The Cost of Punctuality

Patricia Bouyer, Nicolas Markey, Joél Ouaknine, James Worrell

LSV — CNRS & ENS de Cachan — France

Oxford University Computing Laboratory — UK

1/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]
However, it is non-primitive recursive!

2/21

Motivation

Context: verification of timed systems towards linear-time timed
temporal logics

1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AHO3]

2. MITL, a palliative to these negative results [AFHO6]
(MITL: disallows punctual constraints)
— punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]
However, it is non-primitive recursive!

4. we propose a tractable though powerful linear-time timed temporal
logic which allows punctuality...

2/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTL3 ¢ == a | -a | ¢Ve | oAp | oUip | oUjp

where [is an interval with integral bounds

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTL3 ¢ == a | -a | ¢Ve | oAp | oUip | oUjp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTL3 ¢ == a | -a | ¢Ve | oAp | oUip | oUjp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTL3 ¢ == a | -a | ¢Ve | oAp | oUip | oUjp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...
> G<2(. — F:]_ .)

3/21

Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]
MTL3 ¢ == a | -a | ¢Ve | oAp | oUip | oUjp
where [is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

I | | | |
r T T T T

We use classical shorthands, like F, G, X, etc...

> G'<2(' — Foy ')
> (e Usze)Ug (Fure)

3/21

Interesting Fragments of MTL

MTLSp 2= a | ma | Ve | oAe | oUp | ¢Ujp

MTL

Interesting Fragments of MTL

LTLop u=a | -a | oVe | oAhp | ¢oUp | ¢pUp

Q///////,’///»Mﬂ
L

LT

[Pnueli77]

Interesting Fragments of MTL

MITLS @ == a | —a | oV | pAp | pUp | pUp

with / non-singular, i.e., with no “punctuality”

MTL
LTL —_ /
MITL

[AFH96)

Interesting Fragments of MTL

Bounded-MTL> ¢ == a | ma | Ve | oAp | ¢Ujp | oU ¢

with / bounded

Bounded-MTL -
MTL

LTL /
T i

Interesting Fragments of MTL

Safety-MTL2 ¢ == a | ma | Ve | pAe | U e | gaINJ,ga

with J bounded

Safety-MTL
Bounded-MTL \

MTL
LTL /
T i

Bounded-MTL + Invariance C Safety-MTL J

[OW05]

Interesting Fragments of MTL

Flat-MTL3 ¢ == a | ma | Ve | oAp | v Up | oU,

with / unbounded = ¢ € LTL

Safety-MTL
Bounded-MTL ™ \

MTL
T i

Interesting Fragments of MTL

coFlat-MTL3 @ == a | ma | oV | oAe | U | v U e

with / unbounded = ¢ € LTL

Safety-MTL
/
Bounded-MTL < \

coFlat-MTL ——— MTL

/
LTL
T L /

Bounded-MTL + Invariance C coFlat-MTL J

4/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-+

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-+
+

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-+
+
-+

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-+
+
-+
3

5/21

Some Examples of Formulas

» G (request — F«i (acquire A F—; release)) is in coFlat-MTL, but
neither in Bounded-MTL, nor in MITL.

> ¢, = e A Double A G2n Double where
Double = (o —F_o1 (e ANX 0)) A (o —F_y (e AN X 0))

is in Bounded-MTL.

-
-+
+
-+
3

— enforces in polynomial space a doubly exponential variability

5/21

Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions

6/21

Some Examples of Formulas (cont'd)

» Half = F_; tt VvV X<1 F_itt
— may eliminate one over two actions

» the formula
e A Double A G <2n Double A Gipn pni1y Half A F_pnin (o A X tt)

hence enforces exact doubling and halfing...

6/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL
Safety-MTL Decidable [OWO06]
coFlat-MTL
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL
Safety-MTL | Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL Undec. [OW06]
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

Complexity Results

Over infinite timed words:

Model Checking Satisfiability
LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] | EXPSPACE-C. [AFH96]
Bounded-MTL EXPSPACE-C. EXPSPACE-C.
Safety-MTL | Non-Prim.-Rec. [forthc.] Non-Elem. [forthc.]
coFlat-MTL EXPSPACE-C. Undec. [OWO06]
MTL Undec. [AH93,0W06] Undec. [AH93,0W06]

7/21

An Example

Assume one wants to verify formula

G (‘ —F_1 ‘)

8/21

An Example

Assume one wants to verify formula

G (‘ —F_1 ‘)

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

——

fooo—oo—o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

e

foleo—oo—o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

e

foteo—oo—o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

——

fooe—oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

e

fooo oo o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

—e

fooo—oe o |

8/21

An Example

Assume one wants to verify formula

G (' —F_1 ‘)

Offline, we stack all time units and use a sliding window:

e

fooo—oo ol |

8/21

Channel Automata

. channel ¢
A CQ?Ilng — |ack |ack |hup | —
server
clack
channel «,
" - |msg |stop | -
-

NB: channels are FIFO...

9/21

Extended Channel Automata

We extend channel automata with:
» renaming (a letter can be replaced non-det. by another one);
» occurrence testing (check whether a letter appears on a channel).
— CAROT

10/21

Extended Channel Automata

We extend channel automata with:
» renaming (a letter can be replaced non-det. by another one);
» occurrence testing (check whether a letter appears on a channel).
— CAROT

al,b! a?,b?

o

d!/k

where /7 non-deterministically rename b to either b or

d? d!

D

O,

10/21

Extended Channel Automata

We extend channel automata with:
» renaming (a letter can be replaced non-det. by another one);
» occurrence testing (check whether a letter appears on a channel).
— CAROT

al,b! a?,b?

d!k

where /7 non-deterministically rename b to either b or

We will be interested in the reachability problem for CAROTs when
we bound the number of cycles of the machine

10/21

al,b! a?,b?

d? d!

O,
®

d!/k

where 7 : b— bV

11/21

al,b! a?,b?

d? d!

ORI

s (t)
N
d!/l c?

where W :b— bV ¢

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
bd

11/21

al,b! a?,b?

d?

d!/l .

d!

O,
®

where W :b— bV ¢

bbd

11/21

al,b! a?,b?

d?

d!/l .

d!

O,
®

where W :b— bV ¢

cbd

11/21

where

al,b!

a?,b?

744

:b— bVc

(D@2
=/ =/
cb

11/21

al,b! a?,b?

d?

d!/l .

d!

O,
®

where W :b— bV ¢

dcb

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
dc

11/21

al,b! a?,b?

d? d!

ORI

(N

S t
N
d[/ c?

where W :b— bV ¢

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
ad

11/21

al,b! a?,b?

d?

d!/l .

d!

O,
®

where W :b— bV ¢

bad

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
d? d!
c?
cad

11/21

where

al,b!

a?,b?

744

:b— bVc

(O (w)—*
N N
ca

11/21

al,b! a?,b?

d?

d!/l .

d!

O,
®

where W :b— bV ¢

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
dc

11/21

al,b! a?,b?

d? d!

ORI

(N

S t
N
d[/ c?

where W :b— bV ¢

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
bd

11/21

where

al,b!

d!/l

:b— bVec

a?,b?
c?
cd

11/21

al, bl at,b?

d!

B

d?

. ()
N
d[/’ t\» c?

where 7 :b— bV ¢

Is}

11/21

where

al,b!

a?,b?

d!/l

:b— bVc

/t\ N
N =/
dc

11/21

al,b! a?,b?

d? d!

ORI

(N

S t
N
d[/ c?

where W :b— bV ¢

11/21

al,b! a?,b?

d? d!

ORI

s (t)
N
d[/l c?

where W :b— bV ¢

11/21

al,b! a?,b?

d? d!

ORI

s (t)
N
d!/l c?

where W :b— bV ¢

(SN

11/21

al,b! a?,b?

d? d!

O,
®

d!/k

where 7 : b— bV

Computation table, starting with d on the channel:

s|b! t d? u
b7 v d7 u
”

d!
td7ud
d?ud!v

11/21

bI td7u

12/21

bI td7u
d?|u d!

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
vv viv valv s bl's td?ud vv v
Vv viv vv vv |v s uvu ud?ud v

12/21

bI td7u

v
Computation table with sliding window:
s bl s|b! s t d?luu uld vv vv vv v
v b? v s al s bl|s tld?ud vv vv v
vv viv valv s bl's td?ud vv v
Vv viv vv vv |v s uvu ud?ud v

We need to store a window and some extra information for the renaming
functions and the occurrence testing.

12/21

The cycle-bounded reachability problem for CAROTs is solvable in poly-

nomial space in the size of the channel automaton and polynomial space
in the value of the cycle bound.

(Can guess and verify a computation table using polynomial space.)

13/21

Application to Timed Temporal Logics

» Transform an MTL formula ¢ into an equivalent one-clock
alternating timed automaton A, [OW05]

G (' —F_ ')

14/21

Application to Timed Temporal Logics

» Transform an MTL formula ¢ into an equivalent one-clock
alternating timed automaton A, [OW05]

G (' —F_ ')

14/21

15/21

» See a behaviour of this automaton as the content of a FIFO channel

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

°
r,0 — r,0.6

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° .
r,0 — r,006 — r,0.7

N
s,0

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . .

r,0 — r,006 - r,07 —> r,1.5
N N

s,0 5,0

5,0.8

15/21

x<2;0

4}() —— <E> x=1;e @z)

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

N

5,0.8 — t

15/21

x<2;0

4}() —— <E> x=1;e @z)

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

N

5,0.8 — t

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7

N N
s,0 5,0 — s5,0.2
N
5,0.8 — t
[T Trif=0]]

15/21

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

N

5,0.8 — t

[Tsowilso]]

15/21

x<2;0

4}() —— <E> x=1;e @z)

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

N

5,0.8 — t

[alsolwi] T]

15/21

x<2;0

4}() —— <E> x=1;e @z)

» See a behaviour of this automaton as the content of a FIFO channel

I | | | |
F T T T T

° . . .
r0 — r,06 — r,07 —> r,1.5 — r,1.7
N N

s,0 5,0 — s5,0.2

N

5,0.8 — t

[Tolwi] T

15/21

» See a behaviour of this automaton as the content of a FIFO channel

L] . . L]
r0 — r,06 — r,07 —> r,1.5 — r,1.7
~ ~
5,0 5,0 — s,0.2
S

5,0.8 — t

[Tl T

From MTL to CAROTs

Every formula ¢ can be transformed into a CAROT that “accepts’ the
models of .

15/21

» See a behaviour of this automaton as the content of a FIFO channel

L] . . L]
r0 — r,06 — r,07 —> r,1.5 — r,1.7
~ ~
5,0 5,0 — s,0.2
S

5,0.8 — t

[Tl T

From MTL to CAROTs

Every formula ¢ can be transformed into a CAROT that “accepts’ the
models of .

One time unit = one cycle of the CAROT

15/21

A Digression on Timed Automata

rn

n

o n X

16/21

A Digression on Timed Automata

y

n X,y €no, {y} <{x}

o

o n X

‘()/) ﬂ))l()<7 ﬂ))‘

16/21

A Digression on Timed Automata

y

n x€n,ye€n {x}<{y}

o

o n X

‘()<’ rl)l()/’ nD)‘

16/21

A Digression on Timed Automata

y

n X,y €n, {y} <{x}

o

o n X

‘(y’ rl)‘(x7 rl)‘

16/21

A Digression on Timed Automata

rn

n

n n X

The region graph can be simulated by a channel machine (with a single
bounded channel).

16/21

The “Simple” Case of Bounded-MTL

» Bounded-MTL enjoys a small-model property:

17/21

The “Simple” Case of Bounded-MTL

» Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most
exponential in the size of the formula (eg, the sum of all constants
appearing in the formula).

17/21

The “Simple” Case of Bounded-MTL

» Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most
exponential in the size of the formula (eg, the sum of all constants
appearing in the formula).
Ex: if satisfiable, ¢ = e U¢3 ((e U—_se) V G) has a model of duration
at most 9. Note that it may have a large variability (remember formula
which has a doubly-exponential variability within an exponential duration).

17/21

The “Simple” Case of Bounded-MTL

» Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most
exponential in the size of the formula (eg, the sum of all constants
appearing in the formula).
Ex: if satisfiable, ¢ = e U¢3 ((e U—_se) V G) has a model of duration
at most 9. Note that it may have a large variability (remember formula
which has a doubly-exponential variability within an exponential duration).

» Model checking and satisfiability checking of Bounded-MTL can be
done by a cycle-bounded CAROT, whose number of cycles is
exponential (polynomial if constants are encoded in unary). It is hence
in EXPSPACE!

17/21

The More Involved Case of coFlat-MTL

» We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

Flat-MTLS ¢ == a | ma | oV | 9Ap | 0 Up | 9T ¢

with / unbounded = ¢ € LTL

18/21

The More Involved Case of coFlat-MTL

» We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

FlatMTLS o == a | ma | oVo | oA | v U o | U

with / unbounded = ¢ € LTL
» Using flatness and a ranking argument, one can show that any run of
the ATA can be partitioned into “active” and “pure-LTL" segments:

active active active active
_active active __active ACTIVE

pure LTL pure LTL pure LTL pure LTL

18/21

The More Involved Case of coFlat-MTL

» We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

FlatMTLS o == a | ma | oVo | oA | v U o | U

with / unbounded = ¢ € LTL
» Using flatness and a ranking argument, one can show that any run of
the ATA can be partitioned into “active” and “pure-LTL" segments:

active active active active
pure LTL pure LTL pure LTL pure LTL

> The number of active segments is at most exponential.
» The global active duration is at most exponential.

18/21

The More Involved Case of coFlat-MTL

» We want to bound the number of cycles needed by the CAROT to
achieve model-checking of coFlat-MTL, or more simply the
satisfiability of Flat-MTL.

FlatMTL3 ¢ == a | =ma | oV | oAp | v Ujp | @INJ,;/J

with / unbounded = ¢ € LTL
» Using flatness and a ranking argument, one can show that any run of
the ATA can be partitioned into “active” and “pure-LTL" segments:

active active active active

—_——— —_—— —_— —A

[N B
pure LTL pure LTL pure LTL pure LTL

> The number of active segments is at most exponential.
» The global active duration is at most exponential.

The model checking of coFlat-MTL is in EXPSPACE. I

18/21

Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. |

19/21

Hardness

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard. I

Encode the halting problem of an EXPSPACE Turing machine:

> generate a doubly exponential number of events in one time unit

> on the next time unit, non-deterministically guess a computation of
the EXPSPACE Turing machine

» check it is correct (requires 2" time units, one for each cell of the
machine)

» half, and check that only one event remains

19/21

Summary of the Complexity Results

Over infinite timed words:

Model Checking | Satisfiability
LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.
Bounded-MTL
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL Undec.
MTL Undec. Undec.

20/21

Summary of the Complexity Results

Over infinite timed words:

Model Checking | Satisfiability
LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.
Bounded-MTL EXPSPACE-C. EXPSPACE-C.
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL EXPSPACE-C. Undec.
MTL Undec. Undec.

20/21

Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.

21/21

Conclusion

In this work, we have exhibited a subclass of MTL which:
» contains punctual constraints,
» contains invariance,

> is tractable in theory.

What needs to be done:
» check tractability in practice,

> extend to continuous semantics.

21/21

