
The Cost of Punctuality

Patricia Bouyer, Nicolas Markey, Joël Ouaknine, James Worrell

LSV – CNRS & ENS de Cachan – France

Oxford University Computing Laboratory – UK

1/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFH96]
(MITL: disallows punctual constraints)

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFH96]
(MITL: disallows punctual constraints)

→ punctuality is undecidable!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFH96]
(MITL: disallows punctual constraints)

→ punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]

However, it is non-primitive recursive!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFH96]
(MITL: disallows punctual constraints)

→ punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]

However, it is non-primitive recursive!

4. we propose a tractable though powerful linear-time timed temporal
logic which allows punctuality...

2/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ

where I is an interval with integral bounds

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ

where I is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ

where I is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

We use classical shorthands, like F , G , X , etc...

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ

where I is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

We use classical shorthands, like F , G , X , etc...

◮ G <2

(
• → F=1 •

)

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ

where I is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

We use classical shorthands, like F , G , X , etc...

◮ G <2

(
• → F=1 •

)

◮ (•U>3 •)U61 (F>1 •)

3/21

Interesting Fragments of MTL

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕ ŨI ϕ

MTL

Interesting Fragments of MTL

LTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUϕ | ϕ Ũϕ

MTL

LTL

[Pnueli77]

Interesting Fragments of MTL

MITL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕ ŨI ϕ

with I non-singular, i.e., with no “punctuality”

MTL

LTL
MITL

[AFH96]

Interesting Fragments of MTL

Bounded-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕ ŨI ϕ

with I bounded

MTL

LTL
MITL

Bounded-MTL

Interesting Fragments of MTL

Safety-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUJ ϕ | ϕ ŨI ϕ

with J bounded

MTL

LTL
MITL

Bounded-MTL
Safety-MTL

Bounded-MTL + Invariance ⊆ Safety-MTL

[OW05]

Interesting Fragments of MTL

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL

MTL

LTL
MITL

Bounded-MTL
Safety-MTL

Interesting Fragments of MTL

coFlat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

with I unbounded ⇒ ψ ∈ LTL

MTL

LTL
MITL

Bounded-MTL
Safety-MTL

coFlat-MTL

Bounded-MTL + Invariance ⊆ coFlat-MTL

4/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

5/21

Some Examples of Formulas

◮ G

(
request → F61 (acquire ∧ F=1 release)

)
is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

→ enforces in polynomial space a doubly exponential variability

5/21

Some Examples of Formulas (cont’d)

◮ Half = F=1 tt ∨X61 F=1 tt

→ may eliminate one over two actions

6/21

Some Examples of Formulas (cont’d)

◮ Half = F=1 tt ∨X61 F=1 tt

→ may eliminate one over two actions

◮ the formula

• ∧ Double ∧ G<2n Double ∧ G[2n,2n+1) Half ∧ F=2n+1 (• ∧ X=1 tt)

hence enforces exact doubling and halfing...

6/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] EXPSPACE-C. [AFH96]

Bounded-MTL
Safety-MTL Decidable [OW06]
coFlat-MTL

MTL Undec. [AH93,OW06] Undec. [AH93,OW06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] EXPSPACE-C. [AFH96]

Bounded-MTL
Safety-MTL Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL Undec. [OW06]

MTL Undec. [AH93,OW06] Undec. [AH93,OW06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] EXPSPACE-C. [AFH96]

Bounded-MTL EXPSPACE-C. EXPSPACE-C.
Safety-MTL Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL EXPSPACE-C. Undec. [OW06]

MTL Undec. [AH93,OW06] Undec. [AH93,OW06]

7/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

An Example

Assume one wants to verify formula

G <2

(
• → F=1 •

)

=1

Offline, we stack all time units and use a sliding window:

8/21

Channel Automata

server
•

c2?msg

c2?req

c1!ack

client

•

c2!msg

c2!stop

c1?ack

c1?hup

channel c1

ack ack hup

channel c2

msg stop

NB: channels are FIFO...

9/21

Extended Channel Automata

We extend channel automata with:

◮ renaming (a letter can be replaced non-det. by another one);

◮ occurrence testing (check whether a letter appears on a channel).

→ CAROT

10/21

Extended Channel Automata

We extend channel automata with:

◮ renaming (a letter can be replaced non-det. by another one);

◮ occurrence testing (check whether a letter appears on a channel).

→ CAROT

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R non-deterministically rename b to either b or c .

10/21

Extended Channel Automata

We extend channel automata with:

◮ renaming (a letter can be replaced non-det. by another one);

◮ occurrence testing (check whether a letter appears on a channel).

→ CAROT

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R non-deterministically rename b to either b or c .

We will be interested in the reachability problem for CAROTs when
we bound the number of cycles of the machine

10/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

d

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

bd

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

bbd

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

cbd

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

cb

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

dcb

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

dc

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

d

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

ad

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

bad

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

cad

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

ca

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

dca

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

dc

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

d

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

bd

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

cd

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

c

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

dc

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

d

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

d

11/21

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

Computation table, starting with d on the channel:

s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

11/21

s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

12/21

s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

Computation table with sliding window:

s b! s b! s R t d? u u u d ! v v v v v v v

v b? v c? s a! s b! s R t d? u d ! v v v v v

v v v v v a? v c? s b! s R t d? u d ! v v v

v v v v v v v v v c? s R u u u d? u d ! v

12/21

s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

Computation table with sliding window:

s b! s b! s R t d? u u u d ! v v v v v v v

v b? v c? s a! s b! s R t d? u d ! v v v v v

v v v v v a? v c? s b! s R t d? u d ! v v v

v v v v v v v v v c? s R u u u d? u d ! v

We need to store a window and some extra information for the renaming

functions and the occurrence testing.

12/21

Theorem

The cycle-bounded reachability problem for CAROTs is solvable in poly-
nomial space in the size of the channel automaton and polynomial space
in the value of the cycle bound.

(Can guess and verify a computation table using polynomial space.)

13/21

Application to Timed Temporal Logics

◮ Transform an MTL formula ϕ into an equivalent one-clock
alternating timed automaton Aϕ [OW05]

G<2

(
• → F=1 •

)

14/21

Application to Timed Temporal Logics

◮ Transform an MTL formula ϕ into an equivalent one-clock
alternating timed automaton Aϕ [OW05]

G<2

(
• → F=1 •

)

r s
x:=0

x<2;•
t

x=1;•

14/21

r s
x:=0

x<2;•
t

x=1;•

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6
•

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

• •

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

• • •

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,0

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,0s,0

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

s,0r,1

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

s,0r,1s,0

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,1s,0s,1

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,1s,0t

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,1s,0t

From MTL to CAROTs

Every formula ϕ can be transformed into a CAROT that “accepts” the
models of ϕ.

15/21

r s
x:=0

x<2;•
t

x=1;•

◮ See a behaviour of this automaton as the content of a FIFO channel

r,0 r,0.6 r,0.7

s,0

r,1.5

s,0

s,0.8

r,1.7

s,0.2

t

• • • •

···

r,1s,0t

From MTL to CAROTs

Every formula ϕ can be transformed into a CAROT that “accepts” the
models of ϕ.

One time unit = one cycle of the CAROT

15/21

A Digression on Timed Automata

r0 r1

r0

r1

x

y

16/21

A Digression on Timed Automata

r0 r1

r0

r1

x

y

x , y ∈ r0, {y} < {x}

(y , r0) (x , r0)

16/21

A Digression on Timed Automata

r0 r1

r0

r1

x

y

x ∈ r1, y ∈ r0, {x} < {y}

(x , r1) (y , r0)

16/21

A Digression on Timed Automata

r0 r1

r0

r1

x

y

x , y ∈ r1, {y} < {x}

(y , r1) (x , r1)

16/21

A Digression on Timed Automata

r0 r1

r0

r1

x

y

The region graph can be simulated by a channel machine (with a single
bounded channel).

16/21

The “Simple” Case of Bounded-MTL

◮ Bounded-MTL enjoys a small-model property:

17/21

The “Simple” Case of Bounded-MTL

◮ Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most

exponential in the size of the formula (eg, the sum of all constants

appearing in the formula).

17/21

The “Simple” Case of Bounded-MTL

◮ Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most

exponential in the size of the formula (eg, the sum of all constants

appearing in the formula).

Ex: if satisfiable, ϕ = •U63 ((•U=5 •) ∨ G61 •) has a model of duration

at most 9. Note that it may have a large variability (remember formula

which has a doubly-exponential variability within an exponential duration).

17/21

The “Simple” Case of Bounded-MTL

◮ Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most

exponential in the size of the formula (eg, the sum of all constants

appearing in the formula).

Ex: if satisfiable, ϕ = •U63 ((•U=5 •) ∨ G61 •) has a model of duration

at most 9. Note that it may have a large variability (remember formula

which has a doubly-exponential variability within an exponential duration).

◮ Model checking and satisfiability checking of Bounded-MTL can be
done by a cycle-bounded CAROT, whose number of cycles is
exponential (polynomial if constants are encoded in unary). It is hence
in EXPSPACE!

17/21

The More Involved Case of coFlat-MTL
◮ We want to bound the number of cycles needed by the CAROT to

achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL

18/21

The More Involved Case of coFlat-MTL
◮ We want to bound the number of cycles needed by the CAROT to

achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL
◮ Using flatness and a ranking argument, one can show that any run of

the ATA can be partitioned into “active” and “pure-LTL” segments:

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

18/21

The More Involved Case of coFlat-MTL
◮ We want to bound the number of cycles needed by the CAROT to

achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL
◮ Using flatness and a ranking argument, one can show that any run of

the ATA can be partitioned into “active” and “pure-LTL” segments:

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

◮ The number of active segments is at most exponential.
◮ The global active duration is at most exponential.

18/21

The More Involved Case of coFlat-MTL
◮ We want to bound the number of cycles needed by the CAROT to

achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL
◮ Using flatness and a ranking argument, one can show that any run of

the ATA can be partitioned into “active” and “pure-LTL” segments:

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

◮ The number of active segments is at most exponential.
◮ The global active duration is at most exponential.

Theorem

The model checking of coFlat-MTL is in EXPSPACE.

18/21

Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.

19/21

Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.

Encode the halting problem of an EXPSPACE Turing machine:

◮ generate a doubly exponential number of events in one time unit

◮ on the next time unit, non-deterministically guess a computation of
the EXPSPACE Turing machine

◮ check it is correct (requires 2n time units, one for each cell of the
machine)

◮ half, and check that only one event remains

19/21

Summary of the Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.

Bounded-MTL
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL Undec.

MTL Undec. Undec.

20/21

Summary of the Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.

Bounded-MTL EXPSPACE-C. EXPSPACE-C.
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL EXPSPACE-C. Undec.

MTL Undec. Undec.

20/21

Conclusion

In this work, we have exhibited a subclass of MTL which:

◮ contains punctual constraints,

◮ contains invariance,

◮ is tractable in theory.

21/21

Conclusion

In this work, we have exhibited a subclass of MTL which:

◮ contains punctual constraints,

◮ contains invariance,

◮ is tractable in theory.

What needs to be done:

◮ check tractability in practice,

◮ extend to continuous semantics.

21/21

