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properties of systems, but we cannot verify them! [AHO3]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]
However, it is non-primitive recursive!

4. we propose a tractable though powerful linear-time timed temporal
logic which allows punctuality...
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where [ is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...

> G'<2(' — Foy ')
> (e Usze)Ug (Fure)
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Interesting Fragments of MTL

LTLop u=a | -a | oVe | oAhp | ¢oUp | ¢pUp

Q///////,’///»Mﬂ
L

LT

[Pnueli77]



Interesting Fragments of MTL

MITLS @ == a | —a | oV | pAp | pUp | pUp

with / non-singular, i.e., with no “punctuality”

MTL
LTL —_ /
MITL

[AFH96)
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Interesting Fragments of MTL

Safety-MTL2 ¢ == a | ma | Ve | pAe | U e | gaINJ,ga

with J bounded

Safety-MTL
Bounded-MTL \

MTL
LTL /
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Interesting Fragments of MTL

Flat-MTL3 ¢ == a | ma | Ve | oAp | v Up | oU,

with / unbounded = ¢ € LTL

Safety-MTL
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Interesting Fragments of MTL

coFlat-MTL3 @ == a | ma | oV | oAe | U | v U e

with / unbounded = ¢ € LTL

Safety-MTL
/
Bounded-MTL < \

coFlat-MTL ——— MTL

/
LTL
T L /

Bounded-MTL + Invariance C coFlat-MTL J
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— enforces in polynomial space a doubly exponential variability
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Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions
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Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions

» the formula
e A Double A G <2n Double A Gipn pni1y Half A F_pnin (o A X tt)

hence enforces exact doubling and halfing...
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Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
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Safety-MTL Decidable [OWO06]
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Channel Automata

. channel ¢
A CQ?Ilng — |ack |ack |hup | —
server
clack
channel «,
" - |msg |stop | -
-

NB: channels are FIFO...
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Extended Channel Automata

We extend channel automata with:
» renaming (a letter can be replaced non-det. by another one);
» occurrence testing (check whether a letter appears on a channel).
— CAROT

al,b! a?,b?

d!k

where /7 non-deterministically rename b to either b or

We will be interested in the reachability problem for CAROTs when
we bound the number of cycles of the machine
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al,b! a?,b?

d? d!
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where 7 : b— bV
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al,b! a?,b?

d? d!

O,
®

d!/k

where 7 : b— bV

Computation table, starting with d on the channel:

s|b! t d? u
b7 v d7 u
”

d!
td7ud
d?ud!v
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bI td7u
d?|u d!

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
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bI td7u

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
vv viv valv s bl's td?ud vv v
Vv viv vv vv |v s uvu ud?ud v

We need to store a window and some extra information for the renaming
functions and the occurrence testing.
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The cycle-bounded reachability problem for CAROTs is solvable in poly-

nomial space in the size of the channel automaton and polynomial space
in the value of the cycle bound.

(Can guess and verify a computation table using polynomial space.)

13/21



Application to Timed Temporal Logics

» Transform an MTL formula ¢ into an equivalent one-clock
alternating timed automaton A, [OW05]
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models of .
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L] . . L]
r0 — r,06 — r,07 —> r,1.5 — r,1.7
~ ~
5,0 5,0 — s,0.2
S

5,0.8 — t

[Tl T

From MTL to CAROTs

Every formula ¢ can be transformed into a CAROT that “accepts’ the
models of .

One time unit = one cycle of the CAROT
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A Digression on Timed Automata
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A Digression on Timed Automata

rn

n

n n X

The region graph can be simulated by a channel machine (with a single
bounded channel).
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» Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most
exponential in the size of the formula (eg, the sum of all constants
appearing in the formula).
Ex: if satisfiable, ¢ = e U¢3 ((e U—_se) V G ) has a model of duration
at most 9. Note that it may have a large variability (remember formula
which has a doubly-exponential variability within an exponential duration).

» Model checking and satisfiability checking of Bounded-MTL can be
done by a cycle-bounded CAROT, whose number of cycles is
exponential (polynomial if constants are encoded in unary). It is hence
in EXPSPACE!
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The More Involved Case of coFlat-MTL

» We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTLS ¢ == a | ma | oV | 9Ap | 0 Up | 9T ¢

with / unbounded = ¢ € LTL
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achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

FlatMTL3 ¢ == a | =ma | oV | oAp | v Ujp | @INJ,;/J

with / unbounded = ¢ € LTL
» Using flatness and a ranking argument, one can show that any run of
the ATA can be partitioned into “active” and “pure-LTL" segments:

active active active active

—_——— —_—— —_— —A

[ N B
pure LTL pure LTL pure LTL pure LTL

> The number of active segments is at most exponential.
» The global active duration is at most exponential.

The model checking of coFlat-MTL is in EXPSPACE. I
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Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. |
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Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. I

Encode the halting problem of an EXPSPACE Turing machine:

> generate a doubly exponential number of events in one time unit

> on the next time unit, non-deterministically guess a computation of
the EXPSPACE Turing machine

» check it is correct (requires 2" time units, one for each cell of the
machine)

» half, and check that only one event remains
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Summary of the Complexity Results

Over infinite timed words:

Model Checking | Satisfiability
LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.
Bounded-MTL
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL Undec.
MTL Undec. Undec.
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Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.
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Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.

What needs to be done:
» check tractability in practice,

> extend to continuous semantics.
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