
Real-Time and Hybrid Systems

Patricia Bouyer

LSV – CNRS & ENS de Cachan

Winter School MOVEP’04

MOVEP’04 Real-Time and Hybrid Systems 1 / 79

Model-checking

Does the system

Modelling

satisfy

ϕ

the property?

MOVEP’04 Real-Time and Hybrid Systems 2 / 79

Model-checking

Does the system

Modelling

satisfy

ϕ

the property?

|=

Model-checking
Algorithm

MOVEP’04 Real-Time and Hybrid Systems 2 / 79

Time!

Context: verification of embedded critical systems

Time

naturally appears in real systems

appears in properties (for ex. bounded response time)

➜ Need of models and specification languages integrating timing aspects

MOVEP’04 Real-Time and Hybrid Systems 3 / 79

About time semantics

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography

MOVEP’04 Real-Time and Hybrid Systems 4 / 79

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

MOVEP’04 Real-Time and Hybrid Systems 5 / 79

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

MOVEP’04 Real-Time and Hybrid Systems 5 / 79

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

MOVEP’04 Real-Time and Hybrid Systems 5 / 79

About time semantics

Adding timing informations

Untimed case: sequence of observable events
a: send message b: receive message

a b a b a b a b a b · · · = (a b)ω

Timed case: sequence of dated observable events

(a, d1) (b, d2) (a, d3) (b, d4) (a, d5) (b, d6) · · ·

d1: date at which the first a occurs
d2: date at which the first b occurs, . . .

Discrete-time semantics: dates are e.g. taken in N

Ex: (a, 1)(b, 3)(c, 4)(a, 6)

Dense-time semantics: dates are e.g. taken in Q+, or in R+

Ex: (a, 1.28).(b, 3.1).(c, 3.98)(a, 6.13)

MOVEP’04 Real-Time and Hybrid Systems 5 / 79

About time semantics

A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q+)

A compositionality problem with discrete time

Dense-time is a more general model than discrete time

But, can we not always discretize?

MOVEP’04 Real-Time and Hybrid Systems 6 / 79

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

MOVEP’04 Real-Time and Hybrid Systems 7 / 79

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

MOVEP’04 Real-Time and Hybrid Systems 7 / 79

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

MOVEP’04 Real-Time and Hybrid Systems 7 / 79

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

MOVEP’04 Real-Time and Hybrid Systems 7 / 79

About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

Start with x=0 and y=[101] (stable configuration)

The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101]
y2
−→
1.2

[111]
y3
−→
2.5

[110]
y1
−→
2.8

[010]
y3
−→
4.5

[011]

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
MOVEP’04 Real-Time and Hybrid Systems 7 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.

Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

[11100000]
y1,y2−→

1

[00100000]
y3,y5,y6−→

2

[00001100]
y5,y6−→

3

[00000000]

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient? An example [Alur 91]

This digital circuit is not 1-discretizable.
Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000]
y1−→
1

[01100000]
y2−→
1.5

[00100000]
y3,y5−→

2

[00001000]
y5,y7−→

3

[00000010]
y7,y8−→

4

[00000001]

[11100000]
y1,y2,y3−→

1

[00000000]

[11100000]
y1−→
1

[01111000]
y2,y3,y4,y5−→

2

[00000000]

[11100000]
y1,y2−→

1

[00100000]
y3,y5,y6−→

2

[00001100]
y5,y6−→

3

[00000000]

MOVEP’04 Real-Time and Hybrid Systems 8 / 79

About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k ≥ 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1

k
).

MOVEP’04 Real-Time and Hybrid Systems 9 / 79

About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k ≥ 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1

k
).

Claim: finding a correct granularity is as difficult as computing the set of
reachable states in dense-time

MOVEP’04 Real-Time and Hybrid Systems 9 / 79

About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k ≥ 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1

k
).

Claim: finding a correct granularity is as difficult as computing the set of
reachable states in dense-time

Further counter-example: there exist systems for which no granularity
exists

(see later)

MOVEP’04 Real-Time and Hybrid Systems 9 / 79

Timed automata, decidability issues

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography

MOVEP’04 Real-Time and Hybrid Systems 10 / 79

Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

A finite control structure + variables (clocks)

A transition is of the form:

g , a, C := 0

Enabling condition Reset to zero

An enabling condition (or guard) is:

g ::= x ∼ c | g ∧ g

where ∼∈ {<,≤,=,≥, >}

MOVEP’04 Real-Time and Hybrid Systems 11 / 79

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

MOVEP’04 Real-Time and Hybrid Systems 12 / 79

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

MOVEP’04 Real-Time and Hybrid Systems 12 / 79

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

MOVEP’04 Real-Time and Hybrid Systems 12 / 79

Timed automata, decidability issues

Timed automata (example)

x , y : clocks

`0 `1 `2

x ≤ 5, a, y := 0 y > 1, b, x := 0

`0 δ(4.1) `0 a `1 δ(1.4) `1 b `2
x 0 4.1 4.1 5.5 0
y 0 4.1 0 1.4 1.4

(clock) valuation

➜ timed word (a, 4.1)(b, 5.5)

MOVEP’04 Real-Time and Hybrid Systems 12 / 79

Timed automata, decidability issues

Timed automata semantics

A = (Σ, L,X ,) is a TA

Configurations: (`, v) ∈ L× TX where T is the time domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,r
`′ ∈ A s.t.

v |= g

v ′ = v [r ← 0]

delay transition: (`, v) δ(d) (`, v + d) if d ∈ T

MOVEP’04 Real-Time and Hybrid Systems 13 / 79

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0

MOVEP’04 Real-Time and Hybrid Systems 14 / 79

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

MOVEP’04 Real-Time and Hybrid Systems 14 / 79

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

MOVEP’04 Real-Time and Hybrid Systems 14 / 79

Timed automata, decidability issues

Discrete vs dense-time semantics

x = 1, a, x := 0 b, y := 0

x = 1, a, x := 0

y < 1, b, y := 0
Dense-time:
Ldense = {((ab)ω , τ) | ∀i , τ2i−1 = i and τ2i − τ2i−1 > τ2i+2 − τ2i+1}

Discrete-time: Ldiscrete = ∅

x = 1, a, x := 0

b, y := 0

y < 1
b

y := 0

ab‖ ‖

MOVEP’04 Real-Time and Hybrid Systems 14 / 79

Timed automata, decidability issues

Classical verification problems

reachability of a control state

S ∼ S ′: bisimulation, etc...

L(S) ⊆ L(S ′): language inclusion

S |= ϕ for some formula ϕ: model-checking

S ‖ AT + reachability: testing automata

. . .

MOVEP’04 Real-Time and Hybrid Systems 15 / 79

Timed automata, decidability issues

Classical temporal logics

Path formulas:

Gφ « Always »

Fφ « Eventually »

φUφ′ « Until »

Xφ « Next »

State formulas:

Aψ Eψ

➜ LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]

MOVEP’04 Real-Time and Hybrid Systems 16 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts. ex: CTL +

∣

∣

∣

∣

EϕU∼kψ

AϕU∼kψ

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG (problem⇒ AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

Temporal logics with subscripts.

AG (problem⇒ AF≤20 alarm)

Temporal logics with clocks.

AG (problem⇒ (x in AF (x ≤ 20 ∧ alarm)))

➜ TCTL: Timed CTL [ACD90,ACD93,HNSY94]

MOVEP’04 Real-Time and Hybrid Systems 17 / 79

Timed automata, decidability issues

The train crossing example (1)

Traini with i = 1, 2, ...

Far

Before, xi < 30

On, xi < 20

App!, xi := 0

20 < xi < 30, a, xi := 0

10 < xi < 20,Exit!

MOVEP’04 Real-Time and Hybrid Systems 18 / 79

Timed automata, decidability issues

The train crossing example (2)

The gate:

Open

CloseRaising, Hg < 10

Lowering, Hg < 10
GoDown?, Hg := 0

Hg < 10, a

GoUp?, Hg := 0

Hg < 10, a

MOVEP’04 Real-Time and Hybrid Systems 19 / 79

Timed automata, decidability issues

The train crossing example (3)

The controller:

c1, xc ≤ 20 c2, xc ≤ 10c0

App? Hc := 0Exit?, Hc := 0

Hc ≤ 10, GoDown!

Exit?

App?

Exit?

Hc = 20, GoUp!

App?

MOVEP’04 Real-Time and Hybrid Systems 20 / 79

Timed automata, decidability issues

The train crossing example (4)

We use the synchronization function f :

Train1 Train2 Gate Controller
App! . . App? App

. App! . App? App

Exit! . . Exit? Exit

. Exit! . Exit? Exit

a . . . a

. a . . a

. . a . a

. . GoUp? GoUp! GoUp

. . GoDown? GoDown! GoDown

to define the parallel composition (Train1 ‖ Train2 ‖ Gate ‖ Controller)

NB: the parallel composition does not add expressive power!

MOVEP’04 Real-Time and Hybrid Systems 21 / 79

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

MOVEP’04 Real-Time and Hybrid Systems 22 / 79

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

MOVEP’04 Real-Time and Hybrid Systems 22 / 79

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

MOVEP’04 Real-Time and Hybrid Systems 22 / 79

Timed automata, decidability issues

The train crossing example (5)

Some properties one could check:

Is the gate closed when a train crosses the road?

AG (train.On⇒ gate.Close)

Is the gate always closed for less than 5 minutes?

¬EF (gate.Close ∧ (gate.Close U>5 min ¬gate.Close))

MOVEP’04 Real-Time and Hybrid Systems 22 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

Note: This is also the case for the discrete semantics.

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

Problem: the set of configurations is infinite
➜ classical methods can not be applied

Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

Method: construct a finite abstraction

MOVEP’04 Real-Time and Hybrid Systems 23 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

•
•

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor regions

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property

MOVEP’04 Real-Time and Hybrid Systems 24 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

Time-abstract bisimulation

∀
a

∃
a

∀d > 0
δ(d)

∃d ′ > 0
δ(d ′)

(`0, v0)
a1,t1 (`1, v1)

a2,t2 (`2, v2)
a3,t3 . . .

(`0,R0)
a1 (`1,R1)

a2 (`2,R2)
a3 . . .

with vi ∈ Ri for all i .

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.

MOVEP’04 Real-Time and Hybrid Systems 25 / 79

Timed automata, decidability issues

The region automaton

timed automaton
⊗

region abstraction

` g ,a,C :=0 `′ is transformed into:

(`,R) a (`′,R ′) if there exists R ′′ ∈ Succ∗t (R) s.t.

R ′′ ⊆ g

[C ← 0]R ′′ ⊆ R ′

➜ time-abstract bisimulation

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . .) = a1a2 . . .

MOVEP’04 Real-Time and Hybrid Systems 26 / 79

Timed automata, decidability issues

An example [AD 90’s]

0 1 x

1

y

MOVEP’04 Real-Time and Hybrid Systems 27 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-easyness

¡ The size of the region graph is in O(|X |!.2|X |) !

One configuration: a discrete location + a region

a discrete location: log-space
a region:

an interval for each clock
an interval for each pair of clocks

➜ needs polynomial space

By guessing a path: needs only to store two configurations

➜ in NPSPACE, thus in PSPACE

MOVEP’04 Real-Time and Hybrid Systems 28 / 79

Timed automata, decidability issues

PSPACE-hardness

M LBTM
w0 ∈ {a, b}

∗

}

; AM,w0 s.t. M accepts w0 iff the final state
of AM,w0 is reachable

Cjw0

{xj , yj}

Cj contains an “a” if xj = yj

Cj contains a “b” if xj < yj

(these conditions are invariant by time elapsing)

➜ proof taken in [Aceto & Laroussinie 2002]

MOVEP’04 Real-Time and Hybrid Systems 29 / 79

Timed automata, decidability issues

PSPACE-hardness (cont.)

If q α,α′,δ q′ is a transition ofM, then for each position i of the tape,
we have a transition

(q, i) g ,r :=0 (q′, i ′)

where:

g is xi = yi (resp. xi < yi) if α = a (resp. α = b)

r = {xi , yi} (resp. r = {xi}) if α′ = a (resp. α′ = b)

i ′ = i + 1 (resp. i ′ = i − 1) if δ is right and i < n (resp. left)

Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init t=1,r0:=0 (q0, 1) where r0 = {xi | w0[i] = b} ∪ {t}

Termination: (qf , i) end

MOVEP’04 Real-Time and Hybrid Systems 30 / 79

Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

MOVEP’04 Real-Time and Hybrid Systems 31 / 79

Timed automata, decidability issues

Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability/Büchi-like properties

However, everything can not be reduced to finite automata...

MOVEP’04 Real-Time and Hybrid Systems 31 / 79

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

MOVEP’04 Real-Time and Hybrid Systems 32 / 79

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:

a

a, x := 0

a

x = 1, a

a

MOVEP’04 Real-Time and Hybrid Systems 32 / 79

Timed automata, decidability issues

A model not far from undecidability

Universality is undecidable [Alur & Dill 90’s]

Inclusion is undecidable [Alur & Dill 90’s]

Determinizability is undecidable [Tripakis 2003]

Complementability is undecidable [Tripakis 2003]

...

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b

a, x := 0

x 6= 1, a, b

UNTIME
“

L ∩ {(a∗b∗, τ) | all a′s happen before 1 and no two a′s simultaneously}
”

is

not regular (exercise!)

MOVEP’04 Real-Time and Hybrid Systems 32 / 79

Timed automata, decidability issues

Partial conclusion

➜ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

the “theoretical” comprehension of timed automata (cf [Asarin 2004])

extensions of the model (to ease modelling)

expressiveness
analyzability

algorithmic problems and implementation

MOVEP’04 Real-Time and Hybrid Systems 33 / 79

Some extensions of the model

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography

MOVEP’04 Real-Time and Hybrid Systems 34 / 79

Some extensions of the model

Role of diagonal constraints

x − y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power

MOVEP’04 Real-Time and Hybrid Systems 35 / 79

Some extensions of the model

Role of diagonal constraints (cont.)

c is positive

x − y ≤ c

x := 0

y := 0

copy where x − y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x − y > c➜ proof in [Bérard,Diekert,Gastin,Petit 1998]

MOVEP’04 Real-Time and Hybrid Systems 36 / 79

Some extensions of the model

Role of diagonal constraints (cont.)

Open question: is this construction “optimal”?
In the sense that timed automata with diagonal

constraints are exponentially more concise

than diagonal-free timed automata.

MOVEP’04 Real-Time and Hybrid Systems 37 / 79

Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1
a

x := 0
0 < x < 1, b

x = 1, ε, x := 0

a

0 1

a b

2

b

3 4

a

MOVEP’04 Real-Time and Hybrid Systems 38 / 79

Some extensions of the model

Adding silent actions

g , ε,C := 0
[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes
(actions have no influence on region automaton construction)

Expressiveness: strictly more expressive!

x = 1, a, x := 0

x = 1, ε, x := 0

MOVEP’04 Real-Time and Hybrid Systems 38 / 79

Some extensions of the model

Adding constraints of the form x + y ∼ c

x + y ∼ c and x ∼ c [Bérard,Dufourd 2000]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) | n ≥ 1 and ti = 1− 1

2i }

x + y = 1, a, x := 0

MOVEP’04 Real-Time and Hybrid Systems 39 / 79

Some extensions of the model

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

Incrementation:
(p): x := x + 1; goto (q)

Decrementation:
(p): if x > 0 then x := x − 1; goto (q) else goto (r)

Theorem. [Minsky 67] The halting problem for two counter machines is
undecidable.

MOVEP’04 Real-Time and Hybrid Systems 40 / 79

Some extensions of the model

Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd d dd d d d d d d

c is unchanged c is incremented

d is decremented

➜ simulation of • decrementation of a counter
• incrementation of a counter

We will use 4 clocks:
• u, “tic” clock (each time unit)
• x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

[Bérard,Dufourd 2000]

MOVEP’04 Real-Time and Hybrid Systems 41 / 79

Some extensions of the model

Undecidability proof (cont.)

Incrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrementation of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u + x2 = 1, c, x2 := 0

u + x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0

MOVEP’04 Real-Time and Hybrid Systems 42 / 79

Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Four clocks (or more): undecidable!

MOVEP’04 Real-Time and Hybrid Systems 43 / 79

Some extensions of the model

Adding constraints of the form x + y ∼ c

Two clocks: decidable using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

Four clocks (or more): undecidable!

MOVEP’04 Real-Time and Hybrid Systems 43 / 79

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

MOVEP’04 Real-Time and Hybrid Systems 44 / 79

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

MOVEP’04 Real-Time and Hybrid Systems 44 / 79

Some extensions of the model

Adding new operations on clocks

Several types of updates: x := y + c , x :< c , x :> c , etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

Decrementation of counter x

x ≥ 1 z = 0, x := x − 1z = 0

x = 0
MOVEP’04 Real-Time and Hybrid Systems 44 / 79

Some extensions of the model

Decidability

y := 0 y := 1 x − y < 1

1

1

0

image by y := 1

➜ the bisimulation property is not met

The classical region automaton construction is not correct.

MOVEP’04 Real-Time and Hybrid Systems 45 / 79

Some extensions of the model

Decidability (cont.)

A ; Diophantine linear inequations system
; is there a solution?
; if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x − y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c

and for each clock z , maxx,z ≥ maxy ,z + c , maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx

and for each clock z , maxz ≥ c + maxz,x

The constants (maxx) and (maxx,y) define a set of regions.

MOVEP’04 Real-Time and Hybrid Systems 46 / 79

Some extensions of the model

Decidability (cont.)

y := 0 y := 1 x − y < 1

maxy ≥ 0
maxx ≥ 0 + maxx,y

maxy ≥ 1
maxx ≥ 1 + maxx,y

maxx,y ≥ 1

implies

maxx = 2
maxy = 1
maxx,y = 1
maxy ,x = −1

The bisimulation property is met.
1 2

1

0 x

y

MOVEP’04 Real-Time and Hybrid Systems 47 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

••

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

••

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

•

•

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

•

•

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

What’s wrong when undecidable?

Decrementation x := x − 1

maxx ≤ maxx − 1

etc...

MOVEP’04 Real-Time and Hybrid Systems 48 / 79

Some extensions of the model

Decidability (cont.)

Diagonal-free constraints General constraints

x := c , x := y PSPACE-complete
x := x + 1 PSPACE-complete
x := y + c Undecidable
x := x − 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete
x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d

y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]

MOVEP’04 Real-Time and Hybrid Systems 49 / 79

Some extensions of the model

Linear hybrid automata [Henzinger 1996]

A finite control structure + a set X of dynamic variables

A transition is of the form:

` `′
g , a, α

Act` Act`′

g is a linear constraint on variables

α is a jump condition, i.e. an affine update of the form
X ′ = A.X + B

in each state, an activity function assigning a slope to each variable
(for each x ∈ X , Act(x) ∈ [`, u])

MOVEP’04 Real-Time and Hybrid Systems 50 / 79

Some extensions of the model

LHA semantics

H = (Σ, L,X ,Act) is a LHA

Configurations: (`, v) ∈ L× TX where T is the domain

Timed Transition System:

action transition: (`, v) a (`′, v ′) if ∃` g,a,J
`′ ∈ A s.t.

v |= g

v ′ = α(v)

delay transition: (`, v) δ(d) (`, v + d .Act(`)) if d ∈ T

MOVEP’04 Real-Time and Hybrid Systems 51 / 79

Some extensions of the model

Linear hybrid automata (example)

The gas burner may leak. [ACHH93]

each time a leakage is detected, it is repaired or stopped in less than
1s

two leakages are separated by at least 30s

Leaking
x ≤ 1
t′ = 1
x ′ = 1
y ′ = 1

Not leaking

t′ = 0
x ′ = 1
y ′ = 1

x := 0

x ≥ 30, x := 0

Is it possible that the gas burner leaks during a time greater than 1

20
of

the global time after the 60 first minutes?

AG (y ≥ 60 =⇒ 20t ≤ y)

MOVEP’04 Real-Time and Hybrid Systems 52 / 79

Some extensions of the model

What about decidability?

➜ almost everything is undecidable
[Henzinger,Kopke,Puri,Varaiya 98]

Theorem. The class of LHA with clocks and only one variable having
possibly two slopes k1 6= k2 is undecidable.

Theorem. The class of stopwatch automata is undecidable.

One of the “largest” classes of LHA which are decidable is the class of
initialized rectangular automata.

MOVEP’04 Real-Time and Hybrid Systems 53 / 79

Implementation of timed automata

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography

MOVEP’04 Real-Time and Hybrid Systems 54 / 79

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

MOVEP’04 Real-Time and Hybrid Systems 55 / 79

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

MOVEP’04 Real-Time and Hybrid Systems 55 / 79

Implementation of timed automata

Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are prefered.

MOVEP’04 Real-Time and Hybrid Systems 55 / 79

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

MOVEP’04 Real-Time and Hybrid Systems 56 / 79

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

MOVEP’04 Real-Time and Hybrid Systems 56 / 79

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

backward analysis algorithm:
compute the predecessors of final configurations

I

F

MOVEP’04 Real-Time and Hybrid Systems 56 / 79

Implementation of timed automata

Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I

backward analysis algorithm:
compute the predecessors of final configurations

I

F

MOVEP’04 Real-Time and Hybrid Systems 56 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

Symbolic representation, symbolic computation

Need of a symbolic representation:

Finite representation of infinite sets of configurations

in the plane, a line
represented by two points.

set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)∗

set of integers, represented using semi-linear sets

sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

Need of abstractions, heuristics, etc...

Examples of systems: counter automata, pushdown systems, linear
hybrid automata, timed automata, etc...

MOVEP’04 Real-Time and Hybrid Systems 57 / 79

Implementation of timed automata

An example of computation with HyTech

command: /usr/local/bin/hytech gas_burner
===
HyTech: symbolic model checker for embedded systems
Version 1.04f (last modified 1/24/02) from v1.04a of 12/6/96
For more info:

email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/˜tah/HyTech

Warning: Input has changed from version 1.00(a). Use -i for more info
===

Backward computation
Number of iterations required for reachability: 6
System satisfies non-leaking duration property

Location: not_leaking
x >= 0 & t >= 3 & y <= 20t & y >= 0
| x + 20t >= y + 11 & y <= 20t + 19 & t >= 2 & x >= 0 & y >= 0
| y >= 0 & t >= 1 & x + 20t >= y + 22 & y <= 20t + 8 & x >= 0
| y >= 0 & x + 20t >= y + 33 & 20t >= y + 3 & x >= 0
Location: leaking
19x + y <= 20t + 19 & y >= x + 59 & x <= 1 & x >= 0
| t >= x + 2 & x <= 1 & y >= 0 & 19x + y <= 20t + 19 & x >= 0
| t >= x + 1 & x <= 1 & y >= 0 & 19x + y <= 20t + 8 & x >= 0
| 20t >= 19x + y + 3 & y >= 0 & x <= 1 & x >= 0

===
Max memory used = 0 pages = 0 bytes = 0.00 MB
Time spent = 0.02u + 0.00s = 0.02 sec total

===

MOVEP’04 Real-Time and Hybrid Systems 58 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis of TA

` `′
g , a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

The exact backward computation terminates and is correct!

MOVEP’04 Real-Time and Hybrid Systems 59 / 79

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

MOVEP’04 Real-Time and Hybrid Systems 60 / 79

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:

v ∈ R (for ex. v + t ∈ R)

v ′ ≡reg. v

There exists t′ s.t. v ′ + t′ ≡reg. v + t, which implies that v ′ + t′ ∈ R and thus

v ′ ∈ R.

MOVEP’04 Real-Time and Hybrid Systems 60 / 79

Implementation of timed automata

Note on the backward analysis (cont.)

If A is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j .k + `.m

MOVEP’04 Real-Time and Hybrid Systems 60 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

A zone is a set of valuations defined by a clock constraint

ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Forward analysis of timed automata

` `′
g , a, C := 0

Z [C ← 0](Z ∩ g)zones

Z Z Z ∩ g [y ← 0](Z ∩ g)

➜ a termination problem

MOVEP’04 Real-Time and Hybrid Systems 61 / 79

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

MOVEP’04 Real-Time and Hybrid Systems 62 / 79

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

MOVEP’04 Real-Time and Hybrid Systems 62 / 79

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

MOVEP’04 Real-Time and Hybrid Systems 62 / 79

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

MOVEP’04 Real-Time and Hybrid Systems 62 / 79

Implementation of timed automata

Non termination of the forward analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an infinite number of steps...

MOVEP’04 Real-Time and Hybrid Systems 62 / 79

Implementation of timed automata

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

➜ correct w.r.t. reachability

. . .

MOVEP’04 Real-Time and Hybrid Systems 63 / 79

Implementation of timed automata

“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ already considered, then we
don’t need to consider Z

➜ correct w.r.t. reachability

activity: eliminate redundant clocks [Daws,Yovine 1996]

➜ correct w.r.t. reachability

q g ,a,C :=0 q′ implies Act(q) = clocks(g) ∪ (Act(q′) \ C)

. . .

MOVEP’04 Real-Time and Hybrid Systems 63 / 79

Implementation of timed automata

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z t Z ′”.

➜ “semi-correct” w.r.t. reachability

MOVEP’04 Real-Time and Hybrid Systems 64 / 79

Implementation of timed automata

“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z t Z ′”.

➜ “semi-correct” w.r.t. reachability

extrapolation, a widening operator on zones

MOVEP’04 Real-Time and Hybrid Systems 64 / 79

Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2

+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞

MOVEP’04 Real-Time and Hybrid Systems 65 / 79

Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2

+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞

Existence of a normal form

3 4 9

5

2

0 −3 0
9 0 4
5 2 0

MOVEP’04 Real-Time and Hybrid Systems 65 / 79

Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2

+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞

Existence of a normal form

3 4 9

5

2

0 −3 0
9 0 4
5 2 0

All previous operations on zones can be computed using DBMs

MOVEP’04 Real-Time and Hybrid Systems 65 / 79

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)

∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗

;

∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗

“intuitively”, erase non-relevant constraints

➜ ensures termination

MOVEP’04 Real-Time and Hybrid Systems 66 / 79

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)

∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗

;

∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗

“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

MOVEP’04 Real-Time and Hybrid Systems 66 / 79

Implementation of timed automata

The extrapolation operator

Fix an integer k (“∗” represents an integer between −k and +k)

∗
�

�

�

�> k ∗

∗ ∗ ∗�

�

�

�
< −k ∗ ∗

;

∗
�

�

�

�
+∞ ∗

∗ ∗ ∗�

�

�

�
−k ∗ ∗

“intuitively”, erase non-relevant constraints

2

2

➜ ensures termination

MOVEP’04 Real-Time and Hybrid Systems 66 / 79

Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

MOVEP’04 Real-Time and Hybrid Systems 67 / 79

Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

MOVEP’04 Real-Time and Hybrid Systems 67 / 79

Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

Theorem: this algorithm is correct for diagonal-free timed automata.

MOVEP’04 Real-Time and Hybrid Systems 67 / 79

Implementation of timed automata

Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

Implemented in tools like Uppaal, Kronos, RT-Spin...

Successfully used on many real-life examples

Theorem: this algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using
diagonal clock constraints...

MOVEP’04 Real-Time and Hybrid Systems 67 / 79

Implementation of timed automata

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

MOVEP’04 Real-Time and Hybrid Systems 68 / 79

Implementation of timed automata

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8

>

>

<

>

>

:

v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

MOVEP’04 Real-Time and Hybrid Systems 68 / 79

Implementation of timed automata

A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2
x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop

8

>

>

<

>

>

:

v(x1) = 0
v(x2) = d

v(x3) = 2α + 5
v(x4) = 2α + 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

MOVEP’04 Real-Time and Hybrid Systems 68 / 79

Implementation of timed automata

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

MOVEP’04 Real-Time and Hybrid Systems 69 / 79

Implementation of timed automata

The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α + 5]

[2α + 5]

[2α + 2; 2α + 4]

[2α + 6; 2α + 8]

implies x1 − x2 = x3 − x4.

If α is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply x1−x2 = x3−x4.

MOVEP’04 Real-Time and Hybrid Systems 69 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ◦ Post)∗ is correct w.r.t. reachability

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ◦ Post)∗ is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!

MOVEP’04 Real-Time and Hybrid Systems 70 / 79

Implementation of timed automata

Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

➜ k the max. constant defining one of the previous DBMs

We get that, for every zone Z ,

Z ⊆ Extrak(Z) ⊆ Abs(Z)

MOVEP’04 Real-Time and Hybrid Systems 71 / 79

Implementation of timed automata

Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?

MOVEP’04 Real-Time and Hybrid Systems 72 / 79

Conclusion & bibliography

Outline

1 About time semantics

2 Timed automata, decidability issues

3 Some extensions of the model

4 Implementation of timed automata

5 Conclusion & bibliography

MOVEP’04 Real-Time and Hybrid Systems 73 / 79

Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A

Reachability NLOGSPACE-complete
CTL/TCTL P-complete
AF-µ-calc./Lµ,ν P-complete
full µ-calc./L+

µ,ν NP ∩ co-NP

MOVEP’04 Real-Time and Hybrid Systems 74 / 79

Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A
or (S1 ‖ . . . ‖ Sn)

Reachability NLOGSPACE-complete PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
AF-µ-calc./Lµ,ν P-complete EXPTIME-complete
full µ-calc./L+

µ,ν NP ∩ co-NP EXPTIME-complete

Timing constraints induce a complexity blowup!

MOVEP’04 Real-Time and Hybrid Systems 74 / 79

Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A
or (S1 ‖ . . . ‖ Sn)

Reachability NLOGSPACE-complete PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
AF-µ-calc./Lµ,ν P-complete EXPTIME-complete
full µ-calc./L+

µ,ν NP ∩ co-NP EXPTIME-complete

Timing constraints induce a complexity blowup!

From a complexity point of view, adding clocks = adding components!

MOVEP’04 Real-Time and Hybrid Systems 74 / 79

Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]

Kripke structures S Timed automaton A
or (S1 ‖ . . . ‖ Sn)
or (A1 ‖ . . . ‖ An)

Reachability NLOGSPACE-complete PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
AF-µ-calc./Lµ,ν P-complete EXPTIME-complete
full µ-calc./L+

µ,ν NP ∩ co-NP EXPTIME-complete

Timing constraints induce a complexity blowup!

From a complexity point of view, adding clocks = adding components!

MOVEP’04 Real-Time and Hybrid Systems 74 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view:

no double complexity gap!

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

In practice:

BDD-like techniques try to avoid discrete state explosion problem in
untimed systems ➜ SMV verifies very large systems

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

In practice:

BDD-like techniques try to avoid discrete state explosion problem in
untimed systems ➜ SMV verifies very large systems

Timed systems: problems to deal with both explosions. Much
smaller systems can be analyzed in practice.

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

In practice: /
BDD-like techniques try to avoid discrete state explosion problem in
untimed systems ➜ SMV verifies very large systems

Timed systems: problems to deal with both explosions. Much
smaller systems can be analyzed in practice.

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

State explosion problem

due to parallel composition

due to timing constraints

From a complexity point of view: ,

no double complexity gap!

In practice: /
BDD-like techniques try to avoid discrete state explosion problem in
untimed systems ➜ SMV verifies very large systems

Timed systems: problems to deal with both explosions. Much
smaller systems can be analyzed in practice.

Tools for timed systems: Uppaal, HyTech, Kronos, etc...

MOVEP’04 Real-Time and Hybrid Systems 75 / 79

Conclusion & bibliography

Conclusion & Further Work

Decidability is quite well understood.

Needs to understand better the geometry of the reachable state
space.

clever (and correct) implementation of timed automata
accelerate verification of timed automata

Data structures for both dense and discrete parts

MOVEP’04 Real-Time and Hybrid Systems 76 / 79

Conclusion & bibliography

Conclusion & Further Work

Decidability is quite well understood.

Needs to understand better the geometry of the reachable state
space.

clever (and correct) implementation of timed automata
accelerate verification of timed automata

Data structures for both dense and discrete parts

To be continued...

MOVEP’04 Real-Time and Hybrid Systems 76 / 79

Conclusion & bibliography

Conclusion & Further Work

Decidability is quite well understood.

Needs to understand better the geometry of the reachable state
space.

clever (and correct) implementation of timed automata
accelerate verification of timed automata

Data structures for both dense and discrete parts

To be continued...

Some other current challenges:

controller synthesis
implementability issues (program synthesis)
optimal computations (see Kim’s talk)

. . .

MOVEP’04 Real-Time and Hybrid Systems 76 / 79

Conclusion & bibliography

Bibliography I

[ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed
Transition Systems. CONCUR’92 (LNCS 630).

[ACHH93] Alur, Courcoubetis, Henzinger, Ho. Hybrid Automata: an Algorithmic
Approach to Specification and Verification of Hybrid Systems. Hybrid
Systems I (LNCS 736).

[AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP’90 (LNCS
443).

[AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.

[AH94] Alur, Henzinger. A Really Temporal Logic. JACM 41(1), 1994.

[Alur91] Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
Thesis, 1991.

[AL02] Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of
Model-Checking for Timed Modal Logics. JLAP 52-53, 2002.

[AM04] Alur, Madhusudan. Decision Problems for Timed Automata. SFM-04:RT
(LNCS 3142).

[Asarin04] Asarin. Challenges in Timed Languages: From Applied Theory to Basic
Theory. BEATCS 83, 2004.

MOVEP’04 Real-Time and Hybrid Systems 77 / 79

Conclusion & bibliography

Bibliography II

[BD00] Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL
75(1–2), 2000.

[BDFP00a] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV’00
(LNCS 1855).

[BDFP00b] Bouyer, Dufourd, Fleury, Petit. Expressiveness of Updatable Timed
Automata. MFCS’00 (LNCS 1893).

[BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of
Silent Transitions in Timed Automata. Fundamenta Informaticae 36(2–3),
1998.

[BF99] Bérard, Fribourg. Automatic Verification of a Parametric Real-Time
Program: the ABR Conformance Protocol. CAV’99 (LNCS 1633).

[BM83] Berthomieu, Menasche. An Enumerative Approach for Analyzing Time Petri
Nets. World Comp. Congress, 1983.

[Bouyer03] Bouyer. Untameable Timed Automata! STACS’03 (LNCS 2607).

[Bouyer04] Bouyer. Forward analysis of updatable timed automata. Formal Methods in
System Design 24(3),2004.

[BS91] Brzozowski, Seger. Advances in Asynchronous Circuit Theory. BEATCS,
1991.

MOVEP’04 Real-Time and Hybrid Systems 78 / 79

Conclusion & bibliography

Bibliography III

[Dill89] Dill. Timing Assumptions and Verification of Finite-State Concurrent
Systems. Aut. Verif. Methods for Fin. State Sys. (LNCS 1989).

[DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using
Abstractions. TACAS’98 (LNCS 1384).

[DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed
Automata. RTSS’96.

[Hen96] Henzinger. The Theory of Hybrid Automata. LICS’96.

[HKPV98] Henzinger, Kopke, Puri, Varaiya. What’s Decidable about Hybrid Automata?
J. Comp. and Sys. Sci 57, 1998.

[LPY97] Larsen, Pettersson, Yi. Uppaal in a Nutshell. Software Tools for Technology
Transfer 1(1–2), 1997.

[LPWY99] Larsen, Pearson, Weise, Yi. Clock Difference Diagrams. Nordic Journal of
Computation 6(3), 1999.

[Minsky67] Minsky. Computation: Finite and Infinite Machines. 1967.

[TY01] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting
Bisimulations. FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/

Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/

Uppaal: http://www.uppaal.com/

MOVEP’04 Real-Time and Hybrid Systems 79 / 79

http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/
http://www-verimag.imag.fr/TEMPORISE/kronos/
http://www.uppaal.com/

	About time semantics
	Timed automata, decidability issues
	Some extensions of the model
	Implementation of timed automata
	Conclusion & bibliography

