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1. linear-time timed temporal logics: interesting for specifying
properties of systems, but we cannot verify them! [AH93]

2. MITL, a palliative to these negative results [AFH96]
(MITL: disallows punctual constraints)

→ punctuality is undecidable!

3. Safety-MTL: a decidable logic which partly allows punctuality
[OW0{5,6}]

However, it is non-primitive recursive!

4. we propose a tractable though powerful linear-time timed temporal
logic which allows punctuality...
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where I is an interval with integral bounds

We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

3/21



Metric Temporal Logic

MTL: Metric Temporal Logic [Koymans 1990]

MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ϕ ŨI ϕ
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We interpret MTL formulas over timed words (this is the so-called
point-based semantics):

We use classical shorthands, like F , G , X , etc...

◮ G <2

(
• → F=1 •

)

◮ (•U>3 •)U61 (F>1 •)
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Interesting Fragments of MTL

MITL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕ ŨI ϕ

with I non-singular, i.e., with no “punctuality”

MTL

LTL
MITL

[AFH96]



Interesting Fragments of MTL
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Interesting Fragments of MTL

Safety-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUJ ϕ | ϕ ŨI ϕ

with J bounded

MTL
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Safety-MTL

Bounded-MTL + Invariance ⊆ Safety-MTL
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Interesting Fragments of MTL

Flat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUI ϕ | ϕ ŨI ψ

with I unbounded ⇒ ψ ∈ LTL
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Interesting Fragments of MTL

coFlat-MTL ∋ ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ψ | ψ ŨI ϕ

with I unbounded ⇒ ψ ∈ LTL

MTL

LTL
MITL

Bounded-MTL
Safety-MTL

coFlat-MTL

Bounded-MTL + Invariance ⊆ coFlat-MTL
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is in coFlat-MTL, but

neither in Bounded-MTL, nor in MITL.

◮ ϕn = • ∧ Double ∧ G<2n Double where

Double =
(
• → F=1 (• ∧ X<1 •)

)
∧

(
• → F=1 (• ∧ X<1 •)

)

is in Bounded-MTL.

→ enforces in polynomial space a doubly exponential variability
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Some Examples of Formulas (cont’d)

◮ Half = F=1 tt ∨X61 F=1 tt

→ may eliminate one over two actions
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Some Examples of Formulas (cont’d)

◮ Half = F=1 tt ∨X61 F=1 tt

→ may eliminate one over two actions

◮ the formula

• ∧ Double ∧ G<2n Double ∧ G[2n,2n+1) Half ∧ F=2n+1 (• ∧ X=1 tt)

hence enforces exact doubling and halfing...
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Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. [folklore] PSPACE-C. [folklore]
MITL EXPSPACE-C. [AFH96] EXPSPACE-C. [AFH96]
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Safety-MTL Decidable [OW06]
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Channel Automata

server
•

c2?msg

c2?req

c1!ack

client

•

c2!msg

c2!stop

c1?ack

c1?hup

channel c1

ack ack hup

channel c2

msg stop

NB: channels are FIFO...

9/21



Extended Channel Automata

We extend channel automata with:

◮ renaming (a letter can be replaced non-det. by another one);

◮ occurrence testing (check whether a letter appears on a channel).

→ CAROT
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Extended Channel Automata

We extend channel automata with:

◮ renaming (a letter can be replaced non-det. by another one);

◮ occurrence testing (check whether a letter appears on a channel).

→ CAROT

s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R non-deterministically rename b to either b or c .

We will be interested in the reachability problem for CAROTs when
we bound the number of cycles of the machine
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s t u v

d!

a!,b!

R d? d!

a?,b?

c?

where R : b 7→ b ∨ c

Computation table, starting with d on the channel:

s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v
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s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v
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s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

Computation table with sliding window:

s b! s b! s R t d? u u u d ! v v v v v v v

v b? v c? s a! s b! s R t d? u d ! v v v v v

v v v v v a? v c? s b! s R t d? u d ! v v v

v v v v v v v v v c? s R u u u d? u d ! v
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s b! s b! s R t d? u d ! v

b? v c? s a! s b! s R t d? u d ! v

a? v c? s b! s R t d? u d ! v

c? s R u d? u d ! v

Computation table with sliding window:

s b! s b! s R t d? u u u d ! v v v v v v v

v b? v c? s a! s b! s R t d? u d ! v v v v v

v v v v v a? v c? s b! s R t d? u d ! v v v

v v v v v v v v v c? s R u u u d? u d ! v

We need to store a window and some extra information for the renaming

functions and the occurrence testing.
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Theorem

The cycle-bounded reachability problem for CAROTs is solvable in poly-
nomial space in the size of the channel automaton and polynomial space
in the value of the cycle bound.

(Can guess and verify a computation table using polynomial space.)
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Application to Timed Temporal Logics
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s,0.8

r,1.7

s,0.2

t

• • • •

···

r,1s,0t

From MTL to CAROTs

Every formula ϕ can be transformed into a CAROT that “accepts” the
models of ϕ.

One time unit = one cycle of the CAROT
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The region graph can be simulated by a channel machine (with a single
bounded channel).
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◮ Bounded-MTL enjoys a small-model property:
Every satisfiable formula has a model with relevant prefix of size at most

exponential in the size of the formula (eg, the sum of all constants

appearing in the formula).

Ex: if satisfiable, ϕ = •U63 ((•U=5 •) ∨ G61 •) has a model of duration

at most 9. Note that it may have a large variability (remember formula

which has a doubly-exponential variability within an exponential duration).

◮ Model checking and satisfiability checking of Bounded-MTL can be
done by a cycle-bounded CAROT, whose number of cycles is
exponential (polynomial if constants are encoded in unary). It is hence
in EXPSPACE!
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with I unbounded ⇒ ψ ∈ LTL
◮ Using flatness and a ranking argument, one can show that any run of

the ATA can be partitioned into “active” and “pure-LTL” segments:

pure LTL pure LTL pure LTL pure LTL

activeactiveactiveactive

◮ The number of active segments is at most exponential.
◮ The global active duration is at most exponential.

Theorem

The model checking of coFlat-MTL is in EXPSPACE.
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Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.
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Hardness

Theorem

The satisfiability problem for Bounded-MTL is EXPSPACE-Hard.

Encode the halting problem of an EXPSPACE Turing machine:

◮ generate a doubly exponential number of events in one time unit

◮ on the next time unit, non-deterministically guess a computation of
the EXPSPACE Turing machine

◮ check it is correct (requires 2n time units, one for each cell of the
machine)

◮ half, and check that only one event remains
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Summary of the Complexity Results

Over infinite timed words:

Model Checking Satisfiability

LTL PSPACE-C. PSPACE-C.
MITL EXPSPACE-C. EXPSPACE-C.

Bounded-MTL
Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL Undec.

MTL Undec. Undec.
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Conclusion

In this work, we have exhibited a subclass of MTL which:

◮ contains punctual constraints,

◮ contains invariance,

◮ is tractable in theory.
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In this work, we have exhibited a subclass of MTL which:

◮ contains punctual constraints,

◮ contains invariance,

◮ is tractable in theory.

What needs to be done:

◮ check tractability in practice,

◮ extend to continuous semantics.
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