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Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks
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Some security properties

Secrecy: May an intruder learn some secret message between two
honest participants?

Authentication: Is the agent Alice really talking to Bob?

Anonymity: Is an attacker able to learn something about the identity
of the participants who are communicating?

Non-repudiation: Alice sends a message to Bob. Alice cannot later
deny having sent this message. Bob cannot deny having received the
message.

...
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Example: E-voting application

Eligibility: only legitimate voters can vote,
and only once

No early results: no early results can be ob-
tained which could influence the remaining
voters

Vote-privacy/Receipt-freeness/Coercion-resistance: the fact that a
particular voted in a particular way is not revealed to anyone

Individual/Universal verifiability:
a voter can verify that her vote was really counted,
and that the published outcome is the sum of all
the votes
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How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

S. Delaune (LSV) Verification of security protocols 10th July 2014 5 / 48



How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Symmetric encryption
encryption decryption

Examples: Caesar cipher, Enigma machine (∼ 1918-
1945), or more recently DES (1973) and AES (1997)
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How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Asymmetric encryption
encryption decryption

public key private key

Examples: First system published by Diffie-Hellman (1976), RSA (1977)
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How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Signature

signature verification

private key public key
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How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...
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How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
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How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k, priv(A)), pub(C))
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How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k) Attack !
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B, sign(k, priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B, k〉, priv(A))〉, pub(B))
B → A : senc(s , k)

Which version would you prefer to use?
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B, sign(k, priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B, k〉, priv(A))〉, pub(B))
B → A : senc(s , k)

Which version would you prefer to use? Version 2

−→ Version 1 is still vulnerable to the aforementioned attack.
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What about protocols used in real life ?

E-passport
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Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.
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Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a
service or resource without others being able to link these uses together.
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP
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BAC protocol
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Reader
(KE , KM)

get_challenge
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E
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR
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, MACK
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E

, MACK
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Kseed = KP ⊕ KR Kseed = KP ⊕ KR
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

E-passport application

What about unlinkability of the ePassport holders ?
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Outline of the this talk

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms
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Part I

Modelling cryptographic protocols

and their security properties
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Messages as terms

Terms built over a signature F , and an infinite set of names N .

t ::=
| n name n
| f (t1, . . . , tk) application of symbol f ∈ F

Example:

F = {senc(·, ·), sdec(·, ·), 〈·, ·〉, proj1(·), proj2(·)};

N = {n, a, k, s, . . .}.

−→ some terms: senc(〈s, a〉, k), sdec(enc(s, k), k), and s.
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Messages as terms

Terms built over a signature F , and an infinite set of names N .

t ::=
| n name n
| f (t1, . . . , tk) application of symbol f ∈ F

Example:

F = {senc(·, ·), sdec(·, ·), 〈·, ·〉, proj1(·), proj2(·)};

N = {n, a, k, s, . . .}.

−→ some terms: senc(〈s, a〉, k), sdec(enc(s, k), k), and s.

Term algebra is equipped with an equational theory E.

Example: dec(enc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

We have that sdec(senc(s, k), k) =E s.
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: sign(·, ·), check(·, ·)

−→ check(sign(x , y), pk(y)) = x
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: sign(·, ·), check(·, ·)

−→ check(sign(x , y), pk(y)) = x

The two terms involved in a normal execution are:

aenc(sign(k, ska), pk(skb)), and senc(s, k)
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]

Some advantages:

allows us to model cryptographic primitives

both reachability and equivalence-based specification of properties

powerful proof techniques for hand proofs

some tool support, e.g. ProVerif (2001) [Blanchet]
−→ http://proverif.rocq.inria.fr/
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Protocols as processes - syntax and semantics

Syntax : P,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation
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Protocols as processes - syntax and semantics

Syntax : P,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Semantics →:

Comm out(c ,M).P | in(c , x).Q → P | Q{M/x}
Then if M = N then P else Q → P when M =E N
Else if M = N then P else Q → Q when M 6=E N

closed by structural equivalence (≡) and application of evaluation contexts.
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k, s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)
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Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k, s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)

−→ this simply models a normal execution between two honest participants
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q′] with c public.
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q′] with c public.

Some difficulties:

we have to consider all the possible executions in presence of an
arbitrary adversary (modelled as a process)

we have to consider realistic initial configurations
−→ replications to model an unbounded number of sessions,
−→ reveal public keys and private keys to model dishonest agents,
−→ PA/PB may play with other (and perhaps) dishonest agents, . . .
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

PA(ska, pk(skc )) | PB(skb, pk(ska)
)
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

PA(ska, pk(skc )) | PB(skb, pk(ska)
)

Exercise: Exhibit the process A (the behaviour of the attacker) that
witnesses the aforementioned attack.
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s)
?
≈ out(a, s ′)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s) 6≈ out(a, s ′)

−→ A = in(a, x).if x = s then out(c , ok)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?
≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ A = in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise: Are the two following processes in testing equivalence?

new s.out(a, s)
?
≈ new s.new k.out(a, enc(s, k))
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Going back to the e-passport protocol

What does unlinkability mean?

Informally, an observer can not observe the difference between the two
following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.
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Going back to the e-passport protocol

What does unlinkability mean?

Informally, an observer can not observe the difference between the two
following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

More precisely, we have that:

!new ke.new km.(!PPass | !PReader)
?
≈

!new ke.new km.( PPass | !PReader)
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

If MAC check fails

mac_error
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

If MAC check
succeeds

If nonce check fails

nonce_error
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An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.
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An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)
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An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)
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An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

mac_error

=⇒ MAC check failed =⇒ K ′

M
6= KM =⇒ ???? is not Alice
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An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M
= KM =⇒ ???? is Alice
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An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PPass | !PReader)

6≈

Pdiff
def
=!new ke.new km.( PPass | !PReader)
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An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PPass | !PReader)

6≈

Pdiff
def
=!new ke.new km.( PPass | !PReader)

Exercise: Exhibit the process A that witnesses the attack.
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Part II

Designing verification algorithms

1 From confidentiality ...
−→ i.e. trace-based security properties

2 ... to privacy
−→ i.e. equivalence-based security properties
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State of the art in a nutshell

for analysing trace-based security properties

Unbounded number of sessions
undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

−→ ProVerif: A tool that does not correspond to any decidability result
but works well in practice. [Blanchet, 01]
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State of the art in a nutshell

for analysing trace-based security properties

Unbounded number of sessions
undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

−→ ProVerif: A tool that does not correspond to any decidability result
but works well in practice. [Blanchet, 01]

Bounded number of sessions

a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

result extended to deal with various cryptographic primitives.

−→ various automatic tools, e.g. AVISPA platform [Armando et al., 05]

Skip
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The deduction problem: is u deducible from T?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s
(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.
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The deduction problem: is u deducible from T?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s
(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

Example: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

We have that:

k is deducible from φ using R1 = check(adec(w4,w3),w1),

s is deducible from φ using R2 = sdec(w5,R1).
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The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

S. Delaune (LSV) Verification of security protocols 10th July 2014 28 / 48



The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k, ska); w7 ⊲ k; w8 ⊲ s}.
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The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k, ska); w7 ⊲ k; w8 ⊲ s}.

−→ The deduction problem is actually decidable for many interesting
equational theories.
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Confidentiality using the constraint solving approach

−→ for a bounded number of sessions

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) ...
but some optimizations are used to reduce this number

2 A decision procedure for deciding whether a constraint system has a
solution or not.

−→ this algorithm works quite well
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Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally
any trace-based property) under a particular scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =































T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s
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Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally
any trace-based property) under a particular scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =































T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s

Solution of a constraint system C

A substitution σ such that

for every T
?
⊢ u ∈ C, uσ is deducible from Tσ.

for every u = v ∈ C (resp. u 6= v), uσ =E vσ (resp. uσ 6=E vσ)
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))
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B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.
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?
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Question: Does C admit a solution? Yes: x → k.
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The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =































T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?
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The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =































T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

Of course, yes ! Choose u0 ∈ T0, and consider the substitution:

σ = {x0 7→ u0, . . . , xn 7→ u0}

Skip
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Simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u  C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T} ⊢ u

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}
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Simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u  C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T} ⊢ u

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Example: T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

 (with Rf)











T0; aenc(sign(k, ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k, ska), pk(skc))
?
⊢ pk(skb)
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Exercice - still about the Denning Sacco protocol

Exercise

Reach a solved form starting with the constraint system:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

You should be able to reach a constraint system in solved form (actually
the empty one) in 3 steps.

Hint:

RunifandRaxtwice.

S. Delaune (LSV) Verification of security protocols 10th July 2014 34 / 48



Results on the simplification rules

Given a (well-formed) constraint system C:

Soundness:
If C  ∗

σ C′ and θ solution of C′ then σθ is a solution of C.
−→ easy to show

Completeness:
If θ is a solution of C then there exists C′ and θ′ such that C  ∗

σ C′, θ′ is a
solution of C′, and θ = σθ′.

−→ more involved to show

Termination: There is no infinite chain C  σ1 C1 . . . σn
Cn.

−→ using the lexicographic order (number of var, size of rhs)
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Procedure for solving a constraint system

Main idea of the procedure:

C =











T0

?
⊢ u1

T0, v1

?
⊢ u2

. . .

T0, v1, . . . , vn

?
⊢ s

C1 C2 C3

⊥ C4 solved ⊥

−→ this gives us a symbolic representation of all the solutions.
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Results and tools

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

−→ This approach has been implemented in the AVISPA Platform
http://www.avispa-project.org/
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Part II

Designing verification algorithms

1 From confidentiality ...
−→ i.e. trace-based security properties

2 ... to privacy
−→ i.e. equivalence-based security properties
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State of the art in a nutshell

for analysing equivalence-based security properties
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State of the art in a nutshell

for analysing equivalence-based security properties

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool http://www.proverif.ens.fr/

+ various cryptographic primitives;

– termination is not guaranteed; diff-equivalence (too strong)

−→ some extensions to go beyond diff-equivalence

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

−→ this allows one to decide testing equivalence between “simple”
processes without else branch.

None of these results is able to analyse the e-passport protocol.
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A recent contribution

−→ V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.
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A recent contribution

−→ V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– a fixed set of cryptographic primitives (signature, encryption, hash
function, mac).

−→ this allows us in particular to deal with the e-passport example

Skip
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The ground case: are φ and ψ in static equivalence?

The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).
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The ground case: are φ and ψ in static equivalence?

The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).

Example: Consider the frames:

φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.
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The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)
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The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?
−→ Actually, we only need to consider small tests
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The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?
−→ Actually, we only need to consider small tests

Going back to the previous example:

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.

−→ φ+ and ψ+ are not in static equivalence: w4
?
= yes.
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Privacy using the constraint solving approach

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of constraint systems

−→ this algorithm works quite well
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Deciding symbolic equivalence

Main idea: We rewrite pairs (Σ,Σ′) of sets of constraint systems (extended
to keep track of some information) until a trivial failure or a trivial success
is found.

(Σ,Σ′)

(Σ1,Σ
′

1) (Σ2,Σ
′

2)

(⊥,⊥) (Σ3,Σ
′

3) (solved,solved)(⊥,solved)
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Results on the simplification rules

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ

′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥,⊥) or
(solved , solved), then Σ0 ≈s Σ

′

0.

2 completeness: if Σ0 ≈s Σ
′

0, then all leaves of the tree are labeled with
(⊥,⊥) or (solved , solved).
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Result and tool

Theorem

Deciding testing equivalence between processes without replication for
classical primitives is decidable.

−→ This approach has been implemented in APTE by Vincent Cheval

http://projects.lsv.ens-cachan.fr/APTE
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Limitations of these approaches

1 the algebraic properties of the primitives are abstracted away
−→ no guarantee if the protocol relies on an encryption that satisfies
some additional properties (e.g. RSA, ElGamal)

2 only the specification is analysed and not the implementation
−→ most of the passports are actually linkable by a carefull analysis
of time or message length.

http://www.loria.fr/ glondu/epassport/attaque-tailles.html

3 not all scenario are checked
−→ no guarantee if the protocol is used one more time !
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Conclusion

A need of formal methods in verification of security protocols.

Regarding confidentiality (or authentication), powerful tool support that
are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties

algorithms (and tools!) for checking automatically trace equivalence
for various cryptographic primitives;

more composition results.
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Conclusion

A need of formal methods in verification of security protocols.

Regarding confidentiality (or authentication), powerful tool support that
are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties

algorithms (and tools!) for checking automatically trace equivalence
for various cryptographic primitives;

more composition results.

VIP - Verification of Indistinguishability Properties

Main topics of the ANR JCJC - VIP project
(Jan. 2012 - Dec 2015)
http://www.lsv.ens-cachan.fr/Projects/anr-vip/

−→ A post-doc position (for 1 year) is available on this project.
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