val
Heap 2 Loc —fn Val x Val
State 2 Stack x Heap
Values are either locations or nil, and a state is composed of a stack and a
heap. The heap is a finite map from locations to binary heap cells, whose do-

main indicates the locations that are allocated at the moment. The semantics of
expressions and assertions is given in Table [Tl

Definition 1 (Validity). We say that P is valid, written |= P, if s,h |= P for
all the states (s, h).

Table 1. Semantics of Expressions and Assertions

[e]s = s(x)

[nil]s 2 il
s,h = (E — Ex, Es) iff dom(h) = {[E]s} and h([E]s) = ([EA]s, [E:2]s)
S,h ': E1 = E2 iff [[El]]s = |[E2]]S
s, h [false never
s,h|EPL= P, iff if s,h = P; then s,h = P>
s,h = emp iff dom(h) =0
s,h |E P1L* P iff there exist A1 and ho such that

hl#hg; h1 * hg = h; S,hl ': P1; S,h2 ': P2

s, h = Pi— P> iff for all hy such that h#h, and (s, h1) = P,

(S,h*hl)):PQ
s,hEVz. P iff for any v in Val, s[z — v],h = P

Spatial Assertion Language for Data Structures 111

3 Undecidability

The main result in this section is that the validity problem is not recursively
enumerable even when the spatial connectives, %, emp and —, do not appear in
assertions.

Theorem 1. Deciding whether an assertion is valid is not recursively enumer-
able even when the assertion language is restricted as follows:

Pu=(E< E,E)|E=E|false| P= P|Vz. P
where (E < Ey, Es) is (E — Ey, Es) x true.

Note that the theorem uses an intuitionistic variant < of the predicate — be-
cause only with the — predicate, we can not express that a heap cell [is allocated
and contains (v1, v2) without requiring that [is the only allocated heap cell. The
meaning of (E < Ey, F») is that a heap cell E is allocated and contains (FE7, Es)
but it need not be the only allocated cell.

We prove the theorem by reducing the validity on nonempty finite structures
of closed first-order logic formulas to validity for our restricted language. Then,
the conclusion follows by a standard result from finite model theory [3]:

Theorem 2 (Trakhtenbrot). Even if a signature consists only of one binary
relation, the set of closed first-order logic formulas valid on all nonempty finite
structures is not recursively enumerable.

The reduction goes by translating a first-order logic formula with a single binary
relation R to an assertion. Let ¢ be a first-order logic formula, which is not
necessarily closed. The translation rd(y) is given as follows:

rd(p) = (Fz. (z < nil,nil)) = prd(p)

prd(R(z,y)) = (Fz. (z = z,y)) A (z = nil, nil) A (y = nil, nil)
pri(p = v) = prd(p) = prd(v)

prd(false) 2 false

rd(x = y) 2 (z =y) A (z < nil, nil)

rd(3zx.) 2 3. ((x = nil,nil) A prd(p))

TS

Intuitively, the translation encodes the relation R* and the universe |A| of a
nonempty finite structure A by heap cells: each element in |.4] is encoded as an
allocated cell containing (nil, nil), and a related pair (a;,as) in R is encoded
as an allocated cell containing (z,y) where x and y are encodings of a; and aq,
respectively. Note that the guard (Jz.(x < nil, nil)) in the definition of rd(y)
models the fact that the universe of a finite structure must be nonempty.

The reduction becomes complete once we prove that for closed first-order
logic formulas, the translation preserves and reflects validity. To show that va-
lidity is reflected, we prove a lemma which implies that for all nonempty finite

112 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn

structures A4 and environments n (mapping variables to elements of |A|), it is
always possible to find a state (s, h) so that

A,nE @<= (s,h) E rd(p) for all closed first-order formulas .

Lemma 1. Let A be a nonempty finite structure for the signature {R}, where
R is a binary relation. For all heaps h and sets B, C of locations such that

— {B,C} is a partition of dom(h);

— v is a bijection from |A| to B such that h(v(a)) = (nil, nil) for all a € |Al;
and

— § is a bijection from R to C such that h(6(a1,a2)) = (v(a1),v(a2)) for all
(al,ag) S R'A,

we have
A @<= vyon,h=rd(p)

for all first-order formulas ¢ and environments 7.

Proof. Since the universe |A| is not empty, the guard (3z. (x < nil, nil)) holds
for the state (s, h). So, it suffices to prove the following claim: for all first-order
formulas ¢,

Ao vyonhl= prd(p)

It is straightforward to show the claim using induction over the structure of
©. O

Before showing that validity is preserved by the translation, we note that when
© is closed, so is rd(y); so, rd(y) is valid if and only if for all heaps h, there
is some stack s with (s,h) | rd(¢). Let ¢ be a closed first-order formula and
let h be a heap. When h does not have any cells containing (nil, nil), the guard
(Fz. (x — nil, nil)) of rd(p) always becomes false; consequently, (s, h) &= rd(p)
for all stacks s. The key idea to handle the other case, where a heap h has at
least one cell containing (nil, nil), is to build a nonempty finite structure 4 and
a stack s such that ¢ holds in A if and only if (s,h) = rd(¢). We construct
such a stack simply by mapping all variables to the address of allocated cells
in h containing (nil, nil); then, the following lemma shows how to construct the
needed structure.

Lemma 2. For all heaps h and stacks s such that h(s(x)) is defined and equal
to (nil, nil) for all variables x, let A be a structure for the signature {R} given

by:

— |A] = {l € dom(h) | h(l) = (nil, nil)}; and
— (I1,13) € RY iff Iy, 1y are in |A| and h(l) = (I1,12) for some | € dom(h).

Then, A, s = ¢ iff s,h = rd(p).

Spatial Assertion Language for Data Structures 113

Proof. Note that the structure |A4| can not be empty because in h, at least a
single allocated heap cell must contain (nil, nil); otherwise, no stack would satisfy
the condition in the lemma. One consequence of this fact is that (s, h) = rd(p)
iff (s, h) = prd(e). So, it suffices to show that

A, s E o< s,h = prd(p),

which can be easily proved using induction over ¢. 0O

4 Decidable Fragment

The undecidability result in the previous section indicates that in order to obtain
a decidable fragment of the assertion language, either quantifiers must be taken
out in the fragment or they should be used in a restricted manner. In this section,
we consider the quantifier-free fragment of the assertion language, including
spatial connectives, emp, * and —«. The main result in the section is:

Theorem 3. Deciding the validity of assertions is algorithmically decidable as
long as the assertions are instances of the following grammar:

P:=(E—E,E)|E=F|false| P= P|emp|P*P| PP

To prove the theorem, we need to show that there is an algorithm which takes an
assertion following the grammar in the theorem and answers whether the asser-
tion holds for all states. The main observation is that each assertion determines
a finite set of states so that if the assertion holds for all states in the set, it
indeed holds for all the states. The proof proceeds in two steps: first we consider
the case that an assertion P and a state s, h are given so that an algorithm is
supposed to answer whether s, h = P; then, we construct an algorithm which,
given an assertion P, answers whether s, h |= P holds for all the states (s, h).
In the remainder of the section, we assume that all the assertions follow the
grammar given in Theorem [3

The problem of algorithmically deciding whether s, h = P holds given P, s, h
as inputs is not as straightforward as it seems because of —: when P is of the
form Q- R, the interpretation of s, h = P involves quantification over all heaps,
which might require to check infinite possibilities. So, the decidability proof is
mainly for showing that there is a finite boundary algorithmically determined
by @ and R. We first define the size of an assertion, which is used to give an
algorithm to determine the boundary.

Definition 2 (size of P). For an assertion P, we define size of P, |P|, as
follows:

(E— By, Ey)| = 1 |[E1=Es[=0
false] = 0 [P = Q| = maz(|P],|Q)
[P*Q| = |P[+1Q |P~Q[= |Q
lemp| =1

114 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn

The size of P determines a bound on the number of heap cells we have to
consider to determine whether P is true or not. For instance, the size of (z —
nil, nil) x (y — nil,nil) is 2; and to decide whether it or its negation is true, or
whether it is merely satisfiable, requires us only to look at heaps of size upto 2.

The following proposition claims that there is a bound number of heaps to
check in the interpretation of s,h | Q- R; the decidability result is just an
immediate corollary. Let ord be an effective enumeration of Loc.

Proposition 1. Given a state (s,h) and assertions Q, R, let X be FV(Q) U
FV(R) and B a finite set consisting of the first maz(|Q|, |R|) locations in Loc —
(dom(h) U s(X)) where the ordering is given by ord. Pick a value v € Val —
s(X) —{nil}. Then, (s,h) = Q- R holds iff for all hy such that

— h#hy and (s,h) = Q;
— dom(h;) C BUs(X); and
— for alll € dom(hy), hi(l) € (s(X) U {nil,v}) x (s(X) U {nil,v})

we have that (s,h* hy) = R.

To see why the proposition implies the decidability result, notice that there
are only finitely many hq’s satisfying the conditions because both B U s(X) and
s(X)U{nil,v} are finite. Since all the other cases of P only involve finitely many
ways to satisfy s, h = P, the exhaustive search gives the decision algorithm.

The interesting direction of the proposition is “if” because the only-if di-
rection follows from the interpretation of —. Intuitively, the if direction of the
proposition holds because the following three changes of heap cells do not af-
fect the truth of either @ or R: relocating “garbage” heap cells (those not in
s(X)); de-allocating redundant garbage heap cells when there are more than
max(|Q|, |R|) of them; overwriting “uninteresting values” (those not in s(X) U
{nil}) by another uninteresting value (v). Then, for every heap h} with h#h],
there is a sequence of such changes which transforms h} and h % b} to hy and
h = hy, respectively, such that hy satisfies the last two conditions in the propo-
sition. The proposition follows because each step in the sequence preserves the
truth of both @ and R; so, (s,h}) E Q implies (s,h1) = Q, and (s,hy xh) E R
implies (s, h} * h) = R.

Corollary 1. Given a stack s and an assertion P, checking (s,h) = P for all
h is decidable.

Proof. The corollary holds because s,h |= P for all hiff s,[] | (—=P)—false. O

For the decidability of checking (s,h) |= P for all states (s, h), we observe that
the actual values of variables are not relevant to the truth of an assertion as long
as the “relationship” of the values remains the same. We define a relation ~x
to capture this “relationship” formally. Intuitively, two states are related by ~x
iff the relationship of the values, which are stored in variables in X or in heap
cells, are the same in the two states.

Spatial Assertion Language for Data Structures 115

Definition 3 (xx). For states (s,h) and (s',h’) and a subset X of Var, (s, h)
rx (8',h) iff there exists a bijection r from Val to Val such that r(nil) = nil;
r(s(z)) = ' (z) for all x € X; and (r x r)(h(1)) = W' (r(1)) for alll € Loc.

Proposition 2. For all the states (s,h) and (s',h') and all assertions P such
that (s,h) =pypy (s', '), if (s,h) = P, then (s',h') = P.

Lemma 3. Given a state (s, h) and an assertion P, let B be the set consisting of
the first |FV (P)| locations in Loc, where the ordering is given by ord. Then, there
exists a state (s',h') such that s'(Var— FV (P)) C {nil}; s'(FV(P)) C BU{nil};
and (s,h) =pypy (s',0').

The decidability result follows from the above lemma. To see the reason, we note
that because of the lemma, for all assertions P, there is a finite set of stacks such
that if for all stacks s in the set and all heaps h, (s, h) = P, then P holds for all
states whose stack is not necessarily in the set. Therefore, a decision algorithm
is obtained by exhaustively checking for each stack s in the finite set whether
(s,h) = P holds for all heaps h using the algorithm in Corollary [

Corollary 2. Given an assertion P, checking (s, h) = P for all the states (s, h)
is decidable.

5 Complexity

In this section we study the complexity of model checking for some fragments of
the decidable logic of Section Ml

We consider the following fragments, where (E < —) means that F is not
allocated (s, h = (E 4 —) iff [E]s & dom(h)):

’ Language \ MC VAL

L P:=(F—E,E)|(EX —)|E=E|E# FE |false P coNP
| PAP|PVP|emp

LY |Pu=L|PxP NP ¥

L™ |Pu:=L|-P|PxP PSPACE|PSPACE

L™ |Pu=L]|PxP PSPACE|PSPACE

L**|Pu=L]|-P|PxP|PxP PSPACE|PSPACE

Given a fragment L£¢, the corresponding model-checking problem MC(L) is
deciding whether s,h |= P holds given a state (s, h) and an assertion P € L°.
The validity problem asks whether a formula is true in all states. In the above
table the second-last column reports the complexity of model checking and the
last the complexity of validity.

! the equality in (r x 7)(h(l)) = R/(r(I)) means that if one side of the equation is
defined, the other side is also defined and they are equal.

116 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn

The easy fragment is £. Clearly M C(L) can be solved in linear time by the
obvious algorithm arising from the semantic definitions, and it is not difficult to
show that the validity is coNP-complete. As soon as we add %, model checking
bumps up to NP-complete. The validity problem for £* is IT¥-complete; we show
the former but consideration of the latter is omitted for brevity. It is possible
to retain linear model checking when * is restricted so that one conjunct is of
the form (E +— FEj, E3). The fragment £7*7* is the object of the decidability
result of Section[d a consequence of our results there is that model checking and
validity can be decided in polynomial space. Below we show PSPACE-hardness
for model checking for the two fragments £7* and L7 . It is a short step to show
PSPACE-hardness for validity.

5.1 MC(L*) Is NP-Complete

In this section we show directly that M C(L*) belongs to NP, and give a reduction
from an NP-complete problem to it.

Proposition 3. MC(L*) is in NP.

Proof. The only interesting part is deciding whether s,h | P x @ holds. The
algorithm proceeds by choosing non-deterministically a set D C dom/(h), deter-
mining a splitting of A in two heaps hy; and hy obtained by restricting h to D
and to dom(h) — D respectively. O

Definition 4. The problem SAT is, given a formula F' from the grammar
Fu=z|-2|FAF|FVF

deciding whether it is satisfiable, i.e. whether there exists an assignment of
boolean values to the free variables of F making F true.

Definition 5. The translation from formulas F' to assertions P of L* is defined
by a function tr(f).

tr(x) (m|—> nil, nil) * true tr(ﬁx) (x o —)
(Fl/\FQ) tr (Fl)/\t'r(FQ) tT(Fl \/FQ) tr (Fl)\/tT(Fg)

Proposition 4. A formula F with variables {x1,...,x,} is satisfiable if and
only if so, ho = tr(F) «true holds, where so maps distinct variables x; to distinct
locations l;, dom(hy) = {l1,...,l,} and ho(l;) = (nil,nil) fori=1,...,n.

Proof. The truth of a boolean variable z is represented by its being allocated; in
the initial state (sg, hg) all the variables are allocated. The formula tr(F) * true
is true if and only if there exists a subheap h’ making tr(F') true, and subheaps
correspond to assignments of boolean values to the variables in F'. O

Since the translation and construction of (sg, hg) can be performed in polyno-
mial time, an immediate consequence is NP-hardness of M C(L*), hence NP-
completeness.

2 true can be expressed by nil = nil in £*.

Spatial Assertion Language for Data Structures 117

5.2 MC(L™) Is PSPACE-Complete

In this section PSPACE-hardness of MC(L™*) is proved by reducing a PSPACE-
complete problem to it. Completeness follows from the fact that MC(L™ ™) is
in PSPACE and that £7* is a sub-fragment of £™7.

Definition 6. The problem QSAT is, given a closed formula G from the gram-
mar

Fu=z|-x|FAF|FVF, G :=Vr,yr..... YV, .y, F

deciding whether it is true.

Definition 7. The translation from formulas G to assertions P of L7 is defined
by a function tr(—):

tr(x) = (z > nil, nil) * true tr(—uv) (-)
tr(Fy A Fy) 2 tr(Fy) A tr(Fy) tr(FLV Fy) 2 tr(Fy) V tr(Fy)
tr(Jy;.G) = = ((yi = nil,nil) V emp) x tr(G)
tr(Ve;.G) = = (((z; — nil, nil) V emp) x = tr(G))

Proposition 5. A closed formula G is true if and only if s, ho |= tr(G) holds,
where so maps distinct variables z; to distinct locations l;, dom(ho) = {l1,...,l,}
and ho(l;) = (nil, nil) fori=1,...,n.

Proof. The truth of a boolean variable x is represented by its being allocated; in
the initial state (sg, ho) all the variables are allocated. The only interesting cases
are the quantifiers. The invariant is that tr(3Jy;.G) is checked in a state where
y; is allocated, thus ((y; — nil, nil) V emp) * tr(G) holds iff ¢7(G) holds either for
the current state or for the state obtained by de-allocating y;. In other words, G
either holds for y; true or for y; false. The translation of (Vz;.—) is essentially
|(E|1‘i.| —). O

Observing that the translation and construction of (s, ho) can be performed in
polynomial time, we have shown PSPACE-hardness of MC(L™).

5.3 MC(L™) Is PSPACE-Complete

In analogy with the previous section, a translation from QSAT to MC(L™) is
presented.

This case is more complicated, since — provides a natural way of representing
universal quantifiers, but there is no immediate way to represent existentials. Our
solution is to use two variables x; and x ¢ to represent a boolean variable x. There
are three admissible states:

— initial, when neither z; nor x is allocated;

118 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn

— true, when x; is allocated and x; is not;
— false, when z is allocated and x; is not.

We use some auxiliary predicates:

(x = -) = ((z + nil, nil)—x false) A (2 # nil)
I 2 (@0 =) Ay 2)
OK, 2 ((zn = =) Aay £)V (g = =) A e 5 =)

The meaning of (x — —) is that it is not possible to extend the current heap
with z pointing to (nil, nil), i.e. x is allocated; I, means that x is in an initial
state, and OK, means that z is either in state true or in state false.
Definition 8. Given a closed formula Yri.3y;..... Vr,.Jy,.F, define the or-
dered set V 2 {z1 <y1 < ... <y <yn}. Write S°? for V. — S when S C V.
Define {< z} 2 {2’ e V|’ < x}. The predicates are extended as follows:

Is= N\ L OKs = |\ OK,
zeS zeS

The translation is defined by a function tr(—):

-)

-)

tr(z) = (
(zy
tr (Fl) Atr(Fy)
tr
(

=

tr(—)

tr(F1 A\ Fy)
)

G)

3
£

t?”(Fl \/F2 (Fl)\/tT(Fg)
tr(V;. OK{x A I{x }op)—* tr(G)
tr(Jyi-G) = ~ (OK{<ay AMizyy) A~ (OKi<yy AMiza, 0y Ar(G)))

where ~ P is short for P—xfalse.

l> e e s e i

Intuitively, the translation of z says that x is in state true, and the translation
of -z says that x is in state false. For (Va;. G), the invariant is that OKy<,, 3
and I, hold, and the translation says that G holds after extending the current
heap with any new heap containing only z; in an OK state (i.e. true or false).
For (Jy;. G), the invariant is that OK;<,,} and I>,, hold. The formula ~ (P A
Q) implies that when P holds in a new heap, the heap does not satisfy @; in
particular, if P is OK{<,} A I{>y,} and P holds in the current heap, ~ (P A Q)
implies that inverting the boolean value of x makes) false. This case is the
most complicated of the translation, and involves a double negation. In words,
it says that given an initial heap hg, inverting the boolean values of variables
in {< z;} leads to a heap hy; which makes the following false: for every heap hq
obtained from h; by inverting again the boolean values of variables in {< x;}
and by assigning some boolean value to y;, G does not hold in hs.

Proposition 6. A closed formula G is true if and only if so,[] |E tr(G) holds,
where sg maps distinct variables x; to distinct locations l;, and [] is the empty
heap.

Spatial Assertion Language for Data Structures 119

To obtain the PSPACE-hardness result, observe that the translation can be
performed in polynomial time, since the size of each Is and OKg is linear in the
number of variables.

6 Future Work

Possible directions for future work include incorporating heap variables that
allow us to take snapshots of the heap, with suitable restrictions [0] to maintain
decidability, and also recursive definitions or special atomic predicates [I] for
describing paths through the heap. We also plan to investigate the relation of
our approach to work on model checking mobile ambients [2]. Finally, it would
be useful to integrate our results on counter-models with the recently developed
tableaux proof theory for Bunched Implications [4].

Acknowledgments

We would like to thank the anonymous referees for their valuable comments
that suggested interesting improvements to the paper. Yang was supported by
the US NSF under grant INT-9813854 and by Creative Research Initiatives of
the Korean Ministry of Science and Technology. Calcagno and O’Hearn were
supported by the EPSRC under the “Local Reasoning about State” projects.

References

1. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data
structures. In ESOP ’99: European Symposium on Programming, pages 2—19. Lec-
ture Notes in Computer Science, Vol. 1576, S.D. Swierstra (ed.), Springer-Verlag,
New York, NY, 1999.

2. W. Charatonik, S. Dal Zilio, A. Gordon, S. Mukhopadhyay, and J.M. Talbot. The
complexity of model checking mobile ambients. In FoSSaCS, April 2001.

3. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995. ISBN
3-540-60149-X.

4. D. Galmiche and D. Méry. Proof-search and countermodel generation in proposi-
tional BI logic. In TACS, 2001. LNCS to appear.

5. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
In Principles of Programming Languages, January 2001.

6. J. Jenson, M. Jorgensen, N. Klarkund, and M. Schwartzback. Automatic verification
of pointer programs using monadic second-order logic. In Proceedings of the ACM
SIGPLAN’97 Conference on Programming Language Design and Implementation,
pages 225-236, 1997. SIGPLAN Notices 32(5).

7. P. O’'Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In L. Fribourg, editor, Proceedings of 15th Annual Conference
of the European Association for Computer Science Logic: CSL 2001, pages 1-19.
Springer-Verlag, 2001. LNCS 2142.

8. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, June 99.

9. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Millennial Perspectives in Computer Science. Palgrave, 2000.

	Computability and Complexity Results for a Spatial Assertion Language for Data Structures
	1 Introduction
	2 The Model and the Assertion Language
	3 Undecidability
	4 Decidable Fragment
	5 Complexity
	5.1 MC(L^*) Is NP-Complete
	5.2 MC(L¬^ *) Is PSPACE-Complete
	5.3 MC(L^-*) Is PSPACE-Complete

	6 Future Work
	Acknowledgments
	References

