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Model-checking

Does the system satisfy the property?

Modelling = = = = = = = e o o - -
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Algorithm
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Time!

Context: verification of embedded critical systems

Time
@ naturally appears in real systems

@ appears in properties (for ex. bounded response time)

O Need of models and specification languages integrating timing aspects
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@ About time semantics
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Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)
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@ Timed case: sequence of dated observable events
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do: date at which the first b occurs, ...
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(a’ dl) (b’ d2) (37 d3) (b7 d4) (37 d5) (bv dﬁ) e

dyi: date at which the first a occurs
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o Discrete-time semantics: dates are e.g. taken in N
Ex: (a,1)(b,3)(c,4)(a,6)
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Adding timing informations

@ Untimed case: sequence of observable events
a: send message b: receive message

ababababab ---=(ab)

@ Timed case: sequence of dated observable events

(a’ dl) (b’ d2) (37 d3) (b’ d4) (37 d5) (bv dﬁ) e

dyi: date at which the first a occurs

do: date at which the first b occurs, ...

o Discrete-time semantics: dates are e.g. taken in N
Ex: (a,1)(b,3)(c,4)(a,6)

o Dense-time semantics: dates are e.g. taken in Q™, or in RT
Ex: (a,1.28).(b,3.1).(c,3.98)(a, 6.13)
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A case for dense-time

Time domain: discrete (e.g. N) or dense (e.g. Q™)
@ A compositionality problem with discrete time
@ Dense-time is a more general model than discrete time
@ But, can we not always discretize?
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

[1,3]
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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Start with x=0 and y=[101] (stable configuration)
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]
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Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

3
—o—2 11,21
] _|j'9°_ ¥y

[1,3]

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101] 2+ [111] 2 [110] 2 [010] = [o11]
1.2 25 2.8 4.5
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About time semantics

A digital circuit [Alur 91]

Discussion in the context of reachability problems for asynchronous
digital circuits [Brzozowski, Seger 1991]

(1,3
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[1,3]

Start with x=0 and y=[101] (stable configuration)
The input x changes to 1. The corresponding stable state is y=[011]

However, many possible behaviours, e.g.

[101] 2+ [111] 2 [110] 2 [010] = [o11]
1.2 25 2.8 4.5

Reachable configurations: {[101], [111], [110], [010], [011], [001]}
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Is discretizing sufficient? An example [Alur 91]

1,2
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@ This digital circuit is not 1-discretizable.
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Is discretizing sufficient? An example [Alur 91]
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] Ll‘» [01100000] % [00100000] “Ty? [00001000] ”Ty? [00000010] y’—4y§’ [00000001]
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Is discretizing sufficient? An example [Alur 91]
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] Ll‘» [01100000] % [00100000] ”Ty‘f [00001000] ”Ty? [00000010] y’—“y? [00000001]

[11100000] y‘%” [00000000]
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Is discretizing sufficient? An example [Alur 91]

1,2
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] [001000001 2:Y% 100001000] 27 [00000010] *Z*¥ [00000001]
[11100000] y‘%” [00000000]

[11100000] y—11> [01111000] yz’y’—;y;"ys [00000000]
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Is discretizing sufficient? An example [Alur 91]
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] [001000001 2:Y% 100001000] 27 [00000010] *Z*¥ [00000001]
[11100000] y‘%” [000000001

[11100000] y—11> [01111000] yz’y’—;y;"ys [00000000]

[11100000] ”Ty>2 [00100000] ”L;’»y" [00001100] "Ty? [00000000]
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Is discretizing sufficient? An example [Alur 91]
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@ This digital circuit is not 1-discretizable.
@ Why that? (initially x = 0 and y = [11100000], x is set to 1)

[11100000] 22 [01100000] 2 2, ~ [00100000] 2% 22Y% 100001000] 27 [00000010] 2*# | [00000001]
[11100000] “Lfsy’ [oooooooo]
[11100000] YT‘ [01111000] yz‘yL;y;"ys [00000000]

[11100000] ”Ty? [00100000] ”L:sy" [00001100] ”Ty? [00000000]
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About time semantics

Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k > 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1).
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Is discretizing sufficient?

[Brzozowski Seger 1991]
Theorem: for every k > 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in

discrete time (with granularity 1).

Claim: finding a correct granularity is as difficult as computing the set of
reachable states in dense-time
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Is discretizing sufficient?

[Brzozowski Seger 1991]

Theorem: for every k > 1, there exists a digital circuit such that the
reachability set of states in dense-time is strictly larger than the one in
discrete time (with granularity 1).

Claim: finding a correct granularity is as difficult as computing the set of

reachable states in dense-time

Further counter-example: there exist systems for which no granularity
exists

(see later)
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@ Timed automata, decidability issues
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Timed automata, decidability issues

Timed automata [Alur & Dill 90’s]

@ A finite control structure + variables (clocks)

@ A transition is of the form:

g, a C:=0

O O

Enabling condition Reset to zero

@ An enabling condition (or guard) is:

g = x~c | ghg

where ~ € {<, <, =, >,>}
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Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0

—© Oy

()
N
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0
—( @ (D

b A1) gy _a, fy S04 g b py
x 0 4.1 4.1 5.5 0
y O 4.1 0 1.4 1.4
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0
—( @ (D

lo 5(4.1) lo a, ( 5(14) oy b, {y
X 4.1 4.1 0
y 0 4.1 0 1.4

(clock) valuation

o
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Timed automata, decidability issues

Timed automata (example)

x,y : clocks

x<b5 a y:=0 y>1 b, x:=0
—( @ (D

by 41 gy _a, g 014 g b, 0,
X 4.1 4.1 0
y O 4.1 0 1.4

(clock) valuation

o

O timed word (a,4.1)(b,5.5)
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Timed automata semantics

o A= (X, L,X,—)isa TA
@ Configurations: (/,v) € L x TX where T is the time domain
@ Timed Transition System:

& action transition: (¢,v) —2= (¢',V') if ¢ £25 ¢ € A st
viEg
v =v[r < 0]

o delay transition: (¢,v) 2% ({,v+d)ifde T
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Discrete vs dense-time semantics

: x=1, a, x:=0

O
li
O
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Discrete vs dense-time semantics

x=1 a x:=0 b, y:=0
k) k) /‘\ k)
—0 o -

@ Dense-time:
Ldense = {((ab)®,7) | Vi, Toj_1 =i and Taj — T2j_1 > T2i12 — T2i41}
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Discrete vs dense-time semantics

x=1 a x:=0 b, y:=0
k) k) /‘\ k)
—0 o -

@ Dense-time:
Ldense = {((ab)®,7) | Vi, Toj_1 =i and Taj — T2j_1 > T2i12 — T2i41}

@ Discrete-time: Lgjscrete = 0
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Discrete vs dense-time semantics

x=1, a, x:=0
x=1 a x:=0 b, y:=0
k) k) m k)
e 0 -

y<1l, b, y:=0

@ Dense-time:
Lgense = {((ab)¥,7) | Vi, T2j—1 = i and Ta; — T2;_1 > Toj12 — T2it1}

@ Discrete-time: Lgjscrete = 0

x=1, a, x:=0
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Classical verification problems

@ reachability of a control state

@ § ~ &': bisimulation, etc...

@ L(S) C L(S'): language inclusion

@ S = ¢ for some formula ¢: model-checking
@ S || At + reachability: testing automata

o ...
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Classical temporal logics

Path formulas:

Go /\N\ « Always »
Fo /\/\/\ « Eventually »

opUg’ /\N\ « Until »
X¢ M « Next »

State formulas:

A¢§ Ewé

0 LTL: Linear Temporal Logic [Pnueli 1977],
CTL: Computation Tree Logic [Emerson, Clarke 1982]
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”
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With CTL:
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

“any problem is followed by an alarm in at most 20 time units”

EpUky

@ Temporal logics with subscripts. ex: CTL+ ApUo il
~k
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Adding time to temporal logics
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

"any problem is followed by an alarm in at most 20 time units”
@ Temporal logics with subscripts.

AG(problem = AF<5q alarm)

@ Temporal logics with clocks.

AG(problem = (x in AF(x < 20 A alarm)))
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Adding time to temporal logics

Classical temporal logics allow us to express that

“any problem is followed by an alarm”

With CTL:
AG(problem = AF alarm)

How can we express:

"any problem is followed by an alarm in at most 20 time units”
@ Temporal logics with subscripts.

AG(problem = AF<5q alarm)
@ Temporal logics with clocks.

AG(problem = (x in AF(x < 20 A alarm)))

O TCTL: Timed CTL [ACD90,ACD93,HNSY94]
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Timed automata, decidability issues

The train crossing example (1)

Train; with / =1,2 ...

Before, x; < 30
App!l,x; =0

20 < x; < 30,a,x; :=0

10 < x; < 20, Exit!
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Timed automata, decidability issues

The train crossing example (2)

The gate:

O GoDown?, H, :=0 1 - ; 0
pen > Lowering, Hy, < 10)

Hgy < 10, a Hg <10, a

Raising, H, < 10 —
(Raising, Hyg  GoUp?, =0 Close )
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Timed automata, decidability issues

The train crossing example (3)

The controller:

Exit? App? Exit?

Exit?, H. :=0

H. = 20, GoUp! H. <10, GoDown!
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The train crossing example (4)

We use the synchronization function f:

Trainy | Train, Gate Controller
App! . . App? App
. App! . App? App
Exit! . . Exit? Exit
Exit! . Exit? Exit
a . . . a
a . . a
a . a
GoUp? GoUp! GoUp
GoDown? | GoDown! || GoDown

to define the parallel composition (Trainy || Train, || Gate || Controller)

NB: the parallel composition does not add expressive power!
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)

@ Is the gate always closed for less than 5 minutes?
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The train crossing example (5)

Some properties one could check:
@ Is the gate closed when a train crosses the road?

AG(train.On = gate.Close)

@ Is the gate always closed for less than 5 minutes?

—EF(gate.Close A (gate.Close Uss min —gate.Close))
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Verification

Emptiness problem: is the language accepted by a timed automaton

empty?
@ reachability properties (final states)
@ basic liveness properties (Biichi (or other) conditions)
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied
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@ Problem: the set of configurations is infinite
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@ Positive key point: variables (clocks) have the same speed
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

@ Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

@ Positive key point: variables (clocks) have the same speed
Theorem: The emptiness problem for timed automata is decidable.

It is PSPACE-complete. [Alur & Dill 1990’s]

Note: This is also the case for the discrete semantics.
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Verification

Emptiness problem: is the language accepted by a timed automaton
empty?

@ Problem: the set of configurations is infinite
O classical methods can not be applied

@ Positive key point: variables (clocks) have the same speed

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete. [Alur & Dill 1990’s]

[ Method: construct a finite abstraction ]
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The region abstraction

Equivalence of finite index
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The region abstraction

Equivalence of finite index

@ “compatibility” between regions and constraints
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index

TV

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index
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@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing
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The region abstraction

Equivalence of finite index

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property
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The region abstraction

Equivalence of finite index

2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <Ay}

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property
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Timed automata, decidability issues

The region abstraction

Equivalence of finite index

2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <Ay}

. successor regions

@ “compatibility” between regions and constraints

@ “compatibility” between regions and time elapsing

O a bisimulation property
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Time-abstract bisimulation
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Time-abstract bisimulation

I @0—mm>©0
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Time-abstract bisimulation

a 4(d)
v — Vd > 0 s
Je—2 >e °
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Time-abstract bisimulation

o(d

v —2 > vd >0 (d)
| 5 | Cos(d)
Jje——e 3d >0 @—> @
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Time-abstract bisimulation

o(d

v —2 > vd >0 (d)
| 5 | Cos(d)
Jje——e 3d >0 @—> @

(eo,VO) 31—’t1> (£1,v1) az_,tz) (ﬁg,Vg) —_—
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Time-abstract bisimulation

o(d

v —2 > vd >0 @)
| R | C8(d)
Jje———>e 3d'>0 @——> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

(bo, R)) —2» (l1,R1) —22> (L, R) —2=->

with v; € R; for all J.
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Time-abstract bisimulation

o(d

v —2 > vd >0 @)
| R | C8(d)
Jje———>e 3d'>0 @——> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

(bo, R)) —2» (l1,R1) —22> (L, R) —2=->

with v; € R; for all J.
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Time-abstract bisimulation

o(d

v —2 > vd > 0 (d)
| R | Cos(d)
1 @0——> 0 3d"' >0 @ ——> @

(bo,vo) 228 (b1,v1) 22Ba (bh,v) 25,

!

(601 RO) —2, (Zla Rl) —= (€23 R2) —=
with v; € R; for all i.

Remark: Real-time properties can not be checked with a time-abstract
bisimulation. For TCTL, a clock associated with the formula needs to be
added.
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The region automaton

timed automaton () region abstraction

¢ _£3,C=0_ ¢ is transformed into:

(6,R) —2a_, (¢',R’) if there exists R” € Succ;(R) s.t.

o R Cg
o [C—OR'CR

0 time-abstract bisimulation
L(reg. aut.) = UNTIME(L(timed aut.))
where UNTIME((a1, t1)(a2,t2) ... ) = a1a2. ..
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Timed omata, decidability issues

An example [AD 90's]

d, (x>1)?

a, (y<1)?,y:=0

] y
— o
x=y=0
a a a b 1
b
5 s, s b s,
O=y<x<1 y=0, x=1 y=0,x>1 l=y<x o 1 x
c a 2 a =
"
s, d s, s, d s, Od
O<y<x<l O<y<l<x d 1=y<x x>1,y>1
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region
o a discrete location: log-space
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks

0 needs polynomial space
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks

0 needs polynomial space

@ By guessing a path: needs only to store two configurations
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PSPACE-easyness

i The size of the region graph is in O(|X|!1.2!X]) 1

@ One configuration: a discrete location + a region

¢ a discrete location: log-space
9 a region:
@ an interval for each clock
@ an interval for each pair of clocks

0 needs polynomial space

@ By guessing a path: needs only to store two configurations

O in NPSPACE, thus in PSPACE
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Timed automata, decidability issues

PSPACE-hardness

M LBTM ~  AMm,we S-t. M accepts wy iff the final state
wp € {a, b}* of A, is reachable

N—
{x, ¥}

C; contains an "a" if x; =y;
C; contains a "b" if x; <y

(these conditions are invariant by time elapsing)

[] proof taken in [Aceto & Laroussinie 2002]
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PSPACE-hardness (cont.)

If g —22%, ¢ is a transition of M, then for each position i of the tape,
we have a transition
(q7 I) g,r:=0 (q/’ Il)

where:

@ gisx; =y (resp. x; < y;)if a=a (resp. a =b)

o r={x;,yi} (resp. r ={x})if o/ = a (resp. &/ = b)

@ /"=i+1 (resp. i" =i—1)if ¢ is right and i < n (resp. left)
Enforcing time elapsing: on each transition, add the condition t = 1
and clock t is reset.

Initialization: init £=22=0 (g0, 1) where rp = {x; | wo[i] = b} U {t}

Termination: (gr,i) — end
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Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability /Biichi-like properties
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Consequence of region automata construction

Region automata: correct finite abstraction for checking
reachability /Biichi-like properties

However, everything can not be reduced to finite automata...
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A model not far from undecidability

@ Universality is undecidable [Alur & Dill 90’s]
@ Inclusion is undecidable [Alur & Dill 90’s]
@ Determinizability is undecidable [Tripakis 2003]
@ Complementability is undecidable [Tripakis 2003]
°
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An example of non-determinizable/non-complementable timed aut.:

a a a
Q a, x:=0 Q x=1, a @
N\
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A model not far from undecidability

@ Universality is undecidable [Alur & Dill 90’s]
@ Inclusion is undecidable [Alur & Dill 90’s]
@ Determinizability is undecidable [Tripakis 2003]
@ Complementability is undecidable [Tripakis 2003]
°

An example of non-determinizable/non-complementable timed aut.:
[Alur,Madhusudan 2004]

a, b x#1, ab

a, x:=0

UNTIME (Zﬂ {(a*b*,7) | all a’s happen before 1 and no two a’s simultaneously}) is
not regular (exercise!)
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Partial conclusion

[0 a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:
@ the “theoretical’ comprehension of timed automata (cf [Asarin 2004])

@ extensions of the model (to ease modelling)
@ expressiveness
@ analyzability

@ algorithmic problems and implementation
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© Some extensions of the model
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Role of diagonal constraints

[X—ywc and x~c]

@ Decidability: yes, using the region abstraction

y

) 1 2 x

@ Expressiveness: no additional expressive power
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Some extensions of the model

Role of diagonal constraints (cont.)

c is positive copy where x —y < ¢

O proof in [Bérard,Diekert,Gastin,Petit 1998] copy where x — y > ¢
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Some extensions of the model

Role of diagonal constraints (cont.)

Open question: s this construction “optimal?
In the sense that timed automata with diagonal
constraints are exponentially more concise

than diagonal-free timed automata.
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Some extensions of the model

Adding silent actions

g,e,C:=0
[Bérard,Diekert,Gastin,Petit 1998]
@ Decidability: yes

(actions have no influence on region automaton construction)
@ Expressiveness: strictly more expressive!

a
0

N
w
ST o

MOVEP’04
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Adding silent actions

g,5,C:=0
’ [Bérard,Diekert,Gastin,Petit 1998]

@ Decidability: yes
(actions have no influence on region automaton construction)

@ Expressiveness: strictly more expressive!

x=1, a, x:=0
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Some extensions of the model

Adding constraints of the form x+y ~ ¢

(x+y~c and x~c] [Bérard,Dufourd 2000]

@ Decidability: - for two clocks, decidable using the abstraction
y

. S

[} 1 2 x

- for four clocks (or more), undecidable!

@ Expressiveness: more expressive! (even using two clocks)

x+y=1 a x:=0

{(a”,tl...t,,)|n213ndt,-:l—% ‘Q

Real-Time and Hybrid Systems 39/79
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The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

@ Incrementation:
(P): x:=x+1; goto (q

@ Decrementation:
(p): 1if x>0 then x:=x—1; goto (q) else goto (r)

Theorem. [Minsky 67] The halting problem for two counter machines is
undecidable.
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Undecidability proof

T O T S RN T 1
20 21 2223 ........ ; 24 25 26 tim

d is decremented

O simulation of e decrementation of a counter
e incrementation of a counter

We will use 4 clocks:
e u, "tic" clock (each time unit)
® X, x1, xo: reference clocks for the two counters

“x; reference for ¢’ = ‘“the last time x; has been reset is
the last time action ¢ has been performed”

[Bérard,Dufourd 2000]
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Some extensions of the model

Undecidability proof (cont.)

@ Incrementation of counter c:

x0 <2, u+x2=1, ¢, x0:=0

x2:=0 X0 >2, ¢, x2:=0
O u=1, % u:=0 - u+t+x=1 O
ref for c is xg ref for c is x2
@ Decrementation of counter c:
X0 <2,u+x2=1, ¢, x0:=0

X2 1= X0 =2, ¢, x2:=0 O
u+x2=1

u=1 x0=2, %, u:=0, x0:=0
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Adding constraints of the form x+y ~ ¢

@ Two clocks: decidable using the abstraction
y

2

.  /

@ Four clocks (or more): undecidable!
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Adding constraints of the form x+y ~ ¢

@ Two clocks: decidable using the abstraction
y

2

.  /

° [ Three clocks: open question]

@ Four clocks (or more): undecidable!
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Adding new operations on clocks

Several types of updates: x ==y + ¢, x :< ¢, x :> c, etc...
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Adding new operations on clocks

Several types of updates: x ==y + ¢, x :< ¢, x :> c, etc...

@ The general model is undecidable.
(simulation of a two-counter machine)
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Adding new operations on clocks

Several types of updates: x ==y + ¢, x :< ¢, x :> c, etc...

@ The general model is undecidable.

(simulation of a two-counter machine)

@ Only decrementation also leads to undecidability

o Incrementation of counter x

z2=0 z:l,z::O:' ~ =0, y=y-1 O .
P |

N

o Decrementation of counter x

z=0 x>1 E O z=0, x:=x—-1 O E
I I
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Some extensions of the model

Decidability

=0 y:=1 x—y<l1
—O— O O O

image by y :=1

1 &

1 O the bisimulation property is not met

The classical region automaton construction is not correct.

MOVEP’04 Real-Time and Hybrid Systems 45 / 79



Decidability (cont.)

A

Diophantine linear inequations system
is there a solution?
if yes, belongs to a decidable class

¢ ¢

Examples:
@ constraint x ~ ¢ ¢ < maxy
@ constraint x —y ~ ¢ ¢ < maxy,,

@ update x :~ y + ¢ max, < max, +c
and for each clock z, max, , > max, , + ¢, max,, > max,, — c

@ update x :< ¢ ¢ < maxy
and for each clock z, max, > ¢ + max,

The constants (max,) and (max, ) define a set of regions.
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Some extensions of the model

Decidability (cont.)

=0 y=1
—O— 2O

max, > 0

max, > 0 + max,,,

max, > 1 implies
max, > 1+ max,,,

max, , > 1

The bisimulation property is met.

MOVEP’04

O

x—y<l1 O

max, — 2
max, =1
max,, =1
max, , = —1
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What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1
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What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1
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What's wrong when undecidable?

Decrementation x := x — 1

max, < max, — 1

etc...
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Decidability (cont.)

Diagonal-free constraints General constraints
X:=cC, X:=y PSPACE-complete
x:=x+1 PSPACE-complete
x:=y+c Undecidable
X =x—1 Undecidable
x:<c PSPACE-complete
X>c PSPACE-complete
Xi~yte Undecidable
y+e<:ix<y+d
y+ec<ix:<z+d Undecidable

[Bouyer,Dufourd,Fleury, Petit 2000]
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Linear hybrid automata [Henzinger 1996]

MOVEP’04

@ A finite control structure + a set X of dynamic variables

@ A transition is of the form:

g? a?a

ACt[ @ @ACt[/

@ g is a linear constraint on variables

@ « is a jump condition, i.e. an affine update of the form
X' =AX+B

@ in each state, an activity function assigning a slope to each variable
(for each x € X, Act(x) € [¢, u])
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LHA semantics

o H=(X,L,X,Act—) is a LHA
@ Configurations: (/,v) € L x TX where T is the domain
@ Timed Transition System:

o action transition: (£,v) —2> (¢',v') if 3¢ £24 ' € Ast.
{v e

v =a(v)

o delay transition: (¢,v) %% (¢,v + d.Act(¢))ifd e T
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Some extensions of the model

Linear hybrid automata (example)

The gas burner may leak. [ACHH93]

@ each time a leakage is detected, it is repaired or stopped in less than
1s

@ two leakages are separated by at least 30s

Leaking
x<1
i =

x' =1
y'=1

Not leaking

t' =0
x' =1

Is it possible that the gas burner leaks during a time greater than % of
the global time after the 60 first minutes?

AG(y > 60 = 20t <y)
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What about decidability?

O almost everything is undecidable
[Henzinger,Kopke,Puri,Varaiya 98]

Theorem. The class of LHA with clocks and only one variable having
possibly two slopes k; # ky is undecidable.

Theorem. The class of stopwatch automata is undecidable.

One of the “largest” classes of LHA which are decidable is the class of
initialized rectangular automata.
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@ Implementation of timed automata
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.
Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure
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Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis, Yovine 2001]
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.
Notice

The region automaton is not used for implementation:

@ suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

@ no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis, Yovine 2001]

...but on-the-fly technics are prefered.
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Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations
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Implementation of timed automata

Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations

@ backward analysis algorithm:
compute the predecessors of final configurations
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Implementation of timed automata

Reachability analysis

@ forward analysis algorithm:
compute the successors of initial configurations

@ backward analysis algorithm:
compute the predecessors of final configurations

I

Iy
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Symbolic representation, symbolic computation

@ Need of a symbolic representation:

[ Finite representation of infinite sets of configurations }
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Implementation of timed automata

Symbolic representation, symbolic computation

@ Need of a symbolic representation:

[ Finite representation of infinite sets of configurations }

@ in the plane, a line /

represented by two points.

@ set of words aa, aaaa, aaaaaa...
represented by a rational expression aa(aa)”

o set of integers, represented using semi-linear sets
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Symbolic representation, symbolic computation

@ Need of a symbolic representation:

[ Finite representation of infinite sets of configurations }

@ in the plane, a line /

represented by two points.
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Symbolic representation, symbolic computation

@ Need of a symbolic representation:

[ Finite representation of infinite sets of configurations }

@ in the plane, a line /

represented by two points.

@ set of words aa, aaaa, aaaaaa...
. . N
represented by a rational expression aa(aa)

o set of integers, represented using semi-linear sets
@ sets of constraints, polyhedra, zones, regions
o BDDs, DBMs (see later), CDDs, etc...

@ Need of abstractions, heuristics, etc...

MOVEP’04 Real-Time and Hybrid Systems 57 /79



Symbolic representation, symbolic computation

@ Need of a symbolic representation:

L}

?

[ Finite representation of infinite sets of configurations ]

in the plane, a line /

represented by two points.

set of words aa, aaaa, aaaaaa...
. . N
represented by a rational expression aa(aa)

set of integers, represented using semi-linear sets
sets of constraints, polyhedra, zones, regions

BDDs, DBMs (see later), CDDs, etc...

@ Need of abstractions, heuristics, etc...

Examples of systems: counter automata, pushdown systems, linear
hybrid automata, timed automata, etc...

MOVEP’04
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An example of computation with HyTech

command: /usr/local/bin/hytech gas_burner

HyTech: symbolic model checker for embedded systems
Version 1.04f (last modified 1/24/02) from v1.04a of 12/6/96
For more info:
email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/ tah/HyTech
Warning: Input has changed from version 1.00(a). Use -i for more info

Backward computation
Number of iterations required for reachability: 6
System satisfies non-leaking duration property

Location: not_leaking

x> 0&t>3&y<=20t&y>0

| x +20t >=y + 11 & y<=20t +19& t >>2& x> 0&y > 0
| y>>0&t>18&x+20t>y+228&y<=20t+8&x>0
| y>0&x+ 20t >y +33&20t>y+3&x>0
Location: leaking

19x + y <= 20t + 19 &y >=x +59 & x<=1& x>0
| t>> x+2&x<=18&y>0&19x +y <=20t + 19 & x > 0
| t>x+1&x<=1&y>0&19x +y<=20t +8&x>0

| 20t >= 19x + y+ 3 &y > 0& x<=1& x> 0

Max memory used = 0 pages = 0 bytes = 0.00 MB
Time spent = 0.02u + 0.00s = 0.02 sec total
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Note on the backward analysis of TA

,a C:=0
O— ©
[C =07 (Zn(C=0)Ng 4
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Implementation of timed automata
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
O, ©
[C—0"YZn(C=0)Ng 4
z [C—0]"Y(ZN(C =0))
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
O, ©
[C—0"YZn(C=0)Ng 4

.
’
’
/ Wz
z [C—0]"Y(ZN(C =0))
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
[C—0Y(ZNn(C=0)Ng z
4
4
4
/ Wl
z [C =0} ZNn(C=0)) [C—0HZNn(C=0)Nng
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Implementation of timed automata

Note on the backward analysis of TA

g, a C:=0
[C—0"YZn(C=0)Ng V4
4
4
4
/ Wl
z [C =0} ZNn(C=0)) [C—0"Y(ZN(C=0)Nng

The exact backward computation terminates and is correct!
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Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”
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Implementation of timed automata

Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.
Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

Let R be a region. Assume:
—
@ vER (forex. v+t ER)
@ Vv = v

There exists t’ s.t. v/ + t’ =,g. v + t, which implies that v/ + t' € R and thus

v R
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Note on the backward analysis (cont.)

If Ais a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...
i=j.k+fm
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Forward analysis of timed automata

g, a C:=0
© @
zones V4 [C — 0](7ﬂ g)

A zone is a set of valuations defined by a clock constraint

o = x~c | x—y~c | oAy
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

zones z [C — 0](?0 g)

[/
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

zones V4 [C — O](_Z)ﬁ g)

[/
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0

O, ©
zones V4 [C — O](_Z)ﬁ g)
Q d
l
Z 7 _Z)ﬂg
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0
O ©
zones V4 [C — O](_Z)ﬁ g)
l I
z 4 Zng vy —0(Zng)
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Implementation of timed automata

Forward analysis of timed automata

g, a C:=0
O ©
zones V4 [C — O](_Z)ﬁ g)
l I
z 4 Zng vy —0(Zng)

[0 a termination problem
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Implementation of timed automata

Non termination of the forward analysis

..............................
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Implementation of timed automata

Non termination of the forward analysis

. /.
y:=0, A
x=0 2 S
\@x>1Ay—l,

.............................
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Implementation of timed automata

Non termination of the forward analysis

...........................
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Implementation of timed automata

Non termination of the forward analysis
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Implementation of timed automata

Non termination of the forward analysis

<
Il
o

x
I
o

\@leAyzl,

y:=0

O an infinite number of steps...

MOVEP’04
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws, Tripakis 1998])

@ inclusion checking: if Z C Z’ and Z’ already considered, then we
don't need to consider Z

O correct w.r.t. reachability
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws, Tripakis 1998])

@ inclusion checking: if Z C Z’ and Z’ already considered, then we
don't need to consider Z

O correct w.r.t. reachability

@ activity: eliminate redundant clocks [Daws, Yovine 1996]

O correct w.r.t. reachability

q —£26=0, ¢ implies Act(q) = clocks(g) U (Act(q") \ C)
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Implementation of timed automata

“Solutions” to this problem (cont.)

@ convex-hull approximation: if Z and Z’ are computed then we

overapproximate using “Z LU Z"".

O “semi-correct” w.r.t. reachability
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Implementation of timed automata

“Solutions” to this problem (cont.)

@ convex-hull approximation: if Z and Z’ are computed then we
overapproximate using “Z LU Z"".

O “semi-correct” w.r.t. reachability

@ extrapolation, a widening operator on zones
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The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
X0 400 -3 +4o©

(x1>3) A (2 <5) A (x1 —x2 < 4) X1 +oo +oo 4
X2 5 400 400
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Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
Xo 400 -3 +4o©
(x1>3) A (x2<5) A (x1 —x2 < 4) x1 | +oo +oo 4
X2 5 +o00 +4o0
@ Existence of a normal form

5 0 -3 0

9 0 4

2 5 2 0
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Implementation of timed automata

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Berthomieu, Menasche 1983] [Dill 1989]

X0 X1 X2
Xo 400 -3 +4o©
(x1>3) A (x2<5) A (x1 —x2 < 4) x1 | +oo +oo 4
X2 5 +o00 +4o0
@ Existence of a normal form

5 0 -3 0

9 0 4

2 5 2 0

34 9
@ All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k (“+" represents an integer between —k and +k)
: *
* * * ~ * * *
< —k * * * *

@ “intuitively”, erase non-relevant constraints

[0 ensures termination
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Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.
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Classical algorithm, focus on correctness

Challenge: choose a good constant for the extrapolation so that the
forward computation is correct.

@ Implemented in tools like Uppaal, Kronos, RT-Spin...

@ Successfully used on many real-life examples

Theorem: this algorithm is correct for diagonal-free timed automata.

However, this theorem does not extend to timed automata using
diagonal clock constraints...

MOVEP’04 Real-Time and Hybrid Systems 67 / 79



Implementation of timed automata

A problematic automaton

Error

MOVEP’04

x1 =2, x1:=0

x3 <3 ~ x2 =3
x1,x3:=0 ~ x2 =0
x2 =2, x20:=0
x1 =2
x1:=0 T
X2 —x1 > 2 x1 =3 ~ x2 =2 O The loop
X4 —x3 < 2 x1:=0 ~ x2: =0
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A problematic automaton

x1 =2, x1:=0

x3 <3 ~ x2 =3
x1,x3:=0 N x2 =0
x2 =2, x20:=0
x1 =2
x1:=0 T
X2 —x1 > 2 x1 =3 ~ x2 =2 O The loop
X4 —x3 < 2 x1:=0 ~ x2: =0
Error
v(x1) =0
vix)=d
v(x3) =2a+5

v(xa) =2a+5+d

MOVEP’04

Real-Time and Hybrid Systems 68 / 79



A problematic automaton

x1 =2, x1:=0

x3 <3 x2 =3
3 ~ 2
x1,x3:=0 — x2 =0
x2 =2, x20:=0
x1 =2
x1:=0 T
The loop
X2 —x1 > 2 x1 =3 X2 =2
2 i Vil i Yl O
X4 —x3 < 2 ~ x1:=0 ~ x2: =0
Error
(1;3] [2a + 5]
X2
o = =,
v(xe) = -
V(X3) =2a+5 [20& + 5] [lr 3]

v(xa) =2a+5+d

MOVEP’04 Real-Time and Hybrid Systems 68 / 79



The problematic zone

[1;3] [2c + 5]
X2 -
q o—
: : [2a + 5] L 3] implies X1 — X2 = X3 — Xa.

[20 + 6;2a + 8]
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Implementation of timed automata

The problematic zone

[1;3] [2c + 5]
X2 -
e — N
. : [2a + 5] L 3] implies X1 — X2 = X3 — Xa.
T Ra+22a+4 :
o -

[2a + 6; 2a + 8]

If « is sufficiently large, after extrapolation:

X1 : X"3\/X4

S L3 does not imply x3 —xo = x3—xg.

MOVEP’04 Real-Time and Hybrid Systems 69 / 79



General abstractions

Criteria for a good abstraction operator Abs:
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General abstractions

Criteria for a good abstraction operator Abs:

@ easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

@ finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

@ completeness of the abstraction [Completeness]
Z C Abs(Z)

@ soundness of the abstraction [Soundness]

the computation of (Abs o Post)* is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!
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Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

O k the max. constant defining one of the previous DBMs

We get that, for every zone Z,

Z C Extrax(Z) C Abs(Z)
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Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?
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Conclusion & bibliography

Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]
Kripke structures S Timed automaton A
Reachability NLOGSPACE-complete
CTL/TCTL P-complete
AF-p-calc./L, , | P-complete
full p-calc./L, | NP 1 co-NP
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Discussion on complexity

[Alur 1991, Alur Henzinger 1994, Alur Courcoubetis Dill 1993, Aceto Laroussinie

2002]
Kripke structures S Timed automaton A
or (51 ... 1 Sn)
or (Ay || ... || An)
Reachability NLOGSPACE-complete | PSPACE-complete
CTL/TCTL P-complete PSPACE-complete
AF-p-calc./L, , | P-complete EXPTIME-complete
full p-calc./L, | NP 1 co-NP EXPTIME-complete

Timing constraints induce a complexity blowup!

From a complexity point of view, adding clocks = adding components!
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State explosion problem

@ due to parallel composition

@ due to timing constraints
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State explosion problem

@ due to parallel composition
@ due to timing constraints

From a complexity point of view: @

no double complexity gap!

In practice: @

@ BDD-like techniques try to avoid discrete state explosion problem in
untimed systems O SMV verifies very large systems

@ Timed systems: problems to deal with both explosions. Much
smaller systems can be analyzed in practice.

Tools for timed systems: Uppaal, HyTech, Kronos, etc...
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Conclusion & Further Work

@ Decidability is quite well understood.

@ Needs to understand better the geometry of the reachable state
space.

@ clever (and correct) implementation of timed automata
o accelerate verification of timed automata

@ Data structures for both dense and discrete parts
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Conclusion & Further Work

MOVEP’04

@ Decidability is quite well understood.

@ Needs to understand better the geometry of the reachable state
space.

@ clever (and correct) implementation of timed automata
o accelerate verification of timed automata

@ Data structures for both dense and discrete parts

To be continued...

@ Some other current challenges:
@ controller synthesis
o implementability issues (program synthesis)
@ optimal computations (see Kim's talk)
...
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