Verification of security protocols from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Thursday, July 10th, 2014

Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks

Some security properties

- Secrecy: May an intruder learn some secret message between two honest participants?
- Authentication: Is the agent Alice really talking to Bob?
- Anonymity: Is an attacker able to learn something about the identity of the participants who are communicating?
- Non-repudiation: Alice sends a message to Bob. Alice cannot later deny having sent this message. Bob cannot deny having received the message.

Example: E-voting application

Eligibility: only legitimate voters can vote, and only once

No early results: no early results can be obtained which could influence the remaining voters

Vote-privacy/Receipt-freeness/Coercion-resistance: the fact that a particular voted in a particular way is not revealed to anyone

Individual/Universal verifiability:

a voter can verify that her vote was really counted, and that the published outcome is the sum of all the votes

cryptographic primitives = basic building blocks

 \longrightarrow symmetric/ asymmetric encryption, signature, hash function, \dots

cryptographic primitives = basic building blocks

 \longrightarrow symmetric/ asymmetric encryption, signature, hash function, \ldots

Symmetric encryption

Examples: Caesar cipher, Enigma machine (\sim 1918-1945), or more recently DES (1973) and AES (1997)

cryptographic primitives = basic building blocks

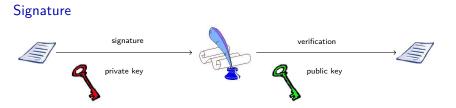
 \longrightarrow symmetric/ asymmetric encryption, signature, hash function, \ldots

Asymmetric encryption encryption public key public key encryption decryption private key

Examples: First system published by Diffie-Hellman (1976), RSA (1977)

cryptographic primitives = basic building blocks

 \longrightarrow symmetric/ asymmetric encryption, signature, hash function, \ldots



protocol = small programs explaining how to exchange messages

 \longrightarrow key-exchange protocols, authentication protocols, e-voting protocols, Bitcoin protocol, \ldots

protocol = small programs explaining how to exchange messages

 \longrightarrow key-exchange protocols, authentication protocols, e-voting protocols, Bitcoin protocol, \ldots

Example: A simplified version of the Denning-Sacco protocol (1981)

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What about secrecy of *s* ?

protocol = small programs explaining how to exchange messages

 \longrightarrow key-exchange protocols, authentication protocols, e-voting protocols, Bitcoin protocol, \ldots

Example: A simplified version of the Denning-Sacco protocol (1981)

What about secrecy of *s* ?

Consider a scenario where A starts a session with C who is dishonest.

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))

protocol = small programs explaining how to exchange messages

 \longrightarrow key-exchange protocols, authentication protocols, e-voting protocols, Bitcoin protocol, \ldots

Example: A simplified version of the Denning-Sacco protocol (1981)

What about secrecy of *s* ?

Consider a scenario where A starts a session with C who is dishonest.

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k) Attack !

Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A \rightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A)) \rangle, \operatorname{pub}(B))$
 $B \rightarrow A$: $\operatorname{senc}(s, k)$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))
 $B \rightarrow A$: senc(s, k)

Which version would you prefer to use?

Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A \rightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A)) \rangle, \operatorname{pub}(B))$
 $B \rightarrow A$: $\operatorname{senc}(s, k)$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))
 $B \rightarrow A$: senc(s, k)

Which version would you prefer to use? Version 2

 \longrightarrow Version 1 is still vulnerable to the aforementioned attack.

What about protocols used in real life ?

E-passport

 \longrightarrow studied in [Arapinis *et al.*, 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

 \longrightarrow studied in [Arapinis *et al.*, 10]

An electronic passport is a passport with an RFID tag embedded in it.

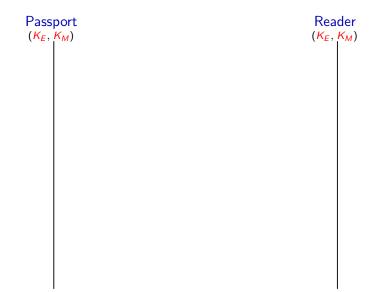
The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

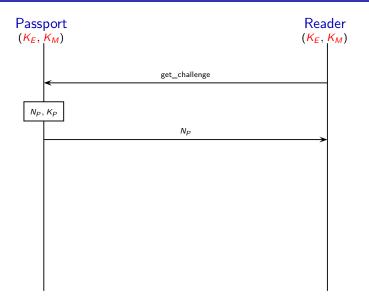
The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure unlinkability.

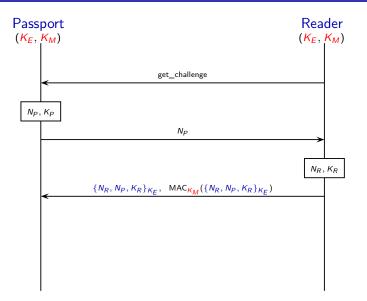
ISO/IEC standard 15408

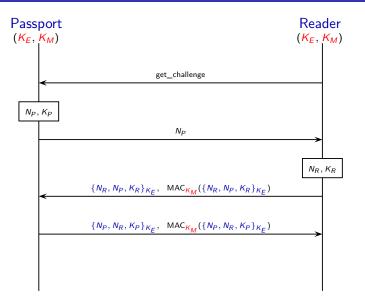
Unlinkability aims to ensure that a user may make multiple uses of a service or resource without others being able to link these uses together.

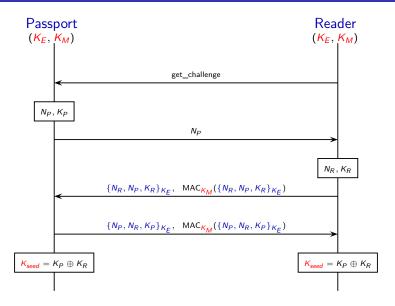


$\begin{array}{c} Passport \\ (K_{E}, K_{M}) \\ \\ \end{array}$		$\begin{array}{c} Reader \\ (\kappa_E, \kappa_M) \\ \end{array}$
<	get_challenge	

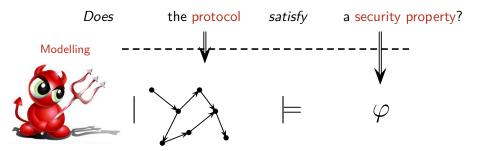




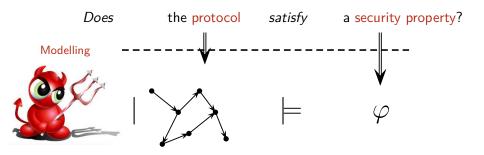




This talk: formal methods for protocol verification



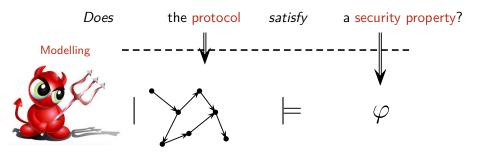
This talk: formal methods for protocol verification



E-passport application

What about unlinkability of the ePassport holders ?

This talk: formal methods for protocol verification



Outline of the this talk

- Modelling cryptographic protocols and their security properties
- Obsigning verification algorithms

Modelling cryptographic protocols and their security properties

Terms built over a signature \mathcal{F} , and an infinite set of names \mathcal{N} .

Example:

•
$$\mathcal{F} = \{ \operatorname{senc}(\cdot, \cdot), \operatorname{sdec}(\cdot, \cdot), \langle \cdot, \cdot \rangle, \operatorname{proj}_1(\cdot), \operatorname{proj}_2(\cdot) \};$$

• $\mathcal{N} = \{ n, a, k, s, \ldots \}.$

 \longrightarrow some terms: senc($\langle s, a \rangle, k$), sdec(enc(s, k), k), and s.

Terms built over a signature \mathcal{F} , and an infinite set of names \mathcal{N} .

$$egin{array}{cccc} {\mathsf{t}} & ::= & & & & \\ & & & & & \\ & & & & f(t_1,\ldots,t_k) & {\mathsf{application of symbol } f \in \mathcal{F}} \end{array}$$

Example:

 \longrightarrow some terms: senc($\langle s, a \rangle, k$), sdec(enc(s, k), k), and s.

Term algebra is equipped with an equational theory E.

Example: dec(enc(x, y), y) = x, proj₁($\langle x, y \rangle$) = x, proj₂($\langle x, y \rangle$) = y. We have that sdec(senc(s, k), k) =_E s.

What function symbols and equations do we need to model this protocol?

What function symbols and equations do we need to model this protocol?

• symmetric encryption: $senc(\cdot, \cdot)$, $sdec(\cdot, \cdot)$

 \longrightarrow sdec(senc(x, y), y) = x

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

3 symmetric encryption: senc(
$$\cdot$$
, \cdot), sdec(\cdot , \cdot)

 \longrightarrow sdec(senc(x, y), y) = x

asymmetric encryption: $\operatorname{aenc}(\cdot, \cdot)$, $\operatorname{adec}(\cdot, \cdot)$, $\operatorname{pk}(\cdot)$

 \rightarrow adec(aenc(x, pk(y)), y) = x

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

3 symmetric encryption:
$$senc(\cdot, \cdot)$$
, $sdec(\cdot, \cdot)$

 \longrightarrow sdec(senc(x, y), y) = x

asymmetric encryption: $aenc(\cdot, \cdot)$, $adec(\cdot, \cdot)$, $pk(\cdot)$

 \rightarrow adec(aenc(x, pk(y)), y) = x

Signature: sign(\cdot, \cdot), check(\cdot, \cdot)

 \rightarrow check(sign(x, y), pk(y)) = x

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

3 symmetric encryption:
$$senc(\cdot, \cdot)$$
, $sdec(\cdot, \cdot)$

 \longrightarrow sdec(senc(x, y), y) = x

asymmetric encryption: $aenc(\cdot, \cdot)$, $adec(\cdot, \cdot)$, $pk(\cdot)$

 \rightarrow adec(aenc(x, pk(y)), y) = x

Signature: sign(\cdot, \cdot), check(\cdot, \cdot)

 \rightarrow check(sign(x, y), pk(y)) = x

The two terms involved in a normal execution are:

aenc(sign(k, ska), pk(skb)), and senc(s, k)

Applied pi calculus

[Abadi & Fournet, 01]

basic programming language with constructs for concurrency and communication

 \rightarrow based on the π -calculus [Milner *et al.*, 92], and in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Applied pi calculus

[Abadi & Fournet, 01]

basic programming language with constructs for concurrency and communication

 \rightarrow based on the π -calculus [Milner *et al.*, 92], and in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Some advantages:

- allows us to model cryptographic primitives
- both reachability and equivalence-based specification of properties
- powerful proof techniques for hand proofs

Protocols as processes - syntax and semantics

Syntax :
$$P, Q$$
 := 0null process $in(c,x).P$ input $out(c,u).P$ outputif $u = v$ then P else Q conditional $P \mid Q$ parallel composition $!P$ replicationnew $n.P$ fresh name generation

Protocols as processes - syntax and semantics

Syntax :	P, Q	:=	0	null process
			in(c,x).P	input
			out(c, u).P	output
			if $u = v$ then P else Q	conditional
			$P \mid Q$	parallel composition
			! <i>P</i>	replication
			new <i>n</i> . <i>P</i>	fresh name generation

Semantics \rightarrow :

Сомм	$out(c,M).P \mid in(c,x).Q ightarrow P \mid Q\{M/x\}$
Then	if $M=N$ then P else $Q ightarrow P$ when $M=_{E} N$
Else	$ \text{ if } M = N \text{ then } P \text{ else } Q \to Q \text{ when } M \neq_{E} N \\$

closed by structural equivalence (\equiv) and application of evaluation contexts.

$$egin{array}{rcl} A o B & : & ext{aenc(sign}(k, ext{priv}(A)), ext{pub}(B)) \ B o A & : & ext{senc}(s, k) \end{array}$$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$$

in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).}{\operatorname{in}(c, x_a). \text{ let } y_a = \operatorname{sdec}(x_a, k) \text{ in...}}$$

 $P_B(sk_b, pk_a) = in(c, x_b)$. let $y_b = check(adec(x_b, sk_b), pk_a)$ in new $s.out(c, senc(s, y_b))$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$$

in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

 $P_B(sk_b, pk_a) = in(c, x_b).$ let $y_b = check(adec(x_b, sk_b), pk_a)$ in new $s.out(c, senc(s, y_b))$

One possible scenario:

 $P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, pk(sk_b)) | P_B(sk_b, pk(sk_a)))$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$$

in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

$$P_B(sk_b, pk_a) = in(c, x_b).$$
 let $y_b = check(adec(x_b, sk_b), pk_a)$ in
new $s.out(c, senc(s, y_b))$

One possible scenario:

$$P_{DS} = \text{new } sk_a, sk_b.(P_A(sk_a, pk(sk_b)) | P_B(sk_b, pk(sk_a)))$$

$$\rightarrow \text{new } sk_a, sk_b, k.(in(c, x_a). \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots$$

$$| \text{ let } y_b = k \text{ in new } s.\text{out}(c, \text{senc}(s, y_b))$$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$$

in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

$$P_B(sk_b, pk_a) = in(c, x_b).$$
 let $y_b = check(adec(x_b, sk_b), pk_a)$ in
new $s.out(c, senc(s, y_b))$

One possible scenario:

$$P_{DS} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) | P_B(sk_b, \text{pk}(sk_a)))$$

$$\rightarrow \text{new } sk_a, sk_b, k.(\text{in}(c, x_a). \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots | \text{ let } y_b = k \text{ in new } s.\text{out}(c, \text{senc}(s, y_b))$$

$$\rightarrow \text{new } sk_a, sk_b, k, s.(\text{ let } y_a = \text{sdec}(\text{senc}(s, k), k) \text{ in } \dots | 0)$$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$$

in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

$$P_B(sk_b, pk_a) = in(c, x_b).$$
 let $y_b = check(adec(x_b, sk_b), pk_a)$ in
new $s.out(c, senc(s, y_b))$

One possible scenario:

$$P_{DS} = \text{new } sk_a, sk_b.(P_A(sk_a, pk(sk_b)) | P_B(sk_b, pk(sk_a)))$$

$$\rightarrow \text{new } sk_a, sk_b, k.(in(c, x_a). \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots | \text{ let } y_b = k \text{ in new } s.\text{out}(c, \text{senc}(s, y_b)))$$

$$\rightarrow \text{new } sk_a, sk_b, k, s.(\text{ let } y_a = \text{sdec}(\text{senc}(s, k), k) \text{ in } \dots | 0)$$

 \longrightarrow this simply models a normal execution between two honest participants

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form C[out(c, s), Q'] with c public.

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form C[out(c, s), Q'] with c public.

Some difficulties:

- we have to consider all the possible executions in presence of an arbitrary adversary (modelled as a process)
- we have to consider realistic initial configurations
 - \longrightarrow replications to model an unbounded number of sessions,
 - \longrightarrow reveal public keys and private keys to model dishonest agents,
 - \longrightarrow P_A/P_B may play with other (and perhaps) dishonest agents, ...

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

new sk_a .new sk_b . $(P_A(sk_a, pk(sk_c)) | P_B(sk_b, pk(sk_a))$

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

new sk_a .new sk_b . $(P_A(sk_a, pk(sk_c)) | P_B(sk_b, pk(sk_a))$

Exercise: Exhibit the process A (the behaviour of the attacker) that witnesses the aforementioned attack.

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 1:

$$\operatorname{out}(a, \mathbf{s}) \stackrel{?}{\approx} \operatorname{out}(a, \mathbf{s}')$$

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 1:

$$\mathsf{out}(a, \mathbf{s}) \not\approx \mathsf{out}(a, \mathbf{s}')$$

 \longrightarrow A = in(a, x).if x = s then out(c, ok)

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

$$(A \mid P) \Downarrow_c$$
 if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k'))

$$\stackrel{?}{\approx}$$

new s, s'.out(a, senc(s, k)).out(a, senc(s', k'))

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

$$(A \mid P) \Downarrow_c$$
 if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Example 2:

$$\begin{array}{l} \operatorname{new} s.\operatorname{out}(a,\operatorname{senc}(s,k)).\operatorname{out}(a,\operatorname{senc}(s,k')) \\ \not\approx \\ \operatorname{new} s, s'.\operatorname{out}(a,\operatorname{senc}(s,k)).\operatorname{out}(a,\operatorname{senc}(s',k')) \end{array}$$

 $\longrightarrow A = in(a, x).in(a, y).if (sdec(x, k) = sdec(y, k')) then out(c, ok)$

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise: Are the two following processes in testing equivalence?

new s.out(a, s) $\stackrel{?}{\approx}$ new s.new k.out(a, enc(s, k))

What does unlinkability mean?

Informally, an observer can not observe the difference between the two following situations:

- a situation where the same passport may be used twice (or even more);
- a situation where each passport is used at most once.

What does unlinkability mean?

Informally, an observer can not observe the difference between the two following situations:

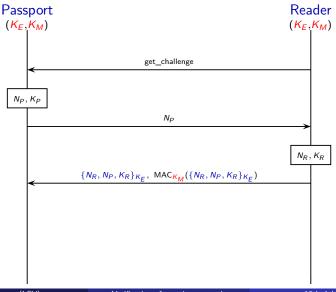
- a situation where the same passport may be used twice (or even more);
- a situation where each passport is used at most once.

More precisely, we have that:

!new ke.new km.(
$$!P_{Pass} | !P_{Reader}$$
)
 $\stackrel{?}{\approx}$
!new ke.new km.($P_{Pass} | !P_{Reader}$)

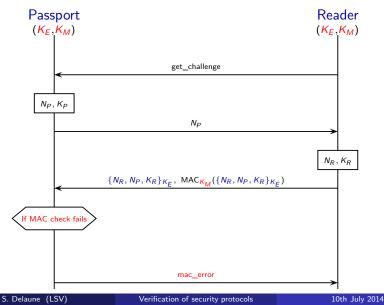
French electronic passport

 \rightarrow the passport must reply to all received messages.



French electronic passport

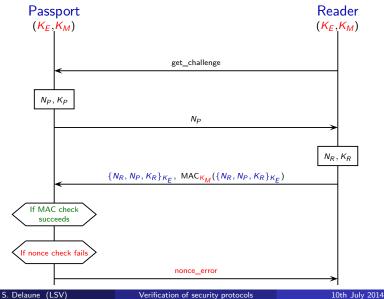
 \rightarrow the passport must reply to all received messages.



22 / 48

French electronic passport

 \rightarrow the passport must reply to all received messages.



ily 2014 22 / 48

Attack against unlinkability

[Chothia & Smirnov, 10]

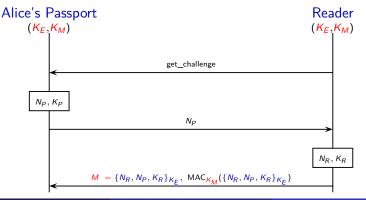
An attacker can track a French passport, provided he has once witnessed a successful authentication.

Attack against unlinkability

[Chothia & Smirnov, 10]

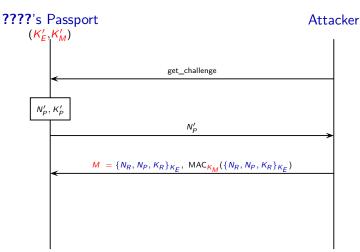
An attacker can track a French passport, provided he has once witnessed a successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport and records message M.



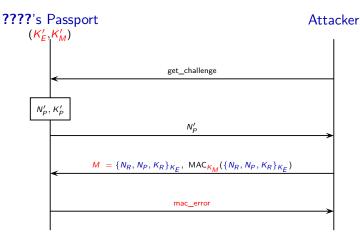
Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.



Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.



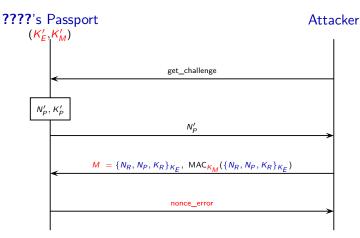
$$\implies MAC check failed \implies K'_M \neq K_M \implies ???? \text{ is not Alice}$$

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 /

48

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.



 $\implies \text{MAC check succeeded} \implies K'_M = K_M \implies \text{???? is Alice}$ S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

Attack !

The equivalence does not hold: $P_{\text{same}} \not\approx P_{\text{diff}}$.

More formally,

$$\begin{array}{l} P_{\mathsf{same}} \stackrel{\mathsf{def}}{=} !\mathsf{new} \ ke.\mathsf{new} \ km.(!P_{\mathsf{Pass}} \ \mid !P_{\mathsf{Reader}}) \\ \not\approx \\ P_{\mathsf{diff}} \stackrel{\mathsf{def}}{=} !\mathsf{new} \ ke.\mathsf{new} \ km.(\ P_{\mathsf{Pass}} \ \mid !P_{\mathsf{Reader}}) \end{array}$$

Attack !

The equivalence does not hold: $P_{\text{same}} \not\approx P_{\text{diff}}$.

More formally,

$$\begin{array}{l} P_{\mathsf{same}} \stackrel{\mathsf{def}}{=} !\mathsf{new} \; ke.\mathsf{new} \; km.(!P_{\mathsf{Pass}} \; \mid !P_{\mathsf{Reader}}) \\ \not\approx \\ P_{\mathsf{diff}} \stackrel{\mathsf{def}}{=} !\mathsf{new} \; ke.\mathsf{new} \; km.(\; P_{\mathsf{Pass}} \; \mid !P_{\mathsf{Reader}}) \end{array}$$

Exercise: Exhibit the process *A* that witnesses the attack.

Designing verification algorithms

• From confidentiality ...

 \longrightarrow *i.e.* trace-based security properties

In to privacy

 \longrightarrow *i.e.* equivalence-based security properties

Designing verification algorithms

• From confidentiality ...

 \longrightarrow *i.e.* trace-based security properties

O ... to privacy

 \longrightarrow *i.e.* equivalence-based security properties

for analysing trace-based security properties

- Unbounded number of sessions
 - undecidable in general [Even & Goldreich, 83; Durgin *et al*, 99]

 $\label{eq:proversion} \stackrel{\longrightarrow}{\text{ProVerif:}} A \text{ tool that does not correspond to any decidability result} \\ \text{but works well in practice.} \qquad [Blanchet, 01]$

for analysing trace-based security properties

- Unbounded number of sessions
 - undecidable in general [Even & Goldreich, 83; Durgin *et al*, 99]

 $\label{eq:proversion} \stackrel{\longrightarrow}{\text{ProVerif:}} A \text{ tool that does not correspond to any decidability result} \\ \text{but works well in practice.} \qquad [Blanchet, 01]$

Bounded number of sessions

- a decidability result (NP-complete) [Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]
- result extended to deal with various cryptographic primitives.
- \rightarrow various automatic tools, e.g. AVISPA platform [Armando *et al.*, 05]

▶ Skip

The deduction problem: is u deducible from T?

We consider a signature \mathcal{F} and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

The deduction problem: is u deducible from T?

We consider a signature \mathcal{F} and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

Example: Let
$$\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$$

We have that:

- k is deducible from ϕ using $R_1 = \text{check}(\text{adec}(w_4, w_3), w_1)$,
- s is deducible from ϕ using $R_2 = \text{sdec}(w_5, R_1)$.

The deduction problem is decidable in PTIME for the equational theory modelling the DS protocol (and for many others)

Proof (sketch)

- () saturation of ϕ with its deducible subterm ϕ^+
- **2** does there exist *R* such that $R\phi^+=s$ (syntaxic equality)

The deduction problem is decidable in PTIME for the equational theory modelling the DS protocol (and for many others)

Proof (sketch)

- () saturation of ϕ with its deducible subterm ϕ^+
- **2** does there exist *R* such that $R\phi^+=s$ (syntaxic equality)

Going back to the previous example:

- $\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; \\ w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$
- $\phi^+ = \phi \uplus \{ w_6 \triangleright \operatorname{sign}(k, ska); w_7 \triangleright k; w_8 \triangleright s \}.$

The deduction problem is decidable in PTIME for the equational theory modelling the DS protocol (and for many others)

Proof (sketch)

- () saturation of ϕ with its deducible subterm ϕ^+
- **2** does there exist *R* such that $R\phi^+=s$ (syntaxic equality)

Going back to the previous example:

 \longrightarrow The deduction problem is actually decidable for many interesting equational theories.

Confidentiality using the constraint solving approach

 \longrightarrow for a bounded number of sessions

Two main steps:

A symbolic exploration of all the possible traces
 The infinite number of possible traces (*i.e.* experiment) are represented by a finite set of constraint systems

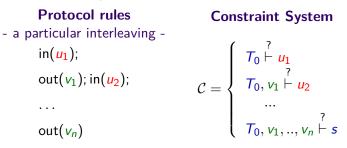
 → this set can be huge (exponential on the number of sessions) ... but some optimizations are used to reduce this number

A decision procedure for deciding whether a constraint system has a solution or not.

 \longrightarrow this algorithm works quite well

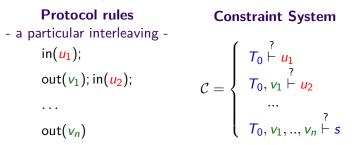
Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally any trace-based property) under a particular scenario.



Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally any trace-based property) under a particular scenario.



Solution of a constraint system $\mathcal C$

A substitution σ such that

for every $T \stackrel{?}{\vdash} u \in C$, $u\sigma$ is deducible from $T\sigma$. for every $u = v \in C$ (resp. $u \neq v$), $u\sigma =_{\mathsf{E}} v\sigma$ (resp. $u\sigma \neq_{\mathsf{E}} v\sigma$)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$
$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$$
$$\operatorname{with} T_{0} = \{\operatorname{pk}(ska), \operatorname{pk}(skb); skc\}.$$

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

$$T_0; \text{ aenc(sign}(k, ska), pk(skc)) \stackrel{?}{\vdash} \text{ aenc(sign}(x, ska), pk(skb))$$

$$T_0; \text{ aenc(sign}(k, ska), pk(skc)); \text{ senc}(s, x) \stackrel{?}{\vdash} s$$

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

Question: Does \mathcal{C} admit a solution?

S. Delaune (LSV)

Verification of security protocols

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$$

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

Question: Does C admit a solution? Yes: $x \to k$.

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} x_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} x_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} x_n \end{cases}$$

Question

Is there a solution to such a system ?

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} x_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} x_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} x_n \end{cases}$$

Question

Is there a solution to such a system ?

Of course, yes ! Choose $u_0 \in T_0$, and consider the substitution:

$$\sigma = \{x_0 \mapsto u_0, \ldots, x_n \mapsto u_0\}$$

Simplification rules

 \longrightarrow these rules deal with pairs and symmetric encryption only

$$R_{ax}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$
$$R_{unif}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow_{\sigma} \quad \mathcal{C}\sigma \land T\sigma \stackrel{?}{\vdash} u\sigma$$
$$\text{if } \sigma = mgu(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\}$$

$$\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot & \text{if } \mathsf{vars}(T \cup \{u\}) = \emptyset \text{ and } T \not\vdash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \, \rightsquigarrow \, \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \, f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Simplification rules

 \rightarrow these rules deal with pairs and symmetric encryption only

$$R_{ax}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \vdash u$$
$$R_{unif}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow_{\sigma} \quad \mathcal{C}\sigma \land T\sigma \stackrel{?}{\vdash} u\sigma$$
$$\text{if } \sigma = mgu(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\}$$

$$\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \bot & \text{if } \mathsf{vars}(T \cup \{u\}) = \emptyset \text{ and } T \not\vdash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \, \rightsquigarrow \, \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \, f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Example: T_0 ; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ aenc(sign(x, ska), pk(skb)) \rightsquigarrow (with R_f) $\begin{cases} T_0$; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ sign(x, ska) T_0 ; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ pk(skb)

Exercise

Reach a solved form starting with the constraint system:

$$T_0; \text{ aenc(sign}(k, ska), pk(skc)) \stackrel{?}{\vdash} aenc(sign(x, ska), pk(skb))$$

$$T_0; \text{ aenc}(sign(k, ska), pk(skc)); \text{ senc}(s, x) \stackrel{?}{\vdash} s$$

You should be able to reach a constraint system in solved form (actually the empty one) in 3 steps.

Runif and Rax twice. It Hiut: Anice.

Results on the simplification rules

Given a (well-formed) constraint system C:

Soundness:

If $\mathcal{C} \rightsquigarrow_{\sigma}^{*} \mathcal{C}'$ and θ solution of \mathcal{C}' then $\sigma \theta$ is a solution of \mathcal{C} .

 \rightarrow easy to show

Completeness:

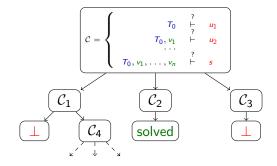
If θ is a solution of C then there exists C' and θ' such that $C \rightsquigarrow_{\sigma}^* C'$, θ' is a solution of C', and $\theta = \sigma \theta'$.

 \longrightarrow more involved to show

Termination: There is no infinite chain $\mathcal{C} \rightsquigarrow_{\sigma_1} \mathcal{C}_1 \dots \rightsquigarrow_{\sigma_n} \mathcal{C}_n$. \longrightarrow using the lexicographic order (number of var, size of rhs)

Procedure for solving a constraint system

Main idea of the procedure:

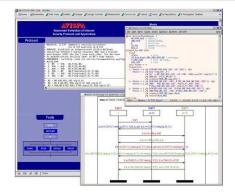


 \rightarrow this gives us a symbolic representation of all the solutions.

Results and tools

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for classical primitives (actually in co-NP).



 \rightarrow This approach has been implemented in the AVISPA Platform <code>http://www.avispa-project.org/</code>

S. Delaune (LSV)

Verification of security protocols

10th July 2014 37 / 48

Designing verification algorithms

• From confidentiality ...

 \longrightarrow *i.e.* trace-based security properties

o ... to privacy

 \longrightarrow *i.e.* equivalence-based security properties

for analysing equivalence-based security properties

for analysing equivalence-based security properties

Unbounded number of sessions

[Blanchet, Abadi & Fournet, 05]

ProVerif tool

http://www.proverif.ens.fr/

- + various cryptographic primitives;
- - termination is not guaranteed; diff-equivalence (too strong)
- \longrightarrow some extensions to go beyond diff-equivalence

Bounded number of sessions

e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

 \longrightarrow this allows one to decide testing equivalence between "simple" processes without else branch.

None of these results is able to analyse the e-passport protocol.

 \longrightarrow V. Cheval, H. Comon-Lundh, and S. Delaune \quad CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes for a bounded number of sessions.

 \longrightarrow V. Cheval, H. Comon-Lundh, and S. Delaune \quad CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes for a bounded number of sessions.

Our class of processes:

- + non-trivial else branches, private channels, and non-deterministic choice;
- a fixed set of cryptographic primitives (signature, encryption, hash function, mac).
- \longrightarrow this allows us in particular to deal with the e-passport example

The static equivalence problem

input Two frames ϕ and ψ $\phi = \{w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell\}$ $\psi = \{w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell\}$ ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that:

 $R_1\phi =_E R_2\phi$ but $R_1\psi \neq_E R_2\psi$ (or the converse).

The static equivalence problem

input Two frames ϕ and ψ $\phi = \{w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell\}$ $\psi = \{w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell\}$ ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that: $R_1 \phi =_F R_2 \phi$ but $R_1 \psi \neq_F R_2 \psi$ (or the converse).

Example: Consider the frames:

- $\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and }$
- $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $proj_1(adec(w_1, w_2)) \stackrel{?}{=} yes$.

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and for many others)

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and for many others)

Proof (sketch)

- ${\small \bigcirc}{}$ saturation of ϕ/ψ with their deducible subterms ϕ^+/ψ^+
- **⊘** does there exist a test $R_1 \stackrel{?}{=} R_2$ such that $R_1 \phi^+ = R_2 \phi^+$ whereas $R_1 \psi^+ \neq R_2 \psi^+$ (again syntaxic equality) ? → Actually, we only need to consider small tests

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and for many others)

Proof (sketch)

- ()saturation of ϕ/ψ with their deducible subterms ϕ^+/ψ^+
- **②** does there exist a test $R_1 \stackrel{?}{=} R_2$ such that $R_1 \phi^+ = R_2 \phi^+$ whereas $R_1 \psi^+ \neq R_2 \psi^+$ (again syntaxic equality) ? → Actually, we only need to consider small tests

Going back to the previous example:

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes; w_5 \triangleright r_1 \}$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no; w_5 \triangleright r_2 \}$.

 $\longrightarrow \phi^+$ and ψ^+ are **not** in static equivalence: $w_4 \stackrel{?}{=} yes$.

Two main steps:

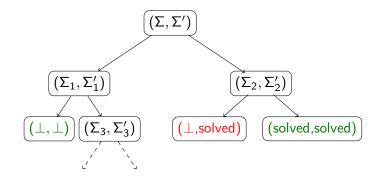
- A symbolic exploration of all the possible traces
 The infinite number of possible traces (*i.e.* experiment) are
 represented by a finite set of constraint systems

 —> this set can be huge (exponential on the number of sessions) !
- A decision procedure for deciding (symbolic) equivalence between sets of constraint systems

 \longrightarrow this algorithm works quite well

Deciding symbolic equivalence

Main idea: We rewrite pairs (Σ, Σ') of sets of constraint systems (extended to keep track of some information) until a trivial failure or a trivial success is found.



Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Σ_0, Σ'_0) be pair of sets of constraint systems, and consider a binary tree obtained by applying our simplification rule following a strategy S.

- soundness: If all leaves of the tree are labeled with (\bot, \bot) or (solved, solved), then $\Sigma_0 \approx_s \Sigma'_0$.
- ② completeness: if $\Sigma_0 \approx_s \Sigma'_0$, then all leaves of the tree are labeled with (\bot, \bot) or (*solved*, *solved*).

Theorem

Deciding testing equivalence between processes without replication for classical primitives is decidable.

APTE A gorthm for Proving Trace Equivalence P Search

AUTHOR ARCHIVES: Vincent Cheval

This approach has been implemented in APTE by Vincent CHEVAL http://projects.lsv.ens-cachan.fr/APTE

S. Delaune (LSV)

Limitations of these approaches

- the algebraic properties of the primitives are abstracted away
 → no guarantee if the protocol relies on an encryption that satisfies some additional properties (*e.g.* RSA, ElGamal)
- Only the specification is analysed and not the implementation
 → most of the passports are actually linkable by a carefull analysis
 of time or message length.

http://www.loria.fr/ glondu/epassport/attaque-tailles.html

Inot all scenario are checked → no guarantee if the protocol is used one more time !

Conclusion

A need of formal methods in verification of security protocols. Regarding confidentiality (or authentication), powerful tool support that are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

- formal definitions of some sublte security properties
- algorithms (and tools!) for checking automatically trace equivalence for various cryptographic primitives;
- more composition results.

Conclusion

A need of formal methods in verification of security protocols. Regarding confidentiality (or authentication), powerful tool support that are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

- formal definitions of some sublte security properties
- algorithms (and tools!) for checking automatically trace equivalence for various cryptographic primitives;
- more composition results.

