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Time!

Context: verification of embedded critical systems

Time

naturally appears in real systems

appears in properties (for ex. bounded response time)

➜ Need of models and specification languages integrating timing aspects
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About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω
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a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in Q+, or in R+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

MOVEP’04 Real-Time and Hybrid Systems 5 / 79



About time semantics

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

A compositionality problem with discrete time

Dense-time is a more general model than discrete time

But, can we not always discretize?
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
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About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.
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Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
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This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)
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y1−→
1
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y2−→
1.5
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y3,y5−→

2
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y5,y7−→

3
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About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
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About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k ≥ 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1

k
).
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About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k ≥ 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1

k
).

Claim: finding a correct granularity is as difficult as computing the set of
reachable states in dense-time

Further counter-example: there exist systems for which no granularity
exists

(see later)
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Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}
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Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0
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Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)
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Timed automata, decidability issues

Timed automata semantics

A = (Σ, L,X , ) is a TA

Configurations: (`, v) ∈ L× TX where T is the time domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,r
`′ ∈ A s.t.



v |= g

v ′ = v [r ← 0]

delay transition: (`, v) δ(d) (`, v + d) if d ∈ T
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Timed automata, decidability issues

Discrete vs dense-time semantics
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Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab‖ ‖
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Timed automata, decidability issues

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S |= ϕ for some formula ϕ: model-checking

S ‖ AT + reachability: testing automata

. . .

MOVEP’04 Real-Time and Hybrid Systems 15 / 79



Timed automata, decidability issues

Classical temporal logics

Path formulas:

Gφ « Always »

Fφ « Eventually »

φUφ′ « Until »

Xφ « Next »

State formulas:

Aψ Eψ

➜ LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]
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Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”
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Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts. ex: CTL +

∣

∣

∣

∣

EϕU∼kψ

AϕU∼kψ
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Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]

MOVEP’04 Real-Time and Hybrid Systems 17 / 79



Timed automata, decidability issues

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, xi := 0

20 < xi < 30, a, xi := 0

10 < xi < 20,Exit!
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Timed automata, decidability issues

The train crossing example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a
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Timed automata, decidability issues

The train crossing example (3)

The controller:

c1, xc ≤ 20 c2, xc ≤ 10c0

App? Hc := 0Exit?, Hc := 0

Hc ≤ 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?
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Timed automata, decidability issues

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App

. App! . App? App

Exit! . . Exit? Exit

. Exit! . Exit? Exit

a . . . a

. a . . a

. . a . a

. . GoUp? GoUp! GoUp

. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!
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Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?
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The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?
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Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

¬EF (gate.Close ∧ (gate.Close U>5 min ¬gate.Close))
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)
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Problem: the set of configurations is infinite
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

Note: This is also the case for the discrete semantics.
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Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

Method: construct a finite abstraction
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property
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Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor regions

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property
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Timed automata, decidability issues

Time-abstract bisimulation

∀
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Timed automata, decidability issues
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∀
a

∃
a

∀d > 0
δ(d)
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Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.
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Timed automata, decidability issues

The region automaton

timed automaton
⊗

region abstraction

` g ,a,C :=0 `′ is transformed into:

(`,R) a (`′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

➜ time-abstract bisimulation

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . . ) = a1a2 . . .
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Timed automata, decidability issues

An example [AD 90’s]

0 1 x

1

y
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Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region
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Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

➜ in NPSPACE, thus in PSPACE
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Timed automata, decidability issues

PSPACE-hardness

M LBTM
w0 ∈ {a, b}

∗

}

; AM,w0 s.t. M accepts w0 iff the final state
of AM,w0 is reachable

Cjw0

{xj , yj}

Cj contains an “a” if xj = yj

Cj contains a “b” if xj < yj

(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]
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Timed automata, decidability issues

PSPACE-hardness (cont.)

If q α,α′,δ q′ is a transition ofM, then for each position i of the tape,
we have a transition

(q, i) g ,r :=0 (q′, i ′)

where:

g is xi = yi (resp. xi < yi ) if α = a (resp. α = b)

r = {xi , yi} (resp. r = {xi}) if α′ = a (resp. α′ = b)

i ′ = i + 1 (resp. i ′ = i − 1) if δ is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init t=1,r0:=0 (q0, 1) where r0 = {xi | w0[i ] = b} ∪ {t}

Termination: (qf , i) end
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Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties
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Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

However, everything can not be reduced to finite automata...
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Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...
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An example of non-determinizable/non-complementable timed aut.:

a

a, x := 0

a

x = 1, a

a
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Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b

a, x := 0

x 6= 1, a, b

UNTIME
“

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
”

is

not regular (exercise!)
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Timed automata, decidability issues

Partial conclusion

➜ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

the “theoretical” comprehension of timed automata (cf [Asarin 2004])

extensions of the model (to ease modelling)

expressiveness
analyzability

algorithmic problems and implementation
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Some extensions of the model

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography
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Some extensions of the model

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c➜ proof in [Bérard,Diekert,Gastin,Petit 1998]
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Some extensions of the model

Role of diagonal constraints (cont.)

Open question: is this construction “optimal”?
In the sense that timed automata with diagonal

constraints are exponentially more concise

than diagonal-free timed automata.
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Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1
a

x := 0
0 < x < 1, b

x = 1, ε, x := 0

a

0 1

a b

2

b

3 4

a
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Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1, a, x := 0

x = 1, ε, x := 0
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Some extensions of the model

Adding constraints of the form x + y ∼ c

x + y ∼ c and x ∼ c [Bérard,Dufourd 2000]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) | n ≥ 1 and ti = 1− 1

2i }

x + y = 1, a, x := 0
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Some extensions of the model

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

Incrementation:
(p): x := x + 1; goto (q)

Decrementation:
(p): if x > 0 then x := x − 1; goto (q) else goto (r)

Theorem. [Minsky 67] The halting problem for two counter machines is
undecidable.
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Some extensions of the model

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

➜ simulation of • decrementation of a counter
• incrementation of a counter

We will use 4 clocks:
• u, “tic” clock (each time unit)
• x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

[Bérard,Dufourd 2000]
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Some extensions of the model

Undecidability proof (cont.)

Incrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0
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Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Four clocks (or more): undecidable!
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Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

Four clocks (or more): undecidable!
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Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...
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Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

Decrementation of counter x

x ≥ 1 z = 0, x := x − 1z = 0

x = 0
MOVEP’04 Real-Time and Hybrid Systems 44 / 79



Some extensions of the model

Decidability

y := 0 y := 1 x − y < 1

1

1

0

image by y := 1

➜ the bisimulation property is not met

The classical region automaton construction is not correct.
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Some extensions of the model

Decidability (cont.)

A ; Diophantine linear inequations system
; is there a solution?
; if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x − y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c

and for each clock z , maxx,z ≥ maxy ,z + c , maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx

and for each clock z , maxz ≥ c + maxz,x

The constants (maxx) and (maxx,y ) define a set of regions.
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Some extensions of the model

Decidability (cont.)

y := 0 y := 1 x − y < 1























maxy ≥ 0
maxx ≥ 0 + maxx,y

maxy ≥ 1
maxx ≥ 1 + maxx,y

maxx,y ≥ 1

implies















maxx = 2
maxy = 1
maxx,y = 1
maxy ,x = −1

The bisimulation property is met.
1 2

1

0 x

y
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Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1
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Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

etc...
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Some extensions of the model

Decidability (cont.)

Diagonal-free constraints General constraints

x := c , x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x − 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d

y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]
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Some extensions of the model

Linear hybrid automata [Henzinger 1996]

A finite control structure + a set X of dynamic variables

A transition is of the form:

` `′
g , a, α

Act` Act`′

g is a linear constraint on variables

α is a jump condition, i.e. an affine update of the form
X ′ = A.X + B

in each state, an activity function assigning a slope to each variable
(for each x ∈ X , Act(x) ∈ [`, u])
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Some extensions of the model

LHA semantics

H = (Σ, L,X ,Act ) is a LHA

Configurations: (`, v) ∈ L× TX where T is the domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,J
`′ ∈ A s.t.



v |= g

v ′ = α(v)

delay transition: (`, v) δ(d) (`, v + d .Act(`)) if d ∈ T
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Some extensions of the model

Linear hybrid automata (example)

The gas burner may leak. [ACHH93]

each time a leakage is detected, it is repaired or stopped in less than
1s

two leakages are separated by at least 30s

Leaking
x ≤ 1
t′ = 1
x ′ = 1
y ′ = 1

Not leaking

t′ = 0
x ′ = 1
y ′ = 1

x := 0

x ≥ 30, x := 0

Is it possible that the gas burner leaks during a time greater than 1

20
of

the global time after the 60 first minutes?

AG (y ≥ 60 =⇒ 20t ≤ y)
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Some extensions of the model

What about decidability?

➜ almost everything is undecidable
[Henzinger,Kopke,Puri,Varaiya 98]

Theorem. The class of LHA with clocks and only one variable having
possibly two slopes k1 6= k2 is undecidable.

Theorem. The class of stopwatch automata is undecidable.

One of the “largest” classes of LHA which are decidable is the class of
initialized rectangular automata.
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Implementation of timed automata

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography
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Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure
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Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are prefered.
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Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I
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Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations
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Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

Examples of systems: counter automata, pushdown systems, linear
hybrid automata, timed automata, etc...
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Implementation of timed automata

An example of computation with HyTech

command: /usr/local/bin/hytech gas_burner
=================================================================
HyTech: symbolic model checker for embedded systems
Version 1.04f (last modified 1/24/02) from v1.04a of 12/6/96
For more info:

email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/˜tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info
=================================================================

Backward computation
Number of iterations required for reachability: 6
System satisfies non-leaking duration property

Location: not_leaking
x >= 0 & t >= 3 & y <= 20t & y >= 0
| x + 20t >= y + 11 & y <= 20t + 19 & t >= 2 & x >= 0 & y >= 0
| y >= 0 & t >= 1 & x + 20t >= y + 22 & y <= 20t + 8 & x >= 0
| y >= 0 & x + 20t >= y + 33 & 20t >= y + 3 & x >= 0
Location: leaking
19x + y <= 20t + 19 & y >= x + 59 & x <= 1 & x >= 0
| t >= x + 2 & x <= 1 & y >= 0 & 19x + y <= 20t + 19 & x >= 0
| t >= x + 1 & x <= 1 & y >= 0 & 19x + y <= 20t + 8 & x >= 0
| 20t >= 19x + y + 3 & y >= 0 & x <= 1 & x >= 0

=================================================================
Max memory used = 0 pages = 0 bytes = 0.00 MB
Time spent = 0.02u + 0.00s = 0.02 sec total

=================================================================
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Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

MOVEP’04 Real-Time and Hybrid Systems 59 / 79



Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
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Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g
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Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

The exact backward computation terminates and is correct!
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈ R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus

v ′ ∈ R.
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Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j .k + `.m
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

A zone is a set of valuations defined by a clock constraint

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)
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Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

➜ a termination problem

MOVEP’04 Real-Time and Hybrid Systems 61 / 79



Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y
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Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an infinite number of steps...
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Implementation of timed automata

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

➜ correct w.r.t. reachability

. . .
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

➜ correct w.r.t. reachability

activity: eliminate redundant clocks [Daws,Yovine 1996]

➜ correct w.r.t. reachability

q g ,a,C :=0 q′ implies Act(q) = clocks(g) ∪ (Act(q′) \ C )

. . .
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Implementation of timed automata

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z t Z ′”.

➜ “semi-correct” w.r.t. reachability
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Implementation of timed automata

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z t Z ′”.

➜ “semi-correct” w.r.t. reachability

extrapolation, a widening operator on zones

MOVEP’04 Real-Time and Hybrid Systems 64 / 79



Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞
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The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





Existence of a normal form

3 4 9

5

2





0 −3 0
9 0 4
5 2 0





All previous operations on zones can be computed using DBMs
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Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

➜ ensures termination

MOVEP’04 Real-Time and Hybrid Systems 66 / 79



Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)







∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗






;







∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗







“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

MOVEP’04 Real-Time and Hybrid Systems 66 / 79



Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)
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Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.
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Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

Theorem: this algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using
diagonal clock constraints...
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Implementation of timed automata

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop
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A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8

>

>

<

>

>

:

v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d
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Implementation of timed automata

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8

>

>

<

>

>

:

v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]
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Implementation of timed automata

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.
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Implementation of timed automata

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

If α is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.
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Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:
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Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ◦ Post)∗ is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!
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Implementation of timed automata

Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z )} is finite.

➜ k the max. constant defining one of the previous DBMs

We get that, for every zone Z ,

Z ⊆ Extrak(Z ) ⊆ Abs(Z )
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Implementation of timed automata

Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?
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Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A

Reachability NLOGSPACE-complete
CTL/TCTL P-complete
AF-µ-calc./Lµ,ν P-complete
full µ-calc./L+

µ,ν NP ∩ co-NP
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2002]

Kripke structures S Timed automaton A
or (S1 ‖ . . . ‖ Sn)

Reachability NLOGSPACE-complete PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
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[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A
or (S1 ‖ . . . ‖ Sn)
or (A1 ‖ . . . ‖ An)

Reachability NLOGSPACE-complete PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
AF-µ-calc./Lµ,ν P-complete EXPTIME-complete
full µ-calc./L+
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Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

In practice: /
BDD-like techniques try to avoid discrete state explosion problem in
untimed systems ➜ SMV verifies very large systems

Timed systems: problems to deal with both explosions. Much
smaller systems can be analyzed in practice.

Tools for timed systems: Uppaal, HyTech, Kronos, etc...
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Conclusion & bibliography

Conclusion & Further Work

Decidability is quite well understood.

Needs to understand better the geometry of the reachable state
space.

clever (and correct) implementation of timed automata
accelerate verification of timed automata

Data structures for both dense and discrete parts
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Conclusion & Further Work

Decidability is quite well understood.

Needs to understand better the geometry of the reachable state
space.

clever (and correct) implementation of timed automata
accelerate verification of timed automata

Data structures for both dense and discrete parts

To be continued...

Some other current challenges:

controller synthesis
implementability issues (program synthesis)
optimal computations (see Kim’s talk)

. . .
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