The Cost of Punctuality

Patricia Bouyer, Nicolas Markey, Joël Ouaknine, James Worrell

> LSV - CNRS \& ENS de Cachan - France

Oxford University Computing Laboratory - UK

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

1. linear-time timed temporal logics: interesting for specifying properties of systems, but we cannot verify them!

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

1. linear-time timed temporal logics: interesting for specifying properties of systems, but we cannot verify them!
2. MITL, a palliative to these negative results (MITL: disallows punctual constraints)

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

1. linear-time timed temporal logics: interesting for specifying properties of systems, but we cannot verify them!
2. MITL, a palliative to these negative results (MITL: disallows punctual constraints)
\rightarrow punctuality is undecidable!

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

1. linear-time timed temporal logics: interesting for specifying properties of systems, but we cannot verify them!
2. MITL, a palliative to these negative results (MITL: disallows punctual constraints)
\rightarrow punctuality is undecidable!
3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0\{5,6\}]
However, it is non-primitive recursive!

Motivation

Context: verification of timed systems towards linear-time timed temporal logics

1. linear-time timed temporal logics: interesting for specifying properties of systems, but we cannot verify them!
2. MITL, a palliative to these negative results (MITL: disallows punctual constraints)
3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0\{5,6\}]
However, it is non-primitive recursive!
4. we propose a tractable though powerful linear-time timed temporal logic which allows punctuality...

Metric Temporal Logic

MTL: Metric Temporal Logic
[Koymans 1990]

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}, \psi \mid \varphi \widetilde{\mathbf{U}}_{l} \varphi
$$

where I is an interval with integral bounds

Metric Temporal Logic

MTL: Metric Temporal Logic

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}, \psi \mid \varphi \tilde{\mathbf{U}}_{l} \varphi
$$

where I is an interval with integral bounds
We interpret MTL formulas over timed words (this is the so-called point-based semantics):

Metric Temporal Logic

MTL: Metric Temporal Logic

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}, \psi \mid \varphi \tilde{\mathbf{U}}_{l} \varphi
$$

where I is an interval with integral bounds
We interpret MTL formulas over timed words (this is the so-called point-based semantics):

We use classical shorthands, like $\mathbf{F}, \mathbf{G}, \mathbf{X}$, etc...

Metric Temporal Logic

MTL: Metric Temporal Logic

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}, \psi \mid \varphi \tilde{\mathbf{U}}_{l} \varphi
$$

where I is an interval with integral bounds
We interpret MTL formulas over timed words (this is the so-called point-based semantics):

We use classical shorthands, like $\mathbf{F}, \mathbf{G}, \mathbf{X}$, etc...

- $\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)$

Metric Temporal Logic

MTL: Metric Temporal Logic

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}_{l} \psi \mid \varphi \tilde{\mathbf{U}}_{l} \varphi
$$

where I is an interval with integral bounds
We interpret MTL formulas over timed words (this is the so-called point-based semantics):

We use classical shorthands, like $\mathbf{F}, \mathbf{G}, \mathbf{X}$, etc...

- $\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)$
$\bullet\left(\bullet \mathbf{U}_{>3} \bullet\right) \mathbf{U}_{\leqslant 1}\left(\mathbf{F}_{>1} \bullet\right)$

Interesting Fragments of MTL

$$
\text { MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}_{l} \varphi \mid \varphi \widetilde{\mathbf{U}}_{1 \varphi}
$$

MTL

Interesting Fragments of MTL

$$
\text { LTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U} \varphi \mid \varphi \tilde{\mathbf{U}} \varphi
$$

\qquad
LTL
[Pnueli77]

Interesting Fragments of MTL

$$
\begin{aligned}
\text { MITL } \ni \varphi::=a & |\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}_{1} \varphi \mid \varphi \widetilde{\mathbf{U}}_{1} \varphi \\
& \text { with / non-singular, i.e., with no "punctuality" }
\end{aligned}
$$

[AFH96]

Interesting Fragments of MTL

Bounded-MTL $\ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}_{1} \varphi \mid \varphi \widetilde{\mathbf{U}}_{1} \varphi$
with / bounded

Bounded-MTL

Interesting Fragments of MTL

Safety-MTL $\ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \mathbf{U}_{\jmath} \varphi \mid \varphi \widetilde{\mathbf{U}}_{1} \varphi$
with J bounded

Bounded-MTL + Invariance \subseteq Safety-MTL

Interesting Fragments of MTL

$$
\begin{array}{r}
\text { Flat-MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \psi \mathbf{U}_{l} \varphi \mid \varphi \widetilde{\mathbf{U}}_{l} \psi \\
\quad \text { with } / \text { unbounded } \Rightarrow \psi \in \mathrm{LTL}
\end{array}
$$

Interesting Fragments of MTL

$$
\begin{array}{r}
\operatorname{coFlat-MTL\ni \varphi ::=a|\neg a|\varphi \vee \varphi |\varphi \wedge \varphi |\varphi \mathbf {U}/\psi |\psi \widetilde {\mathbf {U}}_{l}\varphi } \\
\text { with } / \text { unbounded } \Rightarrow \psi \in \mathrm{LTL}
\end{array}
$$

Bounded-MTL + Invariance \subseteq coFlat-MTL

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}\left(\right.$ acquire $\wedge \mathbf{F}_{=1}$ release $\left.)\right)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release) $)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

Some Examples of Formulas

- $\mathbf{G}\left(\right.$ request $\rightarrow \mathbf{F}_{\leqslant 1}$ (acquire $\wedge \mathbf{F}_{=1}$ release $\left.)\right)$ is in coFlat-MTL, but neither in Bounded-MTL, nor in MITL.
- $\varphi_{n}=\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double where

$$
\text { Double }=\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right) \wedge\left(\bullet \rightarrow \mathbf{F}_{=1}\left(\bullet \wedge \mathbf{X}_{<1} \bullet\right)\right)
$$

is in Bounded-MTL.

\rightarrow enforces in polynomial space a doubly exponential variability

Some Examples of Formulas (cont'd)

- Half $=\mathbf{F}_{=1} t \mathrm{tt} \mathbf{X}_{\leqslant 1} \mathbf{F}_{=1} \mathrm{tt}$
\rightarrow may eliminate one over two actions

Some Examples of Formulas (cont'd)

- Half $=\mathbf{F}_{=1} \mathrm{tt} \vee \mathbf{X}_{\leqslant 1} \mathbf{F}_{=1} \mathrm{tt}$ \rightarrow may eliminate one over two actions
- the formula
$\bullet \wedge$ Double $\wedge \mathbf{G}_{<2^{n}}$ Double $\wedge \mathbf{G}_{\left[2^{n}, 2^{n+1}\right)}$ Half $\wedge \mathbf{F}_{=2^{n+1}}\left(\bullet \wedge \mathbf{X}_{=1} \mathrm{tt}\right)$
hence enforces exact doubling and halfing...

Complexity Results

Over infinite timed words:

	Model Checking	Satisfiability
LTL	PSPACE-C. [folklore]	PSPACE-C. [folklore]
MITL	EXPSPACE-C. [AFH96]	EXPSPACE-C. [AFH96]
Bounded-MTL		
Safety-MTL		Decidable [OW06]
coFlat-MTL		
MTL	Undec. [AH93,OW06]	Undec. [AH93,OW06]

Complexity Results

Over infinite timed words:

	Model Checking	Satisfiability
LTL	PSPACE-C. [folklore]	PSPACE-C. [folklore]
MITL	EXPSPACE-C. [AFH96]	EXPSPACE-C. [AFH96]
Bounded-MTL		
Safety-MTL	Non-Prim.-Rec. [forthc.]	Non-Elem. [forthc.]
coFlat-MTL		Undec. [OW06]
MTL	Undec. [AH93,OW06]	Undec. [AH93,OW06]

Complexity Results

Over infinite timed words:

	Model Checking	Satisfiability
LTL	PSPACE-C. [folklore]	PSPACE-C. [folklore]
MITL	EXPSPACE-C. [AFH96]	EXPSPACE-C. [AFH96]
Bounded-MTL	EXPSPACE-C.	EXPSPACE-C.
Safety-MTL	Non-Prim.-Rec. [forthc.]	Non-Elem. [forthc.]
coFlat-MTL	EXPSPACE-C.	Undec. [OW06]
MTL	Undec. [AH93,OW06]	Undec. [AH93,OW06]

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

An Example

Assume one wants to verify formula

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

An Example

Assume one wants to verify formula

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Offline, we stack all time units and use a sliding window:

Channel Automata

NB: channels are FIFO...

Extended Channel Automata

We extend channel automata with:

- renaming (a letter can be replaced non-det. by another one);
- occurrence testing (check whether a letter appears on a channel).
\rightarrow CAROT

Extended Channel Automata

We extend channel automata with:

- renaming (a letter can be replaced non-det. by another one);
- occurrence testing (check whether a letter appears on a channel).
\rightarrow CAROT

where R non-deterministically rename b to either b or c.

Extended Channel Automata

We extend channel automata with:

- renaming (a letter can be replaced non-det. by another one);
- occurrence testing (check whether a letter appears on a channel).
\rightarrow CAROT

where R non-deterministically rename b to either b or c.

We will be interested in the reachability problem for CAROTs when we bound the number of cycles of the machine

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$
$\underline{b} d$

where $R: b \mapsto b \vee c$
$b \underline{b} d$

where $R: b \mapsto b \vee c$
cbd

where $R: b \mapsto b \vee c$

$$
c \underline{b}
$$

where $R: b \mapsto b \vee c$
$d \subset \underline{b}$

where $R: b \mapsto b \vee c$

$$
d c
$$

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$

$$
\underline{a} d
$$

where $R: b \mapsto b \vee c$
bagd

where $R: b \mapsto b \vee c$
cand

where $R: b \mapsto b \vee c$
ca

where $R: b \mapsto b \vee c$
$d c \underline{a}$

where $R: b \mapsto b \vee c$

$$
d c
$$

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$
$\underline{b} d$

where $R: b \mapsto b \vee c$

$$
\underline{\subset} d
$$

where $R: b \mapsto b \vee c$

$$
\subseteq
$$

where $R: b \mapsto b \vee c$

$$
d \underline{\underline{c}}
$$

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$

where $R: b \mapsto b \vee c$

$$
\underline{d}
$$

where $R: b \mapsto b \vee c$

Computation table, starting with d on the channel:

Computation table with sliding window:

$$
\begin{array}{|lll|lllll}
\hline s & b! & s & b! & s & R & t & d ? \\
v & b & v & c & u & u & u & d \\
v & a! & s & b! & v & v & v & v \\
s & R & v & v & v \\
v & v & v & v & v & a & v & v \\
v & c & d! & v & v & v & v & v \\
v & v & b! & v & v & v & v & t \\
R & t & d & u & d! & v & v & v \\
v & c ? & s & R & u & u & u & d ? \\
\hline
\end{array}
$$

Computation table with sliding window:

We need to store a window and some extra information for the renaming functions and the occurrence testing.

Theorem

The cycle-bounded reachability problem for CAROTs is solvable in polynomial space in the size of the channel automaton and polynomial space in the value of the cycle bound.
(Can guess and verify a computation table using polynomial space.)

Application to Timed Temporal Logics

- Transform an MTL formula φ into an equivalent one-clock alternating timed automaton \mathcal{A}_{φ}

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

Application to Timed Temporal Logics

- Transform an MTL formula φ into an equivalent one-clock alternating timed automaton \mathcal{A}_{φ}

$$
\mathbf{G}_{<2}\left(\bullet \rightarrow \mathbf{F}_{=1} \bullet\right)
$$

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

$r, 0$

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

- See a behaviour of this automaton as the content of a FIFO channel

From MTL to CAROTs

Every formula φ can be transformed into a CAROT that "accepts" the models of φ.

- See a behaviour of this automaton as the content of a FIFO channel

From MTL to CAROTs

Every formula φ can be transformed into a CAROT that "accepts" the models of φ.

One time unit $=$ one cycle of the CAROT

A Digression on Timed Automata

A Digression on Timed Automata

A Digression on Timed Automata

$$
x \in r_{1}, y \in r_{0},\{x\}<\{y\}
$$

$\bar{\square}\left(x, r_{1}\right)\left|\left(y, r_{0}\right)\right|$

A Digression on Timed Automata

A Digression on Timed Automata

The region graph can be simulated by a channel machine (with a single bounded channel).

The "Simple" Case of Bounded-MTL

- Bounded-MTL enjoys a small-model property:

The "Simple" Case of Bounded-MTL

- Bounded-MTL enjoys a small-model property:

Every satisfiable formula has a model with relevant prefix of size at most exponential in the size of the formula (eg, the sum of all constants appearing in the formula).

The "Simple" Case of Bounded-MTL

- Bounded-MTL enjoys a small-model property:

Every satisfiable formula has a model with relevant prefix of size at most exponential in the size of the formula (eg, the sum of all constants appearing in the formula).
Ex: if satisfiable, $\varphi=\bullet \mathbf{U}_{\leqslant 3}\left(\left(\bullet \mathbf{U}_{=5} \bullet\right) \vee \mathbf{G}_{\leqslant 1} \bullet\right)$ has a model of duration at most 9 . Note that it may have a large variability (remember formula which has a doubly-exponential variability within an exponential duration).

The "Simple" Case of Bounded-MTL

- Bounded-MTL enjoys a small-model property:

Every satisfiable formula has a model with relevant prefix of size at most exponential in the size of the formula (eg, the sum of all constants appearing in the formula).
Ex: if satisfiable, $\varphi=\bullet \mathbf{U}_{\leqslant 3}\left(\left(\bullet \mathbf{U}_{=5} \bullet\right) \vee \mathbf{G}_{\leqslant 1} \bullet\right)$ has a model of duration at most 9. Note that it may have a large variability (remember formula which has a doubly-exponential variability within an exponential duration).

- Model checking and satisfiability checking of Bounded-MTL can be done by a cycle-bounded CAROT, whose number of cycles is exponential (polynomial if constants are encoded in unary). It is hence in EXPSPACE!

The More Involved Case of coFlat-MTL

- We want to bound the number of cycles needed by the CAROT to achieve model-checking of coFlat-MTL, or more simply the satisfiability of Flat-MTL.

Flat-MTL $\ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \psi \mathbf{U}_{l} \varphi \mid \varphi \widetilde{\mathbf{U}}_{l} \psi$ with / unbounded $\Rightarrow \psi \in \operatorname{LTL}$

The More Involved Case of coFlat-MTL

- We want to bound the number of cycles needed by the CAROT to achieve model-checking of coFlat-MTL, or more simply the satisfiability of Flat-MTL.
Flat-MTL $\ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \psi \mathbf{U}_{1} \varphi \mid \varphi \widetilde{\mathbf{U}}_{1} \psi$ with / unbounded $\Rightarrow \psi \in \operatorname{LTL}$
- Using flatness and a ranking argument, one can show that any run of the ATA can be partitioned into "active" and "pure-LTL" segments:

The More Involved Case of coFlat-MTL

- We want to bound the number of cycles needed by the CAROT to achieve model-checking of coFlat-MTL, or more simply the satisfiability of Flat-MTL.

```
Flat-MTL \(\ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \psi \mathbf{U}_{1} \varphi \mid \varphi \tilde{\mathbf{U}}_{l} \psi\)
```

with / unbounded $\Rightarrow \psi \in \operatorname{LTL}$

- Using flatness and a ranking argument, one can show that any run of the ATA can be partitioned into "active" and "pure-LTL" segments:

- The number of active segments is at most exponential.
- The global active duration is at most exponential.

The More Involved Case of coFlat-MTL

- We want to bound the number of cycles needed by the CAROT to achieve model-checking of coFlat-MTL, or more simply the satisfiability of Flat-MTL.

$$
\text { Flat-MTL } \ni \varphi::=a|\neg a| \varphi \vee \varphi|\varphi \wedge \varphi| \psi \mathbf{U}_{l} \varphi \mid \varphi \widetilde{\mathbf{U}}_{/} \psi
$$

with / unbounded $\Rightarrow \psi \in \operatorname{LTL}$

- Using flatness and a ranking argument, one can show that any run of the ATA can be partitioned into "active" and "pure-LTL" segments:

- The number of active segments is at most exponential.
- The global active duration is at most exponential.

Theorem

The model checking of coFlat-MTL is in EXPSPACE.

Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.

Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.
Encode the halting problem of an EXPSPACE Turing machine:

- generate a doubly exponential number of events in one time unit
- on the next time unit, non-deterministically guess a computation of the EXPSPACE Turing machine
- check it is correct (requires 2^{n} time units, one for each cell of the machine)
- half, and check that only one event remains

Summary of the Complexity Results

Over infinite timed words:

	Model Checking	Satisfiability
LTL	PSPACE-C.	PSPACE-C.
MITL	EXPSPACE-C.	EXPSPACE-C.
Bounded-MTL		
Safety-MTL	Non-Prim.-Rec.	Non-Elem.
coFlat-MTL		Undec.
MTL	Undec.	Undec.

Summary of the Complexity Results

Over infinite timed words:

	Model Checking	Satisfiability
LTL	PSPACE-C.	PSPACE-C.
MITL	EXPSPACE-C.	EXPSPACE-C.
Bounded-MTL	EXPSPACE-C.	EXPSPACE-C.
Safety-MTL	Non-Prim.-Rec.	Non-Elem.
coFlat-MTL	EXPSPACE-C.	Undec.
MTL	Undec.	Undec.

Conclusion

In this work, we have exhibited a subclass of MTL which:

- contains punctual constraints,
- contains invariance,
- is tractable in theory.

Conclusion

In this work, we have exhibited a subclass of MTL which:

- contains punctual constraints,
- contains invariance,
- is tractable in theory.

What needs to be done:

- check tractability in practice,
- extend to continuous semantics.

