Model-Checking Timed Temporal Logics

Patricia Bouyer

LSV — CNRS & ENS de Cachan — France

Oxford University Computing Laboratory — UK

Based on joint works with Fabrice Chevalier, Nicolas Markey,
Joél Ouaknine and James Worrell

1/40

Introduction

Outline

1. Introduction

2/40

Introduction

Model-checking

system:

™

3/40

Model-checking

system:

™

:

O\E‘O’9
N

O

CO

Introduction

G (request—F grant)

3/40

Introduction

Model-checking

system:

™

3/40

Model-checking

system:

™

yes/no

Introduction

<— G (request—F grant)

3/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]

LTL> o = p | oAp | oV | ~p | Xo | ¢Uep

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

O0—~0—~>0~>0—+0—+0+0+0—~0—~0 F X-

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

——0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

——0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

——0—0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]

LTL> o = p | oAp | oV | ~p | Xo | ¢Uep
—@—0O0—0—0—0—0—0—0—0- = Xe
o 00000 — — —(— = eUe

0—~0—>0—~0—+0—>0—~0—>0—~0—0- £ Fe = 1tUs

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

——O0—O0—0—0—0—0—0—0- = Xe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).

4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

—0—0—0—0—0—0—0—0—0- = Xe
0~0+0~0~0+0—0—0—0—0 F «Us

— O—O—O—O0—0Q—0O0—0—0— E Fe=ttUe
0—~0—>0—~0—+0—~0—+0—~0—>0—>0" F G+ = Fe

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

> response property:
G (o — F o)

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

> response property:
G(s—Fe)
> liveness property:
GFo

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

> response property:

G(s—Fe)
> liveness property:

GFo
> safety property:

G —e

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

The untimed (linear-time) framework

Linear-time temporal logic [Pnu77]
LTLo ¢ == p | ¢re | Ve | mp | Xo | pUgp

> response property:

G(s—Fe)
> liveness property:
GFo
> safety property:
G —e

> a more complex property:
(eAN(FeVGe))Ue

[Pnu77] Pnueli. The temporal logic of programs (FOCS'77).
4/40

Introduction

Adding timing requirements

» Need for timed models

> the behaviour of most systems depends on time;
> faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

5/40

Introduction

Adding timing requirements

» Need for timed models

> the behaviour of most systems depends on time;
> faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

» Need for timed specification languages

> the behaviour of most systems depends on time;
» untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

ww TCTL, MTL, TPTL, timed p-calculus...

5/40

Definition of the logics

Outline

2. Definition of the logics

6/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]

MTLSp = a | ¢ | Ve | opAp | ¢Ujp

where [is an interval with integral bounds.

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTLSp = a | ¢ | Ve | opAp | ¢Ujp

where [is an interval with integral bounds.

» This is a timed extension of LTL

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTL3> g == a | ~¢ | Vo | oA | ¢Urp
where [is an interval with integral bounds.
» This is a timed extension of LTL

» Can be interpreted over timed words, or over signals
> this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

Metric Temporal Logic (MTL)

[Koy90]
MTLSp = a | ¢ | Ve | opAp | ¢Ujp

where [is an interval with integral bounds.

» This is a timed extension of LTL

» Can be interpreted over timed words, or over signals
> this distinction is fundamental

» Can be interpreted over finite or infinite behaviours
> this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).

7/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I | | |
r T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I | | |
r T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I
r

| | |
T T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

} FEoeUpe
4

<O T
-
N
w

€[1,2]

8/40

Definition of the logics

The pointwise semantics

MTL formulas are interpreted over timed words:

I |
r T

| |
T T

0 1 2 3 4

(o,.6)(e,1.1)(e,1.2)(e,1.3)...

1= the system is observed only when actions happen

} FEoeUpe

~O T
-
N
w
IS

€[1,2]

} ¥ G, e

o
=
AN+
v w4
»

[2,3]

8/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

tef0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

tef0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

te[0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

= eUpge

9/40

Definition of the logics

The continuous semantics

MTL formulas are interpreted over (finitely variable) signals:

0 1 2 3 4

te[0,.6] — W te(.6,1.1) — W te[1.1,1.2) — W

= the system is observed continuously

= eUpge

7% Gpa e

9/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

10/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

10/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

» F_,repair Vs F_; (F_irepair)

10/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

» F_,repair Vs F_; (F_irepair)

0 1 2 0 1 2

EF_,e [£F_;(F_je)

10/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

» F_,repair Vs F_; (F_irepair)

0 1 2 0 1 2

EF_,e FEF_;(F_1e) EF_,e EF_;(F_je)

10/40

Definition of the logics

Some examples

> "“Every problem is followed within 56 time units by an alarm”

G (problem — F¢s6 alarm)

» “Each time there is a problem, it is either repaired within the next 15
time units, or an alarm rings during 3 time units 12 time units later”

G (problem — (Fgis repair V Gz 15)alarm))

» F_,repair Vs F_; (F_irepair)

0 1 2 0 1 2

EF_,e FEF_;(F_1e) EF_,e EF_;(F_je)

> in the pointwise semantics, F—re ZF_; F_; e
> in the continuous semantics, F—oe =F_; F_; e

10/40

Definition of the logics

Some further extensions
» Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints J

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

11/40

Definition of the logics

Some further extensions
» Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints J

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

11/40

Definition of the logics

Some further extensions
» Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints J

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

G (problem — x.F (alarm A F (failsafe A x < 56)))

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).

11/40

Definition of the logics

Some further extensions
» Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints J

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

G (problem — x.F (alarm A F (failsafe A x < 56)))

» MTL+Past: add past-time modalities [AH92]

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS'92).
11/40

Definition of the logics

Some further extensions
» Timed Propositional Temporal Logic (TPTL) [AH89]

TPTL = LTL + clock variables + clock constraints J

G (problem — F¢sgalarm) = G (problem — x.F (alarmAx < 56))

G (problem — x.F (alarm A F (failsafe A x < 56)))

» MTL+Past: add past-time modalities [AH92]

G (alarm — F;éfj problem)

[AH89] Alur, Henzinger. A really temporal logic (FOCS'89).
[AH92] Alur, Henzinger. Back to the future: towards a theory of timed regular languages (FOCS'92).
11/40

A note on the expressiveness

Theorem

LTL+Past is as expressive as LTL [Kam68,GPSS80].

Definition of the logics

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).

12/40

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

12/40

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05]. I

Conjecture in 1990: the TPTL formula

G(e —» x.F(e AF (e Ax <2)))

cannot be expressed in MTL.

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

12/40

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05]. I

Conjecture in 1990: the TPTL formula

G(e —» x.F(e AF (e Ax <2)))

cannot be expressed in MTL.

» This is true in the pointwise semantics.

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

12/40

Definition of the logics

A note on the expressiveness

Theorem
LTL+Past is as expressive as LTL [Kam68,GPSS80]. J

MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

Conjecture in 1990: the TPTL formula
G(e = x.F(e AF (o Ax <2)))

cannot be expressed in MTL.

» This is true in the pointwise semantics.

» This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).
[BCMO5] Bouyer, Chevalier, Markey. On the expressiveness of MTL and TPTL (FSTTCS'05).

12/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

G e — Fgl(o/\F<10)

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

Fep o A Fppg e

G e — Fgl(o/\F<10)

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fqa o A Fpyg e

G e — Fgl(o/\F<10)

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fqa o A Fpyg e

G e — Fgl(o/\F<10)

13/40

Definition of the logics

The TPTL formula
G(e > xF(e ANF (e AXx<2)))

can be expressed in MTL in the continuous semantics

F_1 e
Fqa o A Fpyg e
Ge — Fa(e A Fae)

Fgl (F<10 AN F_; 0)

13/40

The timed automaton model

Outline

3. The timed automaton model

14/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe

23

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

2 roblen
safe 2 safe T alarm

23
23 23

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

23 problen 156
safe = safe T alarm % alarm
0 23 [15.6
0 23 23 38.6

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe ZUN arm BS gam S gilafe
0 23 0 156 15.6
0 23 23 38.6 0

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe ZUN arm B8 gam S gilafe 23 failsafe
x 0 23 0 156 15.6 17.9
y 0 23 23 38.6 0 23

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe PP o B8 Gam 20 giigfe 22 failsafe ZP2T, reparation
0 23 0 156 15.6 17.9 17.9
0 23 23 38.6 0 23 0

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe EEUL o 5 gam SN gigfe 22 filsafe ST, reparation 221 reparation
0 23 0 156 15.6 17.9 17.9 40
0 23 23 38.6 0 23 0 21

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
0 23 0 156 15.6 17.9 17.9 40 40
0 23 23 38.6 0 23 0 21 21

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

failsafe

safe 2 safe EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 23 0 221 221
Can be viewed:
» as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)
30 40 50 60 70

0 10 20

15/40

The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
x 0 156 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 23 0 21 21

Can be viewed:

» as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

> as the signal

safe alarm failsafe repairing safe

0 10 20 30 40 50 60 70

15/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

16/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

16/40

The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

= |t can be extended to model-check TCTL [ACD93|.

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (1&C, 1993).

16/40

The model-checking problem

Outline

4. The model-checking problem

17/40

The model-checking problem

Back to the model-checking problem

system:

18/40

The model-checking problem

Back to the model-checking problem

system:

™

Q
P
5 ’b\)&of(\ - —> <— G (request—F grant)
2
o O/
7

yes/no

18/40

The model-checking problem

Back to the model-checking problem

system:

18/40

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

19/40

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

» Model-checking linear-time timed temporal logics is hard!

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

19/40

The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

» Model-checking linear-time timed temporal logics is hard!

» The gap between branching-time and linear-time dramatically
increases in the timed framework...
(reminder: model-checking TCTL is PSPACE-complete)

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

19/40

Results

Over finite runs, the model-checking problem is:

The model-checking problem

pointwise sem.

continuous sem.

MTL decidable, NPR [OWO05]

undecidable [AFH96]

MTL+Past undecidable

undecidable

TPTL undecidable [AH94]

undecidable [AH94]

» Model-checking linear-time timed temporal logics is hard!

» The gap between branching-time and linear-time dramatically

increases in the timed framework...

(reminder: model-checking TCTL is PSPACE-complete)

1= we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systémes temporisés : contrdle et expressivité (PhD Thesis ENS Cachan, June 2007).

19/40

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel J

o? o!
o! o? O o? O ?
[57] S3 Sa S5

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel J

o? o!
o! o? O o? O ?
S S3 Sq S5

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel J

o? o!
o! o? O o? O ?
S S3 Sq S5

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! /\ ? O o? O o?
S1 2 S3 S4 S5
A
/ \

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? R o? O o?
S1 2 S3 Sq S5
A
/ \
el P

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? R o? O o?
S1 2 S3 Sq S5
A
/ \
JHEEEN

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? O o? R o?
S1 S> S3 Sa S5
A
/ \

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? O o? R o?
S1 S> S3 Sa S5
A
/ \
JEEEEN

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? O o? R o?
S1 S> S3 Sa S5
A
/ \
JEEEEN

s5 is not reachable

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? O o? R o?
S1 S> S3 Sa S5
A
/ \
JEEEEN

> insertion errors: any letter can appear on the channel at any time

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J

o! o? o!

() () ()

o! o? o? ?
S1 2 S3 Sq S5

> insertion errors: any letter can appear on the channel at any time

20/40

The model-checking problem

A short visit to channel machines (1)

A channel machine = a finite automaton + a FIFO channel J
o! ? o!
O o! ? O o? O o?
S1 2 S3 Sq S5
/ \
LT

> insertion errors: any letter can appear on the channel at any time

s5 is reachable

20/40

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

21/40

The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition
» The halting problem is undecidable for channel machines [BZ83].

» The halting problem is NPR for channel machines with insertion
errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).

21/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.
qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---
0 .25 6 .7 .85 1.25 1.4151.61.7 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

* possibly with insertion errors

22/40

The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5,) -

=1 t.u.
=1 t.u.
qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---
0 .25 6 .7 .85 1.25 1.4151.61.7 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

iff Auniv 17& 'z

* possibly with insertion errors

22/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

23/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

» the channel is FIFO: for every letter a,
G(al > F_;a?)

23/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

» the channel is FIFO: for every letter a,
G(al > F_;a?)

gé} This formula is not sufficient!

23/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

» the channel is FIFO: for every letter a,

G(al > F_;a?)
gé} This formula is not sufficient!
=1 t.u.
=1 t.u.
q0 al q1 bl Q2 a? 43 c? qap? qs -

=1 t.u.

23/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

» the channel is FIFO: for every letter a,

G(al > F_;a?)
gé} This formula is not sufficient!
=1 t.u.
=1 t.u.
o al Qb @ a? 93 c? Qab? G5 -
=1 t.u.

1= only encodes a channel machine with insertion errors!

23/40

The model-checking problem

Constraints satisfied by the timed word

> states and actions alternate, and the sequence satisfies the rules of
the channel machine: LTL formula

» the channel is FIFO: for every letter a,

G(al > F_;a?)
gé} This formula is not sufficient!
=1 t.u.
=1 t.u.
o al Qb @ a? 93 c? Qab? G5 -
=1 t.u.

1= only encodes a channel machine with insertion errors!
1 model-checking MTL is NPR

23/40

The model-checking problem

We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G((F=1a?) — a!)
> correct in the continuous semantics
> not correct in the pointwise semantics
» Why not look back in the past?
G (a? —» F_; a!)

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

» Why not look back in the past?
G (a? — FZ}a))

» correct for MTL+Past (in the continuous and in the pointwise sem.)

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F:1 a?) — a!)
> correct in the continuous semantics
> not correct in the pointwise semantics
» Why not look back in the past?
G (a? — FZ}a))
» correct for MTL+Past (in the continuous and in the pointwise sem.)
> no direct translation into MTL

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

» Why not look back in the past?
G (a? — FZ}a))
» correct for MTL+Past (in the continuous and in the pointwise sem.)
> no direct translation into MTL

» A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

» Why not look back in the past?
G (a? — FZ}a))
» correct for MTL+Past (in the continuous and in the pointwise sem.)
> no direct translation into MTL

» A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gqs ---

=1 t.u.

24/40

The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

» Why not look back in the past?
G (a? — FZ}a))
» correct for MTL+Past (in the continuous and in the pointwise sem.)
> no direct translation into MTL

» A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gqs ---
=1 t.u.

> this formula is in TPTL (pointwise sem.), not in MTL

24/40

What we have proved so far

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL NPR [OWO07] | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

25/40

What remains to be proved

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO07] | undecidable [AFH96]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

25/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Biichi) automata

G(a—Fb)

26/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Biichi) automata

G(a—Fb)

26/40

From LTL to alternating automata

The model-checking problem

LTL formulas can be turned into linear alternating (Biichi) automata

G(a—Fb)

26/40

The model-checking problem

From LTL to alternating automata

LTL formulas can be turned into linear alternating (Biichi) automata

G(a—Fb)

26/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a—]?[172] b)

27/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a—]?[1,2] b)

27/40

The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— I?[l,z] b)

27/40

An abstract transition system

The model-checking problem

28/40

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget
| | the precise values of the fractional parts.

28/40

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

28/40

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

28/40

The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

= there is a well quasi-order on the set of abstract configurations
(subword relation):

higman C highmountain

28/40

Summary

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

29/40

The model-checking problem

What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
framework

30/40

The model-checking problem

What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
framework

> there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

30/40

The model-checking problem

What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
framework

» there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OWO06]* | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

* by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).

30/40

Some interesting fragments

Outline

5. Some interesting fragments

31/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

32/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

32/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?

32/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]
MITLS ¢ == a | = [oV | oAe | Uy

with / a non-punctual interval

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?
Metric Interval Temporal Logic (MITL): [AFH96]

MITL2p == a | ¢ | Vo | pAp | ¢Ujp

with / a non-punctual interval

» Examples:
> G (e — F_je)is not in MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

The fragment without punctuality

» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]
MITLS ¢ == a | = [oV | oAe | Uy

with / a non-punctual interval

» Examples:
> G (e — F_je)is not in MITL
> G(e — Fpe)isin MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

32/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

33/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

33/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = G 1) (¢ — Fpy @)

33/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language
Example: consider the formula ¢ = G 1) (¢ — Fpy @)

» each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

33/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = G 1) (¢ — Fpy @)

» each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

» this requires an unbounded number of clocks

33/40

Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = G 1) (¢ — Fpy @)

» each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

» this requires an unbounded number of clocks

1= something more clever needs to be done

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).

33/40

Some interesting fragments

¢ = G, (a— Fp9b) J

34/40

Some interesting fragments

¢ = G, (a— Fp9b) J

>0
S|
i

ty t

34/40

¢ = G, (a— Fp9b) J

Some interesting fragments

—a b —|b b
e—— Py I Py

A A X : X

: : : 2 :
t1—1 th—2 s} to

34/40

Some interesting fragments

¢ = G, (a— Fp9b) J

-4 b —|b b

' o . e
) A A X : X i
0 1 2 3

t1—1 th—2 t1 ty

o (1)
«/&4 <0

/ \ 1<z<2 y<3] 2<z<3 6
x,y:=0 x=1 y=2

Q

3

—{ z=0 z<

34/40

Some interesting fragments

G,1)(a — Fp19b) J

-4 b —|b b

. o . e
i A A X : X .
0 1 2 3

t1—1 th—2 t1 ty

TN R =
— Nl
\\\\\‘ ,Y: 0////27

X0 '%Iili' *Z

= This idea can be extended to any formula in MITL

34/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?

35/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?

» Does punctuality always lead to undecidability?

35/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?

» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]

coFlat-MTL 3 p == a | "a | Ve | oA | U9 | VU @

where | unbounded = ¢ € LTL

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

35/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?

» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]
coFlat-MTL 3 p == a | "a | Ve | oA | U9 | VU @

where | unbounded = ¢ € LTL

» Examples:
> G(e — F_je)isin coFlat-MTL

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

35/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?

» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]
coFlat-MTL 3 p == a | "a | Ve | oA | U9 | VU @
where | unbounded = ¢ € LTL

» Examples:

> G(e — F_je)isin coFlat-MTL
» FGgieisnot in coFlat-MTL

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

35/40

Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?
» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]

coFlat-MTL 3 p == a | "a | Ve | oA | U9 | vU, @

where | unbounded = ¢ € LTL

» Examples:
> G(e — F_je)isin coFlat-MTL
» FGgieisnot in coFlat-MTL
> coFlat-MTL contains Bounded-MTL (all modalities are
time-bounded)

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).

35/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

en=eAGpwpp with ¢p= (e = F_1(eAFgio))
A (e = F_1(eAFge))

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

en=eAGpwpp with ¢p= (e = F_1(eAFgio))
A (e = F_1(eAFge))

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

en=eAGpwpp with ¢p= (e = F_1(eAFgio))
A (e = F_1(eAFge))

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

en=eAGpwpp with ¢p= (e = F_1(eAFgio))
A (e = F_1(eAFge))

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

en=eAGpwpp with ¢p= (e = F_1(eAFgio))
A (e = F_1(eAFge))

36/40

Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eANGpapp with ¢p= (e > Fo1(eAFge))
A (o= F=i(eAFqe))

» A Bounded-MTL formula may define a non timed-regular language:
Ggl (0 — F_1 0) 74\ G<1 LA G(1,2] °

defines the context-free language {e"e™ | n < m}.

36/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
o ——]
3 t.u. = useful duration fooo—oo—oo i

| S ——

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
" ——]
3 t.u. = useful duration Heo—e—o—o—oo|

| P ——

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
" ——]
3 t.u. = useful duration fofoe—oo—oo

| N D ——

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
" ——]
3 t.u. = useful duration foefe—oo—oo

| S D ——

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
"]
3 t.u. = useful duration fooo—oo—oo

R S ———

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
"]
3 t.u. = useful duration fooo—oe—oo

| TSR ——

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
A b
3 t.u. = useful duration fooo—se—oo

| TSR E—

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
"]
3 t.u. = useful duration fooo—oo—oo

vV fee—eoe—o |

37/40

Some interesting fragments

Algorithm for Bounded-MTL

Assume one wants to verify formula

G, (o — F_ o)

Offline, we stack all ‘relevant’ time units and use a sliding window:
"]
3 t.u. = useful duration fooo—oo—os|

vV fee—eoe—o

37/40

Some interesting fragments

Algorithm for coFlat-MTL

© ~ alternating timed automata B-, for = with a ‘flatness’ property

38/40

Some interesting fragments

Algorithm for coFlat-MTL

© ~ alternating timed automata B-, for = with a ‘flatness’ property

active active active active

—_— —_—— —_— —— _

| |] | | []]
pure LTL pure LTL pure LTL pure LTL

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

38/40

Some interesting fragments

Algorithm for coFlat-MTL

© ~ alternating timed automata B-, for = with a ‘flatness’ property

active active active active

—_— —_—— —_— —— _

| |] | | []]
pure LTL pure LTL pure LTL pure LTL

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

> active fragment = cycle-bounded computation in a channel machine

» pure LTL part = finite automaton computation

38/40

Conclusion

Outline

6. Conclusion

39/40

Conclusion

Conclusion

» Recent advances have raised a new interest for linear-time timed
temporal logics
> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

40/40

Conclusion

Conclusion

» Recent advances have raised a new interest for linear-time timed
temporal logics

> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

» A recent result: coFlat-MTLyr. unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOWO08]!

40/40

Conclusion

Conclusion

» Recent advances have raised a new interest for linear-time timed
temporal logics

> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

» A recent result: coFlat-MTLyr. unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOWO08]!

» No real data structures do exist for these logics.

40/40

Conclusion

Conclusion

» Recent advances have raised a new interest for linear-time timed
temporal logics

> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

» A recent result: coFlat-MTLyr. unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOWO08]!

» No real data structures do exist for these logics.

» An interesting phenomenon (in the continuous semantics):

y [TCTL | MTL [Bounded-TCTL [Bounded-MTL |
m.-c. || PSPACE | NPR/undec. PSPACE PSPACE
sat. undec. | NPR/undec. non-elem.* PSPACE

* ongoing work with Jenkins, Ouaknine, Worrell.

[BMOWO8] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.

40/40

	Introduction
	Definition of the logics
	The timed automaton model
	The model-checking problem
	Some interesting fragments
	Conclusion

