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» Need for timed models

> the behaviour of most systems depends on time;
> faithful modelling has to take time into account.

= timed automata, time(d) Petri nets, timed process algebras...

» Need for timed specification languages

> the behaviour of most systems depends on time;
» untimed specifications are not sufficient
(for instance, bounded response timed, etc...)

ww TCTL, MTL, TPTL, timed p-calculus...
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» Can be interpreted over finite or infinite behaviours
> this distinction is fundamental

[Koy90] Koymans. Specifying real-time properties with metric temporal logic (Real-time systems, 1990).
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MTL is strictly less expressive than MTL+Past and TPTL [BCMO05].

Conjecture in 1990: the TPTL formula
G(e = x.F(e AF (o Ax <2)))

cannot be expressed in MTL.

» This is true in the pointwise semantics.

» This is wrong in the continuous semantics!

[Kam68] Kamp. Tense logic and the theory of linear order (PhD Thesis UCLA 1968).
[GPSS80] Gabbay, Pnueli, Shelah, Stavi. On the temporal analysis of fairness (POPL'80).
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can be expressed in MTL in the continuous semantics

F_1 e
Fqa o A Fpyg e
Ge — Fa(e A Fae)

Fgl (F<10 AN F_; 0)

13/40



The timed automaton model

Outline

3. The timed automaton model

14/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe

23

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

2 roblen
safe 2 safe T alarm

23
23 23

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

23 problen 156
safe = safe T alarm % alarm
0 23 [ 15.6
0 23 23 38.6

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe ZUN arm BS gam S gilafe
0 23 0 156 15.6
0 23 23 38.6 0

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe ZUN arm B8 gam S gilafe 23 failsafe
x 0 23 0 156 15.6 17.9
y 0 23 23 38.6 0 23

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe PP o B8 Gam 20 giigfe 22 failsafe  ZP2T,  reparation
0 23 0 156 15.6 17.9 17.9
0 23 23 38.6 0 23 0

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe  EEUL o 5 gam SN gigfe 22 filsafe ST, reparation 221 reparation
0 23 0 156 15.6 17.9 17.9 40
0 23 23 38.6 0 23 0 21

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

problem, x:=0

safe 2 safe  EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
0 23 0 156 15.6 17.9 17.9 40 40
0 23 23 38.6 0 23 0 21 21

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

failsafe

safe 2 safe  EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
x 0 23 0 15.6 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 23 0 221 221
Can be viewed:
» as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)
30 40 50 60 70

0 10 20

15/40



The timed automaton model

Timed automata

repairing

repair
2< Yy AX<56
yi=0

safe 2 safe  EU o B8 Gam S gigfe 22 failsafe ST, reparation 2L reparation S safe
x 0 156 15.6 17.9 17.9 40 40
y 0 23 23 38.6 0 23 0 21 21

Can be viewed:

» as the timed word (problem,23)(delayed,38.6)(repair,40.9)(done,63)

0 10 20 30 40 50 60 70

> as the signal

safe alarm failsafe repairing safe

0 10 20 30 40 50 60 70

15/40



The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

16/40



The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).

16/40



The timed automaton model

Basic result on timed automata

Theorem

The reachability problem is decidable (and PSPACE-complete) for timed
automata [AD94].

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

= |t can be extended to model-check TCTL [ACD93|.

[AD94] Alur, Dill. A theory of timed automata (TCS, 1994).
[ACD93] Alur, Courcoubetis, Dill. Model-checking in dense real-time (1&C, 1993).
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The model-checking problem

Results

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OW05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).
[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).
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Results

Over finite runs, the model-checking problem is:

The model-checking problem

pointwise sem.

continuous sem.

MTL decidable, NPR [OWO05]

undecidable [AFH96]

MTL+Past undecidable

undecidable

TPTL undecidable [AH94]

undecidable [AH94]

» Model-checking linear-time timed temporal logics is hard!

» The gap between branching-time and linear-time dramatically

increases in the timed framework...

(reminder: model-checking TCTL is PSPACE-complete)

1= we will explain this high complexity, following [Che07]

[OW05] Ouaknine, Worrell. On the decidability of metric temporal logic (LICS'05).

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).

[AH94] Alur, Henzinger. A really temporal logic (Journal of the ACM, 1994).

[Che07] Chevalier. Logiques pour les systémes temporisés : contrdle et expressivité (PhD Thesis ENS Cachan, June 2007).
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The model-checking problem

A short visit to channel machines (1)

A channel machine

a finite automaton + a FIFO channel J

o? o!
o! o? O o? O ?
[57] S3 Sa S5
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The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?
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The model-checking problem

A short visit to channel machines (2)

Halting problem: is there an execution ending in a halting state?

Proposition
» The halting problem is undecidable for channel machines [BZ83].

» The halting problem is NPR for channel machines with insertion
errors [Sch02].

[BZ83] Brand, Zafiropulo. On communicating finite-state machines (Journal of the ACM, 1983).
[Sch02] Schnoebelen. Verifying lossy channel systems has non-primitive recursive complexity (IPL, 2002).
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The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40



The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40



The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

=1 t.u.
=1 t.u.

qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---

22/40



The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

=1 t.u.
=1 t.u.
qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---
0 .25 6 .7 .85 1.25 1.4151.61.7 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

* possibly with insertion errors

22/40



The model-checking problem

Channel machines and timed words

We encode an execution of a channel machine as a timed word:

(90,€) 2> (q1,3) = (g2, ab) 25 (g3, b) <> (qa, be) 25 (g5, ) -

=1 t.u.
=1 t.u.
qo al qi bl Q2 a? Q3 ¢l q4 p? qs ---
0 .25 6 .7 .85 1.25 1.4151.61.7 1.9

We will give a formula ¢ such that

the channel machine* halts iff the formula ¢ is satisfiable

iff Auniv 17& 'z

* possibly with insertion errors
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The model-checking problem
We need to express the property:

“Every a7-event is preceded one time unit earlier by an al-event”

» Why not reverse the previous implication?
G ((F-1a?) — a!)

» correct in the continuous semantics
> not correct in the pointwise semantics

» Why not look back in the past?
G (a? — FZ}a))
» correct for MTL+Past (in the continuous and in the pointwise sem.)
> no direct translation into MTL

» A more tricky way:

—‘(FX.Xy.F(X >1Ay< 1/\c?))

qo al qr p! Q2 a? 93 ¢? qab? gqs ---
=1 t.u.

> this formula is in TPTL (pointwise sem.), not in MTL
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What we have proved so far

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL NPR [OWO07] | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata

G(a— ]?[172] b)
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The model-checking problem

From MTL to alternating timed automata

MTL formulas can be turned into linear alternating timed automata
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The model-checking problem

An abstract transition system

We order elements in a slice of the tree
w.r.t. their fractional part, and we forget

| | the precise values of the fractional parts.

i this defines an abstract (infinite) transition system

1 it is (time-abstract) bisimilar to the transition system of the
alternating timed automata

= there is a well quasi-order on the set of abstract configurations
(subword relation):

higman C highmountain
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Summary

The model-checking problem

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL decidable, NPR [OWO05] | undecidable [AFH96]
MTL+-Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94]
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What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
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The model-checking problem

What about infinite behaviours?

» the previous algorithm cannot be lifted to the infinite behaviours
framework

» there is a problem with the accepting condition
(in the untimed case, we use the Miyano-Hayashi construction [MH84])

Over finite runs, the model-checking problem is:

pointwise sem. continuous sem.
MTL undecidable [OWO06]* | undecidable [AFHI6]
MTL-+Past undecidable undecidable
TPTL undecidable [AH94] undecidable [AH94|

* by reduction of the recurrence problem for channel machines

[MH84] Miyano, Hayashi. Alternating finite automata on w-words (TCS, 1984).
[OW06] Ouaknine, Worrell. On metric temporal logic and faulty Turing machines (FoSSaCS'06).
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» Examples:
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» The undecidability/NPR proofs heavily rely on punctual constraints.

Old claim: “Any logic strong enough to express the property
G (e — F_; o) is undecidable”

» What if we forbid punctual constraints in MTL?

Metric Interval Temporal Logic (MITL): [AFH96]
MITLS ¢ == a | = [ oV | oAe | Uy

with / a non-punctual interval

» Examples:
> G (e — F_je)is not in MITL
> G(e — Fpe)isin MITL

[AFH96] Alur, Feder, Henzinger. The benefits of relaxing punctuality (Journal of the ACM, 1996).
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Some interesting fragments

Model-checking MITL is “easy”

The model-checking problem for MITL is EXPSPACE-complete [AFH96].
If constants are encoded in unary, it is even PSPACE-complete [HR04].

= we can bound the variability of the signals

1= an MITL formula defines a timed regular language

Example: consider the formula ¢ = G 1) (¢ — Fpy @)

» each time an e occurs within the first time unit, start a new clock,
and check that a e occurs between 1 and 2 time units afterwards

» this requires an unbounded number of clocks

1= something more clever needs to be done

[HRO4] Hirshfeld, Rabinovich. Logics for real time: decidability and complexity (Fundamenta Informaticae, 2004).
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Some interesting fragments

—a b —|b b
e—— Py I Py

A A X : X

: : : 2 :
t1—1 th—2 s} to

34/40



Some interesting fragments

¢ = G, (a— Fp9b) J

-4 b —|b b

' o . e
) A A X : X i
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t1—1 th—2 t1 ty

o (1)
«/&4 <0

/ \ 1<z<2 y<3 ] 2<z<3 6
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Some interesting fragments

G,1)(a — Fp19b) J

-4 b —|b b

. o . e
i A A X : X .
0 1 2 3

t1—1 th—2 t1 ty

TN R =
— Nl
\\\\\‘ ,Y: 0////27

X0 '%Iili' *Z

= This idea can be extended to any formula in MITL
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Some interesting fragments

A co-flat fragment of MTL

» Do punctual constraints really need to be banned?
» Does punctuality always lead to undecidability?

We define coFlat-MTL: [BMOWO7]

coFlat-MTL 3 p == a | "a | Ve | oA | U9 | vU, @

where | unbounded = ¢ € LTL

» Examples:
> G(e — F_je)isin coFlat-MTL
» FGgieisnot in coFlat-MTL
> coFlat-MTL contains Bounded-MTL (all modalities are
time-bounded)

[BMOWO7] Bouyer, Markey, Ouaknine, Worrell. The cost of punctuality (LICS'07).
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Some interesting fragments

Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.
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Model-checking coFlat-MTL is “easy”

The model-checking problem for coFlat-MTL or Bounded-MTL is
EXPSPACE-complete [BMOWOT7]. If constants are encoded in unary, the
model-checking of Bounded-MTL is PSPACE-complete.

» The variability of a Bounded-MTL formula can be high
(doubly-exp.):

on=eANGpapp  with  ¢p= (e > Fo1(eAFge))
A (o= F=i(eAFqe))

» A Bounded-MTL formula may define a non timed-regular language:
Ggl (0 — F_1 0) 74\ G<1 LA G(1,2] °

defines the context-free language {e"e™ | n < m}.
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Algorithm for coFlat-MTL

© ~ alternating timed automata B-, for = with a ‘flatness’ property

active active active active

—_— —_—— —_— —— _

| | ] | | [ ] ]
pure LTL pure LTL pure LTL pure LTL

where - the number of active fragments is at most exponential
- the total duration of active fragments is at most exponential

> active fragment = cycle-bounded computation in a channel machine

» pure LTL part = finite automaton computation
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» Recent advances have raised a new interest for linear-time timed
temporal logics

> Not everything is undecidable
» Some rather ‘efficient’ subclasses

> non-punctual formulas
> structurally (co-)flat formulas

» A recent result: coFlat-MTLyr. unifies coFlat-MTL and MITL, and
is EXPSPACE-complete [BMOWO08]!

» No real data structures do exist for these logics.

» An interesting phenomenon (in the continuous semantics):

y [ TCTL |  MTL [ Bounded-TCTL [ Bounded-MTL |
m.-c. || PSPACE | NPR/undec. PSPACE PSPACE
sat. undec. | NPR/undec. non-elem.* PSPACE

* ongoing work with Jenkins, Ouaknine, Worrell.

[BMOWO8] Bouyer, Markey, Ouaknine, Worrell. A small-model theorem for real-time logics.
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