
Verification of security protocols

from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Thursday, July 10th, 2014

S. Delaune (LSV) Verification of security protocols 10th July 2014 1 / 48

Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks

S. Delaune (LSV) Verification of security protocols 10th July 2014 2 / 48

Some security properties

Secrecy: May an intruder learn some secret message between two
honest participants?

Authentication: Is the agent Alice really talking to Bob?

Anonymity: Is an attacker able to learn something about the identity
of the participants who are communicating?

Non-repudiation: Alice sends a message to Bob. Alice cannot later
deny having sent this message. Bob cannot deny having received the
message.

...

S. Delaune (LSV) Verification of security protocols 10th July 2014 3 / 48

Example: E-voting application

Eligibility: only legitimate voters can vote,
and only once

No early results: no early results can be ob-
tained which could influence the remaining
voters

Vote-privacy/Receipt-freeness/Coercion-resistance: the fact that a
particular voted in a particular way is not revealed to anyone

Individual/Universal verifiability:
a voter can verify that her vote was really counted,
and that the published outcome is the sum of all
the votes

S. Delaune (LSV) Verification of security protocols 10th July 2014 4 / 48

How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

S. Delaune (LSV) Verification of security protocols 10th July 2014 5 / 48

How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Symmetric encryption
encryption decryption

Examples: Caesar cipher, Enigma machine (∼ 1918-
1945), or more recently DES (1973) and AES (1997)

S. Delaune (LSV) Verification of security protocols 10th July 2014 5 / 48

How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Asymmetric encryption
encryption decryption

public key private key

Examples: First system published by Diffie-Hellman (1976), RSA (1977)

S. Delaune (LSV) Verification of security protocols 10th July 2014 5 / 48

How does a cryptographic protocol work (or not)? (1/2)

cryptographic primitives = basic building blocks

−→ symmetric/ asymmetric encryption, signature, hash function, . . .

Signature

signature verification

private key public key

S. Delaune (LSV) Verification of security protocols 10th July 2014 5 / 48

How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

S. Delaune (LSV) Verification of security protocols 10th July 2014 6 / 48

How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?

S. Delaune (LSV) Verification of security protocols 10th July 2014 6 / 48

How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k, priv(A)), pub(C))

S. Delaune (LSV) Verification of security protocols 10th July 2014 6 / 48

How does a cryptographic protocol work (or not)? (2/2)

protocol = small programs explaining how to exchange messages

−→ key-exchange protocols, authentication protocols, e-voting protocols,
Bitcoin protocol, ...

Example: A simplified version of the Denning-Sacco protocol (1981)

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What about secrecy of s ?
Consider a scenario where A starts a session with C who is dishonest.

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k) Attack !

S. Delaune (LSV) Verification of security protocols 10th July 2014 6 / 48

Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B, sign(k, priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B, k〉, priv(A))〉, pub(B))
B → A : senc(s , k)

Which version would you prefer to use?

S. Delaune (LSV) Verification of security protocols 10th July 2014 7 / 48

Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B, sign(k, priv(A))〉, pub(B))
B → A : senc(s, k)

Version 2

A → B : aenc(sign(〈A,B, k〉, priv(A))〉, pub(B))
B → A : senc(s , k)

Which version would you prefer to use? Version 2

−→ Version 1 is still vulnerable to the aforementioned attack.

S. Delaune (LSV) Verification of security protocols 10th July 2014 7 / 48

What about protocols used in real life ?

E-passport

S. Delaune (LSV) Verification of security protocols 10th July 2014 8 / 48

Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

S. Delaune (LSV) Verification of security protocols 10th July 2014 9 / 48

Electronic passport

−→ studied in [Arapinis et al., 10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a
service or resource without others being able to link these uses together.

S. Delaune (LSV) Verification of security protocols 10th July 2014 9 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M

({NR , NP , KR }K
E
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M

({NR , NP , KR }K
E
)

{NP , NR , KP }K
E

, MACK
M

({NP , NR , KP }K
E
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

{NP , NR , KP }K
E

, MACK
M
({NP , NR , KP }K

E
)

Kseed = KP ⊕ KR Kseed = KP ⊕ KR

S. Delaune (LSV) Verification of security protocols 10th July 2014 10 / 48

This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

S. Delaune (LSV) Verification of security protocols 10th July 2014 11 / 48

This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

E-passport application

What about unlinkability of the ePassport holders ?

S. Delaune (LSV) Verification of security protocols 10th July 2014 11 / 48

This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Outline of the this talk

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms

S. Delaune (LSV) Verification of security protocols 10th July 2014 11 / 48

Part I

Modelling cryptographic protocols

and their security properties

S. Delaune (LSV) Verification of security protocols 10th July 2014 12 / 48

Messages as terms

Terms built over a signature F , and an infinite set of names N .

t ::=
| n name n
| f (t1, . . . , tk) application of symbol f ∈ F

Example:

F = {senc(·, ·), sdec(·, ·), 〈·, ·〉, proj1(·), proj2(·)};

N = {n, a, k, s, . . .}.

−→ some terms: senc(〈s, a〉, k), sdec(enc(s, k), k), and s.

S. Delaune (LSV) Verification of security protocols 10th July 2014 13 / 48

Messages as terms

Terms built over a signature F , and an infinite set of names N .

t ::=
| n name n
| f (t1, . . . , tk) application of symbol f ∈ F

Example:

F = {senc(·, ·), sdec(·, ·), 〈·, ·〉, proj1(·), proj2(·)};

N = {n, a, k, s, . . .}.

−→ some terms: senc(〈s, a〉, k), sdec(enc(s, k), k), and s.

Term algebra is equipped with an equational theory E.

Example: dec(enc(x , y), y) = x , proj1(〈x , y〉) = x , proj2(〈x , y〉) = y .

We have that sdec(senc(s, k), k) =E s.

S. Delaune (LSV) Verification of security protocols 10th July 2014 13 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

S. Delaune (LSV) Verification of security protocols 10th July 2014 14 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

S. Delaune (LSV) Verification of security protocols 10th July 2014 14 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

S. Delaune (LSV) Verification of security protocols 10th July 2014 14 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: sign(·, ·), check(·, ·)

−→ check(sign(x , y), pk(y)) = x

S. Delaune (LSV) Verification of security protocols 10th July 2014 14 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: sign(·, ·), check(·, ·)

−→ check(sign(x , y), pk(y)) = x

The two terms involved in a normal execution are:

aenc(sign(k, ska), pk(skb)), and senc(s, k)

S. Delaune (LSV) Verification of security protocols 10th July 2014 14 / 48

Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]

S. Delaune (LSV) Verification of security protocols 10th July 2014 15 / 48

Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92], and in some ways similar to
the spi-calculus [Abadi & Gordon, 98]

Some advantages:

allows us to model cryptographic primitives

both reachability and equivalence-based specification of properties

powerful proof techniques for hand proofs

some tool support, e.g. ProVerif (2001) [Blanchet]
−→ http://proverif.rocq.inria.fr/

S. Delaune (LSV) Verification of security protocols 10th July 2014 15 / 48

http://proverif.rocq.inria.fr/

Protocols as processes - syntax and semantics

Syntax : P,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

S. Delaune (LSV) Verification of security protocols 10th July 2014 16 / 48

Protocols as processes - syntax and semantics

Syntax : P,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Semantics →:

Comm out(c ,M).P | in(c , x).Q → P | Q{M/x}
Then if M = N then P else Q → P when M =E N
Else if M = N then P else Q → Q when M 6=E N

closed by structural equivalence (≡) and application of evaluation contexts.

S. Delaune (LSV) Verification of security protocols 10th July 2014 16 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k, s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Going back to Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k. out(c , aenc(sign(k, ska), pkb)).
in(c , xa). let ya = sdec(xa, k) in...

PB(skb, pka) = in(c , xb). let yb = check(adec(xb, skb), pka) in
new s.out(c , senc(s , yb))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb , pk(ska)
)

→ new ska, skb, k.
(

in(c , xa). let ya = sdec(xa, k) in . . .
| let yb = k in new s.out(c , senc(s, yb)

)

→ new ska, skb, k, s.
(

let ya = sdec(senc(s, k), k) in . . . | 0
)

−→ this simply models a normal execution between two honest participants

S. Delaune (LSV) Verification of security protocols 10th July 2014 17 / 48

Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q′] with c public.

S. Delaune (LSV) Verification of security protocols 10th July 2014 18 / 48

Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q′] with c public.

Some difficulties:

we have to consider all the possible executions in presence of an
arbitrary adversary (modelled as a process)

we have to consider realistic initial configurations
−→ replications to model an unbounded number of sessions,
−→ reveal public keys and private keys to model dishonest agents,
−→ PA/PB may play with other (and perhaps) dishonest agents, . . .

S. Delaune (LSV) Verification of security protocols 10th July 2014 18 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

PA(ska, pk(skc)) | PB(skb, pk(ska)
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 19 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k, priv(A)), pub(C))

2. C(A) → B : aenc(sign(k, priv(A)), pub(B))
3. B → A : senc(s , k)

The “minimal” initial configuration to retrieve the attack is:

new ska.new skb.
(

PA(ska, pk(skc)) | PB(skb, pk(ska)
)

Exercise: Exhibit the process A (the behaviour of the attacker) that
witnesses the aforementioned attack.

S. Delaune (LSV) Verification of security protocols 10th July 2014 19 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s)
?
≈ out(a, s ′)

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 1: out(a, s) 6≈ out(a, s ′)

−→ A = in(a, x).if x = s then out(c , ok)

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?
≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Example 2:

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ A = in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

testing equivalence between P and Q, P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise: Are the two following processes in testing equivalence?

new s.out(a, s)
?
≈ new s.new k.out(a, enc(s, k))

S. Delaune (LSV) Verification of security protocols 10th July 2014 20 / 48

Going back to the e-passport protocol

What does unlinkability mean?

Informally, an observer can not observe the difference between the two
following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

S. Delaune (LSV) Verification of security protocols 10th July 2014 21 / 48

Going back to the e-passport protocol

What does unlinkability mean?

Informally, an observer can not observe the difference between the two
following situations:

1 a situation where the same passport may be
used twice (or even more);

2 a situation where each passport is used at
most once.

More precisely, we have that:

!new ke.new km.(!PPass | !PReader)
?
≈

!new ke.new km.(PPass | !PReader)

S. Delaune (LSV) Verification of security protocols 10th July 2014 21 / 48

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 22 / 48

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

If MAC check fails

mac_error

S. Delaune (LSV) Verification of security protocols 10th July 2014 22 / 48

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

If MAC check
succeeds

If nonce check fails

nonce_error

S. Delaune (LSV) Verification of security protocols 10th July 2014 22 / 48

An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

An attack on the French passport

Attack against unlinkability [Chothia & Smirnov, 10]

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

mac_error

=⇒ MAC check failed =⇒ K ′

M
6= KM =⇒ ???? is not Alice

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

An attack on the French passport

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
, K

′

P

N
′

P

M = {NR , NP , KR }K
E

, MACK
M
({NR , NP , KR }K

E
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M
= KM =⇒ ???? is Alice

S. Delaune (LSV) Verification of security protocols 10th July 2014 23 / 48

An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PPass | !PReader)

6≈

Pdiff
def
=!new ke.new km.(PPass | !PReader)

S. Delaune (LSV) Verification of security protocols 10th July 2014 24 / 48

An attack on the French passport

Attack !

The equivalence does not hold: Psame 6≈ Pdiff .

More formally,

Psame
def
=!new ke.new km.(!PPass | !PReader)

6≈

Pdiff
def
=!new ke.new km.(PPass | !PReader)

Exercise: Exhibit the process A that witnesses the attack.

S. Delaune (LSV) Verification of security protocols 10th July 2014 24 / 48

Part II

Designing verification algorithms

1 From confidentiality ...
−→ i.e. trace-based security properties

2 ... to privacy
−→ i.e. equivalence-based security properties

S. Delaune (LSV) Verification of security protocols 10th July 2014 25 / 48

Part II

Designing verification algorithms

1 From confidentiality ...
−→ i.e. trace-based security properties

2 ... to privacy
−→ i.e. equivalence-based security properties

S. Delaune (LSV) Verification of security protocols 10th July 2014 25 / 48

State of the art in a nutshell

for analysing trace-based security properties

Unbounded number of sessions
undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

−→ ProVerif: A tool that does not correspond to any decidability result
but works well in practice. [Blanchet, 01]

S. Delaune (LSV) Verification of security protocols 10th July 2014 26 / 48

State of the art in a nutshell

for analysing trace-based security properties

Unbounded number of sessions
undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

−→ ProVerif: A tool that does not correspond to any decidability result
but works well in practice. [Blanchet, 01]

Bounded number of sessions

a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

result extended to deal with various cryptographic primitives.

−→ various automatic tools, e.g. AVISPA platform [Armando et al., 05]

Skip

S. Delaune (LSV) Verification of security protocols 10th July 2014 26 / 48

The deduction problem: is u deducible from T?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s
(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

S. Delaune (LSV) Verification of security protocols 10th July 2014 27 / 48

The deduction problem: is u deducible from T?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s
(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

Example: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

We have that:

k is deducible from φ using R1 = check(adec(w4,w3),w1),

s is deducible from φ using R2 = sdec(w5,R1).

S. Delaune (LSV) Verification of security protocols 10th July 2014 27 / 48

The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

S. Delaune (LSV) Verification of security protocols 10th July 2014 28 / 48

The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k, ska); w7 ⊲ k; w8 ⊲ s}.

S. Delaune (LSV) Verification of security protocols 10th July 2014 28 / 48

The ground case

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ with its deducible subterm φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k, ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k, ska); w7 ⊲ k; w8 ⊲ s}.

−→ The deduction problem is actually decidable for many interesting
equational theories.

S. Delaune (LSV) Verification of security protocols 10th July 2014 28 / 48

Confidentiality using the constraint solving approach

−→ for a bounded number of sessions

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) ...
but some optimizations are used to reduce this number

2 A decision procedure for deciding whether a constraint system has a
solution or not.

−→ this algorithm works quite well

S. Delaune (LSV) Verification of security protocols 10th July 2014 29 / 48

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally
any trace-based property) under a particular scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s

S. Delaune (LSV) Verification of security protocols 10th July 2014 30 / 48

Confidentiality via constraint solving

Constraint systems are used to specify confidentiality (or more generally
any trace-based property) under a particular scenario.

Protocol rules

- a particular interleaving -

in(u1);

out(v1); in(u2);

. . .

out(vn)

Constraint System

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn

?
⊢ s

Solution of a constraint system C

A substitution σ such that

for every T
?
⊢ u ∈ C, uσ is deducible from Tσ.

for every u = v ∈ C (resp. u 6= v), uσ =E vσ (resp. uσ 6=E vσ)

S. Delaune (LSV) Verification of security protocols 10th July 2014 30 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

S. Delaune (LSV) Verification of security protocols 10th July 2014 31 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

S. Delaune (LSV) Verification of security protocols 10th July 2014 31 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Question: Does C admit a solution?

S. Delaune (LSV) Verification of security protocols 10th July 2014 31 / 48

Going back to the Denning Sacco protocol

A → B : aenc(sign(k, priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Question: Does C admit a solution? Yes: x → k.

S. Delaune (LSV) Verification of security protocols 10th July 2014 31 / 48

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =

T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

S. Delaune (LSV) Verification of security protocols 10th July 2014 32 / 48

The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =

T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

Of course, yes ! Choose u0 ∈ T0, and consider the substitution:

σ = {x0 7→ u0, . . . , xn 7→ u0}

Skip

S. Delaune (LSV) Verification of security protocols 10th July 2014 32 / 48

Simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

S. Delaune (LSV) Verification of security protocols 10th July 2014 33 / 48

Simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u C if T ∪ {x | T ′

?
⊢ x ∈ C,T ′ (T} ⊢ u

Runif : C ∧ T
?
⊢ u σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T) ∪ {u}

Rfail : C ∧ T
?
⊢ u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2) C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Example: T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

 (with Rf)

T0; aenc(sign(k, ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k, ska), pk(skc))
?
⊢ pk(skb)

S. Delaune (LSV) Verification of security protocols 10th July 2014 33 / 48

Exercice - still about the Denning Sacco protocol

Exercise

Reach a solved form starting with the constraint system:

T0; aenc(sign(k, ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k, ska), pk(skc)); senc(s, x)
?
⊢ s

You should be able to reach a constraint system in solved form (actually
the empty one) in 3 steps.

Hint:

RunifandRaxtwice.

S. Delaune (LSV) Verification of security protocols 10th July 2014 34 / 48

Results on the simplification rules

Given a (well-formed) constraint system C:

Soundness:
If C ∗

σ C′ and θ solution of C′ then σθ is a solution of C.
−→ easy to show

Completeness:
If θ is a solution of C then there exists C′ and θ′ such that C ∗

σ C′, θ′ is a
solution of C′, and θ = σθ′.

−→ more involved to show

Termination: There is no infinite chain C σ1 C1 . . . σn
Cn.

−→ using the lexicographic order (number of var, size of rhs)

S. Delaune (LSV) Verification of security protocols 10th July 2014 35 / 48

Procedure for solving a constraint system

Main idea of the procedure:

C =

T0

?
⊢ u1

T0, v1

?
⊢ u2

. . .

T0, v1, . . . , vn

?
⊢ s

C1 C2 C3

⊥ C4 solved ⊥

−→ this gives us a symbolic representation of all the solutions.

S. Delaune (LSV) Verification of security protocols 10th July 2014 36 / 48

Results and tools

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

−→ This approach has been implemented in the AVISPA Platform
http://www.avispa-project.org/

S. Delaune (LSV) Verification of security protocols 10th July 2014 37 / 48

Part II

Designing verification algorithms

1 From confidentiality ...
−→ i.e. trace-based security properties

2 ... to privacy
−→ i.e. equivalence-based security properties

S. Delaune (LSV) Verification of security protocols 10th July 2014 38 / 48

State of the art in a nutshell

for analysing equivalence-based security properties

S. Delaune (LSV) Verification of security protocols 10th July 2014 39 / 48

State of the art in a nutshell

for analysing equivalence-based security properties

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool http://www.proverif.ens.fr/

+ various cryptographic primitives;

– termination is not guaranteed; diff-equivalence (too strong)

−→ some extensions to go beyond diff-equivalence

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

−→ this allows one to decide testing equivalence between “simple”
processes without else branch.

None of these results is able to analyse the e-passport protocol.

S. Delaune (LSV) Verification of security protocols 10th July 2014 39 / 48

http://www.proverif.ens.fr/

A recent contribution

−→ V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.

S. Delaune (LSV) Verification of security protocols 10th July 2014 40 / 48

A recent contribution

−→ V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– a fixed set of cryptographic primitives (signature, encryption, hash
function, mac).

−→ this allows us in particular to deal with the e-passport example

Skip

S. Delaune (LSV) Verification of security protocols 10th July 2014 40 / 48

The ground case: are φ and ψ in static equivalence?

The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).

S. Delaune (LSV) Verification of security protocols 10th July 2014 41 / 48

The ground case: are φ and ψ in static equivalence?

The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).

Example: Consider the frames:

φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

S. Delaune (LSV) Verification of security protocols 10th July 2014 41 / 48

The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

S. Delaune (LSV) Verification of security protocols 10th July 2014 42 / 48

The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?
−→ Actually, we only need to consider small tests

S. Delaune (LSV) Verification of security protocols 10th July 2014 42 / 48

The ground case

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

Proof (sketch)

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?
−→ Actually, we only need to consider small tests

Going back to the previous example:

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.

−→ φ+ and ψ+ are not in static equivalence: w4
?
= yes.

S. Delaune (LSV) Verification of security protocols 10th July 2014 42 / 48

Privacy using the constraint solving approach

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of constraint systems

−→ this algorithm works quite well

S. Delaune (LSV) Verification of security protocols 10th July 2014 43 / 48

Deciding symbolic equivalence

Main idea: We rewrite pairs (Σ,Σ′) of sets of constraint systems (extended
to keep track of some information) until a trivial failure or a trivial success
is found.

(Σ,Σ′)

(Σ1,Σ
′

1) (Σ2,Σ
′

2)

(⊥,⊥) (Σ3,Σ
′

3) (solved,solved)(⊥,solved)

S. Delaune (LSV) Verification of security protocols 10th July 2014 44 / 48

Results on the simplification rules

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ

′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥,⊥) or
(solved , solved), then Σ0 ≈s Σ

′

0.

2 completeness: if Σ0 ≈s Σ
′

0, then all leaves of the tree are labeled with
(⊥,⊥) or (solved , solved).

S. Delaune (LSV) Verification of security protocols 10th July 2014 45 / 48

Result and tool

Theorem

Deciding testing equivalence between processes without replication for
classical primitives is decidable.

−→ This approach has been implemented in APTE by Vincent Cheval

http://projects.lsv.ens-cachan.fr/APTE

S. Delaune (LSV) Verification of security protocols 10th July 2014 46 / 48

http://projects.lsv.ens-cachan.fr/APTE

Limitations of these approaches

1 the algebraic properties of the primitives are abstracted away
−→ no guarantee if the protocol relies on an encryption that satisfies
some additional properties (e.g. RSA, ElGamal)

2 only the specification is analysed and not the implementation
−→ most of the passports are actually linkable by a carefull analysis
of time or message length.

http://www.loria.fr/ glondu/epassport/attaque-tailles.html

3 not all scenario are checked
−→ no guarantee if the protocol is used one more time !

S. Delaune (LSV) Verification of security protocols 10th July 2014 47 / 48

Conclusion

A need of formal methods in verification of security protocols.

Regarding confidentiality (or authentication), powerful tool support that
are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties

algorithms (and tools!) for checking automatically trace equivalence
for various cryptographic primitives;

more composition results.

S. Delaune (LSV) Verification of security protocols 10th July 2014 48 / 48

Conclusion

A need of formal methods in verification of security protocols.

Regarding confidentiality (or authentication), powerful tool support that
are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties

algorithms (and tools!) for checking automatically trace equivalence
for various cryptographic primitives;

more composition results.

VIP - Verification of Indistinguishability Properties

Main topics of the ANR JCJC - VIP project
(Jan. 2012 - Dec 2015)
http://www.lsv.ens-cachan.fr/Projects/anr-vip/

−→ A post-doc position (for 1 year) is available on this project.

S. Delaune (LSV) Verification of security protocols 10th July 2014 48 / 48

http://www.lsv.ens-cachan.fr/Projects/anr-vip/

