On finíte-memory determinacy of games on graphs

Patrícía Bouyer
LSV, CNRS, Univ. Paris-Saclay, ENS Paris-Saclay
France

Based on joint work with Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, Pierre Vandenhove (Published at CONCUR'2O)

The talk in one slide

Strategy synthesis for two-player games

- Find good and simple controllers for systems interacting with an antagonistic envíronment

The talk in one slide

Strategy synthesis for two-player games

- Find good and simple controllers for systems interacting with an antagonistic envíronment

«Good»?

- Performance w.r.t. objectives / payoffs / preference relations

The talk in one slide

Strategy synthesis for two-player games

- Find good and simple controllers for systems interacting with an antagonistic envíronment

«Good»?

- Performance w.r.t. objectives / payoffs / preference relations

«Símple »?

- Memoryless strategies
- Fínite-memory strategies

The talk in one slide

Strategy synthesis for two-player games

- Find good and simple controllers for systems interacting with an antagonistic envíronment

«Good»?

- Performance w.r.t. objectives / payoffs / preference relations

«Simple »?

- Memoryless strategies
- Fínite-memory strategies

When are simple strategies sufficient to play optimally?

The setting - Example of a game

$\mathrm{O}: P_{1}$
$\square: P_{2}$

Reachability winning condition for P_{1}

The setting - Example of a game

O: P_{1}
$\square: P_{2}$

Reachability winning condition for P_{1}

The setting - Example of a game

$\mathrm{O}: P_{1}$
$\square: P_{2}$

Reachability winning condition for P_{1}

The setting - Example of a game

$\mathrm{O}: P_{1}$
$\square: P_{2}$

Reachability winning condition for P_{1}
The game is played using strategies:

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Families of strategies

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Families of strategies

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Families of strategies

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Families of strategies

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Subclasses of interest

- Memoryless strategy: $\sigma_{i}: S_{i} \rightarrow E$
- Finite-memory strategy: σ_{i} defined by a finite-state Mealy machine

«Visit both s_{1} and s_{2} "
Every odd visít to s_{0}, go to s_{1}
Every even visit to s_{0}, go to s_{2}

Families of strategies

$$
\sigma_{i}: S^{*} S_{i} \rightarrow E
$$

Subclasses of interest

- Memoryless strategy: $\sigma_{i}: S_{i} \rightarrow E$
- Finite-memory strategy: σ_{i} defined by a finite-state Mealy machine

«Reach the target with energy 0 " Loop 5 times in the initial state

«Reach the target»

«Visit both s_{1} and s_{2} "
Every odd visít to s_{0}, go to s_{1}
Every even visít to s_{0}, go to s_{2}

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω}.

$\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} \sqsubseteq \pi$ means that π and π^{\prime} are equally appreciated $\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} \nsubseteq \pi$ means that π^{\prime} is preferred over π

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω}.

$\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} \sqsubseteq \pi$ means that π and π^{\prime} are equally appreciated $\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} \nsubseteq \pi$ means that π^{\prime} is preferred over π

Examples

- $W \subseteq C^{\omega}$ winning condítion:
$\pi \sqsubseteq \pi^{\prime}$ if either $\pi^{\prime} \in W$ or $\pi \notin W$
- Quantitative real payoff f
$\pi \sqsubseteq \pi^{\prime}$ if $f(\pi) \leq f\left(\pi^{\prime}\right)$
Ex: MP, AE, TP

The setting - Preference relation

A preference relation \sqsubseteq is a total preorder on C^{ω}.

$\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} \sqsubseteq \pi$ means that π and π^{\prime} are equally appreciated $\pi \sqsubseteq \pi^{\prime}$ and $\pi^{\prime} ¥ \pi$ means that π^{\prime} is preferred over π

Examples

- $W \subseteq C^{\omega}$ winning condítion: $\pi \sqsubseteq \pi^{\prime}$ if either $\pi^{\prime} \in W$ or $\pi \notin W$
- Quantitative real payoff f
$\pi \sqsubseteq \pi^{\prime}$ if $f(\pi) \leq f\left(\pi^{\prime}\right)$
Ex: MP, AE, TP

> Zero-sum assumption:
> - Preference of P_{1} is \sqsubset
> - Preference of P_{2} is \sqsubseteq^{-1}

Payoffs based on energy

Focus on two memoryless strategies

Payoffs based on energy

Focus on two memoryless strategies

Steps

Steps

- Constraint on the energy level (EL)

Payoffs based on energy

Focus on two memoryless strategies

Steps

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition

Payoffs based on energy

Focus on two memoryless strategies

Steps
Steps

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition

Payoffs based on energy

Focus on two memoryless strategies

Steps

Steps

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)

Payoffs based on energy

Focus on two memoryless strategies

Steps

Steps

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)

Payoffs based on energy

Focus on two memoryless strategies

Steps

Steps

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)
- Average-energy (AE)

Optimality of strategies

Optimality of strategies
Ul $\left\{\right.$ Out $\left(\sigma_{n}\right)^{\uparrow} \subseteq \operatorname{Out}\left(\sigma_{1}^{\prime}\right)^{\uparrow}$

Optimality of strategies
1
Out $\left(\sigma_{n}\right)^{\uparrow} \subseteq$ Out $\left(\sigma_{n}^{\prime}\right)^{\uparrow}$
$\Rightarrow \sigma_{n}$ is better than σ_{n}^{1}

Optimality of strategies
Ul $1 \quad \operatorname{Out}\left(\sigma_{n}\right)^{\uparrow} \subseteq \operatorname{Out}\left(\sigma_{1}^{\prime}\right)^{\uparrow}$
$\Rightarrow \sigma_{n}$ is better than σ_{n}^{1}
σ_{n} optimal whenever it is better than anyother σ_{n}

Optimality of strategies
Ul $\uparrow \quad \operatorname{Out}\left(\sigma_{n}\right)^{\uparrow} \subseteq \operatorname{Out}\left(\sigma_{1}^{\prime}\right)^{\uparrow}$
$\Rightarrow \sigma_{n}$ is better than σ_{1}^{\prime}
σ_{n} optimal whenever it is better than any other σ_{n}^{\prime}

Remark

- To be distinguished from:
- e-optímal
- Subgame-perfect optimal (in our case: Nash equilibría)

A focus on memoryless strategies

When are memoryless strategies sufficient to play optimally?

When are memoryless strategies sufficient to play optimally?

Quite often!

Examples

- Reachability, safety, Büchí, paríty, MP, $E L \geq 0$, TP, $A E$, etc...

When are memoryless strategies sufficient to play optimally?

Quite often!

Examples

- Reachability, safety, Büchi, parity, MP, EL ≥ 0, TP, $A E$, etc...

Can we characterize when they are?

When are memoryless strategies sufficient to play optimally?

Quite often!

Examples

- Reachability, safety, Büchí, parity, MP, EL $\geq 0, T P, A E$, etc...

Can we characterize when they are?

YES!

When are memoryless strategies sufficient to play optimally?

Quite often!

Examples

- Reachability, safety, Büchí, paríty, MP, EL ≥ 0, TP, AE, etc...

Can we characterize when they are?

YES!

And this is a beautiful result by Gimbert and Zielonka, CONCUR'O5

The memoryless story

Sufficient condítions

The memoryless story

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both player [GZO4,AR17]

The memoryless story

Sufficient conditions

- Sufficient condítions to guarantee memoryless optimal strategies for both player [GZO4,ARI7]
- Sufficient conditions to guarantee memoryless optimal strategies for one player («half-positional ») [Kop06, Gím07, GK14]

The memoryless story

Sufficient conditions

- Sufficient condítions to guarantee memoryless optimal strategies for both player [GZO4,AR17]
- Sufficient condítions to guarantee memoryless optímal strategies for one player («half-posítional ») [Kop06, GímO7, GK14]
- Characterization of the preference relations admitting optimal memoryless strategies for both players in all finite games [GZO5]

The Gímbert-Zielonka characterization for memory less determinacy (1)

The Gímbert-Zielonka characterization for memory less determinacy (1)

Let \sqsubseteq be a preference relation.

The Gímbert-Zielonka characterization for memory less determinacy (1)

Let \subseteq be a preference relation.
It is said:

- monotone whenever

The Gímbert-Zielonka characterization for memory less determinacy (1)

[GZO5]

Let \subseteq be a preference relation.
It is said:

- monotone whenever

The Gímbert-Zielonka characterization for memory less determinacy (1)

[GZO5]

Let \subseteq be a preference relation.
It is said:

- monotone whenever

\Rightarrow

The Gímbert-Zielonka characterization for memory less determinacy (1)

Let \sqsubseteq be a preference relation.
It is said:

- monotone whenever

The Gímbert-Zielonka characterization for memory less determinacy (1)

Let \sqsubseteq be a preference relation.
It iss said:

- monotone whenever

- selective whenever

The Gímbert-Zielonka characterization

Let \subseteq be a preference relation.
It is said :

- monotone whenever

- selective whenever

The Gímbert-Zielonka characterization

Let \sqsubseteq be a preference relation.
It is said:

- monotone whenever

- selective whenever

The Gímbert-Zielonka characterization

Let \sqsubseteq be a preference relation.
It is said:

- monotone whenever

- selective whenever

The Gímbert-Zielonka characterization

Let \sqsubseteq be a preference relation.
It is said:

- monotone whenever

- selective whenever

The Gimbert-Zielonka characterization
for memory less determinacy (2)

The Gímbert-Zielonka characterization for memory less determinacy (2)

Characterization ~ Two -player games
The two following assertions are equivalent :

1. All finite games have memoryless optimal strategies for both players
2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective

The Gímbert-Zielonka characterization for memory less determinacy (2)

Characterization - Two-player games
The two following assertions are equivalent :

1. All finite games have memoryless optimal strategies for both players
2. Both \sqsubseteq and \sqsubseteq^{-1} are monotone and selective

Characterization - One-player games

The two following assertions are equivalent :

1. All finite P_{1}-games have (uniform) memoryless optimal strategies
2. \sqsubseteq is monotone and selective

Why? Proof hint (1)

Why? Proof hint (1)

Assume all $P_{1} \sim$ games have optimal memoryless strategies.

Why? Proof hint (1)

Assume all P_{1}-games have optimal memoryless strategies.

Why? Proof hint (1)

Assume all P_{1}-games have optimal memoryless strategies.

Why? Proof hint (1)

Assume all P_{1}-games have optimal memoryless strategies.

I 1
Max

* **

Why? Proof hint (1)

Assume all P_{1}-games have optimal memoryless strategies.

In
Max

$\boxed{5}$ is selective

Why? Proof hint (2)

Assume \sqsubseteq is monotone
The case of oneand selective.
\rightarrow (5.) \qquad

One best choice between and (monotony) + no reason to swap at t (selectivity)

Applications

Lifting theorem

- If in all finite one-player game for player P_{i}, P_{i} has uniform memoryless optimal strategies, then both players have memoryless optimal strategies in all finite two-player games.

Applications

Lifting theorem

- If ín all finite one-player game for player P_{i}, P_{i} has uniform memoryless optimal strategies, then both players have memoryless optímal strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Applications

Lifting theorem

- If in all finite one-player game for player P_{i}, P_{i} has uniform memoryless optimal strategies, then both players have memoryless optímal strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Díscussion

- Easy to analyse the one-player case (graph analysis)
- Mean-payoff, average-energy [BMRLL15]
- Allows to deduce properties in the two-player case

Discussion of examples

Examples

Díscussion of examples
Examples

- Reachability, safety:

Discussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)

Discussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-índependent)
- Selective

Díscussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)
- Selective
- Parity, mean-payoff:

Díscussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)
- Selective
- Paríty, mean-payoff:
- Prefix-independent hence monotone

Discussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)
- Selective
- Parity, mean-payoff:
- Prefix-independent hence monotone
- Selective

Díscussion of examples

Examples

- Reachability, safety:
- Monotone (though not prefix-independent)
- Selective
- Paríty, mean-payoff:
~ Prefix-independent hence monotone
- Selective
- Priority mean payoff [GZO5]

Discussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)
- Selective
- Paríty, mean-payoff:
~ Prefix-independent hence monotone
- Selectíve
- Prioríty mean payoff [GZO5]
- Average-energy games [BMRLL15]

Discussion of examples

Examples

- Reachability, safety:
~ Monotone (though not prefix-independent)
- Selective
- Paríty, mean-payoff:
~ Prefix-independent hence monotone
- Selectíve
- Prioríty mean payoff [GZO5]
- Average-energy games [BMRLL15]
~ Lifting theorem!!

Díscussion

Díscussion

Winning condition for P_{1} :

$$
((M P \in \mathbb{Q}) \wedge \text { Büchí }(A)) \vee \operatorname{coBüchi}(B)
$$

Díscussion

Winning condition for P_{1} :
$\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} c_{i} \in \mathbb{Q}$
$\liminf _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=1}^{n} c_{i} \in \mathbb{Q}$

Díscussion

Winning condition for P_{1} :

$$
((M P \in \mathbb{Q}) \wedge \text { Büchí }(A)) \vee \operatorname{coBüchi}(B)
$$

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchí $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optímal strategy
- Hence: the winning condition is monotone and selective

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optímal strategy
- Hence: the winning condition is monotone and selective

- P_{1} wins this game:

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

- P_{1} wins this game:
- Infinitely often, give the hand back to P_{2}

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

- P_{1} wins this game:
- Infinitely often, give the hand back to P_{2}
~ Play for a long time the edge labelled $(0, B)$ to approach 0

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

- P_{1} wins this game:
~ Infinitely often, give the hand back to P_{2}
~ Play for a long time the edge labelled $(0, B)$ to approach 0
~ Play for a long time the edge labelled $(1, B)$ to approach 1

Díscussion

Winning condition for P_{1} :

$((M P \in \mathbb{Q}) \wedge$ Büchi $(A)) \vee \operatorname{coBüchi}(B)$

- In all one-player games, P_{1} has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

- P_{1} wins this game:
~ Infinitely often, give the hand back to P_{2}
~ Play for a long time the edge labelled $(0, B)$ to approach 0
~ Play for a long time the edge labelled $(1, B)$ to approach 1
- It requires infinite memory!

Discussion

Winning condition for P_{1} :

$$
((M P \in \mathbb{Q}) \wedge \text { Büchi }(A)) \vee \operatorname{coBüchi}(B)
$$

If only \sqsubseteq is monotone and selective, P_{1} might not have a memoryless optimal strategy

Finite-memory
 strategies

We need memory!

Objectives/preference relations become more and more complex

We need memory!

Objectives/preference relations become more and more complex

- Büchí $(A) \wedge$ Büchi (B) requíres finite memory

We need memory!

Objectives/preference relations become more and more complex

- Büchi $(A) \wedge B u ̈ c h i(B)$ requíres finite memory
- $M P_{1} \geq 0 \wedge M P_{2} \geq 0$ requíres infinite memory

Can we lift [GZO5] to finite memory?

Can we lift [GZO5] to finite memory?

Can we lift [GZO5] to finite memory?

Apriorino...

Consider the following winning condition for P_{1} :
$\underset{n}{\lim \inf } \sum_{i=1}^{n} c_{i}=+\infty$ or $\exists^{\infty} n$ s.t. $\sum_{i=1}^{n} c_{i}=0$

Can we lift [GZO5] to finite memory?

Apriorino...

Consider the following winning condition for P_{1} :

$$
\underset{n}{\lim \inf } \sum_{i=1}^{n} c_{i}=+\infty \text { or } \exists^{\infty} n \text { s.t. } \sum_{i=1}^{n} c_{i}=0
$$

- Optimal finite-memory strategies ín one-player games

Can we lift [GZO5] to finite memory?

Apriorino...

Consider the following winning condition for P_{1} :

$$
\underset{n}{\lim \inf } \sum_{i=1}^{n} c_{i}=+\infty \text { or } \exists^{\infty} n \text { s.t. } \sum_{i=1}^{n} c_{i}=0
$$

- Optimal finite-memory strategies ín one-player games
- But not ín two-player games!!

Can we lift [GZO5] to finite memory?

Apriorino...

Consider the following winning condition for P_{1} :

$$
\underset{n}{\lim \inf } \sum_{i=1}^{n} c_{i}=+\infty \text { or } \quad \exists^{\infty} n \text { s.t. } \sum_{i=1}^{n} c_{i}=0
$$

- Optimal finite-memory strategies ín one-player games
- But not in two-player games!!

P_{1} wins but uses infinite memory!

How do we formalize finite memory?

How do we formalize finite memory?

 Standardly
How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$,
$\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$,
$\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
~ $\alpha_{\text {next }}$ gives the next move

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$,
$\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
~ $\alpha_{\text {next }}$ gives the next move

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
- $\alpha_{\text {next }}$ gives the next move

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
~ $\alpha_{\text {next }}$ gives the next move

To have an abstract theorem...

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
~ $\alpha_{\text {next }}$ gives the next move

To have an abstract theorem...

- The memory mechanism should not speak about information specific to particular games, hence:

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine ($M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}$) where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {upd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
- $\alpha_{\text {next }}$ gives the next move

To have an abstract theorem...

- The memory mechanism should not speak about information specific to particular games, hence:
- $\alpha_{\text {upd }}$ should not speak of states

How do we formalize finite memory?

Standardly

- A strategy σ_{i} of player P_{i} has finite memory if it can be encoded as a Mealy machine $\left(M, m_{\text {init }}, \alpha_{\text {upd }}, \alpha_{\text {next }}\right)$ where M is finite, $m_{\text {init }} \in M$, $\alpha_{\text {pd }}: M \times S \rightarrow M$ and $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$
- $\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ is a memory mechanism
- $\alpha_{\text {next }}$ gives the next move

To have an abstract theorem...

- The memory mechanism should not speak about information specific to particular games, hence:
- $\alpha_{\text {upd }}$ should not speak of states
- $\alpha_{\text {upd }}$ can speak of colors
(notion of « chromatic strategy » by Kopczynski)

Arena-independent memory management

Arena-índependent memory management

Memory skeleton

- $\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ with $m_{\text {init }} \in M$ and $\alpha_{\text {upd }}: M \times C \rightarrow M$

Arena-independent memory management

Memory skeleton

- $\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ with $m_{\text {init }} \in M$ and $\alpha_{\text {upd }}: M \times C \rightarrow M$

Arena-independent memory management

Memory skeleton

- $\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ with $m_{\text {init }} \in M$ and $\alpha_{\text {upd }}: M \times C \rightarrow M$

Arena-independent memory management

Memory skeleton

- $M=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ with $m_{\text {init }} \in M$ and $\alpha_{\text {upd }}: M \times C \rightarrow M$

Not yet a strategy!

Strategy with memory \mathscr{M}

- Addítional next-move function: $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$

Arena-independent memory management

Memory skeleton

- $\mathscr{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ with $m_{\text {init }} \in M$ and $\alpha_{\text {upd }}: M \times C \rightarrow M$

Not yet a strategy!

Strategy with memory \mathscr{M}

- Addítional next-move function: $\alpha_{\text {next }}: M \times S_{i} \rightarrow E$

The above skeleton is sufficient for the winning condition Büchi $(A) \wedge$ Büchi (B)

Example

Example

Game arena \mathscr{A} :

Example

Game arena \mathscr{A} :

$$
\begin{aligned}
&\left(s_{1}, m_{1}\right) \mapsto\left(s_{1}, s_{2}\right) \\
&\left(s_{1}, m_{2}\right) \mapsto\left(s_{1}, s_{1}\right) \\
&\left(s_{2}, m_{1}\right) \mapsto\left(s_{2}, s_{2}\right) \\
&\left(s_{2}, m_{2}\right) \mapsto\left(s_{2}, s_{1}\right)
\end{aligned}
$$

Example

Game arena \mathscr{A} :

$$
\begin{aligned}
&\left(s_{1}, m_{1}\right) \mapsto\left(s_{1}, s_{2}\right) \\
&\left(s_{1}, m_{2}\right) \mapsto\left(s_{1}, s_{1}\right) \\
&\left(s_{2}, m_{1}\right) \mapsto\left(s_{2}, s_{2}\right) \\
&\left(s_{2}, m_{2}\right) \mapsto\left(s_{2}, s_{1}\right)
\end{aligned}
$$

Product game $\mathscr{A} \ltimes \mathscr{M}$:

Example

Game arena \mathscr{A} :

$$
\begin{aligned}
&\left(s_{1}, m_{1}\right) \mapsto\left(s_{1}, s_{2}\right) \\
&\left(s_{1}, m_{2}\right) \mapsto\left(s_{1}, s_{1}\right) \\
&\left(s_{2}, m_{1}\right) \mapsto\left(s_{2}, s_{2}\right) \\
&\left(s_{2}, m_{2}\right) \mapsto\left(s_{2}, s_{1}\right)
\end{aligned}
$$

Product game $\mathscr{A} \ltimes \mathscr{M}$:

Memory-dependent monotony and selectivity

Memory-dependent monotony and selectivity
Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton.

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton.
It is said:

- M-monotone whenever

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton.
It is said:

- M-monotone whenever

\Rightarrow

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton.
It is said:

- M-monotone whenever

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton. It is said :

- M-monotone whenever

- M-selective whenever

Memory-dependent monotony and selectivity

Let \subseteq be a preference relation and \mathscr{M} a memory skeleton. It is said:

- M-monotone whenever

- M-selective whenever

Memory-dependent monotony and selectivity
Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton.
It is said:

- M -monotone whenever

- M-selective whenever

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton. It is said:

- M-monotone whenever

- M-selective whenever

Memory-dependent monotony and selectivity

Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton. It is said:

- M-monotone whenever

- M-selective whenever

> We look at how M classifies prefixes and cycles

Formal definitions of \mathcal{M}-monotony and \mathcal{M}-selectivity

Definition (M-monotony)

Let $\mathcal{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M}-monotone if for all $m \in M$, for all $K_{1}, K_{2} \in \mathcal{R}(C)$,

$$
\exists w \in L_{m_{\text {int }}, m},\left[w K_{1}\right] \sqsubset\left[w K_{2}\right] \Longrightarrow \forall w^{\prime} \in L_{m_{\text {init }}, m},\left[w^{\prime} K_{1}\right] \sqsubseteq\left[w^{\prime} K_{2}\right] .
$$

Definition (\mathcal{M}-selectivity)

Let $\mathcal{M}=\left(M, m_{\text {init }}, \alpha_{\text {upd }}\right)$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M}-selective if for all $w \in C^{*}, m=\widehat{\alpha_{\text {upd }}}\left(m_{\text {init }}, w\right)$, for all $K_{1}, K_{2} \in \mathcal{R}(C)$ such that $K_{1}, K_{2} \subseteq L_{m, m}$, for all $K_{3} \in \mathcal{R}(C)$,

$$
\left[w\left(K_{1} \cup K_{2}\right)^{*} K_{3}\right] \sqsubseteq\left[w K_{1}^{*}\right] \cup\left[w K_{2}^{*}\right] \cup\left[w K_{3}\right] .
$$

Our characterization for M-determinacy

Our characterization for \mathscr{M}-determinacy Characterization ~ Two player games

Our characterization for \mathscr{M}-determínacy

 Characterization - Two-player gamesThe two following assertions are equivalent :

1. All finite games have optimal \mathscr{M}-strategies for both players
2. Both $\check{\square}$ and \sqsubseteq^{-1} are \mathscr{M}-monotone and \mathscr{M}-selective

Our characterization for M-determínacy

 Characterization - Two-player gamesThe two following assertions are equivalent :

1. All finite games have optimal \mathscr{M}-strategies for both players
2. Both $\check{\square}$ and \sqsubseteq^{-1} are \mathscr{M}-monotone and \mathscr{M}-selective

Characterization - One-player games

Our characterization for \mathscr{M}-determinacy

Characterization - Two-player games

The two following assertions are equivalent:

1. All finite games have optimal M-strategies for both players
2. Both $\check{\square}$ and \sqsubseteq^{-1} are \mathscr{M}-monotone and \mathscr{M}-selective

Characterization - One-player games

The two following assertions are equivalent:

1. All finite P_{1}-games have (uniform) optimal \mathbb{M}-strategies
2. ㄷ is M-monotone and M-selective

Our characterization for M - determinacy

 Characterization - Two-player gamesThe two following assertions are equivalent:

1. All finite games have optimal M-strategies for both players
2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M}-monotone and \mathscr{M}-selective

Characterization - One-player games

The two following assertions are equivalent:

1. All finite P_{1}-games have (uniform) optimal \mathbb{M}-strategies
2. \sqsubseteq is \mathscr{M}-monotone and \mathscr{M}-selective
\Rightarrow We recover [GZO5] with $\mathscr{M}=\mathscr{M}_{\text {riv }}$

Applications

Applications

Transfer/Lifting theorem

- If in all finite one-player game for player P_{i}, P_{i} has optimal \mathscr{M}_{i} strategies, then both players have optimal $\mathscr{M}_{1} \times \mathscr{M}_{2}$-strategies in all finite two-player games.

Applications

Transfer/Lifting theorem

- If in all finite one-player game for player P_{i}, P_{i} has optimal \mathscr{M}_{i} strategies, then both players have optimal $\mathscr{M}_{1} \times \mathscr{M}_{2}$-strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Applications

Transfer/Lifting theorem

- If in all finite one-player game for player P_{i}, P_{i} has optimal \mathscr{M}_{i} strategies, then both players have optimal $\mathscr{M}_{1} \times \mathscr{M}_{2}$-strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Subclasses of games

- If both \sqsubseteq and \sqsubseteq^{-1} are \mathscr{M}-monotone and \mathscr{M}-selective, then both players have optimal memoryless strategies in all M-covered games.

Memory-covered arenas

Memory-covered arenas

> If the game has enough information from \mathscr{M}, then memoryless strategies will be sufficient

Memory-covered arenas

If the game has enough information from \mathscr{M}, then memoryless strategies will be sufficient

Covered arenas \approx same properties as product arenas

Memory-covered arenas

If the game has enough information from \mathscr{M}, then memoryless strategies will be sufficient

Covered arenas \approx same properties as product arenas

Memory-covered arenas

If the game has enough information from \mathscr{M}, then memoryless strategies will be sufficient

Covered arenas \approx same properties as product arenas

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

Б is M_{1}-monotone, but not \mathscr{M}_{1}-selective

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge \operatorname{Reach}(0)$

■is \mathscr{M}_{1}-monotone,
but not \mathscr{M}_{1}-selective

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge \operatorname{Reach}(0)$

\sqsubseteq is \mathscr{M}_{1}-monotone, but not \mathscr{M}_{1}-selective

$$
\sqsubseteq \text { is } \mathscr{M}_{2} \text {-selective }
$$

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

Бis M_{1}-monotone,
but not \mathscr{M}_{1}-selective

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

$$
\sqsubseteq \text { is } \mathscr{M}_{1} \text {-monotone, }
$$

but not \mathscr{M}_{1}-selective

Example of application

\sqsubseteq defined by a conjunction of reachability Reach $(0) \wedge$ Reach (0)

$$
\sqsubseteq \text { is } \mathscr{M}_{1} \text {-monotone, }
$$

but not \mathscr{M}_{1}-selective

\Rightarrow Memory \mathscr{M}_{2} is sufficient for both players!!

Conclusion

A generalization of [GZO5]

- To arena-índependent finíte memory
- Applies to generalized reachability or paríty, lower- and upperbounded (multi-dímension) energy games

Conclusion

A generalization of [GZO5]

- To arena-índependent finite memory
- Applies to generalized reachability or paríty, lower- and upperbounded (multi-dímension) energy games

Limítations

- Does only capture arena-independent finite memory
- Hard to generalize (remember counter-example)
- Does not apply to multi-dim. MP, MP+parity, energy+MP (infinite memory)

Conclusion

Conclusion

Other approaches
 - Sufficient conditions giving half-memory management results - Composítionalíty w.r.t. objectives [LPR18]

Conclusion

Other approaches

- Sufficient conditions giving half-memory management results
- Compositionalíty w.r.t. objectives [LPR18]

Further work

- Understand the arena-dependent framework
- Infinite arenas
- Probabilistic setting
- Other concepts (Nash equilibría)

